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An approach for relating the nucleon resonances extracted from πN reaction data to lattice QCD
calculations has been developed by using the finite-volume Hamiltonian method. Within models of πN
reactions, bare states are introduced to parametrize the intrinsic excitations of the nucleon. We show that the
resonance can be related to the probability PN� ðEÞ of finding the bare state, N�, in the πN scattering states
in infinite volume. We further demonstrate that the probability PV

N� ðEÞ of finding the same bare states in the
eigenfunctions of the underlying Hamiltonian in finite volume approaches PN� ðEÞ as the volume increases.
Our findings suggest that the comparison of PN� ðEÞ and PV

N� ðEÞ can be used to examine whether the
nucleon resonances extracted from the πN reaction data within the dynamical models are consistent with
lattice QCD calculation. We also discuss the measurement of PV

N� ðEÞ directly from lattice QCD.
The practical differences between our approach and the approach using the Lüscher formalism to relate
LQCD calculations to the nucleon resonance poles embedded in the data are also discussed.
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I. INTRODUCTION

One of the most challenging problems in modern hadron
physics is to understand the spectra of baryons and mesons
within quantum chromodynamics (QCD), the fundamental
theory of the strong interactions. It is therefore important to
investigate how the properties of the excited nucleons can
be understood using lattice QCD calculations (LQCD).
Important progress in this direction has been made in recent
years [1,2] and the accuracy of the results is expected to
improve rapidly in the near future. It is therefore necessary
to address the question of how LQCD results can be related
to the experimental data and, further, how they may be used
to understand the manner in which nucleon excited states
emerge from nonperturbative QCD.
The excited nucleons are unstable and coupled with the

meson-nucleon continuum to form nucleon resonances (N�).
Thus the properties of excited nucleons can only be studied
by analyzing the nucleon resonances extracted from data,
such as meson production reactions induced by pions,
photons and electrons. Accordingly, it is necessary to develop
an approach to relate the resonance parameters, which are
defined on the complex energy (E) plane, to the results from
LQCDcalculations. Themain progress wasmade byLüscher
in Refs. [3,4], where an equation connecting the spectra in a
finite volume and the phase shift and inelasticity in infinite
volumewas developed. Based on these papers, there has been
a great deal of work extending the Lüscher formalism to the
two-body coupled-channel case [5–11]. A review of recent
progress may be found in Ref. [12].

As pointed out in Refs. [13–15], the equation connecting
the S matrix and the energy levels presents difficulties in
the practical application in the multichannel case, even
for the one-channel case with higher partial waves. In the
multichannel case, there are N free parameters in the S
matrix for a single energy level. For example, there are
N ¼ 3 parameters, two phase shifts and one inelasticity, for
two coupled channels. Thus, to extract these N parameters
of fixed energy, one needs N independent equations with
different lattice sizes at this energy. That is, we need to
find several different lattice sizes which produce the same
energy eigenvalue. Unfortunately, it is hard to collect
several lattice sizes with the same energy eigenvalue
because the time consuming generation of lattice configu-
rations needs to be done separately for each lattice size.
On the other hand, if we expect to predict the spectra in the
finite volume with fixed size, the full S matrix is required.
However, as we know, the experimental data only can
provide the phase shifts and inelasticities for a few
channels. For example, for the f0ð980Þ resonance, there
are very limited data for the phase shifts in the KK̄ channel.
In summary, although the equation does provide a reliable
relationship between the S matrix and the energy levels, it is
hard to apply only because of the limited experimental data
and lattice results available. For clarification, a detailed
discussion will be presented in Sec. IV. Thus, in order to
avoid this problem, we need to introduce a parametrization
method to complete the analysis and predict the spectra in
the lattice finite volume. For example, in Refs. [14,16], the
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K-matrix model is applied. However, there are other
approaches which do not directly use these equations gen-
erated from theLüscher formalism.There, the energy levels in
the finite volume are calculated from the eigenvalues of a
finite volume Hamiltonian matrix [15,17–21]. Alternatively,
the pole positions of the finite volume T matrix [22–25]
provide the finite volume energies. Both of these methods
have been shown to be consistent with the Lüscher formalism
up to exponentially suppressed corrections [15,22].
In the first approach [14,16,26,27], they combine the

K-matrix model with the Lüscher formalism. Of course,
one can also use other models to generate the S matrix.
First, by controlling the parameters in the K-matrix model,
the full S matrix is generated. Then the spectra in the finite
volume can be calculated through the Lüscher formalism
with the input of the full S matrix. Thirdly by fitting the
spectra measured in the lattice, the parameters in the model
will be determined; i.e., the K-matrix model is fixed by
fitting the spectra in the finite volume. In the last step,
resonance parameters extracted within the constructed
K-matrix model are then compared with those listed by
the Particle Data Group (PDG) [28].
The second approach is the finite-volume Hamiltonian

(FVH) method developed in Refs. [15,17–21,29]. This
starts with the construction of a Hamiltonian to fit the data
of the processes under consideration. The resulting
Hamiltonian is then used to predict the spectrum in finite
volume and that is compared with the spectrum calculated
from LQCD. Agreement between these spectra implies that
the LQCD calculation gives the same resonance parameters
embedded in the data through the constructed Hamiltonian.
Alternatively, this second approach can also be used to fit
the LQCD energy spectrum and the resulting Hamiltonian
can then be used to calculate phase shifts for comparison
with experimental data. In the process of calculating the
finite volume spectrum, one gains insight into the compo-
sition of the lattice QCD eigenstates. One can examine
the eigenvectors of correlation matrices constructed from
single-particle and multiparticle interpolating fields. The
main task of this paper is to draw on this information and
connect this insight directly to the basis states of the model.
From the Hamiltonian model, we can not only describe the
spectrum in the finite volume, but also the components of
these eigenstates.
We emphasize the difference from the first approach

discussed above. In the FVH method, we are also examin-
ing the eigenvectors of the Hamiltonian model and their
direct connection to the lattice QCD eigenstates, a con-
nection that cannot be made through an intermediary
infinite volume scattering amplitude. It is important to
build a bridge between models and lattice results directly,
rather than through the S matrix, because the lattice
produces more information than the S matrix alone.
The approach developed in Refs. [22–25] also involves a

formulation of the problem within a finite volume, starting

with the scattering equations deduced from unitarized chiral
perturbation theory. It has also been used to extract resonance
parameters by an appropriate analytic continuation.
If the spectrum calculated from LQCD is of very high

accuracy and covers a sufficiently wide energy region,
within which the experimental data for investigating a
particular nucleon resonance are also accurate and com-
plete (as reviewed in Ref. [30]), then the first and second
approaches are equally valid. This is supported by the
results from a study [31] of resonance extractions and the
FVH method. It was demonstrated within several exactly
soluble models that the extracted resonance parameters are
independent of the model used in the resonance extraction
as far as the partial-wave amplitude data within the
sufficiently wide region near the considered resonance
are fitted precisely (i.e., within 1% considered in Ref. [31]).
Unfortunately, this ideal situation does not exist in reality

for investigating nucleon resonances at the present time.
The scattering amplitudes determined from either the
experimental data or the LQCD spectrum and Lüscher’s
formula have intrinsic errors associated with the unavoid-
able systematic and statistical errors. Thus the extracted
resonance parameters, widths and residues, can depend
significantly on the parametrization of the K-matrix and the
form of the Hamiltonian used to fit the determined
scattering amplitudes within the errors, particularly in
the higher-mass region as observed in Ref. [32].
The purpose of the present work is to apply the FVH

method in the development of an approach to relate the
nucleon resonances to LQCD calculations. Instead of the
separable potential models used in the previous FVH
studies [15,17–19], dynamical πN reaction models based
on meson-exchange mechanisms are used. We will start
with a one-channel dynamical model [the Sato-Lee (SL)
model] developed in Ref. [33]. This model, with one bare
state in the P33 partial wave, is consistent with the well-
accepted interpretation [34,35] that the Δ (1232) resonance
is made of a quark core and a meson cloud.
We first apply the SL Hamiltonian to confirm the results,

as established in [15,17–21], that the FVH method is
equivalent to using Lüscher’s formalism in relating the
spectrum in finite volume to the scattering amplitudes in
infinite volume.We then observe that the probabilityPΔðEÞ
of finding the bare Δ state in the πN scattering wave
function contains resonance information which can be
verified on the real-E axis, which is in turn accessible to
experiments. We then demonstrate that an energy-averaged
probability PV

ΔðE;LÞ of finding the bare Δ in the eigenstate
of the Hamiltonian in finite volume approaches PΔðEÞ as
the volume size L increases. This result indicates that
PV
ΔðE;LÞ from LQCD calculations can be related directly

to the nucleon resonance information extracted within
the given dynamical model. Clearly, this is rather different
fromApproach 1mentioned above, which uses the K-matrix
model to extract nucleon resonance properties from the
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spectrum obtained in LQCD calculations. In addition, the
authors of Refs. [36,37], developed another method for
extracting the Breit-Wigner form of resonances from the
lattice spectrum. The differences between their approach and
that presented here are discussed in Sec. III.
We next consider a three-channel, meson-exchange πN

model. The parameters of this model are determined by
fitting the empirical S- and P-wave amplitudes up to
W ¼ 1.6 GeV. This allows us to examine the more com-
plex situations, in which the multichannel system is
considered, and two resonances are associated with the
same bare state in the P11 partial wave. This is similar to the
results obtained from the analysis of Ref. [32]. Here we
examine closely the differences between using the FVH
method and Lüscher’s formalism to relate the multichannel
scattering amplitudes and the associated nucleon resonan-
ces to the LQCD calculations through the spectrum in finite
volume. We then demonstrate that for the multichannel case
the probability PV

ΔðE;LÞ in finite volume also approaches
the probability PΔðEÞ in infinite volume, as the volume
increases.
Our findings suggest that the comparison of PN� ðEÞ and

PV
N� ðE; LÞ can be used to examine whether the nucleon

resonances extracted from the πN reaction data within the
dynamical models are consistent with LQCD. We will
discuss possible LQCD calculations of PV

N� ðE; LÞ for
interpreting the bare states of the dynamical models. This
provides a new method to extract the properties of hadrons
directly from LQCD calculations through measuring
PV
N� ðE; LÞ. We anticipate the formalism developed herein

will be applied in next-generation lattice QCD calculations
extracting the complete spectrum through the incorporation
of nonlocal meson-baryon interpolating fields.
In Sec. II, we present details of the calculations based on

a dynamical Hamiltonian model in infinite volume and in a
finite volume. The results for the SL model and the three-
channel model are presented in Secs. III and IV, respec-
tively. In Sec. V and Appendix A, we discuss possible
LQCD calculations of PV

N� ðE;LÞ. A summary and some
discussion of possible future directions are given in Sec. VI.

II. SCATTERING SOLUTIONS FROM
DYNAMICAL HAMILTONIANS

The Hamiltonian of the dynamical model we will
consider is defined by

H ¼ H0 þHI; ð1Þ
where H0 is the free Hamiltonian.
The interaction Hamiltonian is taken to have the follow-

ing form,

HI ¼
X
i¼1;nc

gN�;i þ
X

i;j¼1;nc

vi;j; ð2Þ

where nc is the number of meson-baryon channels con-
sidered; gN�;i is the vertex interaction defining the decay of

a bare state, jN�
Ci, into the ith meson-baryon channel; and

vi;j is the two-body meson-baryon interaction between
channels i and j.
In both the SL model and the three-channel model, the

interactions vi;j are calculated from meson-exchange mech-
anisms derived from phenomenological Lagrangians. The
bare state introduced here is a renormalization scheme
dependent quantity and consequently unphysical. The merit
of working with the bare state quantity is in selecting a
renormalization scheme of relevance to the legacy of
phenomenological approaches to understand the resonance
structure. In our case, physicists studying QCD resonance
structure adopt form factors that describe the finite size of
the meson-cloud source. These practitioners are thus
interested in the effective field theory results when the
regulator parameter of the effective field theory is taken to
be a dipole with scale of order 1 GeV, which produces
excellent phenomenology. And while the bare state is not
physical, it is still of interest to the field as it gives important
insight into how QCD gives rise to resonance structure.
In the following two subsections, we write down the

formulas required to calculate the scattering amplitudes
from the Hamiltonian Eqs. (1) and (2) in infinite volume as
well as in finite volume.

A. Solutions in infinite volume

Based on the Hamiltonian defined by Eqs. (1) and (2), it
is known [32,33] that the scattering amplitudes of each
partial wave can be written as

Ti;jðk; k0;EÞ ¼ tbgi;jðk; k0;EÞ þ tresi;j ðk; k0;EÞ: ð3Þ

Here and in the rest of this paper the indices ði; jÞ also
specify the quantum numbers associated with the meson-
baryon channel, namely, the orbital angular momentum
(L), total spin (S), total angular momentum (J), parity (P),
and isospin (I). The “background” amplitudes tbgi;jðk; k0; EÞ
are calculated from the meson-baryon interactions by

tbgi;jðk; k0;EÞ ¼ vi;jðk; k0;EÞ

þ
X
m

Z
k002dk00vi;mðk0; k00;EÞ

×
1

E − EMm
ðk00Þ − EBm

ðk00Þ þ iϵ

× tbgm;jðk00; k0;EÞ: ð4Þ

The resonant amplitudes are

tresi;j ðk; k0;EÞ ¼
Γ̄†
i ðk;EÞΓ̄jðk0;EÞ
E −m0 − ΣðEÞ ; ð5Þ

where the dressed vertex functions are
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Γ̄†
i ðk;EÞ ¼ Γ†

i ðkÞ þ
X
m

Z
k02dk0tbgi;mðk; k0;EÞ

×
1

E − EMm
ðk0Þ − EBm

ðk0Þ þ iϵ
Γ†
mðk0Þ; ð6Þ

Γ̄jðk;EÞ ¼ ΓjðkÞ þ
X
m

Z
k02dk0Γmðk0Þ

×
1

E − EMm
ðk0Þ − EBm

ðk0Þ þ iϵ
tbgm;jðk0; k;EÞ;

ð7Þ
and the self-energy of the N� is

ΣðEÞ ¼
X
m

Z
k02dk0Γmðk0Þ

×
1

E − EMm
ðk0Þ − EBm

ðk0Þ þ iϵ
Γ̄†
mðk0;EÞ: ð8Þ

As developed in Refs. [38,39], the resonance poles Eres of
the scattering amplitudes Ti;j can be found from the
resonant part tresi;j of Eq. (3). From the expression
Eq. (5), it is clear that Eres can be obtained by solving
the following equation on the complex E plane:

Eres −m0 − ΣðEresÞ ¼ 0: ð9Þ
This equation can lead to many poles. However, only the
poles near the physical region are relevant to the physical
observables. The energies of these resonance poles in
general have the form Eres ¼ ER − iEI with ER, EI > 0.
In the Argonne National Laboratory–Osaka University
(ANL-Osaka) analysis [32], only those poles with EI <
200 MeV are considered to be related to excited nucleon
states through their coupling with the meson-baryon
continuum.
We next use tresπN;πN of the total amplitude T of Eq. (3) to

define the resonant cross section of πN elastic scattering as

σresðEÞ ¼ ð4πÞ2
k2πN

ρ2πNðEÞ
2J þ 1

2
jtresπN;πNðkπN; kπN; EÞj2;

¼ ð4πÞ2
k2πN

ρ2πNðEÞ
2J þ 1

2

���� Γ̄
†
πNðkπN ;EÞΓ̄πNðkπN ;EÞ

E −m0 − ΣðEÞ
����
2

;

ð10Þ

where kπN is the πN on-shell momentum, and
ρπNðEÞ ¼ πkπNENðkÞEπðkÞ=E. We can cast Eq. (10) into
the following form:

σresðEÞ ¼
���� 1

E−m0−ΣðEÞ
����
2

×

�ð4πÞ2
k2πN

ρ2πNðEÞ
2Jþ 1

2
jΓ̄πNðkπN; ;EÞj4

�
: ð11Þ

Because of the condition Eq. (9), one can consider that
σresπNðEÞ contains the resonance information on the real-E
axis which is accessible to experiments. In some cases it
is possible to cast the expression Eq. (11) into the Breit-
Wigner form in the region where ðER − 2EIÞ ≤ E ≤
ðER þ 2EIÞ. But the parameters of the resulting Breit-
Wigner resonances will differ from those of the extracted
resonance poles, which are known [38,40] to be the
energies of the eigenstates of the underlying Hamiltonian
with an outgoing wave boundary condition.
We now introduce a quantity which can be related to σres

and which can also be defined within the finite-volume
formulation. We start by examining the scattering wave
function with an incident plane-wave state in the i ¼ 1 ¼
πN channel. It is defined by the total amplitude Eq. (3):

jΨðþÞ
E;πNi ¼

�
1þ 1

E −H0 þ iϵ
TðEÞ

�
jkπNi; ð12Þ

where jkπNi is the incoming πN plane-wave state. It is well
known from standard reaction theory [41] that

ðH0 þHIÞjΨðþÞ
E;πNi ¼ EjΨðþÞ

E;πNi: ð13Þ

We can use the definition Eq. (12) and the solutions given
by Eqs. (3)–(8), to verify Eq. (13) explicitly and also to
obtain the following relation:

hN�
CjΨðþÞ

E;πNi ¼
Γ̄πNðkπN ;EÞ

E −m0 − ΣðEÞ : ð14Þ

Thus the probability of finding the bare state jBi in the πN
scattering wave function is

pπNðEÞ ¼ jhN�
CjΨðþÞ

E;πNij2 ¼
���� Γ̄ðkπN ;EÞ
E −m0 − ΣðkÞ

����
2

: ð15Þ

By comparing pπNðEÞ and σresðEÞ [Eq. (11)], we can see
that pπNðEÞ contains the resonance information on the real-
E axis which is accessible to experiments.
One can generalize the above formula to define piðEÞ for

any channel i ¼ 1;…; nc included in the model. We define
the total probability of finding the bare N� state in the
scattering wave function as

PN�
C
ðEÞ ¼ 1

Z

� X
i¼1;nc

ρiðEÞpiðEÞ
�
; ð16Þ

with

ρiðEÞ ¼ πkiEMi
ðkiÞEBi

ðkiÞ; ð17Þ

where ki is the on-shell momentum of channel i, and
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piðEÞ ¼ jhBjΨðþÞ
E;i ij2; ð18Þ

¼
���� Γ̄ðki;EÞ
E −m0 − ΣðEÞ

����
2

; ð19Þ

Z ¼
X
i¼1;nc

Z
∞

Ethi

dEρiðEÞpiðEÞ: ð20Þ

Here Ethi is the threshold energy in the ith channel. Clearly,
we can write

PN�
C
ðEÞ¼

���� 1

E−m0−ΣðEÞ
����
2 1

Z

X
i

ρiðEÞjΓ̄iðki;EÞj2: ð21Þ

By comparing Eqs. (11) and (21), we observe that PN�
C
ðEÞ

has a similar energy dependence to σresðEÞ and that it also
contains the resonance information on the real-E axis
which is accessible to experiments.

B. Solution in a finite volume

In a periodic volume characterized by side length L,
the quantized three-momenta of mesons and baryons must
be kn ¼

ffiffiffi
n

p
2π
L for integers n ¼ 0; 1; 2;… Because of the

presence of a bare state jN�
Ci in the dynamical Hamiltonian

Eqs. (1) and (2), the wave function jΨV
Ei obtained by

solving the Schrödinger equation in finite volume must be
of the following form:

jΨV
Ei ¼ jN�

CihBjΨV
Ei þ

X
i¼1;nc

X
ni¼0;N−1

jkniihkni jΨV
Ei; ð22Þ

where jk0i; jk1i;…; jkN−1i are the plane-wave states for a
given choice of N momenta and nc is the number of meson-
baryonchannels considered.Solving theSchrödinger equation

ðH0 þHIÞjΨV
Ei ¼ EjΨV

Ei; ð23Þ

in finite volume is then equivalent to finding the eigenvalues of
the following matrix equation,

detð½H0�Ncþ1 þ ½HI�Ncþ1 − E½I�Ncþ1Þ ¼ 0; ð24Þ

where ½I�Ncþ1 is an ðNc þ 1Þ × ðNc þ 1Þ unit matrix
with Nc ¼ N × nc.
The matrix for the free Hamiltonian in Eq. (24) takes the

following form,

½H0�Ncþ1¼

0
BBBBBBBBBBBBB@

m0 0 0 � � � 0 0 �� �
0 ϵ1ðk0Þ 0 � � � 0 0 �� �
0 0 ϵ2ðk0Þ �� � 0 0 �� �

0 0 0 . .
.

0 0 �� �
0 0 0 � � � ϵncðk0Þ 0 �� �
0 0 0 � � � 0 ϵ1ðk1Þ �� �
..
. ..

. ..
. ..

. ..
. ..

. . .
.

1
CCCCCCCCCCCCCA

;

where m0 is the mass of the bare N� state, and

ϵiðknÞ ¼ EMi
ðknÞ þ EBi

ðknÞ: ð25Þ

HereEMi
ðknÞ andEBi

ðknÞ are the free energies of the meson
(M) and baryon (B) in the ith channel, respectively. The
ðNc þ 1Þ × ðNc þ 1Þmatrix for the interaction Hamiltonian
Eq. (2) is

½HI�Ncþ1 ¼

0
BBBBBBBBBBBBBBB@

0 gV1 ðk0Þ gV2 ðk0Þ � � � gVncðk0Þ gV1 ðk1Þ � � �
gV1 ðk0Þ vV1;1ðk0; k0Þ vV1;2ðk0; k0Þ � � � vV1;ncðk0; k0Þ vV1;1ðk0; k1Þ � � �
gV2 ðk0Þ vV2;1ðk0; k0Þ vV2;2ðk0; k0Þ � � � vV2;ncðk0; k0Þ vV2;1ðk0; k1Þ � � �

..

. ..
. ..

. . .
. ..

. ..
. � � �

gVncðk0Þ vVnc;1ðk0; k0Þ vVnc;2ðk0; k0Þ � � � vVnc;ncðk0; k0Þ vVnc;1ðk0; k1Þ � � �
gV1 ðk1Þ vV1;1ðk1; k0Þ vV1;2ðk1; k0Þ � � � vV1;ncðk1; k0Þ vV1;1ðk1; k1Þ � � �

..

. ..
. ..

. ..
. ..

. ..
. . .

.

1
CCCCCCCCCCCCCCCA

; ð26Þ

with

gVi ðknÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
C3ðnÞ
4π

r �
2π

L

�
3=2

gB;iðknÞ; ð27Þ

vVi;jðkni ; knjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
C3ðniÞ
4π

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C3ðnjÞ
4π

r �
2π

L

�
3

vi;jðkni ; knjÞ; ð28Þ
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where C3ðnÞ is the number of degenerate states with the
same magnitude kn ¼ jk⃗nj. By solving Eq. (24), we then
obtain the spectrum ðE1; E2;…Þ for each partial wave and
the corresponding wave function of the eigenstate jΨV

Ei
i.

In practice, we follow Refs. [15,17] in using the partial-
wavematrix elements of gB;i and vi;j to solve Eqs. (24)–(28).
Thus the spin information of particles is already included in
the Hamiltonian matrix, which is of the same form as for
spinless particles. Because the symmetry of the SO(3) group
in the infinite volume is reduced to the cubic group in the
lattice, the irreducible representations of the cubic group will
mix the high partial waveswith the low partial waves. For the
P33 and P11 cases in the rest frame, the next mixing partial
waves areEwave (L ¼ 3) of the πN and πΔ channels andF
wave (L ¼ 4) for the σN channel [4], respectively. Such high
partial waves will be suppressed with the factor k2lþ1

cm in the
threshold regime, where kcm is the momentum of each
particle in the center of mass system. On the other hand,
we also do not have experimental data input for such high
partial waves to constrain the parameters. Based on these
considerations, we cut the partial waves at L ¼ 2.
Furthermore, for the simplification of the labeling, we still
use the labels of P33 and P11 in the finite volume.
Accordingly, we only consider the pure P-wave contribu-
tions in the calculations of the spectra for the P33 channels.
With these simplifications, only the zeta function Z00ð1; q2Þ
is needed to use the Lüscher formula to calculate the
phase shifts from the predicted spectrum, as described below.
The validity of this procedure has been established in
Refs. [15,17].
For the single channel nc ¼ 1 case, the Lüscher [4]

formalism gives a phase shift δðEÞ for each energy E of the
predicted spectrum by

δðEÞ ¼ − tan−1
�
−

qπ3=2

Z00ð1; q2Þ
�
þ nπ ð29Þ

where q ¼ kL
2π is evaluated in terms of the three-momentum

k for the energy E ¼ ENðkÞ þ EπðkÞ of the spectrum, and
Z00ð1; q2Þ is the generalized zeta function. The formalism
for two channels was developed in Ref. [7] and for the
general multichannel case in Ref. [8].
With the eigenstate jΨV

Eα
i (spin index omitted) in the rest

frame of the N�, which is of the form of Eq. (22), from
solving Eq. (24), we can calculate the probability of finding
the bare state N�:

pV
N�

C
ðEα; LÞ ¼ jhN�

CjΨV
Eα
ij2: ð30Þ

As we will show explicitly in Sec. III, pV
N�

C
ðEαÞ is not a

smooth function of Eα. We therefore define the following
energy-averaged form,

PV
N�

C
ðEave

k ;ΔE; LÞ ¼ 1

ZV

1

ΔE

� X
Eave
k −ΔE

2
≤Eα≤Eave

k þΔE
2

pV
N�

C
ðEα; LÞ

�
;

ð31Þ

where

ZV ¼
X
α

pV
N�

C
ðEα; LÞ; ð32Þ

which averages over states within a range ΔE centered at
Eave
k . From the above definitions, we have

X
k¼1;NE

PV
N�

C
ðEave

k ; LÞΔE ¼ 1; ð33Þ

where NE is the number of values, ðEave
1 ; Eave

2 ;…Þ, chosen
in the range of the predicted spectrum used to obtain the
energy-averaged values. Obviously, PV

N�
C
ðEave

k ; LÞ, as
defined in Eq. (31), can have a well-defined dependence
on Eave

k only when there exist values of Ei to cover the
interval ΔE for each chosen Eave

k . From the spectrum
calculated as a function of L, as will be shown in Figs. 2
and 7, it is straightforward to see that a larger L is required
in order to have a smooth PV

N�
C
ðEave

k ; LÞ, with a small ΔE.
Obviously, extremely small ΔE will make PV

N�
C
ðEave

k ; LÞ the
same as pV

N�
C
ðEαÞ with an overall factor. Thus, in order to

keep the PV
N�

C
ðEave

k ; LÞ smoothly,ΔE cannot be too small. In
the calculations to be presented in the next two sections, we
find that L × ΔE ∼ 4 will yield a well-defined function of
PV
N�

C
ðEave

k ; LÞ. With this relation in mind, we simplify our

notation for PV
N�

C
ðE;ΔE;LÞ to PV

N�
C
ðE;LÞ. Here we note that

Eqs. (23) and (30) are the finite-volume versions of
Eqs. (13) and (18) in infinite volume. Thus it is reasonable
to assume that PV

N�
C
ðEave

k ; LÞ can be compared with PN�
C
ðEÞ,

defined by Eq. (16), for infinite volume. This will be
demonstrated explicitly in the next section.

III. ONE-CHANNEL DYNAMICAL MODEL

We first consider the dynamical Hamiltonian constructed
in Ref. [33]. It has only one πN channel and one bare state
jN�

Ci ¼ jΔCi for Δð3=2þÞ in Eqs. (1) and (2). By using
Eqs. (3)–(8) with i ¼ j ¼ 1 ¼ πN, the πN scattering
amplitudes can be calculated for each partial wave. The
parameters of this model (the SL model) are determined by
fitting the data for the empirical S and P partial-wave
amplitudes up to invariant mass W ¼ 1.3 GeV. The fits to
the data are shown in Fig. 1.
The potential vπN;πN for this single-channel dynamical

model is based on the meson-exchange mechanism. This is
essential to reduce the uncertainties in determining the
partial-wave amplitudes from the data, which have
unavoidable systematic and statistical errors. In addition,
the extracted Δ (1232) resonance parameters can be
interpreted theoretically in terms of a bare state surrounded
by a meson cloud.
Using the SLHamiltonian as described above and solving

Eqs. (24)–(28) with nc ¼ 1, we obtain the finite-volume
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spectrum in the πN P33 partial wave. This finite-volume
spectrum is plotted in the left-hand panel of Fig. 2 as a
function of the spatial lattice length L.
With this knowledge of the finite-volume spectrum of

states having the quantum numbers of the Δ, one can then
use the Lüscher relation of Eq. (29) to predict the P33 phase

shift for each of the energy levels of the predicted spectrum.
These results are reported in the right-hand panel of Fig. 2
as open and full points. Open points have their origin in the
finite-volume spectrum obtained at L ¼ 6 fm while the full
points follow from the spectrum at L ¼ 5 fm as indicated in
the left-hand panel of Fig. 2.

FIG. 2. Left: The finite-volume spectrum obtained via the FVHmethod through fits to the partial-wave scattering amplitudes plotted as
a function of the spatial lattice length L. The spectrum of states obtained at L ¼ 5 (full points) and 6 (open points) fm are used in the
Lüscher formalism to predict the experimental phase shifts in the right-hand panel. Right: Phase shifts in the P33 partial wave of the πN
system. Full points and open points are obtained by applying the Lüscher formalism to the finite-volume spectra of the left-hand plot at
L ¼ 5 and 6 fm respectively. For reference the solid curve is that of the P33 channel displayed in Fig. 1, obtained through the fit of the
SL model [33] to the partial-wave scattering amplitudes.
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FIG. 1. Phase shifts from the SL model [33] are compared with data in the S and P partial-wave amplitudes. Panels are labeled by
L2I2J.

NUCLEON RESONANCE STRUCTURE IN THE FINITE … PHYSICAL REVIEW D 95, 114507 (2017)

114507-7



For reference, the solid curve illustrated in the right-hand
panel of Fig. 2 is that of the P33 channel displayed in Fig. 1,
obtained through the fit of the SL model to the partial-wave
scattering amplitudes.
We note that the phase shifts calculated from each point

of the spectra at L ¼ 5 and 6 fm agree with the solid curve
which is consistent with the experimental values and tied to
the finite-volume spectrum via the FVH model. Thus the
FVH method is equivalent to the use of Lüscher’s formula
in relating the finite-volume spectrum to the scattering
phase shifts determined by the experimental data. This is in
agreement with the findings of Refs. [15,17], which used
separable potentials.
The spectrum shown in the left side of Fig. 2 can be used

to examine whether the experimental data, brought to the
finite volume of the lattice via the SL model, is consistent
with LQCD, and vice versa. However, this comparison
does not necessarily test the physics considered in the
formulation of the model. As demonstrated in Ref. [31],
when the experimental data are complete and of very high
accuracy, the predicted Δ resonance properties are inde-
pendent of the model when the model(s) considered
describe the data accurately. As illustrated in Fig. 1, the
SL model has met this condition reasonably well.
We now turn to examine the probability, PΔC

ðEÞ of
Eq. (16) for the Δ resonance. PΔC

ðEÞ describes the
probability to find the bare Δ in the πN scattering wave
function. Within the SL model, the predicted PΔC

ðEÞ and
the resonant cross section, σresðEÞ, are compared in Fig. 3.
We see that they have the same resonant structure near
E ¼ 1232 MeV. This is not surprising, as can be seen by
comparing the expressions of Eqs. (11) and (15). The
results shown in Fig. 3 indicate that the predicted PΔC

ðEÞ

contains the information of the extracted Δ resonance
projected onto the physical real-E axis.
We next use Eq. (30) to calculate pV

ΔC
ðE;LÞ which is the

probability of finding the bare Δ in the eigenstate jΨV
Ei of

the Hamiltonian in finite volume. We see in Fig. 4 that the
calculated pV

ΔC
ðE;LÞ is not a smooth function of E for each

L. As demonstrated in Appendix B within an exactly
soluble model, the fluctuations are a mathematical conse-
quence of the quantization condition in finite volume.
Nevertheless, the general structure of pV

ΔC
ðE;LÞ has a

resonant shape as L increases. We then find that the energy-
averaged PV

ΔC
ðE;LÞ, as defined by Eq. (31), is more useful

as a comparison with PΔC
ðEÞ from infinite volume. This

can be seen in Fig. 5, where PV
ΔC
ðE;LÞ clearly approaches

PΔC
ðEÞ as the lattice size, L, increases.

Our results suggest that it will be interesting to calculate
the analogue of PV

N�
C
ðE;LÞ directly from LQCD. The

formalism developed herein establishes a bridge between
PΔC

ðEÞ of the SL model in the infinite volume of experi-
ment and the finite-volume analogue. It will be fascinating
to explore the possibility of a similar quantity evaluated
directly in terms of the underlying dynamics of QCD.
Obtaining a PV

ΔC
ðE;LÞ in LQCD for large L is very

difficult. Nevertheless, the results shown in Fig. 5 suggest
that PV

ΔC
ðE;LÞ can qualitatively reproduce the shape of

PΔC
ðEÞ even for L ¼ 3 fm. We will discuss possible

calculations of PV
ΔC
ðE;LÞ in Sec. V.

The authors of Refs. [36,37] also develop an approach
to produce a Breit-Wigner form of resonance from the
spectrum. The main differences between the two
approaches are as follows. Firstly, in the approach of

FIG. 3. Comparison of the energy dependence of the resonant
cross section of πN elastic scattering in the P33 partial-wave
channel, σresðEÞ (solid black curve), and the probability to find
the bare Δ in the πN scattering wave function, PΔC

ðEÞ (dashed
red curve), normalized at the peak.

FIG. 4. The overlap probability, pV
ΔC
ðEi; LÞ ¼ jhΔCjψVðEiÞij2,

of the bare Δ with the finite-volume energy eigenstate for the SL
model is shown as solid square points, at L ¼ 3, 5, 10, 15, 20,
50 fm. The red dashed curves show the infinite-volume PΔC

ðEÞ
normalized at the peak.
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Ref. [36], they require a range of lattice sizes and the first
N energy levels. However, in our approach, we only need
one fixed lattice size, but all eigenstates in the considered
energy range. Thus, from the practical point of view, our
approach only requires results from one fixed lattice size,
while the authors of Ref. [36] need results based on many
different sizes. Secondly, they count the number of
eigenstates in a particular momentum bin, and present a

distribution based on that measure. However, in our
approach, we not only count the number of eigenstates,
but we also perform a summation of eigenvector coef-
ficients. Thus, their approach makes an analysis based on
eigenvalues alone, whereas our approach makes the
analysis based on eigenvectors and eigenvalues. As a
result, the composition of the states plays a new signifi-
cant role in our analysis. Of course, when L goes to
infinity in our approach, our PVðE;LÞ will automatically
be exactly consistent with the corresponding variable
PðEÞ in the infinite volume.

IV. THREE-CHANNEL DYNAMICAL MODEL

In this section, we consider a three-channel model in the
form of Eqs. (1) and (2). It includes the πN, πΔ, and σN
channels, where Δ and σ in the latter two channels are both
treated as stable particles. The meson-exchange two-body
interactions vi;j with i, j ¼ πN, πΔ, σN are taken from the
ANL-Osaka Hamiltonian [32], and one bare state is
included in each partial wave except for S11 and P31.
Their parameters are adjusted, along with the vertices gN�;i
with i ¼ πN, πΔ, σN, to fit the S and P partial-wave πN
empirical amplitudes [42] up to invariant mass
W ¼ 1.6 GeV. We see in Fig. 6 that the fits are reasonable.
The only exception is the S11 partial wave, which is known
to have a large coupling with the ηN channel and therefore
cannot be fitted well in this model. Herein, we focus on the
results in the P11 and P33 partial waves.

FIG. 5. The probabilities PV
ΔC
ðE;LÞ (solid black line) and

PΔC
ðEÞ (dashed red curve) of the FVH SL model at L ¼ 3, 5,

10, 15, 20, and 50 fm.
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FIG. 6. Fits to the empirical data [42] for the πN partial-wave amplitudes. Panels are labeled by L2I2J. With the exception of the S11
partial wave, where the ηN channel is required, the model describes the partial-wave amplitudes well.
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By solving Eq. (24) in finite volume, we obtain the
spectrum for each partial wave. The results for the P33 and
P11 partial waves are shown in Fig. 7. It is interesting to
note that the predicted spectrum for the P33 partial wave
(left-hand panel) from the three-channel model agrees well
with the solid squares taken from the spectrum of the
single-channel SL model shown in Fig. 2. This indicates
that the predicted finite-volume spectra are not sensitive to
the details of the Hamiltonian provided the models agree on
the predicted scattering amplitudes. This is in agreement
with the findings in a study of two-channel cases in
Ref. [15]. The calculated spectra for the P11 partial wave

are shown as the solid curves in the right-hand panel
of Fig. 7.
The Lüscher formalism has been extended in Ref. [8] to

the general multichannel system. By choosing the normali-
zation to relate the T-matrix elements to S-matrix elements
by Sα;βðEÞ ¼ δα;β − 2iTα;βðEÞ, the formula given in
Ref. [8] for the constructed three-channel model can be
written explicitly as

det½MðE;LÞ� ¼ 0 ð34Þ

where

MðE; LÞ ¼

0
B@

TπN;πNðEÞ þ CπN;πNðL;EÞ TπN;πΔðEÞ TπN;σNðEÞ
TπΔ;πNðEÞ TπΔ;πΔðEÞ þ CπΔ;πΔðL;EÞ TπΔ;σNðEÞ
TσN;πNðEÞ TσN;πΔðEÞ TσN;σNðEÞ þ CσN;σNðL;EÞ

1
CA;

and

Cα;αðL;EÞ ¼
iqαðLÞ

qαðLÞ − 4
ffiffiffi
π

p
Z00ð1; qαðLÞÞ

; ð35Þ

and qαðLÞ ¼ kαL=ð2πÞ is defined by the on-shell momen-
tum kα of total energy E in channel α.
Because of symmetries and the unitary conditions, only

six of the total 12 real numbers needed to specify all six of
the complex Tα;βðEÞ-matrix elements are independent.
Thus we need to get six relations from Eqs. (34)–(35) at
each E to relate the spectrum to the scattering amplitudes
shown in Fig. 6. In the rest frame, this means that we need
to perform LQCD calculations at six different values of L.
For E ¼ 1440 MeV, this is indicated by the six solid

squares on the dashed line at the intersections of the solid
curves in the left-hand panel of Fig. 7. Clearly, this
constitutes an extremely difficult and time-consuming
LQCD calculation. Therefore, it is hard to just apply
Eq. (34) to extract the amplitude from spectra in the finite
volume. In addition, for these three channels, the existing
experimental data are only for the πN channel. There are no
data for the other two channels. As a result, only two
parameters of the six independent parameters can be
extracted from data. Thus, the spectrum of the fixed size
box cannot be predicated though Eq. (34) with only two
inputs from the πN channel.
One possible method as described in the Introduction is

to combine the Lüscher equation and a scattering model
which produces the full T matrix. Because the spectra in the

FIG. 7. The finite-volume spectra for the P33 (left) and P11 (right) partial waves, calculated from the three-channel model
incorporating πN, πΔ and σN, plotted as a function of the spatial lattice length L. We note that the finite line width hides some of the
weakly coupled avoided level crossings, particularly in the left-hand panel for the P33 partial wave. Avoided level crossings of the σN,
πN and πΔ channels are readily apparent in the right-hand panel for the P11 partial wave. The squares in the left-hand P33 panel are
taken from Fig. 2 for the single-channel model and illustrate the independence of the finite-volume spectrum from the model, when both
models describe the empirical partial-wave scattering data well. In the right-hand panel, the six solid squares on the dashed line indicate
the six lattice volumes that need to be considered in order to constrain the relations of the multichannel Lüscher formula.
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finite volume can be calculated with the full T-matrix input
by using the Lüscher equation, the lattice data can be fitted
by the scattering model. For example, in Ref. [26], through
the K-matrix model plus Lüscher equation, they success-
fully analyze the spectra involving the Dπ, Dη and DsK̄
channels. On the other hand, the spectrum also can be
predicted just from the experimental data for the T-matrix
elements of the πN → πN reaction. Firstly these data are
fitted to fix the parameters in the scattering model.
Secondly the scattering model produces the full T matrix.
At last, the spectrum is solved by using the Lüscher
equation with the full T-matrix input.
The other method is the FV Hamiltonian method used

here. The parametrization of the Hamiltonian is fixed by
fitting the empirical πN amplitudes [42], as shown in Fig. 6.
Then one does not need to calculate the T matrix of the
other two channels; the spectrum can be obtained directly
from the eigenvalue of the finite-volume Hamiltonian. This
spectrum can be used to test LQCD results in the physical
pion mass range. If we want to get the T matrix from
existing LQCD data, the parameters in the Hamiltonian can
be fixed by fitting the LQCD spectrum directly. Then the
fixed Hamiltonian generates the T matrix.
We now investigate the resonances extracted within this

three-channel model. The extracted pole positions and bare
masses are listed in Table I. The value of the resonance pole
in the P33 channel is close to the value MR ¼ 1216.4 −
i 50.0 MeV found in the SLmodel [33]. This is in agreement
with the finding of Ref. [31] that the resonance extraction is
independent of the model, so long as the data near the
resonance positions are very accurate and fitted precisely.
This is also evident in a comparison of the P33 results in
Figs. 2 and 6 in the region 1100 MeV ≤ W ≤ 1250 MeV.
Turning to theP11 channel,we have two poleswithmasses

MR1
¼ 1354.0− i38.0MeV andMR2

¼1717.0−i73.0MeV,
located in the Riemann sheets nearest to the physical real
energy axis. The situation is much more complicated in this
case than for that of P33. However, we find that PN�

C
ðEÞ of

Eq. (21), which measures the probability of finding the bare
state in the meson-baryon scattering wave functions, still
contains the information concerning the extracted resonan-
ces. This can be seen in Fig. 8. We find that PN�

C
ðEÞ has a

similar energy dependence to that of the resonant part of the
elastic cross section, σresðEÞ. In particular, the structure near
W ¼ 1400 MeV, reflecting the broad Roper resonance on
the real axis, is also seen in PN� ðEÞ.

By using the wave function, jΨV
Ei, obtained by solving

Eq. (24) for the three-channel Hamiltonian in finite volume,
we can calculate PV

N�
C
ðE; LÞ using Eq. (31). We see in Fig. 9

that the energy-averaged PV
N�

C
ðE;LÞ agrees very well with

PN�
C
ðEÞ. Thus PN�

C
ðEÞ can also be used to check whether

the extracted resonances are consistent with the underlying

TABLE I. The P33 and P11 resonance pole masses (MR) extracted from the three-channel model. Each resonance
pole mass is listed as ðReðMRÞ;−ImðMRÞÞ. Experimental values are from Ref. [28]. The masses for the input bare
N� states are also listed in the third column.

L2I2J Resonance Pole masses (MeV) Experiment (MeV) Bare masses (MeV)

P33 Δð1232Þ (1212, 53) (1209–1211, 49–51) 1470

P11
N�ð1440Þ (1354, 38) (1350–1380, 80–110)

2100
N�ð1710Þ (1717, 73) (1670–1770, 40–190)

FIG. 9. The finite-volume PV
N�

C
ðE; LÞ (solid black) and infinite-

volume PN�
C
ðEÞ (dashed red) bare-state probabilities for the three-

channel model at L ¼ 3, 5, 10, 15, 20, and 50 fm.
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FIG. 8. Comparison of the energy dependence of σres and
PN�

C
ðEÞ for the P11 partial-wave channel, normalized at the peak.
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QCD dynamics, provided PV
N�

C
ðE; LÞ can be calculated for

sufficiently large L.
In our current model, the three-body Nππ channel is not

included explicitly, and Δ and σ in the πΔ and σN channels
are both introduced as stable particles. We take this
approach because the treatment of three-body contributions
in the finite volume is much more complicated than the
two-body systems, and it remains to be solved, although
there are some developments of it in Refs. [43,44]. Thus, a
reasonable first step is to cast Nππ as πΔ and σN, the
effects of the three-body continuum can be included in an
approximate manner through the coupling to these two-
body channels. While it has been argued that this approach
violates unitarity in QCD and should not be used for light
quark masses where the σ is unstable, we note that our
approach using two-body channels maintains unitarity.
Moreover, the T matrix of πN → πN is described well
and the pole position is acceptable, although the imaginary
part is a little far away from the PDG data as shown in
Table I. This is mainly because in the considered three-
channel model, the branch points of the σN and πΔ
channels appear on the real-energy axis and thus the
analytic structure of the scattering amplitude is rather
different from that of the real world. We expect that the
extracted P11 resonance pole corresponding to the Roper
resonance will move to the “right” positions once the three-
body ππN channel effect is explicitly taken into account,
while still reproducing the πN scattering phase shifts. In the
future, the spectrum shown in Fig. 7 and probabilities
shown in Fig. 9 should be updated by including three-body
contributions.

V. LQCD CALCULATIONS OF PV
N�

C
ðE;LÞ

Here we explore LQCD calculations of PV
N�

C
ðE;LÞ and

the extent to which measures can be related to the bare
states of the dynamical model. Since PV

N�
C
ðE;LÞ reflects the

properties of the resonance, the direct measurement of
PV
N�

C
ðE;LÞ from LQCD will provide the insight needed for

understanding the essence of resonance structure. It holds
the promise to further elucidate the effective mechanisms of
QCD dynamics and extend our knowledge of QCD.
There are fundamental QCD dynamics that support the

concept of a hadronic quark core dressed by a meson cloud.
A particularly illustrative example is that of coherent center
domains in the vacuum of QCD [45]. Within the domains
governed by the trace of the Polyakov loop, color-singlet
quark-antiquark pairs or three-quark triplets have a finite
energy and are spatially correlated. These fundamental
domains are thought to govern the size of the quark cores of
hadrons [45].
Of course, there is some model dependence in the

separation of an energy eigenstate into its core or bare-
state contribution and its associated meson-cloud contri-
bution. For example, in effective field theory this separation

is governed by the scale of the regulator [46,47] and in the
power-counting regime of chiral perturbation theory, the
physics of the expansion is independent of the regulator
[48]. The physics can be shifted from the core to the cloud
through a change in the regulator parameter value with no
change in the renormalized low-energy coefficients.
However, when working beyond the power-counting
regime, an intrinsic scale reveals itself through a conver-
gence in the values of the renormalized low-energy
coefficients of the expansion [48–51]. For dipole regula-
tors, a scale of ∼1 GeV is found. This intrinsic scale is
associated with the finite size of the source of the meson
cloud and phenomenology suggests a scale of 0.8 GeV
[46,47,52–60].
With this insight, one can attribute some physics to the

baryon core and the balance to the meson cloud. This
approach has been very successful in correcting the meson
cloud of quenched QCD to make precise full QCD
predictions [52–60]. In this case the baryon core is held
invariant between quenched and full QCD and the artifacts
of the quenched meson cloud are removed and replaced
with the full QCD cloud contribution.
In previous coupled-channel effective field theory studies

of the Δð1232Þ resonance it has been concluded that the
Δð1232Þ resonance can be interpreted as a systemmade of a
quark core and a meson cloud. Furthermore, the contribu-
tions from the quark core to the electromagnetic γ�N → Δ
form factors are found to be similar to the predictions from
the three-quark configurations within either the constituent
three-quarkmodel ormodels based on the Dyson-Schwinger
equations (DSE). Since the meson-cloud effects within the
SL model are defined by well-studied meson-exchange
mechanisms and are strongly constrained by fitting the
πN scattering phase shifts in all partial waves, this separation
of the core and meson cloud is not completely arbitrary. In
summary, there is ample evidence that the essential under-
lying mechanism of baryon structure is that of a quark core
surrounded by a meson cloud.
The results shown in Figs. 5 and 9 establish a relation-

ship between the probabilities of finding the bare state in
infinite volume, PN�

C
ðEÞ, and in finite volume, PV

N�
C
ðE;LÞ.

The relationship enables a new exploration of connecting
PV
N�

C
ðE;LÞ, containing resonance information extracted

from the πN reaction data within a dynamical model, to
that obtained directly from lattice QCD.
Our hypothesis is that the probability of finding the bare

state in a finite-volume eigenstate of lattice QCD,
PV
N�

C
ðE;LÞ, is related to the overlap of an appropriately

smeared three-quark lattice interpolating field with the
lattice QCD eigenstates. As there is some freedom in
defining this three-quark operator, it will be important to
examine the parameter space as one selects an operator that
models the three-quark core.
For example, the spin-flavor nature of the interpolating

field must be selected. For local three-quark operators, the
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choice for N and Δ baryons is straightforward. The spin-
flavor structure for the Δ is unique [61] and there is only
one spin-1=2 nucleon operator that overlaps significantly
with the nucleon and its radial excitations [62–64].
Similarly, the source of the quark propagator is smeared

out to provide a finite size for the distribution of quarks
within the quark core. As detailed in Appendix A, the
smearing is performed in an iterative manner that gives rise
to a Gaussian-shaped distribution with the size governed by
the number of iterations. Radially excited cores can be
constructed from a superposition of Gaussian smeared
sources to create a node [63–66].
It will be interesting to examine the dependence of

PV
N�

C
ðE;LÞ on this smearing extent. In selecting a range of

interesting values one can consider the size of the hadron as
measured in form factors and draw on insight from the
typical size of coherent center domains in the QCD
vacuum. It is well known that smaller smearing extents
have better overlap with higher excited states of the
spectrum [63] and thus there is a relationship between
the smearing extent and the mass of the bare state.
We note that the discrete nature of the finite-volume

LQCD spectrum prevents a determination of pV
N�

C
ðE;LÞ for

arbitrary E. LQCD can only calculate PV
N�

C
ðEα; LÞ, as

defined in Eq. (30), for the αth eigenstate, jΨV
Eα
i:

pV
BC
ðEα; LÞ ¼ jhBCjΨV

Eα
ij2 ≡ jλαCj2: ð36Þ

The task then is to define a bare or core state on the lattice
jBCi. To do this we resort to the aforementioned local three-
quark interpolating field, χC, acting on the QCD vacuum
jΩi. In the rest frame of the state

λαCu
αð0⃗Þ ¼ hBCjΨV

Eα
i ¼ hΩjχCjΨV

Eα
i; ð37Þ

where uαð0⃗Þ is the zero-momentum Dirac spinor for state α.
Here N�

C and thus χC encode the spin, isospin and parity of
the core state C under consideration. This can be the bare
nucleon, bare Roper, bare N�ð1535Þ, bare Δ and so on.
jΨV

Eα
i is the αth lattice QCD eigenstate in the finite volume.

As an example, consider the ½JTP� ¼ ½3=2; 3=2;þ�, Δþþ
state where there is only one local three-quark operator
transforming as a Rarita-Schwinger spinor under Lorentz
transformations,

χCμðxÞ ¼
X

a;b;c¼1;2;3

εabcðuaTðxÞCγμubðxÞÞucðxÞ; ð38Þ

where uaðxÞ represents the up-quark field operator with
color index a acting at space-time coordinate x. Thus, the
bare state jΔCi ¼ χ̄Cμð0ÞjΩi. As such, it excites a super-
position of QCD energy eigenstates governed by the
smearing extent of χCμ. Our hypothesis is that this is the
realization of the bare Δþþ in the Hamiltonian model.

The first step in evaluating λαC of Eq. (36), and thus
pV
N�

C
ðEα; LÞ, is to access the spectrum of eigenstates, jΨV

Eα
i.

This is done via the variational or correlation matrix method
[63–73]. The approach involves a matrix of parity-
projected correlation functions. In the rest frame of the
state (p⃗ ¼ 0⃗) the correlation matrix is

Gijðt; 0⃗Þ ¼
X
x⃗

TrspfΓ�hΩjχiðxÞχ̄jð0ÞjΩig: ð39Þ

Here, an interpolating field χ̄jð0Þ, having the quantum
numbers of the considered state, acts on the QCD vacuum
jΩi and excites a superposition of finite-volume energy
eigenstates. The interpolator χ̄jð0Þ is an arbitrary operator,
constrained only by the quantum numbers. It may be a local
operator or a nonlocal operator designed to provide overlap
with the multiparticle scattering states of the resonance
channel. For example, operators in which the momentum
of each particle in the multiparticle state is specified
are particularly good at exciting these states from the
vacuum [68,74].
Appendix A outlines the complete details for calculating

λαC using the correlation matrix of Eq. (39) and the bare-
state definition of Eq. (37) for jBCi. The final result is

�
pV
N�

C
ðEα; LÞ

	
1=2 ¼ λαC ¼ zα

GCjðtÞuαj
vαi GijðtÞuαj

: ð40Þ

Here the uαi (vαi ) are the coefficients of the interpolating
fields χ̄i (χi) forming the optimized interpolating fields
ϕ̄α ¼ P

uαi χ̄i (ϕ
α ¼ P

vαi χi), designed to isolate a single
energy eigenstate, α. These coefficients are obtained by
solving the generalized eigenvalue problem. The coeffi-
cients zα are the corresponding coupling strengths between
the eigenstate jΨV

Eα
i and ϕ̄αjΩi. In Appendix A, we provide

a complete example for the nucleon case.
Finally, the averaging and normalization of Eqs. (31) and

(32) respectively provide the final relations for the calcu-
lation of the energy-averaged probability PV

N�
C
ðEα; LÞ

from pV
BC
ðEα; LÞ.

In summary, a determination of PV
N�

C
ðEα; LÞ in LQCD

holds the potential to confirm a long-standing ansatz for the
internal structure of baryon resonances in coupled-channel
analyses. With regard to Figs. 5 and 9, even a volume with
L ¼ 5 fm should be sufficient to disclose a peak in the case
of theP33 andP11 resonances.We strongly encourageLQCD
groups to calculate pV

BC
ðEα; LÞ in future simulations.

VI. SUMMARY AND FUTURE DEVELOPMENT

We have investigated the finite-volume Hamiltonian
method by using the meson-exchange model of πN
reactions within which bare states are introduced to para-
metrize the intrinsic excitations of the nucleon. In addition
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to further examining the differences between the finite-
volume Hamiltonian method and the Lüscher formalism, an
approach has been developed to relate the internal structure
of nucleon resonances extracted from the πN reaction data
to lattice QCD (LQCD) calculations.
We first showed that the resonance pole positions can be

related to the probability PN�
C
ðEÞ of finding the bare state in

the πN scattering states in infinite volume. We then
demonstrated that the probability, PV

N�
C
ðE;LÞ, of finding

the same bare state in the eigenstates of the underlying
Hamiltonian in finite-volume approaches PN�

C
ðEÞ as the

volume increases. Our findings open the possibility of
using PV

N�
C
ðE;LÞ to examine whether the internal structure

of nucleon resonances extracted from the πN reaction data
within dynamical models is consistent with similar mea-
sures in LQCD.
We have also discussed possible LQCD calculations of

PV
N�

C
ðE;LÞ under the hypothesis that the bare states of the

dynamical reaction model can be identified with spatially
smeared three-quark operators acting on the nontrivial
vacuum of QCD. It will be interesting to explore the
results of LQCD calculations of PV

N�
C
ðE;LÞ.
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APPENDIX A: LQCD CALCULATIONS
OF PV

N�
C
ðE;LÞ

1. Implementation of the three-quark core

In this appendix, we use the nucleon as an example to
show how to determine the three-quark core contribution to
the αth eigenstate jλαCj2 ¼ jhN�

CjΨV
Eα
ij2 ¼ jhΩjχCjΨV

Eα
ij2 as

defined in Eq. (36). In practice, there is only one local

three-quark operator transforming as a spinor under
Lorentz transformations that has significant overlap with
the ground-state nucleon and its radial excitations,

χCðxÞ ¼ εabcðuaTðxÞCγ5dbðxÞÞucðxÞ: ðA1Þ

Here the subscript C denotes core, indicating both the
preferred spin-flavor construction of the quark core and a
preferred smearing extent. By examining the overlap of this
operator with the states of the spectrum, one can probe the
quark-core content of the states.
On the lattice smearing proceeds in a gauge invariant

manner [75] through the map

ψ iðx; tÞ ¼
X
x0
Fðx; x0Þψ i−1ðx0; tÞ; ðA2Þ

where ψ is a quark spinor and

Fðx; x0Þ ¼ ð1 − αÞδx;x0

þ α

6

X3
μ¼1

½UμðxÞδx0;xþμ̂ þ U†
μðx − μ̂Þδx0;x−μ̂�

ðA3Þ

includes the lattice gauge-field links, UμðxÞ ¼
P exp ðR a

0 Aμðxþ λμ̂ÞdλÞ, to maintain gauge invariance.
The smearing parameter α is typically taken to be 0.7
and the smearing extent is governed by the number of
smearing sweeps, ns. Commencing with a point source in
ψ0ðx; tÞ, the smeared operator is

ψnsðx; tÞ ¼
X
x0
Fnsðx; x0Þψ0ðx0; tÞ: ðA4Þ

Typically, ns ∼ 100 provides optimal overlap with the
ground state, corresponding to an root-mean-square
(RMS) radius of 8.4 lattice units on a 322 lattice volume
or 0.84 fm for lattice spacing a ∼ 0.1 fm. As this optimal
smearing extent includes the influence of the meson cloud,
it will be interesting to explore smaller smearing extents
more closely related to the quark core, governed by the
presence of a coherent center domain in the QCD vacuum
[45]. To accommodate the node in the radial wave function
of the bare Roper, a superposition of smeared sources of
different widths can be used [64].

2. Isolation of excited states

Accessing the excited states of the spectrum is done via
the variational method or correlation matrix method
[63–73]. The approach involves a matrix of parity-
projected correlation functions. In the rest frame of the
nucleon (p⃗ ¼ 0⃗) an N × N correlation matrix provides
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Gijðt; 0⃗Þ ¼
X
x⃗

TrspfΓ�hΩjχiðxÞχ̄jð0ÞjΩig: ðA5Þ

Here, interpolating field χ̄jð0Þ, having the quantum numbers
of the nucleon, acts on the QCD vacuum jΩi and excites a
superposition of finite-volume energy eigenstates. These
states are annihilated back to the vacuum at space-time x.
Summing over all x⃗ projects zero momentum and taking the
trace with Γ� ¼ 1

2
ðγ0 � 1Þ projects positive/negative parity

states. Upon inserting a complete set of intermediate energy

eigenstates, jΨV
Eα
i, with momentum p⃗0 and spin s

X
α;p⃗0;s

jΨV
Eα
; p⃗0; sihΨV

Eα
; p⃗0; sj ¼ I; ðA6Þ

where α can includemultiparticle states, and using the space-
time translation operator

χiðxÞ ¼ eiP·xχið0Þe−iP·x; ðA7Þ

one obtains

Gijðt; 0⃗Þ ¼
X
α

X
s

TrspfΓ�hΩjχið0ÞjΨV
Eα
; 0⃗; si

× hΨV
Eα
; 0⃗; sjχ̄jð0ÞjΩige−Eαt; ðA8Þ

in Euclidean time. Recall that Eα is the energy of the
eigenstate jΨV

Eα
i at rest, i.e., mα.

Focusing on the positive-parity sector of interest herein,
the overlap of the interpolators χið0Þwith state jΨV

Eα
; 0⃗; si is

described in terms of the Dirac spinor for state ΨV
Eα
,

uαð0⃗; sÞ, as

hΩjχið0ÞjΨV
Eα
; 0⃗; si ¼ λαi u

αð0⃗; sÞ; ðA9Þ

and

hΨV
Eα
; 0⃗; sjχ̄jð0ÞjΩi ¼ λ̄αj ū

αð0⃗; sÞ: ðA10Þ
Here, λαi and λ̄αj are the couplings of interpolators χi and χ̄j
at the sink and source respectively to eigenstates
α ¼ 0;…; ðN − 1Þ. Recalling

X
s

uαðp⃗; sÞūαðp⃗; sÞ ¼ γ · pþmα

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

α þ p⃗2
p ; ðA11Þ

and taking the spinor trace, the two-point function takes the
form

Gijðt; 0⃗Þ ¼
XN−1

α¼0

λαi λ̄
α
j e

−mαt: ðA12Þ

The interpolating fields provide an N-dimensional
basis upon which to describe the N lowest-lying states.

Using this basis, we seek linear combinations which isolate
each state, α,

ϕ̄α ¼
XN
i¼1

uαi χ̄i; ϕα ¼
XN
i¼1

vαi χi; ðA13Þ

such that

hΨV
Eβ
; p⃗; sjϕ̄αjΩi ¼ δαβz̄αūαðp⃗; sÞ;

and hΩjϕαjΨV
Eβ
; p⃗; si ¼ δαβzαuαðp⃗; sÞ: ðA14Þ

Here zα and z̄α are the coupling strengths of ϕα and ϕ̄α to
the state jΨV

Eα
; p⃗; si.

By multiplying the correlation matrix GijðtÞ by uαj and
summing over repeated indices, one obtains

Gijðt; 0⃗Þuαj ¼
X
x⃗

TrspfΓ�hΩjχiðxÞχ̄jð0Þuαj jΩig; ðA15aÞ

¼
X
x⃗

TrspfΓ�hΩjχiðxÞϕ̄jð0ÞjΩig; ðA15bÞ

¼ λαi z̄
αe−mαt; ðA15cÞ

illustrating that the time dependence is described by the
mass of the eigenstate energy. Since the t dependence is
described by the exponential term alone, a recurrence
relation at times t and tþ Δt constructed

Gijðtþ ΔtÞuαj ¼ e−mαΔtGijðtÞuαj : ðA16Þ

This generalized eigenvalue equation can be solved for
eigenvectors uα with eigenvalues expð−mαΔtÞ. Similarly

vαi Gijðtþ ΔtÞ ¼ e−mαΔtvαi GijðtÞ ðA17Þ

defines the left eigenvector vα. With the eigenvectors
normalized in the usual manner u†αuα ¼ v†αvα ¼ 1, the
coupling strengths zα and z̄α are defined.
The eigenvectors uαj and v

α
i can then be used to create the

projected correlator

vαi GijðtÞuβj ¼ δαβzαz̄βe−mαt: ðA18Þ

In the ensemble average the correlation matrix is
symmetric and therefore one usually works with the
improved unbiased estimator ðGijðtÞ þGjiðtÞÞ=2.
Because the QCD action is the same for link ensembles
fUμðxÞg and fU�

μðxÞg one can show that the two-point
correlation functions of the correlation matrix can be made
to be perfectly real [76–78]. Averaging the link ensembles
fUμðxÞg and fU�

μðxÞg and ensuring that G is symmetric for
each configuration ensures that the coupling strengths are
real and λ̄αi ¼ λαi and z̄α ¼ zα.
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3. Determining the strength of the core

We are now in a position to determine the overlap of
lattice-QCD energy eigenstate jΨV

Eα
i with the three-quark

core, hN�
CjΨV

Eα
i. Using the projected correlator of Eq. (A18)

the overlap of the eigenstate interpolators ϕα and ϕ̄α is
determined by a linear fit to the logarithm of the projected
correlator

log ðvαi GijðtÞuαj Þ ¼ 2 logðzαÞ −mαt: ðA19Þ

The core contribution can be isolated via Eqs. (A15b)
and (A15c). Replacing hΩjχiðxÞ by the core contribution
hΩjχCðxÞ ¼ hN�

Cj, the core contribution to eigenstate jΨV
Eα
i,

hN�
CjΨV

Eα
i ¼ λαC, is obtained via

logðGCjðtÞuαj Þ ¼ logðλαCÞ þ logðzαÞ −mαt; ðA20Þ

where

GCjðtÞ ¼
X
x⃗

TrspfΓ�hΩjχCðxÞχ̄jð0ÞjΩig: ðA21Þ

Here the time dependence can be eliminated through a ratio
such that

λαC ¼ zα
GCjðtÞuαj
vαi GijðtÞuαj

: ðA22Þ

APPENDIX B: THE STUDY OF
FLUCTUATION OF pVΔðEÞ

To understand the fluctuation of pV
ΔðE;LÞ shown in

Fig. 4, we consider an exactly soluble model which has one
bare state and one channel (1b1c) to describe the P33 πN

scattering. The Hamiltonian of this 1b1c model only has a
bare Δ → πN interaction:

ΓðkÞ≡ hkjgjΔi

¼ gffiffiffiffiffiffi
mπ

p kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ k2
p 1

ð1þ ðk=ΛÞ2Þ2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðk=ΛÞ2
p ;

ðB1Þ

where g and Λ are the bare coupling and cutoff, and mπ is
the mass of the pion. As shown in Fig. 10, the P33 phase
shifts generated from the SL model can be reproduced
by choosing g ¼ 0.30390, Λ ¼ 656.60 MeV, and m0 ¼
1265.04 MeV for the mass of the bare Δ.
Within this 1b1c model, we need to find the eigenvalues

Ei and eigenstate jΨVðEiÞi from the Hamiltonian matrix of
the following form:

½H�Nþ1 ¼

0
BBBBBBBB@

m0 gVðk0Þ gVðk1Þ � � � gVðkN−1Þ
gVðk0Þ Eπðk0Þ þ ENðk0Þ 0 � � � 0

gVðk1Þ 0 Eπðk1Þ þ ENðk1Þ � � � 0

..

. ..
. ..

. . .
. ..

.

gVðkN−1Þ 0 0 � � � EπðkN−1Þ þ ENðkN−1Þ

1
CCCCCCCCA
;

where kn ¼
ffiffiffi
n

p
2π=L for integers n ¼ 0; 1; 2…, as speci-

fied by the quantization condition in finite volume with size
L, and

gVðknÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
C3ðnÞ
4π

r �
2π

L

�
3=2

ΓðknÞ: ðB2Þ

Here C3ðnÞ is the number of degenerate states with the
same magnitude, kn ¼ jk⃗nj.
With the simple matrix ½H�Nþ1 given above, it is easy to

see that Eq. (24) for finding the eigenvalues becomes

Ei −m0 − ΣVðEi; LÞ ¼ 0; ðB3Þ

FIG. 10. The solid black and dashed red lines are calculated
from the SL model and 1b1c model, respectively.
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where the self-energy is

ΣVðE;LÞ≡X
n

�
2π

L

�
3 C3ðnÞ

4π

ΓðknÞΓ�ðknÞ
E − EπðknÞ − ENðknÞ

:

ðB4Þ

The solutions of Eq. (B3) reproduce the spectrum of the
SL model, as shown in Fig. 11. The eigenstate jΨVðEiÞi
can also be solved exactly:

jΨVðEiÞi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ZðEi; LÞ
p

�
jΔi þ

X
n

ffiffiffiffiffiffiffiffiffiffi
CðnÞ
4π

r �
2π

L

�3
2

×
ΓðknÞ

Ei − EπðknÞ − ENðknÞ
jkni

�
; ðB5Þ

where the normalization constant is

ZðEi; LÞ ¼ 1þ
X
n

�
2π

L

�
3 CðnÞ

4π

Γ�ðknÞΓðknÞ
ðEi − EπðknÞ − ENðknÞÞ2

:

ðB6Þ

From Eqs. (B4) and (B6), we have the following relation:

ZðEi; LÞ ¼ 1 −
∂ΣVðE;LÞ

∂E
����
E¼Ei

: ðB7Þ

From Eqs. (B5) and (B6), we then have

pV
ΔC
ðEi; LÞ ¼ jhΔCjΨVðEiÞij2 ¼

1

ZðEi; LÞ
¼ 1

1 − ∂ΣVðE;LÞ
∂E jE¼Ei

: ðB8Þ

The results of pV
ΔC
ðEi; LÞ for various volume sizes L are

similar to those shown in Fig. 4 for the SL model. Here we
only show the result of L ¼ 10 fm in the left side
of Fig. 12.
Obviously, pV

ΔC
ðEi; LÞ also shows fluctuations within

this exactly soluble 1b1c model. To understand this, we
show ΣVðEi; LÞ (solid black curves) and E −m0 (dashed
red line) in the right-hand panel of Fig. 12. From Eq. (B3),
it is obvious that the ith solid green dot in the right side is
the eigenvalue Ei for each pV

ΔðEi; LÞ shown in the left side
of the figure. From the expression Eq. (B6), we see that
when an eigenvalue Ei is close to any of the energy grid
points, ϵðknÞ≡ EπðknÞ þ ENðknÞ, the normalization con-
stant ZðEi; LÞ → ∞ and hence pV

ΔC
ðEi; LÞ, as defined in

Eq. (B8), becomes negligible. It is also clear that if Ei is
farther away from the energy grid points, ZðEi; LÞ will be
smaller and hence pV

ΔC
ðEi; LÞwill be larger. We can see this

clearly by comparing the values of pV
ΔC
ðEi; LÞ (black dots

in the left side) for the first to fourth eigenvalues and the
distances between the corresponding green dots and the

FIG. 11. The spectrum of πN in the finite volume. The solid
black and dashed red lines are calculated from the SL model and
1b1c model, respectively.

FIG. 12. Left: jhΔCjΨVðEiÞij2 vs Ei at L ¼ 10 fm. Right: Functions ΣVðEÞ (solid black line) and E −m0 (dashed red line) as a
function of energy E. The solid green points are the crossing points of the black and red lines, corresponding to the eigenvalues of the
Hamiltonian.

NUCLEON RESONANCE STRUCTURE IN THE FINITE … PHYSICAL REVIEW D 95, 114507 (2017)

114507-17



nearest energy grid points on the right side. Similar
comparisons also explain the fluctuation between the fourth
and eighth eigenvalues. The peak at the seventh eigenvalue
in the left side can be understood as follows. The gap

between two grid energies near the seventh eigenvalue is
much larger than the distances between any other two
energy grids, since there is no integer vector which has a
length equal to

ffiffiffi
7

p
. As a result, the self-energy ΣVðE; LÞ

has a smaller slope near the seventh eigenvalue and hence

−∂ΣVðE;LÞ
∂E jE¼E7

is smaller than those of the sixth and eighth
eigenvalues. This can be seen in Table II. The fluctuations
in other areas can also be understood from Eq. (B8) and the
values listed in Table II.
In summary, the fluctuation in pV

ΔC
ðEi; LÞ is the math-

ematical consequence of the special property of the lattice
momenta specified by the quantization condition in finite
volume. While this can be proved unambiguously only
within this exactly soluble 1b1c model, it does provide an
explanation for the fluctuations seen in Fig. 4 for the more
realistic SL model.
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