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A new algorithm is developed allowing the Monte Carlo study of a 1þ 1-dimensional theory in real
time. The main algorithmic development is to avoid the explicit calculation of the Jacobian matrix and its
determinant in the update process. This improvement has a wide applicability and reduces the cost of the
update in thimble-inspired calculations from OðN3Þ to less than OðN2Þ. As an additional feature, the
algorithm leads to improved Monte Carlo proposals. We exemplify the use of the algorithm to the real-time
dynamics of a scalar ϕ4 theory with weak and strong couplings.
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I. INTRODUCTION

Some of the most interesting—and challenging—
problems in many-body physics are dynamical questions.
They describe near-equilibrium states through transport
coefficients like diffusion constants, viscosities, conductiv-
ities, as well as phenomena away from equilibrium. The
central objects of interest in this class of problems are the
time-dependent correlation functions of the form

hÔðtÞÔðt0Þi ¼ TrðÔðtÞÔðt0Þρ̂Þ ð1Þ

where the operators have the usual time evolution ÔðtÞ ¼
eiĤtÔð0Þe−iĤt and ρ̂ is the density matrix which reduces
to the Boltzmann form, e−βĤ=Trðe−βĤÞ, in equilibrium.
Problems in this category show up in almost every field of
physics: cosmology, heavy-ion collisions, and condensed
matter physics to name a few.
Unfortunately the tools for tackling such dynamical

problems from first principles are very limited. Even in
weakly coupled systems, the study of long-time dynamics
(or low-momentum properties) require complicated resum-
mations of the perturbative expansion [1,2]. Monte Carlo
techniques, the method of choice for nonperturbative
problems, have a fundamental difficulty in dealing with
real-time (as opposed to imaginary-time) dynamics, due to
a particularly severe version of the “sign problem.” Many
Monte Carlo–based approaches, including the one used in
relativistic theories and that we use in this paper, are based
on a path integral representation of the observable of
interest. Such a path integral representation exists for
real-time observables in or out of equilibrium, and is based

on the Schwinger-Keldysh formalism [3,4]. The problem in
the Monte Carlo evaluation of this path integral is that the
integrand is a pure phase, as opposed to a fast-decaying real
function, and the importance sampling of the integrand,
based on the interpretation of the integrand as a probability
density, is not possible. As we will comment below, the
sign problem for path integrals in the Schwinger-Keldysh
formalism is, in a certain sense, the worst possible.
We are aware of two approaches that address this

problem via Monte Carlo techniques. The first one is to
concentrate on near-equilibrium states and attempt to
compute transport coefficients. They can be computed
through the Kubo formula from the knowledge of certain
equilibrium real-time correlators (1). In principle, the cor-
relators in imaginary time, hÔEðτÞÔEðτ0Þi with ÔEðτÞ ¼
eĤτÔð0Þe−Ĥτ, contain the same information as the real-time
ones and can be computed with standard Monte Carlo
techniques, frequently without a sign problem [5–9]. In
practice, however, exponentially good precision on imagi-
nary time is required to reconstruct it on real time. The
second approach is to use Langevin methods (“stochastic
quantization” [10]). The drawback of the (complex)
Langevin approach is that it does not always converge,
or sometimes converges to an incorrect result [11]. In fact,
the few attempts to apply the complex Langevin method to
real-time dynamics seem to suggest that it converges to the
wrong result if the time separation t − t0 is more than the
inverse temperature β [13–15].
In the last few years a new approach to compute path

integrals with a sign problem has been developed [16].
Although the details of the different versions vary, they are
all based on the deformation of the path integral from real
values of the fields to a suitably chosen middle-dimensional
(i.e. with the same dimensions as the real field space)
submanifold of the complexified field space. The equality
of the integral over this new manifold to the integral over
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the original real space is guaranteed by a multidimensional
version of Cauchy’s theorem and by choosing the asymp-
totic properties of the manifold properly (the analogue of
avoiding the “arcs at infinity” familiar from complex
analysis of functions of one complex variable). One choice
of such a manifold is to deform the contour of integration
from the real space to an appropriate combination of
“thimbles,” the multidimensional analogues of the “steepest
descent” or “constant phase” path from the theory of one
complex variable. The sign problem is solved because,
along thimbles, the phase of the integrand is constant. A
difficulty with this choice of manifold is that it is, in
general, nearly impossible to determine the particular
combination of thimbles that is equivalent to the original
region of integration. There are also the issues of how to
sample disconnected thimbles and find them as their
location is not known analytically.
Another choice of integration manifold was proposed in

Ref. [17] and pursued by our group recently [18–20]. In this
proposal, the manifold of integration is obtained by taking
the real fields as a starting value and evolving them
according to the (anti)holomorphic gradient flow (the
complex conjugate of the gradient of the action). This
flow evolves a given real field configuration along a
particular trajectory, determined by the gradient of the
action, in the complexified field space. The end point of this
evolution is determined by the “flow time,”which is viewed
as a free parameter. Therefore flowing the original real field
space by some flow time creates an alternative, complex
path integration manifold associated with the value of that
flow time. In the limit of large flow times this manifold
coincides with the precise combination of thimbles which is
equivalent to the original integration domain. For finite
flow times it provides a manifold i) that is equivalent to the
original domain of integration, ii) on which the phase
variation of the integrand is milder than on the real space
and iii) that is connected, making the stochastic sampling
easier to accomplish.
This method was applied to the equilibrium real-time

dynamics of an anharmonic oscillator in Ref. [18]. The
correct result (which is known in this case through direct
diagonalization of the Hamiltonian) was obtained, even for
time differences t − t0 of the order of ≈4β. However, the
particular implementation of this method had two major
shortcomings which prevented a similar computation in a
field theory. First, an unreasonably large number of
Monte Carlo steps were required for thermalization and
decorrelation. The reason for this was traced back to the
fact that in this method, it is natural to make isotropic
proposals in real space that are then “flowed” to the
manifold of integration where they are highly anisotropic.
In Ref. [18] some attempts were made to correct for this
anisotropy by using a combination of Gaussian approxi-
mation and trial-and-error adjustment for the proposals to
make them more isotropic when flowed to the manifold of

integration, but with limited success. It also required the
computation and storage of a set of N, N-dimensional
vectors (where N is the number of degrees of freedom on
the lattice), which was possible in the anharmonic oscillator
problem but is prohibitive in a field theory with a large
lattice. Second, the need to compute the Jacobian asso-
ciated with the parametrization of the manifold by its real
coordinates makes every step of the Monte Carlo chain
computationally expensive. Previously, this problem had
been dealt with by using an estimator of the Jacobian
[19,21,22] and reweighting the difference when making
measurements. The estimator we developed is likely to be
useful if the coupling is small and/or the manifold of
integrations is nearly parallel to the real plane. This is not
the case for the real-time calculations so a new method that
bypasses the need to compute the Jacobian at every step of
the Monte Carlo chain is necessary.
The purpose of this paper is to present an algorithm

without these two difficulties, and one that does not require
the storage of the N, N-dimensional vectors. The main idea
is the Grady algorithm [23,24] which is used in lattice QCD
in order to avoid the computation of fermion determinants.
The effect of the Jacobian is embedded in a bias of the
proposals that are isotropic in the flowed manifold. We
implement the Grady algorithm into the holomorphic
gradient flow method to perform a real-time calculation
on a ϕ4 theory in 1þ 1 dimensions. In this model and for
weak or strong couplings, we are able to perform an even
computationally cheaper calculation by approximating the
holomorphic flow by its Gaussian approximation in the
calculation of the proposal (and reweighting the difference
between them when making measurements).
In Sec. II we briefly review properties of the holomor-

phic flow and the new algorithm is described. In Sec. III the
model and its representation in the Schwinger-Keldysh
formalism is described. Results are described in Sec. IVand
a conclusion is presented in Sect. V.

II. THE SCHWINGER-KELDYSH PATH
INTEGRAL AND THE MODEL

As discussed in the Introduction, we are interested in
expectation values of the form

hÔ1ðx1ÞÔ2ðx2Þ � � �i ¼ Tr½ρ̂ð0ÞÔ1ðx1ÞÔ2ðx2Þ � � ��; ð2Þ

where ÔiðxÞ ¼ eiĤt−ip·xÔiðt ¼ 0;x ¼ 0Þe−iĤtþip·x are
operators in the Heisenberg representation and ρ̂ð0Þ ¼
e−βĤð0Þ=Trðe−βĤð0ÞÞ is the density matrix representing the
initial state of the system. When the time evolution is
determined by a time-independent Hamiltonian ĤðtÞ ¼
Ĥð0Þ ¼ Ĥ, the system is in thermodynamic equilibrium
which we will assume. The nonequilibrium case can
also be studied within the formalism after a slight modi-
fication. We will briefly comment on this point later.
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Expectation values of this form can be obtained from the
generating functional

Z½Jþ;J−;Jβ�¼Tr½UðT−iβ;T;JβÞUðT;T 0;J−ÞUðT 0;T;JþÞ�;
ð3Þ

where J�, Jβ are external classical currents coupled to the
fields in the theory and UðT; T 0; JÞ is the time evolution
operator under the influence of the external current J
between times T and T 0. In order to compute correlators
as in Eq. (2) we need T < t1; t2; � � � < T 0. The generating
function has the path integral representation [3,4]

Z½Jþ; J−; Jβ� ¼
Z

DϕþDϕ−DϕβeiSSK ½ϕþ;ϕ−;ϕβ ;Jþ;J−;Jβ� ð4Þ

where the action, SSK , is defined as an integral of the
Lagrangian along a time contour, C, which lives in the
complex plane:

SSK½ϕþ;ϕ−;ϕβ; Jþ; J−; Jβ�

¼
Z
C
dtL½ϕþ;ϕ−;ϕβ; Jþ; J−; Jβ� ð5Þ

¼
Z

T 0

T
dtL½ϕþ; Jþ� þ

Z
T 0−iβ=2

T 0
dtL½ϕβ; Jβ�

þ
Z

T−iβ=2

T 0−iβ=2
dtL½ϕ−; J−� þ

Z
T−iβ

T−iβ=2
dtL½ϕβ; Jβ� ð6Þ

with the boundary conditions ϕþðT 0Þ ¼ ϕβðT 0Þ, ϕβðT 0−
iβ=2Þ ¼ ϕ−ðT 0 − iβ=2Þ, ϕ−ðT − iβ=2Þ ¼ ϕβðT − iβ=2Þ,
ϕβðT−iβÞ¼ϕþðTÞ [ϕβðT − iβÞ ¼ −ϕþðTÞ for fermionic
fields]. The contour C is depicted in Fig. 1 (left). The upper

and lower parts of the contour, parallel to the real axis, are
associated with the forward and backward time evolution
[i.e. the second and third terms in the trace in Eq. (3)]. The
parts that are along the imaginary axis are associated with
the insertion of the density matrix [i.e. the first term in the
trace in Eq. (3)]. Note that we chose to split the density
matrix into two parts that are inserted at times T and T 0.
This choice assumes the existence of equilibrium where the
Hamiltonian is time independent and the density matrix
commutes with the time evolution operator. In order to
study an out-of-equilibrium system this contour has to be
modified such that the density matrix is inserted at time T 0
as a whole. Even though our construction can be gener-
alized, we will not discuss this case in this paper.
Given the path integral representation, the various

correlators can be computed by differentiating Z½Jþ;J−;Jβ�
with respect to external sources. The time ordering is such
that the operators that are inserted in the lower branch of C
always have a larger time compared to those that are
inserted at the upper branch. A two-point correlator with
both operators in the upper (lower) branch is time ordered
(anti–time ordered). For instance

hTϕðt1;x1Þϕðt2;x2Þi ¼
δ2Z½Jþ; J−; Jβ�

δJþðt1;x1ÞδJþðt2;x2Þ
: ð7Þ

In this paper, we present a Monte Carlo method to
compute time-dependent correlation functions as in Eq. (7)
for the 1þ 1-dimensional ϕ4 theory with the potential
V½ϕ� ¼ 1

2
m2ϕ2 þ λ

4!
ϕ4. The lattice action corresponding to

the Schwinger-Keldysh path integral is given by

S½ϕ�≡ −iSSK;lattice ¼
X
t;n

ata

�ðϕtþ1;n − ϕt;nÞ2
2a2t

þ 1

2

�ðϕtþ1;nþ1 − ϕtþ1;nÞ2
2a2

þ ðϕt;nþ1 − ϕt;nÞ2
2a2

�

þ 1

2
m2

ϕ2
t;n þ ϕ2

tþ1;n

2
þ λ

4!

ϕ4
tþ1;n þ ϕ4

t;n

2

�
; ð8Þ

where t and n indexes the lattice along the time and spatial
directions, a is the spatial lattice spacing and at is the time
lattice spacing:

at ¼ ia; for 0 ≤ t < Nt;

at ¼ a; for Nt ≤ t < Nt þ Nβ=2;

at ¼ −ia; for Nt þ Nβ=2 ≤ t < 2Nt þ Nβ=2;

at ¼ a; for 2Nt þ Nβ=2 ≤ t < 2Nt þ Nβ; ð9Þ
and Nt, Nβ are the number of lattice points on the real and
imaginary axis, respectively. This is shown in Fig. 1 (right).
We embedded a factor of −i in the definition of the action
in Eq. (8) so that the measure in the path integral is e−S.

The change in at with t determines the contour in the
complex time plane defining the Schwinger-Keldysh
action. The fields ϕþ, ϕ− and ϕβ correspond, in our
discretized action, to ϕt;n for t in the ranges 0 ≤ t < Nt,
Nt þ Nβ=2 ≤ t < 2Nt þ Nβ=2, and Nt ≤ t < Nt þ Nβ=2
and 2Nt þ Nβ=2 ≤ t < 2Nt þ Nβ=2 respectively. The cor-
relators that we are interested in computing are now given
by the discretized path integral

hϕt1;n1ϕt2;n2i ¼
R ðQt;ndϕt;nÞe−S½ϕ�ϕt1;n1ϕt2;n2R ðQt;ndϕt;nÞe−S½ϕ�

: ð10Þ

Along the two branches of the real axis the measure,
e−S½ϕ�, of the path integral is a pure phase, and lacks
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exponential damping as the value of ϕ�ðt;xÞ is
varied, in contrast to the Euclidean branch. Thus,
any attempt at reweighting the phase of the integrand
is doomed to fail as the average phase vanishes. In
this sense, the sign problem arising in real time is the
worst possible. In the following two sections, we
will present a new Monte Carlo algorithm to alleviate

this sign problem by using the holomorphic gra-
dient flow.
In order to validate our results at small coupling and to

ascertain that our results at larger coupling indeed cannot be
reproduced by perturbation theory, we compare against
perturbative results. The propagator in the Schwinger-
Keldysh contour is given up to order Oðλ2Þ by

hϕiϕji ≈ hϕiϕji0 þ λ

�
−
1

4!

�X
k

~akhϕiϕjϕ
4
kic0 þ λ2

1

2

�
−

1

4!

�
2X

k;l

~ak ~alhϕiϕjϕ
4
kϕ

4
l ic0

¼ ðH0Þ−1ij −
λ

2

X
k

~akðH0Þ−1ik ðH0Þ−1kk ðH0Þ−1kj þ λ2

4

X
k;l

~ak ~al

�
ðH0Þ−1il ððH0Þ−1lk Þ2ðH0Þ−1kk ðH0Þ−1kj

þ ðH0Þ−1il ðH0Þ−1lk ðH0Þ−1ll ðH0Þ−1kk ðH0Þ−1kj þ 2

3
ðH0Þ−1il ððH0Þ−1lk Þ3ðH0Þ−1kj

�
; ð11Þ

where i, j, k, l are combined time and space indices,
~ak ¼ aðatðkÞ−1 þ atðkÞÞ=2, H0 is the Hessian of the
Schwinger-Keldysh action at ϕ ¼ 0 and h·ic0 denotes
the connected part of the correlator.

III. HOLOMORPHIC GRADIENT FLOW

In order to solve the sign problem, that is to reduce
the phase fluctuations for the path integral to a level
where we can easily reweight it, we will deform the
integration manifold of our path integral. The first step
of the process is to promote all real variables (values of
the field at each space-time point) to complex ones.
Using a generalized version of Cauchy’s theorem, we
can show that we can deform the integration manifold
in the complex space without changing the value of the
integral, as long as we do not cross any singularities of
the integrand and we preserve the asymptotic behavior
of the field. There is a rather large latitude in choosing
the deformation but in this work we will use a
deformation induced by the holomorphic gradient flow.
In this section we will review briefly the relevant
details.
The holomorphic gradient flow is defined, for a system

with N real degrees of freedom, through the set of differ-
ential equations

dziðτÞ
dτ

¼ ∂SðzðτÞÞ
∂zi with zð0Þ ¼ x ∈ RN: ð12Þ

Integrating the flow equation above for a fixed amount
of “time” Tflow defines a map x → fðxÞ where fðxÞ≡
zðTflowÞ. The image under this map of the original
integration domain RN is our new integration manifold
M ¼ fðRNÞ. Note that this manifold depends on Tflow
and as the flow time is increased the sign fluctuations
become milder [25]. When the action is real the flow keeps
the points in the real subspace, but for complex actions
the image manifold M will be different from RN . Since
we use the points in RN to keep track of the points in the
integration manifold M, we will refer to RN as the
parametrization manifold.
The map f naturally induces a linear map, denoted by

Tf, between the tangent space at point x and the tangent
space at point x0 ¼ fðxÞ. A vector v tangent at x is mapped
to TfðvÞ ¼ v0 tangent at x0 with v0 ¼ ωðTflowÞ where ω
satisfies the differential equation

dωiðτÞ
dτ

¼ HijðzðτÞÞωjðτÞ with ωð0Þ ¼ v and

Hij ≡ ∂2S
∂zi∂zj : ð13Þ

FIG. 1. The Schwinger Keldysh contour (left) and its discretization (right).
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This equation is derived by considering the flow of a point
infinitesimally displaced in direction v away from x. Note
that in the equation above the Hessian H is to be evaluated
along the trajectory zðτÞ that takes x to x0, so this equation
needs to be solved together with Eq. (12) in order to
“transport” a vector.
Since the vector flow is a linear map, it can be

represented by a matrix. Taking in RN the canonical basis
fejgj¼1;…;N with eij ¼ δij the vectors TfðejÞ will form a
basis for the tangent space of M at x0. The matrix J which
has these vectors as columns, that is

Jij ≡ TfðejÞi; ð14Þ

can be used to map v ¼ viei into v0 ¼ viTfðeiÞ so that the
components of v0 are v0i ¼ Jijvj. Note that while the
components of v have to be real, the components of v0
are in general complex, since the tangent space at x0 is
usually not parallel to RN . We stress that v0i are the
components of v0 in the canonical basis ei in CN , not
the components of v0 in the basis TfðeiÞ. If we decompose
v0 in the basis TfðeiÞ the components are real, as they
should be, and they are in fact vi. The map Tf and the
matrix J depend on the starting point x ∈ Rn, but to
simplify the notation we will make this explicit only when
required.
An important property of the tangent map Tf is that it

preserves the imaginary part of the dot product of two
vectors since the derivative of the product along the flow is
real:

d
dτ

hw; viC ¼ d
dτ

ðw̄iviÞ ¼
¯dw
dτ

i

vi þ widv
dτ

i

¼ Hijwjvi þ wiHijvj ¼ 2Re½wiHijvj�: ð15Þ

We denoted the CN scalar product with hw; viC to dis-
tinguish it from the real scalar product hw; viR ¼
RewiRevi þ ImwiImvi ¼ Rehw; viC. The invariance of
the imaginary part implies that for any i and j

ImhTfðeiÞ;TfðejÞiC ¼ Imhei; ejiC ¼ 0

which can be restated as

ImJkiJkj ¼ ImðJ†JÞij ¼ 0: ð16Þ

Thus the matrix J†ðxÞJðxÞ is real. Another important
property is that while fTfðejÞgj¼1;…;N span the tangent
space at x0 (viewed as a real vector space), the vectors
fiTfðejÞgj¼1;…;N span the orthogonal vector space. This
can be seen by considering the real scalar product between
any two vectors in these sets:

hTfðejÞ; iTfðekÞiR ¼ RehTfðejÞ; iTfðekÞiC
¼ −ImhTfðejÞ;TfðekÞiC ¼ 0: ð17Þ

This means that any vector v0 at x0 can be decomposed as

v0 ¼ v0∥ þ v0⊥ with v0∥ ¼ vj∥TfðejÞ ¼ Tfðvj∥ejÞ and

v0⊥ ¼ vj⊥iTfðejÞ ¼ iTfðvj⊥ejÞ; ð18Þ

where vj∥;⊥ coefficients are real. Defining v∥;⊥ ≡ vj∥;⊥ej, we
have v0∥ ¼ Jv∥ and v0⊥ ¼ iJv⊥.
The partition function is evaluated by integrating over

the manifold M:

Z ¼
Z
M

dx0e−Sðx0Þ ¼
Z
RN

dx det JðxÞe−SðfðxÞÞ

¼
Z
RN

dxj det JðxÞje−ReSðfðxÞÞΦðxÞ; ð19Þ

where ΦðxÞ≡ exp½−iImSðfðxÞÞ þ i arg det JðxÞ� is a pure
phase. Note that the measure dx0 is the Cauchy measure on
the manifold M embedded in CN and that the change of
variables from the integration manifold to the parametriza-
tion manifold RN gives rises to the Jacobian det JðxÞ,
which is the determinant of the matrix J defined in Eq. (14).
To evaluate observable averages with respect to Z, we will
sample configurations according to the positive weight
PðxÞ and then evaluate observables by reweighting, that is,
we compute averages from the formula

hOðxÞi ¼ hOðxÞΦðxÞiP
hΦðxÞiP

with

PðxÞ ¼ j det JðxÞje−ReSðfðxÞÞ: ð20Þ

The averages h·iP are taken with respect to the probability
weight PðxÞ. We discuss how to sample this measure in the
next section.

IV. ALGORITHM

In this section we will present a method of sampling
configurations according to the probability weight PðxÞ
defined in Eq. (20). The method described here is based on
the Metropolis algorithm, where new configurations are
proposed and an accept-reject step is used to ensure
detailed balance. The algorithm we used previously [25]
suffered from two main flaws. The first was the substantial
cost of computing the Jacobian JðxÞ at every step of the
Markov chain. The second was that the proposals, straight-
forwardly, were chosen to be isotropic in the real variables
x. As those variables parametrize the actual manifold of
integration M through the very nonlinear map x0 ¼ fðxÞ,
the resulting proposals were very anisotropic in M.
This distortion effect was partially, but not completely,
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compensated in Ref. [25]. The result was that very small
proposal steps had to be chosen in order to achieve
reasonable acceptance rates and made the algorithm per-
form poorly. The algorithm we discuss here improves on
the one used in Ref. [25] in both respects.
To better understand the advantages of this algorithm, let

us first review the computationally intensive steps involved.
The cost estimates below will concern typical bosonic
systems, such as the one considered in this paper. The most
expensive part of the computation of the action of the
flowed configuration Sðx0Þ ¼ SðfðxÞÞ, is the calculation of
the flowed configurations x0, which requires the integration
of Eq. (12). For this, we use an adaptive Runge-Kutta
integrator [26]. In terms of scaling with the size of the
system this is a OðNÞ calculation, if we assume that Tflow
remains fixed as we increase the system size. To compute
JðxÞ we need to integrate Eq. (13) for each vector in the
basis. The Hessian is usually a sparse matrix, so each
integration step can be implemented with complexity
OðNÞ, and the cost of computing TfðvÞ for some vector
v is OðNÞ. Overall, the cost of computing JðxÞ is then
OðN2Þ and its determinant has a cost of order OðN3Þ. For
large systems the cost of the later steps quickly becomes
dominant. For some systems estimators of j det JðxÞj can be
employed for sampling and the difference can be
reweighted [21]. However, these estimators do not work
well for the system considered in this paper.
The second problem is to find proposals that move

efficiently through the integration manifold M. Proposals
that are distributed isotropically in the parametrization
space are in general mapped to a highly skewed distribution
in the integration space, leading to an inefficient sampling
of the manifold [25]. The skewed distribution appears
because the map Tf scales vectors that point in different
directions very differently, that is, the eigenvectors of JðxÞ
have eigenvalues of very different magnitudes. When the
matrix JðxÞ is relatively constant over the sampled region in
the parametrization space, we can bias the proposals in the
parametrization space such that their distribution in the
integration manifold is relatively isotropic. To be specific,
denote the current configuration by xn and the proposed
one by xnþ1. When the proposal is selected with probability
Prðxn → xnþ1Þ ∝ expð−ΔTMΔÞ, whereΔ≡ xnþ1 − xn and
M is a fixed real positive-definite matrix, the probability
Pr is symmetric in xn and xnþ1, so the acceptance
probability required for detailed balance is the usual
Pacc ¼ minf1; Pðxnþ1Þ=PðxnÞg. When the parametrization
manifold is tangent to a critical point xcr, a good choice
for the matrix M is JðxcrÞ†JðxcrÞ, since this bias can
be effectively constructed using the “eigenvectors” and
“eigenvalues” of the Hessian evaluated at the critical point
[22,25]. When flowing from the original integration mani-
fold RN , as we will do in the present paper, a possible
choice for the matrix M would be the quadratic approxi-
mation to the real part of the action ReSðfðxÞÞ ≈ −xTMx

[18]. The problems with these methods are that i) the
accept-reject step requires the calculation of JðxÞ and its
determinant, and ii) they are only effective when the matrix
J does not fluctuate too much over the sampled configu-
rations. Ideally, we would like to make proposals that
are isotropic around x0n ∈ M, that is Prðxn → xnþ1Þ ∝
expð−ΔTJ†ðxnÞJðxnÞΔÞ. These proposals are isotropic
in the tangent space at x0n because η0∥ ≡ JðxnÞΔ is a
random vector in this space distributed with probability
Pðη0∥Þ ∝ expð−η0∥†η0∥Þ. These proposals are not symmetric
under the exchange xn ↔ xnþ1, since the matrices Jn ≡
JðxnÞ and Jnþ1 ≡ Jðxnþ1Þ are different. To account for
this asymmetry, the acceptance probability needs to be
modified to Pacc¼minf1;Pðxnþ1ÞjdetJnþ1j=PðxnÞjdetJnjg.
This is still expensive, since the determinants appearing
in PðxÞ do not cancel in the acceptance ratio and we are
still required to compute j det Jj. However, this suggests a
way to arrange the proposals to cancel the determinants: if
we could make proposals using the probability Prðxn →
xnþ1Þ ∝ exp½−ΔTðJ†JÞnþ1Δ� computing the acceptance
would require just the action differenceΔS ¼ Re½Sðx0nþ1Þ−
Sðx0nÞ�. This would require solving an implicit equation to
determine the new configurations xnþ1. This is not the
approach we will follow here. Instead, we follow a method
based on the Grady algorithm [23,24] which can be
designed to both be isotropic around x0n and also to avoid
explicit computation of J; we make proposals using

Prðxn → xnþ1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðJ†JÞn
πNδ2

s
e−Δ

TðJ†JÞnΔ=δ2 ; ð21Þ

where δ is a parameter used to adjust the step size so that the
acceptance rate is reasonable. Note that this step relies on
the fact that the matrix J†J is real, a property discussed
earlier in the paper. The equation above involves j det Jj,
but this will appear in our calculation only implicitly, since
our algorithm will require only that we generate vectors
η0∥ ¼ JnΔ that are normally distributed; we only displayed
the full probability function above to help us prove the
detailed balance below. The acceptance rate is computed
by first generating an auxiliary complex vector ξ with
probability

PðξÞ ¼ detðJ†JÞnþ1

πN
e−ξ

†ðJ†JÞnþ1ξ; ð22Þ

and then the acceptance probability is computed using

Pacc ¼ minf1; e−ΔSþξ†½ðJ†JÞnþ1−ðJ†JÞn�ξþΔT ½ðJ†JÞn−ðJ†JÞnþ1�Δ=δ2g:
ð23Þ

The total transition rate from xn to xnþ1 is then

Tðxn → xnþ1Þ ¼ Prðxn → xnþ1Þ
Z

dξdξ†PðξÞPacc: ð24Þ
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To prove the correctness of the method we follow a strategy outlined by Creutz [24]: we show that the product
PðxnÞTðxn → xnþ1Þ is symmetric in xn and xnþ1 which implies that the detailed balance is satisfied. We have

PðxnÞTðxn → xnþ1Þ ¼ e−ReSðx0nÞj det Jnj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðJ†JÞn
πNδ2

s
e−Δ

TðJ†JÞnΔ=δ2

×
Z

dξdξ†
detðJ†JÞnþ1

πN
e−ξ

†ðJ†JÞnþ1ξ minf1; e−ΔSþξ†½ðJ†JÞnþ1−ðJ†JÞn�ξþΔT ½ðJ†JÞn−ðJ†JÞnþ1�Δ=δ2g

¼ detðJ†JÞn detðJ†JÞnþ1

δπ3N=2

×
Z

dξdξ† minfe−ReSðx0nÞ−ΔTðJ†JÞnΔ=δ2−ξ†ðJ†JÞnþ1ξ; e−ReSðx
0
nþ1

Þ−ΔTðJ†JÞnþ1Δ=δ2−ξ†ðJ†JÞnξg: ð25Þ

This proves the correctness of our method. To derive the
relation above we used the fact that J†J is real and positive-
definite, so that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det J†J

p
¼ j det Jj.

Our algorithm samples configurations x ∈ RN distrib-
uted with the desired probability PðxÞ given in Eq. (20).
The configurations are updated using the following steps:
(1) Generate a complex vector η0 ∈ CN using the dis-

tribution Pðη0Þ ∝ expð−η0†η0=δ2Þ.
(2) Compute Δ ¼ ReJ−1n η0 and η0∥ ¼ JnΔ which is the

tangent component of η0 at x0n.
(3) Propose a new configuration xnþ1 ¼ xn þ Δ.
(4) Generate a complex vector ζ0 ∈ CN using the

probability distribution Pðζ0Þ ∝ expð−ζ0†ζ0Þ.
(5) Compute ξ ¼ J−1nþ1ζ

0 and use it to determine
whether to accept the new configuration using
Pacc in Eq. (23).

In steps 1 and 4, η0 and ζ0 can be generated by simply
drawing each component from an appropriate normal
distribution. In step 2, in order to show that η0∥ is tangent
to M at x0 we used the fact that we can decompose η0
into parallel and tangent components: η0 ¼ η0∥ þ η0⊥ ¼
Jðη∥ þ iη⊥Þ, where η∥;⊥ ∈ RN , and thus Δ ¼ η∥ ¼
ReJ−1n η0, as it follows from the discussion surround-
ing Eq. (18).
The final ingredient necessary to implement steps 2 and

5 is a method to compute J−1v0 for an arbitrary complex
vector v0 ∈ CN without first evaluating the matrix J.
We note first that, for a real vector v, we can compute
Jv simply by integrating Eq. (13) to get TfðvÞ, a calcu-
lation of complexity OðNÞ. However, this does not work
when the vector v is complex, because the flow is non-
linear when the vector has imaginary components, that is
Tfðvþ iwÞ ≠ TfðvÞ þ iTfðwÞ. For a complex vector
the solution is to evolve the real and imaginary com-
ponents separately, that is Jv ¼ TfðRevÞ þ iTfðImvÞ.
This requires two separate integrations of Eq. (13), but
the complexity remainsOðNÞ. Armed with this routine, we
can then compute J−1v0 for any vector by using an iterative
method, for example GMRES [27] or BiCGstab [28].
These algorithms allows us to compute J−1v0 through

successive computations of Jv without explicitly inverting
J. We note that when the vector v0 is tangent at x0, its
inverse J−1v0 ∈ RN can be computed by integrating
Eq. (13) backwards. While we did not use this property
for this study, it is conceivable that this may be employed to
optimize an inversion algorithm for general vectors.
The algorithm described in this section can be used to

sample PðxÞ without computing the matrix JðxÞ and its
determinant. To complete the calculation we need to
evaluate the phase φðxÞ. While there are methods that
can estimate this phase accurately without computing det J
[29], in this paper we evaluate it directly by computing
det J on the decorrelated configurations, which is a small
subset of the one generated by the sampling algorithm.
Later on, in order to gauge the performance of our

algorithm, we will compare it with a variant of our
algorithm. For that purpose we improve the way proposals
are made in relation to the method used in Ref. [18]. The
proposals are made according to the distribution Prðxn →
xnþ1Þ ∝ expð−ΔTJ†ð0ÞJð0ÞΔ=δ2Þ and accepted with prob-
ability Pacc ¼ minf1; expð−ΔSÞg. This in effect samples
the configurations not with the desired probability but with
probability P0ðxÞ ∝ j det Jð0Þj expð−ReSðfðxÞÞÞ so, when
computing the observables the difference between the
desired probability and P0ðxÞ has to be reweighted by using

hOi ¼ hOðxÞ ~ΦðxÞiP0

h ~ΦðxÞiP0

with

~ΦðxÞ ¼ det JðxÞ
j det Jð0Þj e

−iImSðfðxÞÞ; ð26Þ

where the average h·iP0
is taken with respect to the weight

P0ðxÞ. For the model discussed in this paper, at weak
coupling the matrix JðxÞ will be close to Jð0Þ and the
method should work well. As we increase the coupling the
reweighting factor ~Φ oscillates quickly and the statistical
power of the ensemble generated by P0 will decrease
making the process inefficient. We note that for this method
we need to compute Jð0Þ−1v for a large numbers of vectors.
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For sufficiently small systems, as the ones we consider in
this paper, this can be done efficiently by precomputing
Jð0Þ−1, allowing us to generate a large number of con-
figurations very cheaply.

V. RESULTS

The data presented in this section refers to simulations
that are run on lattices with Nt ¼ 8, Nβ ¼ 2, and Nx ¼ 8.
The total number of degrees of freedom for this system is
ð2 × Nt þ NβÞ × Nx ¼ 144. We set m ¼ 1 and the lattice
spacing a ¼ 0.2. We run simulations for three different
values of λ: 0.1, 0.5, and 1.0. For each λwe did short runs to
determine the average sign RehΦiP and increased Tflow
until it reached a value of around 0.2. The parameters for
these simulations, including the flow time Tflow, the
average sign, and the number of updates for both our
current algorithm and the old one are collected in Table I.
The first issue we will address is the performance of the

estimator that appears in the acceptance rate in Eq. (23). We
can find the acceptance rate by integrating Eq. (22) over ξ;
the result is a ratio of determinants detðJ†JÞnþ1= detðJ†JÞn.

One potential problem would be a low acceptance rate or,
equivalently, the need to use very small proposals δ. In
Fig. 2 we show the relative size of the three components
that enter in the acceptance rate: the action changeΔS, the ξ
estimator ξ†½ðJ†JÞnþ1 − ðJ†JÞn�ξ, and the measure change
ΔT ½ðJ†JÞnþ1 − ðJ†JÞn�Δ. We see that the action change
dominates both the ξ estimator and the measure change, for
all values of the coupling. We conclude that there is very
little loss associated with using the ξ estimator rather than
the determinant ratio in the acceptance rate.
The observable that we will focus on in this section is the

correlator

Cðt; pÞ ¼ hϕðt; pÞϕð0; pÞ†iβ

with ϕðt; pÞ≡ 1

Nx

XNx−1

n¼0

eipnϕt;n: ð27Þ

Note that the field ϕ is real and thus ϕðpÞ† ¼ ϕð−pÞ. We
use periodic fields in the spatial direction so the momentum
is quantized in units of 2π=Nx. To compute the correlator
Cðt; pÞ we compute the averages on the forward time leg of

TABLE I. Simulation parameters for the ensembles used in this study. The last two sets of columns indicate the number of updates
required to generate the ensembles used in this study, the step size δ, and the acceptance rate. Grady indicates the algorithm proposed in
this paper, and J0 indicates the variant of the old algorithm described at the end of Sec. IV.

J0 Grady

λ Tflow RehΦiP updates=106 δ acceptance stat power updates=106 δ acceptance

0.1 1.8 0.278(2) 100 0.11 53% 0.99 3.2 0.1 57%
0.5 1.6 0.193(2) 50 0.115 50% 0.90 2.4 0.1 57%
1.0 1.6 0.189(2) 50 0.1 53% 0.68 2.4 0.1 55%

FIG. 2. Time histories for a thermalized configurations using the Grady algorithm. The coupling increases from the upper row to the
lower. The three columns indicate the components that enter the acceptance rate in Eq. (23): action change, ξ estimator, and measure
variation.
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the Schwinger-Keldysh contour. To boost our statistics, we
can also use the fields on the backward leg of the contour.
Note that the correlator

Cbðt; pÞ ¼ hϕð0; pÞ†ϕðt; pÞiβ; ð28Þ

can be evaluated using the fields on the backward leg due to
the reverse time ordering of the operator product. We
assume here that t ≥ 0. This correlator is related to C via
the relation Cðt; pÞ ¼ Cbðt;−pÞ. Thus the observable we
use is the following:

Cðt; pÞ ¼ 1

2ðNt þ 1 − tÞ
XNt−t

t0¼0

½hϕðtþ t0; pÞϕðt0;−pÞi

þ hϕðt0 þ Tb; pÞϕðtþ t0 þ Tb;−pÞi�
for t ¼ 0;…; Nt; ð29Þ

where Tb ¼ Nt þ 1þ Nτ=2 is the beginning of the back-
ward leg in our discretization. The formula above exploits

the time-translation invariance along the forward/backward
legs. Note that this symmetry is exact only in the con-
tinuum: our discretization breaks this slightly due to the
corner effects.
In the left panel of Fig. 3 we compare the results of our

simulations with the perturbative calculation in the weak
coupling (λ ¼ 0.1) and p ¼ 0 case. We see the results from
our two algorithms agree with each other—the error bars
are smaller for J0 because the number of statistics is
significantly larger—and they agree very well with the
perturbative results. Note that for this coupling the pertur-
bation theory seems to work well: the effect of higher-order
terms gets smaller. For larger values of λ, however, the
perturbative results should become unreliable. We quantify
the convergence of perturbation theory in the right panel of
Fig. 3 where we plot the value of Cðt ¼ 0; p ¼ 0Þ as a
function of λ at orders λ0, λ1 and λ2. We see that the series
becomes unreliable well before we get to λ ¼ 0.5, with the
second-order term having a larger magnitude than the first-
order correction, and the series diverging sharply away
from our simulation points at λ ¼ 0.5 and 1.0. We conclude

FIG. 3. Left: Real and imaginary parts of the correlator for λ ¼ 0.1 for momentum p ¼ 0, as produced with the Grady and J0
algorithms, compared to the perturbative calculation. The simulation points are offset horizontally for clarity. Right: The results for the
zero distance correlator as a function of the coupling. The blue points are the results of the “J0” algorithm and the curves correspond to
zeroth-, first-, and second-order calculations.

FIG. 4. Real and imaginary parts of the correlator for momentum p ¼ 0 for all λ values used in this study. The blue points are the
results produced with the J0 algorithm and the red points correspond to the Grady algorithm. For clarity the Grady results are displaced
horizontally. The black crosses are the result of exact calculations at λ ¼ 0.
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that λ ¼ 0.5 and 1.0 simulations are in the strong coupling
region.
In Fig. 4 we plot the results for the real part of the

correlator for all values of λ used in this study. Since the
statistics for the simulations using the Grady algorithm are
smaller, the error bars are larger, so we only display the
results for the largest coupling λ ¼ 1.0 (the ones for λ ¼ 0.1
are included in Fig. 3.) We see that the correlator is
systematically drifting away from its λ ¼ 0 value as we
increase the value of the coupling. We have run statistical
tests and determined that the results of the Grady and J0
algorithms are statistically compatible. The apparent dis-
crepancy in Fig. 4 is not statistically significant since the
data points for different time separations are strongly
correlated.
In Fig. 5 we show the correlator for the smallest

nonzero momentum, p ¼ 2π=Nx. We see that these
correlators tend to have smaller statistical errors (this
is true for higher momenta too), and they change only
slightly as we increase the strength of the coupling. In the
right panel of Fig. 5 we show the expectations from
perturbation theory for this correlator: we see that the
first- and second-order effects are much smaller than for
the zero-momentum case, in agreement with the results of
our simulations.
Before we conclude, we note that the performance of

the “J0” algorithm has been better than we anticipated. This
was mainly due to the fact that for the parameters studied
in this paper the fluctuations of the Jacobian were small.
Thus the reweighting from the probability distribution P0

sampled by the J0 algorithm to the distribution PðxÞ
sampled by the Grady algorithm was very successful. To
quantify this we measure the statistical power for each of
the ensembles generated with the J0 algorithm

stat power ¼ 1

Ncfg

ðPij det JðϕiÞjÞ2P
ij det JðϕiÞj2

; ð30Þ

where Ncfg is the number of configurations in the
ensemble, and ϕi are the configurations. This quantity
is equal to one when all configurations contribute equally,
which happens when j det JðϕiÞj does not fluctuate at all,
and in the worst case it is 1=Ncfg when one configuration
has a dominant contribution to the reweighted ensemble.
The statistical power of each ensemble is listed in
Table I. We see that as expected the statistical power
decreases as we increase λ, but its value is still 0.68 even
on the ensemble with λ ¼ 1.0, so that we can easily
reweight.

VI. DISCUSSION AND CONCLUSIONS

We have explored two different algorithms to compute
the path integrals arising in the Schwinger-Keldysh
formalism. They are both based on deforming the contour
of integration from real variables to a submanifold of the
complexified field space. They both bypass the most
difficult and costly part of the computation, namely, the
calculation of the Jacobian of the parametrization of the
deformed submanifold by real variables. They also lead to
more efficient, isotropic Monte Carlo proposals.
The first algorithm has general applicability and

can be seen as an adaptation of the Grady algorithm
previously proposed to deal with the fermion determinant.
The second (“J0”), uses a free field approximation of
the Jacobian (with the difference between the correct
and the free field Jacobian reweighted during measure-
ments). This last algorithm breaks down at strong enough
coupling but we observed that it performs efficiently
well before the point where perturbation theory is no
longer valid.
The algorithms were applied to the computation of real-

time thermal correlators in the 1þ 1-dimensional ϕ4 scalar
theory. The two methods agreed with each other and with
perturbation theory results at small enough values of the
coupling. The “J0” algorithm is very efficient and its

FIG. 5. Left: Real part of the correlator for λ ¼ 1.0 for momentum p ¼ 2π=Nx, as produced with the Grady and J0 algorithms,
compared to the perturbative calculation. The simulation points are offset horizontally for clarity. Right: The results for the zero
distance correlator as a function of the coupling. The blue points are the results of the J0 simulation and the curves correspond to
zeroth-, first-, and second-order calculations.
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success at even relatively large values of the coupling is
somewhat surprising. These calculations are, to our knowl-
edge, the first reliable Monte Carlo real-time calculations in
a field theory.
The algorithms developed in this paper pave the way

for larger-scale calculations with finer lattices and/or
larger numbers of spatial dimensions. The extension of
the maximum time (bound in the present paper by 4β) is
a little more subtle and we uncover some evidence of
trapping of the Monte Carlo chain in local minima of the
effective action. In this case, the methods advocated in
Refs. [20,30] should be useful and should be incorporated.

ACKNOWLEDGMENTS

A. A. is supported in part by the National Science
Foundation CAREER Grant No. PHY-1151648 and
by U.S. Department of Energy Grant No. DE-FG02-
95ER40907. A. A. gratefully acknowledges the hospitality
of the Physics Departments at the Universities of Maryland
and Kentucky, and the Albert Einstein Center at the
University of Bern where part of this work was carried
out. P. F. B. and G. R. are supported by the U.S. Department
of Energy under Contract No. DE-FG02-93ER-40762.
G. B. is supported by U.S. Department of Energy under
Contract No. DE-FG02-01ER41195.

[1] E. Braaten and R. D. Pisarski, Nucl. Phys. B337, 569
(1990).

[2] S. Jeon and L. G. Yaffe, Phys. Rev. D 53, 5799 (1996).
[3] J. S. Schwinger, J. Math. Phys. (N.Y.) 2, 407 (1961).
[4] L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1964)

[Sov. Phys. JETP 20, 1018 (1965)].
[5] F. Karsch and H.W. Wyld, Phys. Rev. D 35, 2518 (1987).
[6] S. Huang, Phys. Rev. D 47, 653 (1993).
[7] H. B. Meyer, Phys. Rev. Lett. 100, 162001 (2008).
[8] H. B. Meyer, Phys. Rev. D 76, 101701 (2007).
[9] H. T. Ding, A. Francis, O. Kaczmarek, F. Karsch, E.

Laermann, and W. Soeldner, Phys. Rev. D 83, 034504
(2011).

[10] G. Parisi and Y. Wu, Scientia Sinica 24, 483 (1981).
[11] For a recently proposed criterion for convergence see

Ref. [12].
[12] K. Nagata, J. Nishimura, and S. Shimasaki, Phys. Rev. D 94,

114515 (2016).
[13] J. Berges and I. O. Stamatescu, Phys. Rev. Lett. 95, 202003

(2005).
[14] J. Berges, S. Borsanyi, D. Sexty, and I. O. Stamatescu,

Phys. Rev. D 75, 045007 (2007).
[15] M. Mizutani, S. Muroya, and A. Nakamura, Proc. Sci.,

LATTICE2008 (2008) 200.
[16] M. Cristoforetti, F. Di Renzo, and L. Scorzato (AuroraScience

Collaboration), Phys. Rev. D 86, 074506 (2012).

[17] A. Alexandru, G. Basar, P. F. Bedaque, G. W. Ridgway, and
N. C. Warrington, J. High Energy Phys. 05 (2016) 053.

[18] A. Alexandru, G. Basar, P. F. Bedaque, S. Vartak, and N. C.
Warrington, Phys. Rev. Lett. 117, 081602 (2016).

[19] A. Alexandru, G. Basar, P. F. Bedaque, G. W. Ridgway, and
N. C. Warrington, Phys. Rev. D 95, 014502 (2017).

[20] A.Alexandru,G.Basar, P. F. Bedaque, andN. C.Warrington,
arXiv:1703.02414.

[21] A. Alexandru, G. Basar, P. F. Bedaque, G. W. Ridgway, and
N. C. Warrington, Phys. Rev. D 93, 094514 (2016).

[22] A. Alexandru, G. Basar, P. Bedaque, G. W. Ridgway, and
N. C. Warrington, Phys. Rev. D 94, 045017 (2016).

[23] M. Grady, Phys. Rev. D 32, 1496 (1985).
[24] M. Creutz, Adv. Ser. Dir. High Energy Phys. 11, 275 (1992).
[25] A. Alexandru, G. Basar, and P. Bedaque, Phys. Rev. D 93,

014504 (2016).
[26] J. R. Cash and A. H. Karp, ACM Trans. Math. Softw. 16,

201 (1990).
[27] Y. Saad and M. H. Schultz, SIAM J. Sci. Stat. Comput. 7,

856 (1986).
[28] H. A. van der Vorst, SIAM J. Sci. Stat. Comput. 13, 631

(1992).
[29] M. Cristoforetti, F. Di Renzo, G. Eruzzi, A. Mukherjee,

C. Schmidt, L. Scorzato, and C. Torrero, Phys. Rev. D 89,
114505 (2014).

[30] M. Fukuma and N. Umeda, arXiv:1703.00861.

SCHWINGER-KELDYSH FORMALISM ON THE LATTICE: A … PHYSICAL REVIEW D 95, 114501 (2017)

114501-11

https://doi.org/10.1016/0550-3213(90)90508-B
https://doi.org/10.1016/0550-3213(90)90508-B
https://doi.org/10.1103/PhysRevD.53.5799
https://doi.org/10.1063/1.1703727
https://doi.org/10.1103/PhysRevD.35.2518
https://doi.org/10.1103/PhysRevD.47.653
https://doi.org/10.1103/PhysRevLett.100.162001
https://doi.org/10.1103/PhysRevD.76.101701
https://doi.org/10.1103/PhysRevD.83.034504
https://doi.org/10.1103/PhysRevD.83.034504
https://doi.org/10.1103/PhysRevD.94.114515
https://doi.org/10.1103/PhysRevD.94.114515
https://doi.org/10.1103/PhysRevLett.95.202003
https://doi.org/10.1103/PhysRevLett.95.202003
https://doi.org/10.1103/PhysRevD.75.045007
https://doi.org/10.1103/PhysRevD.86.074506
https://doi.org/10.1007/JHEP05(2016)053
https://doi.org/10.1103/PhysRevLett.117.081602
https://doi.org/10.1103/PhysRevD.95.014502
http://arXiv.org/abs/1703.02414
https://doi.org/10.1103/PhysRevD.93.094514
https://doi.org/10.1103/PhysRevD.94.045017
https://doi.org/10.1103/PhysRevD.32.1496
https://doi.org/10.1142/ASDHEP
https://doi.org/10.1103/PhysRevD.93.014504
https://doi.org/10.1103/PhysRevD.93.014504
https://doi.org/10.1145/79505.79507
https://doi.org/10.1145/79505.79507
https://doi.org/10.1137/0907058
https://doi.org/10.1137/0907058
https://doi.org/10.1137/0913035
https://doi.org/10.1137/0913035
https://doi.org/10.1103/PhysRevD.89.114505
https://doi.org/10.1103/PhysRevD.89.114505
http://arXiv.org/abs/1703.00861

