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This article reports on the detailed study of the three-gluon vertex in four-dimensional SUð3ÞYang-Mills
theory employing lattice simulations with large physical volumes and high statistics. A meticulous scrutiny
of the so-called symmetric and asymmetric kinematical configurations is performed, and it is shown that the
associated form factor changes sign at a given range of momenta. The lattice results are compared to
the model-independent predictions of Schwinger-Dyson equations, and a very good agreement between the
two is found.
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I. INTRODUCTION

The theory describing the strong interactions, QCD, is
essentially a quantum field theory based on a local non-
Abelian gauge theory which, in its IR sector, possesses a very
rich and intricate structure controlling its low-momentum
dynamics. Phenomena such as confinement and chiral
symmetry breaking, and hence the origin of most of the
baryonic mass, are clearly rooted in the IR sector of the
theory. The understanding of this IR dynamics is crucial,
and, indeed, it has been very much boosted in the last few
years, mainly due to very careful and detailed studies of the
fundamental Green’s functions of the theory in both lattice
[1–8] and continuum QCD [9–30]. It is not worthless to
remind the reader here that those fundamental Green’s
functions are essential building blocks in the construction
of any proper symmetry-preserving truncation of
Schwinger-Dyson equations (SDEs) in order to define a
tractable continuum bound-state problem able to reproduce
the observable properties of hadrons [14,31–38].
The endeavors in obtaining a two-point Green’s function

from large-volume lattice simulations [4–8] crystallized in
our current well-known picture about the infrared finiteness
of both the gluon propagator and ghost dressing function.
This picture has been consistently interpreted by using a
variety of approaches, such as the so-called refined Gribov-
Zwanziger scenario [22,23], effective descriptions based
on the Curci-Ferrari model [39,40] or SDEs under
different truncation schemes [9–13]. In particular, one of
the approaches within this last class [9] is based on the
combination of the pinch technique (PT) and the back-
ground field method (BFM). This latter PT-BFM

framework [41] allows for a systematical rearranging of
classes of diagrams in the nonperturbative expansion for the
SDEs, leading to modified Green’s functions obeying linear
(Abelian-like) Slavnov-Taylor identities (STIs). A subtle
realization of the Schwinger mechanism, within this frame-
work, takes place and endows the gluon with an effective—
dynamically acquired—mass [42–45]. Furthermore, a
profound connection emerges between the massless nature
of the ghost propagator, the very deep IR behavior of the
gluon, and zero-momentum divergences of the three-gluon
vertex that should be observed in some particular kinematic
limits [46]. The latter is valid in the Landau gauge in three as
well as four dimensions. The entanglement of these features
stems precisely from how the mass-generation mechanism
remains transparent for the ghosts which, contrarily to the
gluons, appear to flow in the quantum loops without the IR
protection of a running mass. As a consequence of this,
some of the form factors of the nonperturbative three-gluon
vertex appear to be dominated in the IR by the non-
perturbative ghost-loop contribution, taking negative values
and diverging at vanishing momentum, precisely as a
logarithm in four dimensions [46]. Hence, they change
sign at a zero crossing which takes place in the IR.
The same IR pattern has also been claimed by independent

SDE analysis, employing various approaches and truncation
schemes, in the three-gluon [40,46–50] and four-gluon
[51,52] sectors, although the zero crossing is predicted to
happen at such a low momentum that it is difficult to be
revealed by realistic lattice QCD simulations. Some studies
in an SUð2Þ lattice gauge theory showed this expected
pattern for the three-gluon vertex to emerge in three dimen-
sions but failed to be conclusive in four [1,2], and, very
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recently, two independent investigations [53,54] in SUð3Þ
have provided a preliminary confirmation for this to happen
for the three-gluon vertex also in four dimensions.
In this article, we aim for the completion of the

preliminary work presented in Ref. [53] by largely increas-
ing the statistics—the number of gauge-field configurations
as well as the number of different lattice setups—and by
performing a more elaborated and refined analysis, based
on the SDE interpretation of the IR three-gluon behavior,
intended for a better detection of the zero crossing and to
solidify our theoretical understanding of its happening. To
this purpose, we have performed SUð3Þ simulations in
large four-dimensional volumes with two lattice actions
(Wilson plaquette and tree-level Symanzik), computed the
three-gluon Green’s function, and projected out the relevant
form factor in two different kinematical configurations. We
introduced all the definitions and carefully described the
procedure for the extraction of the form factors from the
nonperturbative lattice Green’s functions, the renormaliza-
tion scheme, and the connection with the running strong
coupling in Sec. II. Section III is devoted to providing the
details of the simulations, the lattice actions, and setups and
to displaying the results for the running strong coupling and
the form factors. The analysis of the lattice results can be
found in Sec. IV, where we also discuss their interpretation,
and, finally, we conclude in Sec. V.

II. THREE-GLUON GREEN’S FUNCTION
AND THE RUNNING COUPLING

A. Definitions of the connected
and 1-PI vertex functions

Let us first define the connected three-gluon vertex as the
correlation function of the following gauge fields, ~A, taken
in Fourier space at the three-momenta p, q, and r, such that
pþ qþ r ¼ 0,

Gabc
αμνðp; q; rÞ ¼ h ~Aa

μðpÞ ~Ab
νðqÞ ~Ac

ρðqÞi
¼ fabcGαμνðp; q; rÞ; ð2:1Þ

where the sub- (super-)indices are Lorentz (color) ones and
the average h·i indicates functional integration over the
gauge space. For the sake of convenience, we will work in
the Landau gauge, in which only the projection onto the
totally antisymmetric color tensor, fabc, survives for the
three-gluon Green’s function, making Eq. (2.1) plainly
general. In terms of the usual one-particle irreducible (1-PI)
vertex function, Γ, and the gluon propagator

Δab
μνðpÞ ¼ h ~Aa

μðpÞ ~Ab
νð−pÞi ¼ Δðp2ÞδabPμνðpÞ; ð2:2Þ

with PμνðpÞ ¼ δμν − pμpν=p2, the three-gluon Green’s
function can be recast as

Gabc
αμνðp; q; rÞ ¼ gfa

0b0c0Γα0μ0ν0 ðp; q; rÞΔa0a
α0αðpÞΔb0b

μ0μðqÞΔc0c
ν0νðrÞ
ð2:3Þ

¼ gfabcΓα0μ0ν0 ðp; q; rÞΔðp2ÞΔðq2ÞΔðr2Þ
× Pα0αðpÞPμ0μðqÞPν0νðrÞ; ð2:4Þ

where g is the strong coupling constant. Thus, the vertex
function Gαμν, introduced in Eq. (2.1), can be easily seen in
Eq. (2.4) to read in terms of gluon dressing functions
and transversal projectors such that the transversality
condition

pαGαμνðp; q; rÞ ¼ qμGαμνðp; q; rÞ ¼ rνGαμνðp; q; rÞ ¼ 0

ð2:5Þ

is made clearly apparent. A basis of four tensors can
generally describe the subspace where the vertex function
Gαμν is embedded [46,49,55]. However, in what follows, we
will specialize in two particular momenta configurations
for the three-gluon vertex which, from now on, will be
called symmetric and asymmetric. The first one corre-
sponds to the case defined by p2 ¼ q2 ¼ r2 and p · q ¼
p · r ¼ q · r ¼ −p2=2, in which the subspace of the totally
transverse tensors, observing Eq. (2.5), has dimension 2.
Hence, a basis is made by only two tensors, namely

λtreeαμνðp; q; rÞ ¼ Γð0Þ
α0μ0ν0 ðp; q; rÞPα0αðpÞPμ0μðqÞPν0νðrÞ;

λSαμνðp; q; rÞ ¼
ðp − qÞνðq − rÞαðr − pÞμ

p2
; ð2:6Þ

where Γð0Þ
αμνðp;q;rÞ¼δαμðp−qÞνþδμνðq−rÞαþδναðr−pÞμ

stands for the perturbative tree-level tensor of the three-
gluon vertex, and one can write

Gαμνðp; q; rÞ ¼ Tsymðp2Þλtreeαμνðp; q; rÞ
þ Ssymðp2ÞλSαμνðp; q; rÞ: ð2:7Þ

Now, taking advantage of the fact that the transverse
projector acts over the subspace defined by the basis
(2.6) as the identity,

λtreeα0μ0ν0 ðp;q;rÞPα0αðpÞPμ0μðqÞPν0νðrÞ¼ λtreeαμνðp;q;rÞ
λSα0μ0ν0 ðp;q;rÞPα0αðpÞPμ0μðqÞPν0νðrÞ¼ λSαμνðp;q;rÞ; ð2:8Þ

Eq. (2.7) can be rewritten as

Gαμνðp; q; rÞ ¼ ðTsymðp2Þλtreeα0μ0ν0 ðp; q; rÞ
þ Ssymðp2ÞλSα0μ0ν0 ðp; q; rÞÞ
× Pα0αðpÞPμ0μðqÞPν0νðrÞ; ð2:9Þ
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which, compared to Eq. (2.4), leads to the following
decomposition for the transverse 1-PI vertex function:

gΓαμνðp; q; rÞ ¼
Tsymðp2Þ
Δ3ðp2Þ λtreeαμνðp; q; rÞ

þ Ssymðp2Þ
Δ3ðp2Þ λSαμνðp; q; rÞ ð2:10Þ

¼ gΓsym
T ðp2Þλtreeαμνðp; q; rÞ

þ gΓsym
S ðp2ÞλSαμνðp; q; rÞ: ð2:11Þ

Thus, focusing on the form factor for the tree-level tensor,
we get

Tsymðp2Þ ¼ gΓsym
T ðp2ÞΔ3ðp2Þ; ð2:12Þ

where, in particular, the Tsymðp2Þ form factor can be
projected out through

Tsymðp2Þ ¼ Gαμνðp; q; rÞWαμνðp; q; rÞ
Wαμνðp; q; rÞWαμνðp; q; rÞ

ð2:13Þ

with

Wαμνðp; q; rÞ ¼ λtreeαμνðp; q; rÞ þ
1

2
λSαμνðp; q; rÞ: ð2:14Þ

The second special momenta configuration that we will
focus our attention on is the so-called asymmetric one and
is defined by taking the p → 0 limit, while keeping at the
same time the condition q2 ¼ r2 ¼ −q · r. In this case, in
the Landau gauge, only one transverse tensor can be
constructed, and it appears to be the p → 0 limit of the
tree-level one,

λtreeαμνð0; q;−qÞ ¼ Γð0Þ
αμ0ν0 ð0; q;−qÞPμ0μðqÞPν0νðqÞ

¼ 2qαPμνðqÞ: ð2:15Þ

It is straightforward to notice that the second tensor in
Eq. (2.6), λSαμν, is only transverse if the symmetric condition
p2 ¼ q2 ¼ r2 is met. This is clearly not the case when the
asymmetric configuration of momenta is considered, and,
indeed, the p → 0 limit of this second tensor would result
in a totally longitudinal structure, λSαμν ∼ qαqμqν.
Thus, we are left with a single form factor that can be

projected out through

Tasymðq2Þ ¼ Gαμνð0; q;−qÞ ~Wαμνð0; q;−qÞ
~Wαμνð0; q;−qÞ ~Wαμνð0; q;−qÞ

; ð2:16Þ

where now

~Wαμνð0; q;−qÞ ¼ λtreeαμνð0; q;−qÞ: ð2:17Þ

This form factor relates to the 1-PI vertex function as
follows,

Tasymðq2Þ ¼ gΓasym
T ðq2ÞΔð0ÞΔ2ðq2Þ; ð2:18Þ

where the p → 0 limit brings here a dressing function
evaluated at vanishing momentum that, as will be seen
below, appears to be the source of additional statistical
noise in extracting a nonperturbative signal for the form
factor via Eq. (2.16) from lattice QCD.

B. R-projector

Aiming for a direct comparison with the lattice estimates
for the three-gluon vertex given in Refs. [1,2], the authors
of Ref. [46] define a particular quantity projected out
through the so-called R-projector (constructed with the
tree-level tensor, Γð0Þ),

Rðp2Þ ¼ gΓð0Þ
αμνðp; q; rÞGαμνðp; q; rÞ

gΓð0Þ
αμνðp; q; rÞPαα0 ðpÞΔðp2ÞPμμ0 ðqÞΔðq2ÞΔðr2ÞPνν0 ðrÞgΓð0Þ

α0μ0ν0 ðp; q; rÞ
ð2:19Þ

¼ Γð0Þ
αμνðp; q; rÞPαα0 ðpÞPμμ0 ðqÞPνν0 ðrÞΓα0μ0ν0 ðp; q; rÞ

Γð0Þ
αμνðp; q; rÞPαα0 ðpÞPμμ0 ðqÞPνν0 ðrÞΓð0Þ

α0μ0ν0 ðp; q; rÞ
; ð2:20Þ

where Eq. (2.19) corresponds to the quantity evaluated
in Ref. [1,2] from lattice QCD (see Eq. (20) of Ref. [1]),
adapted to our notation here, which is rewritten in
Ref. [46] as it reads in Eq. (2.20), in terms of the
full nonperturbative vertex functions, Γαμν, although

explicitly brought to transversity by the appropriate
projectors.
Now, for the sake of completion, we will apply Eqs. (2.6)

and (2.11) in Eq. (2.20) and then, for the symmetric
momenta configuration, get
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Rðp2Þ ¼ λtreeαμνðp; q; rÞ½Γsym
T ðp2Þλtreeαμνðp; q; rÞ þ Γsym

S ðp2ÞλSαμνðp; q; rÞ�
λtreeαμνðp; q; rÞλtreeαμνðp; q; rÞ

¼ Γsym
T ðp2Þ − 6

11
Γsym
S ðp2Þ; ð2:21Þ

which shows that the R-projector applied to the three-gluon
Green’s function results in a combination of the two form
factors for the tensors in Eq. (2.6), which form a basis for
the dimension-2 transverse subspace in the symmetric case.
On the other hand, in the case of the asymmetric

configuration of momenta, as the transverse subspace is
only of dimension 1, the action of the R-projector,

~Rðq2Þ ¼ Γð0Þ
αμνð0; q;−qÞPμμ0 ðqÞPνν0 ðqÞΓαμ0ν0 ð0; q;−qÞ

Γð0Þ
αμνð0; q;−qÞPμμ0 ðqÞPνν0 ðqÞΓð0Þ

αμ0ν0 ð0; q;−qÞ
¼ Γasym

T ðq2Þ; ð2:22Þ

is equivalent to Eq. (2.16).

C. Renormalization and the running coupling

All the quantities that have been introduced so far are
bare, and one should everywhere understand an implicit
dependence on the regularization cutoff. We apply now a
given renormalization procedure where any renormalized
Green’s functions ought to be understood as the correlation
function of renormalized gauge fields, ~AR ¼ Z−1=2

3
~A, such

that

ΔRðp2; μ2Þ ¼ Z−1
3 ðμ2ÞΔðp2Þ; ð2:23Þ

TRðp2; μ2Þ ¼ Z−3=2
3 ðμ2ÞTðp2Þ; ð2:24Þ

where Eq. (2.24) is formally equivalent for both the
asymmetric and symmetric cases, μ2 being the subtraction
momentum. Then, specifying to the so-called MOM
renormalization schemes, which are defined by imposing
that all Green’s functions take their tree-level values at the
subtraction point for a particular choice of momenta
configuration, one has for the symmetric case

ΔRðp2;p2Þ ¼ Z−1
3 ðp2ÞΔðp2Þ ¼ 1

p2
; ð2:25Þ

Tsym
R ðp2;p2Þ ¼ Z−3=2

3 ðp2ÞTsymðp2Þ ¼ gsymR ðp2Þ
p6

ð2:26Þ

and for the asymmetric case

Tasym
R ðp2;p2Þ¼Z−3=2

3 ðp2ÞTasymðp2Þ¼ΔRð0;p2Þg
asym
R ðp2Þ
p4

:

ð2:27Þ

Then, Eq. (2.25) yields the renormalization constant Z3

as a function of the bare propagator, while Eqs. (2.26) and
(2.27) provide us with the running coupling defined,
respectively, in symmetric and asymmetric MOM schemes,

gsymR ðp2Þ ¼ p3
Tsymðp2Þ
½Δðp2Þ�3=2 ¼ p3

Tsym
R ðp2; μ2Þ

½ΔRðp2; μ2Þ�3=2 ; ð2:28Þ

gasymR ðp2Þ ¼ p3
Tasymðp2Þ

½Δðp2Þ�1=2Δð0Þ

¼ p3
Tasym
R ðp2; μ2Þ

½ΔRðp2; μ2Þ�1=2ΔRð0; μ2Þ
: ð2:29Þ

Both are nonperturbative definitions for the QCD running
coupling, that have been extensively studied on the lattice
[56–61]. Other MOM schemes based on different QCD
vertices and kinematical configurations, as that for the
ghost-gluon vertex [62–65], lead to alternative nonpertur-
bative definitions, although all they can be related at any
order in perturbation theory [66,67]. Here, in obtaining
Eq. (2.28) and Eq. (2.29), we use first Eq. (2.26) and
Eq. (2.27), respectively, in order to express the running
coupling in terms of bare Green’s functions [replacing Z3

by its Eq. (2.25) bare result] and only then, after realizing
that the bare quantities appear as a renormalization-group-
independent combination, as they should, replace them by
their renormalized counterparts in the far right-hand sides.
In what concerns the 1-PI vertex functions, after apply-

ing the renormalization prescription to Eq. (2.12) and
Eq. (2.18), respectively, for the symmetric and asymmetric
cases, one is left with

Tsym
R ðp2; μ2Þ ¼ gsymR ðμ2ÞΓsym

T;Rðp2; μ2ÞΔ3
Rðp2; μ2Þ; ð2:30Þ

Tasym
R ðp2; μ2Þ ¼ gasymR ðμ2ÞΓasym

T;R ðp2; μ2Þ
× ΔRð0; μ2ÞΔ2

Rðp2; μ2Þ; ð2:31Þ

where Γi
T;Rðp2; p2Þ ¼ 1, for i indicating either the sym-

metric (sym) or the asymmetric (asym) momenta configu-
ration. Then, from either Eq. (2.30) and Eq. (2.28) or
Eq. (2.31) and Eq. (2.29), the renormalized 1-PI vertex
functions can be calculated for, respectively, the symmetric
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and asymmetric momenta configuration and read in both
cases

giRðμ2ÞΓi
T;Rðp2; μ2Þ ¼ giRðp2Þ

½p2Δðp2; μ2Þ�3=2 : ð2:32Þ

This last result is of special interest because it establishes a
connection between the three-gluon MOM running cou-
pling,1 to which many lattice and continuum studies have
paid attention, and the vertex function of the amputated
three-gluon Green’s function, a relevant ingredient within
the tower of (truncated) SDEs conceived to address the
nonperturbative dynamics of QCD. Both quantities appear
related only by the dimensionless gluon propagator dress-
ing function, Dðp2Þ ¼ p2Δðp2Þ, which, after the intensive
activity developed during the past decade [9–11,15,16,21–
23,68–71], is very well understood and accurately known.

III. LATTICE QCD RESULTS

Let us start this section with a reminder of how the three-
gluon Green’s function is computed from a lattice field
theory simulation. For the purpose of a conclusion about
qualitative features for its deep infrared behavior, one can
simulate lattice volumes in physical units as large as
possible but work in the quenched approximation, under
the working assumption that light dynamical quarks will
only quantitatively affect this behavior. The necessity to
focus on the quenched (pure gauge) theory is dictated by
the hefty numerical cost imposed by a very large-volume
simulation with dynamical fermions. To be more specific,
one needs to consider that the most prominent collabora-
tions employ ensembles of gauge fields of which the
physical volumes are usually around 3 fm, which is three
times smaller than the smallest physical volume that
exhibits data points in the deep IR regime where the zero
crossing takes place. Sensu stricto, we are concluding here
about the zero crossing of the three-gluon Green’s function
in pure Yang-Mills theory. All the other recent lattice
SUð3Þ investigations [53,54] as well as the previous SUð2Þ
lattice studies [1,2] also worked under the quenched
approximation and made conclusions about a theory with-
out light quarks. It cannot be then excluded that the effect of
the light quarks might wipe out the zero crossing, as it
happens to take place in the far infrared. However, the
motivation for the current and past studies in the pure Yang-
Mills QCD is two sided: (i) References [40,46–50] claimed
that the zero crossing happens as a purely gluodynamical
effect, by using the SDE formalism, and then argued it
shifts down to deeper momenta by the presence of light

quarks [72]. The study of that effect in pure gluodynamics
deserves interest per se but, if the latter is true, can also
provide noteworthy qualitative information about the IR
behavior of the QCD gluonic Green’s functions. (ii) The
mechanism we invoked here to explain the three-gluon sign
changing and its zero crossing, as will be discussed in the
next section, is the same one, related to the nonperturbative
ghost-loop diagram contributing to the gluon self-energy,
producing a peak for the gluon propagator at a deep IR
nonzero momentum. This gluon propagator peak and the
mechanismbehind it have been discussed inRef. [73]within
the context of the chiral symmetry restoration in QCD with
an increasing number of light flavors. Thus, although our
analysis is made in pure gluodynamics, the underlying
mechanism for the more apparent feature exhibited by the
three-gluon Green’s function has, presumably, profound
implications in the IR dynamics of QCD.
A noteworthy final remark is that SDE unquenching

techniques, as those developed in Refs. [74,75], combined
with lattice studies as that of Ref. [7], appear to confirm that
the presence of light quarks modifies the ghost and gluon
two-point and ghost-gluon three-point Green’s functions
only slightly at the quantitative level.

A. Generalities

There have been many past lattice studies [57–60,76,77]
pursuing mainly the computation of the fundamental QCD
parameter, ΛQCD, through a very detailed scrutiny of the
running of the three-gluon MOM strong coupling. All these
results for the coupling, following Eq. (2.32), can be also
used to derive the nonperturbative vertex function, as done
in Ref. [53]. Here, apart from taking advantage of them, we
aim toward the completion of the preliminary work of
Ref. [53], in which we addressed the calculation of the
three-gluon vertex function in the four-dimensional SUð3Þ
gauge theory, by simulating QCD on the lattice with the
tree-level Symanzik improved gauge action (tlSym) [78]
which, in addition to the plaquette termU1×1

x;μ;ν, also includes
rectangular (1 × 2) Wilson loops U1×2

x;μ;ν. In particular, the
tlSym action reads

Sg ¼
β

3

X
x

(
b0

X4
μ;ν¼1
1≤μ<ν

½1 − ReTrðU1×1
x;μ;νÞ�

þ b1
X4
μ;ν¼1
μ≠ν

½1 − ReTrðU1×2
x;μ;νÞ�

)
; ð3:1Þ

where β≡ 6=g20, g0 is the bare lattice coupling and one sets
b1 ¼ −1=12 and b0 ¼ 1�8b1 as dictated by the perturba-
tive computation of the improvement coefficient and
normalization. The standard Wilson action results from
making the choices b0 ¼ 1 and b1 ¼ 0 in Eq. (3.1). As will
be seen in the next subsection, we first doubled, in the

1Indeed, the quantity that can be generally found in literature is
αðμ2Þ ¼ g2ðμ2Þ=ð4πÞ which, by squaring the signal of g obtained
from the lattice misses the existence of a change of sign, and
hence a zero crossing, at very deep IR momentum, for the vertex
itself.
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present study, the number of gauge-field configurations for
the same two lattice setups employed in Ref. [53]; pro-
duced then one more ensemble with the tlSym action,
defining its lattice setup such as to be left with a physical
volume similar to the largest (hence providing reliable
estimates for the vertex at equally deep IR momenta) but
different lattice spacing; and, finally, obtained three more
ensembles of gauge fields simulated with the Wilson
action. The idea of including in this detailed analysis an
unimproved gauge action originates from our intention of
guaranteeing that no issue related to the lattice artifacts
from the action discretization is relevant for our purposes.
All gauge-field configurations generated by the above
actions are gauge fixed to the (minimal) Landau gauge.
This is done through the minimization of the following
functional [of the SUð3Þ matrices UμðxÞ],

FU½g� ¼ Re

�X
x

X
μ

Tr

�
1 −

1

N
gðxÞUμðxÞg†ðxþ μÞ

��
;

ð3:2Þ

with respect to the gauge group element g.
To get as close as possible to the global minimum, we

apply a combination of an over-relaxation algorithm and
Fourier acceleration, considering the gauge to be fixed
when the condition j∂μAμj2 < 10−16 is fulfilled and the
spatial integral of A0 is constant in time to a relative
accuracy better than 10−6. Evidently, this procedure cannot
avoid the possibility that lattice Gribov copies are present in
the ensemble of gauge fixed configurations. However,
extensive studies in the literature of the quenched case
(see for example Ref. [5]) show that such copies do not
seriously affect the qualitative behavior of the Green’s
functions in question.
After the lattice configurations have been projected onto

the Landau gauge, the gauge field is obtained as

Aμðxþ μ̂=2Þ ¼ UμðxÞ −U†
μðxÞ

2iag0
−
1

3
Tr

UμðxÞ − U†
μðxÞ

2iag0
;

ð3:3Þ

with μ̂ indicating the unit lattice vector in the μ direction.
It can be then Fourier transformed to momentum space,

~Aa
μðqÞ¼

1

2
Tr
X
x

Aμðxþ μ̂=2Þexp½iq ·ðxþ μ̂=2Þ�λa; ð3:4Þ

where λa are the Gell-Mann matrices and the trace is
evaluated in color space, and, finally, the two- and three-
point gluon Green’s functions are obtained as

Δab
μνðpÞ ¼ h ~Aa

μðpÞ ~Ab
νð−pÞi;

Gabc
μνρðp; q; rÞ ¼ h ~Aa

αðpÞ ~Ab
μðqÞ ~Ac

νðrÞi; ð3:5Þ

where the h·i stands for a Monte Carlo average replacing
here the functional integration over the gauge space. Then,
as described in the previous section, one can project out the
relevant form factors, Tðp2Þ and Δðp2Þ; renormalize in the
MOM scheme; and extract the three-gluon running cou-
pling and the nonperturbative vertex function, following
Eqs. (2.28)–(2.32).
To conclude this subsection, we will briefly comment on

the role played by the hypercubic artifacts resulting from
the lattice discretization and the consequent breaking of the
Oð4Þ rotational invariance down to the Hð4Þ isometry
group.
The so-called Hð4Þ-extrapolation procedure [79–81] has

been proven to cure efficiently the lattice data from these
artifacts for the two-point gluon and ghost Green’s func-
tions, otherwise plaguing their reliable determination. The
procedure basically works as follows: any dimensionless
correlation function (as q2Δ and q6T) evaluated on the
lattice must depend on the (dimensionless) lattice momen-
tum aqμ, where

qμ ¼
2πnμ
Nμa

; nμ ¼ 0; 1;…; Nμ; ð3:6Þ

Nμ being the number of lattice sites in the μ direction (in
our case, Nμ ¼ N for all μ). Since Oð4Þ is broken down to
Hð4Þ, it depends not only on a2q2 but also on a2q½4�=q2, at
the first order, where q½4� ¼ P

μq
4
μ is the first Hð4Þ-

invariant. All the different configurations of lattice
momenta, qμ, taking the same value for all the Hð4Þ-
invariants are obviously invariant under Hð4Þ transforma-
tions and constitute a so-called Hð4Þ-orbit. However,
different Hð4Þ-orbits may take the same value for q2,
differing only by q½4� or higher-order invariants. Thus, a
correlation function evaluated on the lattice at momenta
belonging to those different Hð4Þ-orbits will differ from
each other but must take the same continuum value. This is
an apparent manifestation of the Oð4Þ-breaking, which the
standard recipe to deal with was to introduce a kinematical
cut in lattice momenta configuration. The purpose of this
kinematical cut was to exclude those momenta carrying a
component much larger than the others, only retaining
small a2q½4�=q2 contributions. Subsequently, an average
over all the Oð4Þ-invariant momenta configurations had to
be performed. Instead, in the Hð4Þ-extrapolation, one only
averages over any combination of momenta within the
same Hð4Þ-orbit and then extrapolates the results toward
the continuum limit where the effect of a2q½4� vanishes.
An extension of the Hð4Þ-extrapolation procedure has

also been developed and applied to deal with the hypercubic
artifacts of the three-gluon Green’s functions in Ref. [61].
Therein, the results obtained from Hð4Þ-extrapolation and
from the standard Oð4Þ-average were compared, and their
differences appeared only visible for lattice momenta such
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that
ffiffiffiffiffiffiffiffiffiffi
a2q2

p
≥ π=4. Here, we have also applied Hð4Þ-

extrapolation and Oð4Þ-average and only retained those
lattice momenta which lead to results that compare well
after each of the two procedures has been applied.

B. Results

Before displaying the lattice results that we obtained and
analyzed in this work, we give first the different lattice
setups for all the ensembles produced and exploited here.
The simulations parameters are reported in Table I. As can
be seen there, we have implemented the two different
discretized gauge actions, Wilson and tlSym, described in
the previous subsection, adopting three setups for each,
corresponding to five different lattice bare couplings (lattice
spacings), g20 ¼ 6=β, their physical volumes ranging from
4.454 to 15.64 fm4. For the sake of comparison, we have
also exploited the lattice data for the three-gluon running
coupling, previously published and analyzed in investiga-
tions mostly addressed to the calculation of ΛQCD [57–
60,76,77], and derived from them the nonperturbative
vertex function. These last data were then obtained from
many different lattice simulations, generated with the
Wilson gauge action at several β’s ranging from 5.6 to
6.0 and physical volumes ranging from 2.44 to 5.94 fm4.
Within the approach we follow, the road to the compu-

tation of the 1-PI renormalized vertex function implies, in a
first step, obtaining the three-gluon running coupling
defined in Eqs. (2.28) and (2.29), respectively, for sym-
metric and asymmetric MOM schemes. This calculation
can be directly performed by the implementation of the
bare form factors, Δðp2Þ and Tðp2Þ, projected out from the
lattice two- and three-point Green’s functions through
Eqs. (2.2), (2.13), and (2.16). A main gain of proceeding
so is that all the dependence on the cutoff regularization
parameters should cancel for the ratios of bare quantities in
the definitions of strong coupling and so can be explicitly
examined. As far as one properly deals with the lattice
discretization artifacts, the outcome of Eqs. (2.28) and
(2.29) would only be a function of the squared momentum

at the subtraction point in either the symmetric or the
asymmetric configuration, irrespectively of what set of
lattice parameters is used. A striking verification of the
latter can be seen in the two plots of Fig. 1, where the lattice
results for

αiðp2Þ ¼ ½giRðp2Þ�2
4π

; ð3:7Þ

with giR given by Eqs. (2.28) and (2.29), respectively, for
i ¼ sym and i ¼ asym. The strong coupling data obtained
from all the lattice ensembles, with very different bare
couplings, lattice spacings, and physical volumes, appear to
be very well on top of each other when their windows of
momenta overlap (where the lattice artifacts happen to be
under control). It is worth emphasizing that no renormal-
ization or rescaling factor is needed; the physical scaling
shown by the plots of Fig. 1 directly results from the
evaluation of Eqs. (2.28) and (2.29) with bare lattice inputs.2

Moreover, we have also computed the renormalized
three-gluon form factor, Ti

R, following Eq. (2.24), and
displayed the results in Fig. 2. For this and, in the
following, for all the renormalized quantities, we have
chosen μ ¼ 4.3 GeV as the subtraction momentum.
Precisely, the use of previously published lattice data
together with the new ones produced here made it possible
to enlarge the window of momenta for reliable estimates,
covering a wider region, containing large UV momenta,
where this renormalization point is included. In particular,
as it appears indicated by the dashed lines in both panels of
Fig. 1, we thus get αasymð4.3 GeVÞ ¼ 0.31, for the sym-
metric case, and αasymð4.3 GeVÞ ¼ 0.27 for the asymmet-
ric one. The results for the renormalized form factor in the
symmetric case robustly show a change of sign and, hence,
a zero crossing lying somewhere in between 0.1 and
0.2 GeV. In the asymmetric case, the results are statistically
noisier but clearly consistent with the same feature.
Finally, in order to obtain the 1-PI vertex functions, we

only need to resort to their connection to the strong
coupling, which results in both the symmetric and the
asymmetric momenta configurations, from Eq. (2.32). As
this equation reads, the calculation involves a gluon two-
point Green’s function renormalized at the chosen momen-
tum which, precisely, carries all the renormalization-point
dependence for the vertex function. This two-point Green’s
function being a renormalized quantity, on the understand-
ing of which exists now a clear consensus and which
appears to be very accurately known, we can take for it the
results obtained with the best available gluon propagator
lattice data in the literature, namely, those simulated with
the largest physical volume [5]. We thus only need to

TABLE I. Lattice setup parameters for the simulations em-
ployed here using either the Wilson or tlSym discretized gauge
actions. The lattice bare coupling, for the case of SUð3Þ, is given
by g20 ¼ 6=β, N stands for the number of lattice sites in any of the
four dimensions, and the physical volume is obtained from the
lattice spacings taken from Refs. [82] for the Wilson action and
Ref. [83] for tlSym. The number of the exploited configurations
of gauge fields is also given in the fourth row.

β 4.2 3.8 3.9 5.8 5.6 5.6

N 32 48 64 48 48 52

ðVolumeÞ1=4 ½fm� 4.45 13.7 15.6 6.72 11.3 12.3

Configurations 420 1050 2000 960 1920 1790

Action tlSym tlSym tlSym Wilson Wilson Wilson

2No direct rescaling is needed for the coupling; however, we
have corrected by 5%—admitting that relative error—the value of
the lattice spacing in physical units for the Wilson-action setup at
β ¼ 5.8, with the criterion of obtaining an optimal scaling.
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combine, according to Eq. (2.32), the renormalized
results for the two-point function with those for the
three-gluon strong coupling, shown in Fig. 1, directly
obtained from bare lattice Green’s functions. Or one can
apply instead Eqs. (2.30) and (2.31) and use there the
results for the renormalized three-gluon form factors
collected in Fig. 2. In both cases, we will be left with
the results for the 1-PI vertex functions, which appear
displayed in Fig. 3.
In Fig. 3, we have grouped only the results obtained with

the same gauge action, either Wilson (upper panels) or
tlSym (lower panels). In both cases, the zero-crossing
feature clearly happens for the symmetric momenta con-
figuration (left) and is remarkably consistent with the
(noisier) asymmetric configuration (right). Indeed, the
Wilson-action symmetric-configuration data also appear
to offer a robust confirmation for the happening of the zero

crossing.3 With the aim of guiding the eye for comparative
purposes, we have also included, in all the plots, the SDE-
inspired fits that will be further discussed in the next
section. It is not worthless to emphasize that, even if one is
willing to analyze independently any of the four lattice
setups producing estimates for momenta lying on the zero-
crossing region (β ¼ 5.6 for 484 and 524 lattices, in the
Wilson case, and β ¼ 3.8 and β ¼ 3.9, for tlSym), the
attained conclusions would be plainly compatible with a
global analysis, as the data from any of these setups appear
to be consistent with each other and behave as expected, if
the SDE interpretation for the zero crossing is correct.
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FIG. 2. The three-gluon form factor, renormalized at μ ¼ 4.3 GeV according to Eq. (2.24), after being projected out through
Eqs. (2.13) and (2.16) from, respectively, the symmetric (left panel) and asymmetric (right panel) lattice bare Green’s functions.
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FIG. 1. The strong running coupling, Eq. (3.7), in both symmetric (left panel) and asymmetric (right panel) MOM schemes, where gR
is computed by using, respectively, Eqs. (2.28) and (2.29). We use logarithmic scales for both axes in both panels. Data obtained from
the six setups reported in Table I appear displayed with different symbols and colors (as shown in the legends), and, additionally, data
previously published and investigated in Refs. [57–60,76,77] are plotted (black solid circles), for the sake of comparison and to cover the
UV region where we estimate αsymð4.3 GeVÞ ¼ 0.31 and αasymð4.3 GeVÞ ¼ 0.27 (dashed lines).

3This is in agreement with the very recent claim for further
evidences for the zero crossing in the asymmetric three-gluon
vertex [54].
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IV. SDE-BASED ANALYSIS

As was preliminarily shown in Ref. [53], lattice data for
the three-gluon 1-PI vertex functions, in particular the
change of sign and the zero crossing they exhibit in the
deep IR, appear to be consistent with a noteworthy effect
that had been previously shown in literature (notably in
Refs. [40,46]), namely, the (four-dimensional) logarithmic
singularity induced in the three-gluon vertex function by the
nonperturbative ghost-loop diagram contributing to the
gluon propagator SDE. Specifically, employing a nonper-
turbative ansatz for the ghost-gluon vertex that satisfies the
appropriate STI, one is left with the following IR contribu-
tion to thegluon self-energy for this ghost-loop diagram [46],

Πcðp2Þ ¼ g2CA

6
p2Fðp2Þ

Z
k

k2

k2ðkþ pÞ2 ; ð4:1Þ

where CA is the Casimir eigenvalue in the adjoint represen-
tation, Fðp2Þ is the ghost dressing function, andR
k ≡ με=ð2πÞd R ddk is the dimensional regularization mea-
sure with d ¼ 4 − ε, and μ is the ’t Hooft mass. The above
leading contribution in the vanishing momentum limit,

p2 → 0, evidently behaves like p2 lnp2=μ2 and leads to
the following very accurate parametrization,

Δ−1
R ðp2; μ2Þ ¼

p2=μ2≪1
p2

�
aþ b ln

p2 þm2

μ2
þ c ln

p2

μ2

�
þm2;

ð4:2Þ

for the IR form of the gluon propagator which emerges from
its complete SDE, with a, b, c, and m2 suitable renormal-
ization-dependent parameters capturing explicitly both the
effect of the ghost loop sketched by Eq. (4.1) and the
finiteness of the gluon propagator at vanishing momentum,
Δ−1

R ð0; μ2Þ ¼ m2. Note that this finiteness is the conse-
quence of an effective mass being acquired which protects
the gluon loops against the logarithmic singularities resulting
from the ghost loops.4
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FIG. 3. Three-gluon 1-PI form factors obtained from lattice results simulated with the Wilson (upper panels) and the tlSym (lower
panels) gauge actions, plotted in terms of the momenta displayed in logarithmic scale, for symmetric (left) and asymmetric (right)
momenta configuration. The renormalization point is μ ¼ 4.3 GeV. The red solid lines result from SDE-based fits which will be
explained in the next section and which are included here for comparative purposes.

4Then, although the ghost is directly transparent to the mass-
generation mechanism, the absence of additional singularities
resulting from the nonperturbative gluon loops, which owes to the
gluon mass generation, guarantees the finiteness of the ghost
dressing function at vanishing momentum.
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Any standard Green’s function can be related to the same
one with background legs, within the PT-BFM approach,
by the use of the so-called background quantum identities
[41,84,85]). The ones with background legs, when pro-
jected according to Eqs. (2.13) and (2.16) and by virtue of
the Abelian STI that the PT-BFM propagators are con-
structed to obey, will be led in the IR by the derivative of the
inverse of the gluon propagator, represented by Eq. (4.2)
[46]. Thus, the three-gluon 1-PI form factors derived from
the background Green’s functions can be proven to behave
in the deep IR as

Γi;ðBÞ
T;R ðp2; μ2Þ ≃

p2=μ2≪1
FRð0; μ2Þ

∂
∂p2

Δ−1
R ðp2; μ2Þ þ � � �

≃ FRð0; μ2Þ
�
aþ b ln

m2

μ2
þ c

�

þ cFRð0; μ2Þ ln
p2

μ2
þ � � � ; ð4:3Þ

where FRð0; μ2Þ is the renormalized ghost dressing func-
tion evaluated at zero momentum and where the dots stand
for subleading corrections that, as discussed in Ref. [83],
might be collectively taken into account by adding an extra
constant term which, contrarily to the leading contribution,
depends a priori on the momenta configuration. On the
other hand, the connection between the background and the
standard vertex functions is controlled by the ghost-gluon
dynamics and will essentially introduce a finite correction
not modifying the leading logarithmic divergence in
Eq. (4.3). Thus, we can eventually write

giRðμ2ÞΓi
Rðp2; μ2Þ ¼ ailnðμ2Þ ln

p2

μ2
þ ai0ðμ2Þ þ oð1Þ; ð4:4Þ

where ai0ðμ2Þ is a constant which borrows from all the
subleading corrections and which will be considered, in
the following, as a free parameter to be fitted, while the

logarithmic slope, ailnðμ2Þ ¼ giRðμ2ÞcFRð0; μ2Þ, is known
from gluon and ghost two-point Green’s functions and from
the value of the three-gluon coupling at the renormalization
point. Indeed, at μ ¼ 4.3 GeV, we have FRð0; μÞ≃ 2.9
from Ref. [5] and c ∈ ð0.35; 0.55Þ from Ref. [83] (where
the range is thought to account for the uncertainty coming
from the two fits of Eq. (4.2) to data from 804 and 964

lattices at β ¼ 5.7 [5]) and have estimated the coupling
from the data displayed in Fig. 1 for both symmetric and
asymmetric configurations. We thus obtain the values for
ailn reported in Table II (first or second column for the
symmetric case and fourth or fifth for the asymmetric case)
and used in Fig. 4.
However, Eq. (4.4), with values for ailn lying inside its

predicted range, can hardly account for data within a fitting
window of momenta up to 0.2 GeV, in particular for the
symmetric case (see the brown band in the left plot of
Fig. 4). Otherwise said, a fit of Eq. (4.4) with both ai0 and
ailn as free parameters would yield an optimal best-fit result
for the latter about twice smaller than the lowest value
reported in Table II. This seems to suggest that the first
subleading correction, at least, is needed to describe
properly the data around 0.2 GeV. As we know from
Refs. [73,86,87], the first subleading correction introduced
by the ghost-gluon dynamics should behave as p2 lnðp2Þ.
We thus correct Eq. (4.4) as

giRðμ2ÞΓi
Rðp2; μ2Þ ¼ ailnðμ2Þ ln

p2

μ2
þ ai0ðμ2Þ

þ ai2ðμ2Þp2 ln
p2

M2
þ oðp2Þ; ð4:5Þ

where, again, ai2 and M will be free parameters capturing
subleading contributions. M differs a priori from the
renormalization point since it is absorbing the Oðp2Þ-
contribution which, for the sake of consistence, is also
required. Then, by applying Eq. (4.5) with ailn also as a free

TABLE II. Best-fit parameters obtained by applying the SDE-based ansatz to describe the three-gluon 1-PI form
factors in symmetric and asymmetric configurations. The first and fourth columns correspond to fits of Eq. (4.4) to,
respectively, symmetric and asymmetric lattice data, with ailn fixed by the estimates (lower and upper bounds) of c in
Ref. [83]; the second and fifth stand for the fits with Eq. (4.5), also with ailn fixed in the same way; the third stands
for a fit to the symmetric data with Eq. (4.5) and all the parameters free; the sixth results from taking the value of c
derived from symmetric data and so fixing aasymln in a fit of Eq. (4.5) to the asymmetric data. The asterisk indicates
that numbers do not result from a fit but are imposed, as above explained. The renormalization point is
μ ¼ 4.3 GeV.

i ¼ sym i ¼ asym

Eq. (4.4) Eq. (4.5) Eq. (4.5) Eq. (4.4) Eq. (4.5) Eq. (4.5)

aðiÞ0 13.2–20.0 15.3–23.7 20.6 12.4–18.8 14.5–22.3 19.5

aðiÞln 2.05–3.12(*) 2.05–3.12(*) 2.74 1.92–2.91(*) 1.92–2.91(*) 2.55(*)

aðiÞ2 … 21.3–41.7 34.4 … 26.1–42.5 36.6

M [GeV] … 0.78–0.71 0.72 … 0.70–0.69 0.69
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parameter, we get the best fits displayed in the solid red
lines in the left panels (for the symmetric case) of Figs. 3
and 4. These fits give a nice description of all data below
0.3 GeV and correspond to the best-fit parameters reported
in Table II (third column). In particular, the optimal value
for asymln ðμ2Þ, combined with FRð0; μ2Þ and gsymR ðμ2Þ, allows
for a prediction of the coefficient c controlling the massless
ghost-loop contribution,

c≃ 0.48; ð4:6Þ

which happens to agree pretty well with the range of results
obtained in Ref. [53] from gluon propagator lattice data
given in Ref. [5], namely, c ∈ ð0.35; 0.55Þ. Next, we can
take this best-fit estimate of c, obtained from the symmetric
configuration to determine aasymln , apply it in Eq. (4.5), and
produce then the best fits for the asymmetric configuration
displayed in the right panels of Figs. 3 and 4. In the view of
all the plots and, specially, of Eq. (4.6), it can be concluded
that the lattice three-gluon vertex data we produced and
introduced in the previous section (part of which were
published and analyzed in Ref. [53]) are plainly consistent
with their SDE description based on the PT-BFM approach
and with the lattice ghost and gluon two-point Green’s

functions. We have also made fits with aðiÞln fixed by the
upper and lower bounds for the range of c given in Ref. [53]
and produced the red dotted lines in the plots. The yellow
band in between depicts, precisely, the region where the
SDE-based ansatz fits optimally the data, in consistence
with the lattice two-point Green’s functions.
The position of the zero crossing depends on the

competition of the logarithm coming from the ghost loop,
controlled by the coefficient c, against the effect of the
finite subleading corrections, the details of which we only

precise here by a direct fit to three-gluon lattice data.
Applying the best fit of Eq. (4.5) to the lattice data, the
zero crossing is found to lie on psym

0 ≃ 0.17 GeV, for the
symmetric case, and pasym

0 ≃ 0.16 GeV, for the asymmetric
case, while, had we employed Eq. (4.4) with the best-fit
parameters of Table II, one would have obtained
pi
0 ≃ 0.17 GeV, for both the symmetric and the asymmet-

ric cases. Of course, there are non-negligible statistic and
systematic uncertainties for these results. For instance, we
estimate a relative error of around 15% for the position of
the zero crossing, when using Eq. (4.4) in the symmetric
case, while, in the much noisier asymmetric case, we get a
relative error of 34%. Both are just statistical errors. In this
work, we do not aim for a very precise determination of the
zero crossing but for a very strong confirmation that,
after the appropriate projection, the nonperturbative
ghost-loop contribution induces a logarithmic singularity
at vanishing momentum for the three-gluon form factors—
independently of which particular momenta configuration
we are considering—which drives the vertex under ques-
tion from positive to negative values.

V. CONCLUSIONS

We have investigated further the IR structure of the three-
gluon vertex, especially by studying the nonperturbative
form factor associated to the tree-level tensor, precisely the
one that should be invoked in the definition of the running
strong coupling under the MOM renormalization prescrip-
tion. Previous studies, both in lattice and continuous
QCD—following various distinct approaches—have pro-
vided evidence for a change of sign of this form factor at a
given momentum lying in the deep IR domain, at least for
QCD without light quarks. It has been argued that the effect
of light quarks would be only quantitative and consists of
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FIG. 4. The same three-gluon 1-PI form factors displayed in Ref. 3, plotted now all together and making use of a linear scale, for the
symmetric (left) and asymmetric (right) momenta configurations. The renormalization point is μ ¼ 4.3 GeV. The red solid and dashed
lines result from the best fits with Eq. (4.5), while the brown solid lines correspond to Eq. (4.4), as explained in the text. Yellow and
brown bands depict the uncertainty resulting from the range of c estimated in Ref. [83], in the cases of, respectively, Eq. (4.5)’s and
Eq. (4.4)’s fits.
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the shifting of the corresponding “zero crossing” down to
the IR. However, the issue has not been completely settled,
and one should be cautious about concluding the appear-
ance of a zero crossing in realistic QCD.
In this work, still exploiting gauge-field configurations

from quenched lattice QCD simulations but at very large
physical volumes, we presented a more refined and elabo-
rated analysis of the detection of the zero crossing for some
three-gluon vertex form factors. This very specific infrared
feature is posited to be closely related to the masslessness of
the Faddeev-Popov ghost propagator circulating in the non-
perturbative loop diagrams contributing to the gluon vacuum
polarization, which is the underlying source of the negative
singularity for the three-gluon formfactors forcing the change
of sign. Indeed, such a negative singularity is more striking
andeasily discernible as an effect of the nonperturbativeghost
loop than its direct impact on the gluon propagator. Provided
that the nonperturbative ghost loops have been also recently
shown to have a noteworthy impact on the quark-gluon
interaction kernel and, hence, on a process-independent
effective strong coupling based on the PT-BFM approach
[88], the confirmation of the zero crossing and the numerical
estimate of the ghost-loop impact [expressed by the coef-
ficient c in Eq. (4.2)] are also interesting results with possible
phenomenological implications.
Compared to previous studies of the topic, we provided

here more and stronger corroborative evidence to the
statement in question. In particular, by pushing the statistics
and by employing different lattice actions (Wilson pla-
quette and tree-level Symanzik improved), we have under
much tighter control statistical and systematical uncertain-
ties which lead us to make more clear statements about both

the symmetric as well as the asymmetric momentum
configurations. We provided a fully comprehensive and
refined analysis grounded on its understanding within the
framework of SDE under the PT-BFM scheme and reca-
pitulated the basic argument on how, within this approach,
the nonperturbative ghost-loop diagrams can lead to such a
remarkable effect. On the basis of both our employment of
pure gauge simulations with large physical volumes and
our refined analysis, we managed to further solidify the
zero crossing not only of the symmetric kinematical setup
but also of the much noisier asymmetric one that was
previously smudged due to high statistical fluctuations.
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