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Same-sign W boson pair production is a promising channel to look for signatures of double parton
interactions at the LHC. The corresponding cross section has been calculated by using double parton
distribution functions, encoding two parton correlations, evaluated in a light-front quark model. The
obtained result is in line with previous estimates which make use of an external parameter, the so-called
effective cross section, not necessary in our approach. The possibility to observe for the first time
two-parton correlations, in the next LHC runs, has been established.
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It has been known for a long time that a proper
description of final states in hadronic collisions requires
the inclusion of processes where more than one pair of
partons participate in a single hadronic collision, the so-
called multiple partonic interactions (MPI) [1,2]. Because
of LHC operation, the wide subject of MPI is now having a
renewed interest [3]. At low transverse momenta, MPI
enhance particle production and affect particle multiplic-
ities and energy flows. The effect of MPI is present also in
hard scattering processes. In this article, we are interested in
double parton scattering (DPS), in which parton pairs from
two hadrons interact with each other, and both collisions
are hard enough to apply perturbative techniques. While
these processes need to be well controlled since they could
represent a background for new physics searches, the main
focus of this work is the sensitivity of DPS to relevant
features of the nonperturbative nucleon structure, not
accessible otherwise. In particular, the DPS cross section
depends on nonperturbative quantities, the so-called double
parton distribution functions (dPDFs). The latter represent
the number density of parton pairs with longitudinal
fractional momenta x1, x2, at a relative transverse distance
b⃗⊥. If extracted from data, dPDFs would offer for the first
time the opportunity to investigate two-parton correlations,
as noticed a long time ago [4]. Since dPDFs are two-body
distributions, this information is different and complemen-
tary to the one encoded in one-body distributions, such as
ordinary and generalized parton distributions [5]. The
present article aims at establishing to what extent this
novel information can be accessed in the next runs of LHC,
looking at a specific final state, namely, the production of a
pair of W bosons with the same sign (ssWW). In fact, this
channel has been found to be promising for DPS obser-
vation [6–8], since single parton scattering (SPS) at tree
level starts contributing to higher order in the strong

coupling [9]. For such reasons, diboson production via
DPS has been theoretically investigated in detail [10–14].
Let us define now the quantities we are going to

calculate. If final states A and B are produced in a DPS
process, the corresponding cross section can be sketched
as [1]

dσABDPS ¼
m
2

X

i;j;k;l

Z
db⃗⊥Dijðx1; x2; b⃗⊥Þ

×Dklðx3; x4; b⃗⊥Þdσ̂Aikdσ̂Bjl; ð1Þ

wherem ¼ 1 if A and B are identical and m ¼ 2 otherwise,
and i; j; k; l ¼ fq; q̄; gg are the parton species contributing
to the final states AðBÞ. In Eq. (1) and in the following, dσ
is used for the cross section, differential in the relevant
variables. The functions Dij in Eq. (1) are the dPDFs
which depend additionally on factorization scales μAðBÞ,

Dijðx1; x2; b⃗⊥; μA; μBÞ. To date, dPDFs are very poorly
known, so that it has been useful to describe the DPS cross
section independently of the dPDFs concept, using the
approximation

dσABDPS ≃m
2
dσASPS

dσBSPS
σeff

; ð2Þ

where dσASPS is the SPS cross section with final state A,

dσASPS ¼
X

i;k

fiðx1; μAÞfkðx3; μAÞdσ̂Aikðx1; x3; μAÞ: ð3Þ

In Eq. (3) fiðjÞ are parton distribution functions (PDFs) and
an analogous expression holds for the final state B. The
physical meaning of Eq. (2) is that, once the process A has
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occurred with cross section σASPS, the ratio σBSPS=σeff
represents the probability of process B to occur. A constant
value of σeff has been assumed in all the experimental
analyses performed so far, so that the technical imple-
mentation of Eq. (2) is rather easy. A comprehensive
compilation of experimental results on σeff is reported in
Ref. [15], where the latest DPS measurement in the four jet
final state is presented. In that paper, it is shown that, in
general, the different collaborations have extracted values
of σeff which are roughly consistent within errors, irre-
spective of center-of-mass energy of the hadronic collisions
and of the final state considered. On the other hand, it
should be noted that very recent values of σeff , extracted
with double heavy quarkonia in the final state, are signifi-
cantly smaller than the others.
To understand the approximation leading to Eq. (2)

from Eq. (1), let us write dPDFs in the latter in a fully
factorized form,

Dijðx1; x2; μA; μB; b⃗⊥Þ ¼ fiðx1; μAÞfjðx2; μBÞTðb⃗⊥Þ; ð4Þ

where the function Tðb⃗⊥Þ describes the probability to have
two partons at a transverse distance b⃗⊥. Then, inserting
Eq. (4) into Eq. (1), one obtains σeff from Eq. (2), as
follows:

σ−1eff ¼
Z

db⃗⊥½Tðb⃗⊥Þ�2; ð5Þ

with Tðb⃗⊥Þ controlling the double parton interaction rate.
It is clear that, as a consequence of the approximation (4),
σeff does not show any dependence on parton fractional
momenta, hard scales, or parton species.
Actually, if factorized expressions are not used, σeff

depends on longitudinal momenta. Since dPDFs are basi-
cally unknown, and only sum rules relating them to PDFs
are available [16,17], model calculations, developed at low
energy, but able to reproduce relevant features of nucleon
parton structure, can be useful and have been proposed. In
such model calculations, factorized structures, Eq. (4), do
not arise, and σeff depends nontrivially on longitudinal
momenta. In particular, this was found in a light-front (LF)
Poincaré covariant constituent quark model (CQM), repro-
ducing the sum rules of dPDFs [18,19], as well as in a
holographic approach [20]. In this article we will evaluate
DPS cross sections, using different models of dPDFs, to
establish whether forthcoming LHC data will exhibit (for
the considered final state) such features, not yet seen in the
present uncertain experimental scenario.
The feasibility of the measurement in this particular

channel was originally established in Ref. [8], where
various strategies to control backgrounds was proposed
allowing the extraction of the DPS signal with an accept-
able signal-to-background ratio. At present, background
estimates are embedded in the experimental analysis

[21,22], since the extraction of the DPS signal from data
proceeds via a multivariate statistical analysis which
requires one to take fully into account all backgrounds
sources. Therefore, in this paper, we take advantage of
these results and concentrate on the modelization of the
signal. Before giving details on our calculation, let us
summarize the available experimental information in the
considered channel. At

ffiffiffi
s

p ¼ 8 TeV [21] with an inte-
grated luminosity L ¼ 19.7 fb−1 a lower limit on σeff
was obtained, σeff > 5.91 mb at 95% confidence level.
More recently a new analysis has been performed at

ffiffiffi
s

p ¼
13 TeV [22] with an integrated luminosity L ¼ 35.9 fb−1,
where the DPS signal cross section was found to be, after
correcting for the W → lν branching ratio, of the order of
one picobarn and affected by large errors.
We first consider the SPSW� production and subsequent

decay into muon at center-of-mass energy
ffiffiffi
s

p
,

pp → W�ð→ μ�νð−Þμ ÞX; ð6Þ

indicating the corresponding integrated and differential cross
sections with σ� and dσ�, respectively. Defining quarks
according to their charge, i.e. D ¼ d, s, b and U ¼ u, c, t,
we consider the following partonic subprocesses:

UðpaÞD̄ðpbÞ → μþðpμÞνμðpνÞ; ð7Þ

DðpaÞŪðpbÞ → μ−ðpμÞν̄μðpνÞ; ð8Þ

where particle four-momenta are indicated in parentheses.
Differential cross sections are calculated in terms of the
muon transverse momentum pT ¼ jp⃗T j and pseudorapidity
ημ, defined in the hadronic center-of-mass frame. The
partonic Lorentz invariants û and t̂, in terms of these
variables, read

t̂ ¼ ðpa − pμÞ2 ¼ −xa
ffiffiffi
s

p
pTe−ημ ;

û ¼ ðpb − pμÞ2 ¼ −xb
ffiffiffi
s

p
pTeημ ; ð9Þ

from which parton fractional momenta can be calculated as

xa ¼ eημ
MWffiffiffi
s

p ðA� BÞ; xb ¼ e−ημ
MWffiffiffi
s

p ðA ∓ BÞ; ð10Þ

with A ¼ MW=ð2pTÞ, B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − 1

p
, andMW theW-boson

mass. The unobserved neutrino causes an underdetermina-
tion of theW rapidity and, in turn, the twofold ambiguity in
Eq. (10). The dσþ cross section is evaluated in the narrow
width approximation, i.e. at fixed ŝ ¼ ðpa þ pbÞ2 ¼ M2

W ,
and reads
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d2σpp→Wþð→μþνÞX

dηdpT
¼ G2

F

6sΓW

V2
UD̄ffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 − 1
p

× ½fUðxa; μFÞfD̄ðxb; μFÞt̂2
þ fD̄ðxa; μFÞfUðxb; μFÞû2�; ð11Þ

where GF is the Fermi constant, ΓW the W boson decay
width, and Vij the Cabibbo-Kobayashi-Maskawa matrix
elements. The numerical values of these parameters are
taken from Ref. [23]. The dσ− cross section is obtained
exchanging U ↔ D and t̂ ↔ û in Eq. (11). The PDFs
appearing in Eq. (11) are evaluated at a factorization scale
μF ¼ MW , and therefore PDFs from CQM calculations,
related to low momentum scales, need to be properly
evolved. The evolution is performed at Leading Order
(LO) by using Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
equations. We adopt a variable flavor number scheme and
parameters as in the LO version of MSTW08 distribution [24].
In particular heavy quark masses are set to mc ¼ 1.4 GeV
and mb ¼ 4.75 GeV, and the one-loop running coupling is

fixed at the Z-boson mass scale to be α
ðnf¼5Þ
s ðM2

ZÞ ¼
0.13939 [24]. For PDFs provided by the LF CQM one has

fdðx;Q2
0Þ ¼ 1=2fuðx;Q2

0Þ; ð12Þ

at the hadronic scaleQ2
0, where three valence quarks carry all

proton momentum. Since this scale is generally located in
the infrared regime, PDFs evolution and corresponding cross
sections are very sensitive to its choice. In the present paper
we choose to fix Q2

0 requiring that σ
þ and σ−, calculated by

using evolved LF PDFs, match the corresponding predic-
tions obtained with the DYNNLO code [25] at LO by using
MSTW08 PDFs [24]. For both simulations we set

ffiffiffi
s

p ¼
13 TeV and define the muon fiducial phase space in SPS to
be pμ

T > 20 GeV and jημj < 2.4. As shown in Fig. 1,
considering the cross section summed over the W boson
charge, this procedure locates the central value of the initial
scale at Q2

0 ¼ 0.26 GeV2 [where αsðQ2
0Þ ¼ 1.99]. We note

that, for a given value of Q2
0, a simultaneous description of

σþ and σ− cannot be achieved, a fact which is related to the
model assumption for PDFs in Eq. (12), and it is an example
of a typical drawback of PDFs CQM predictions. In order to
take into account this deficiency and to explore the sensi-
tivity of the cross sections to the particular choice of Q2

0, we
allow it to vary in the range 0.24 < Q2

0 < 0.28 GeV2, where
the limits are fixed requiring that cross sections obtained via
the LF model reproduce σþ and σ− predicted by DYNNLO

(straight lines in Fig. 1). Having fixed Q2
0 in SPS processes

and being dPDFs obtained within the same LF model
adopted for PDFs, we can use the same Q2

0 range for
dPDFs. In this way the estimate of DPS cross sections does
not require additional parameters. Double PDFs in the LF
model are defined at Q2

0 as [18]

fdu ¼ fud ¼ fuuðx1; x2; Q2
0; b⃗⊥Þ: ð13Þ

At this scale, when integrated over b⃗⊥, dPDFs satisfy
number and momentum sum rules [16]. Their perturbative
QCD evolution is presently known only at leading loga-
rithmic accuracy [26,27]; however, the presence of the so-
called inhomogeneous term in the evolution equations is still
under investigation [3,17,28]. In the present paper dPDFs are
evolved with the same scheme and parameters adopted for
PDFs but use homogeneous evolution equations valid at
fixed values of b⃗⊥ [3,29]. The DPS cross section, Eq. (1), in
the ssWW channel reads

d4σpp→μ�μ�X

dη1dpT;1dη2dpT;2

¼
X

i;k;j;l

1

2

Z
d2b⃗⊥

×Dijðx1; x2; b⃗⊥;MWÞDklðx3; x4; b⃗⊥;MWÞ

×
d2σpp→μ�X

ik

dη1dpT;1

d2σpp→μ�X
jl

dη2dpT;2
Iðηi; pT;iÞ: ð14Þ

The function Iðηi; pT;iÞ in Eq. (14) implements the kin-
ematical cuts reported in Table I, which we borrow from the
8 TeV analysis of Ref. [21]. In particular, the last one,
involving the invariant mass of the same sign lepton pair,
Minv ¼ ðpμ1 þ pμ2Þ2, is introduced in the experimental
analysis in order to reduce the WZ background. In
Eq. (14) we are neglecting the supposed small contributions
coming from longitudinally polarized dPDFs [13], effects of
color correlations, suppressed at high scales [30], as well as
flavor and fermion number interference effects [3,13].

FIG. 1. W production cross sections as predicted by LF PDFs as
a function ofQ2

0, compared to DYNNLO predictions (straight lines)
at LO by using LO MSTW08 parton distributions in the fiducial
region indicated in the text.
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Equation (14) will be evaluated with three different models
of dPDFs described in the following in order of increasing
complexity. In the simplest one, called MSTW, dPDFs are
parametrized as products of MSTW08 PDFs according to
Eq. (4). In the second one, the so-called GS09 model [16],
the factorized form Eq. (4), properly corrected to fulfill
dPDFs sum rules, is assumed only at a momentum scaleQ2

0.
Such initial conditions are evolved with dPDFs evolution
equations with the inhomogenous term included [26,27].
Therefore, with respect to model MSTW, GS09 takes into
account additional perturbative correlations [4,16,29,31].
The DPS cross section based on MSTW and GS09 models
can be evaluated only assuming a value of σeff in Eq. (2). In
the present work, we will use, as a reference value,
σ̄eff ¼ 17.8� 4.2 mb, which is the average of two recent
extractions [32,33] in the W-boson plus dijet final state, the
latter being the closest to the one considered here.
In the last model [18], called QM, dPDFs have been

evaluated within the LF framework, generalizing the
approach of Ref. [34] for the calculation of PDFs. As a
result, fully correlated dPDFs are obtained [18]. In such a
model, longitudinal and transverse correlations are gener-
ated among valence quarks and propagated by perturbative
evolution to sea quark and gluon dPDFs. The use of this
model in the present analysis is particularly relevant. First
of all, within this model, the DPS cross section can be
calculated using Eq. (1), without any assumption on σeff , at
variance with MSTW and GS09. Moreover, the simulta-
neous use of single and double PDFs obtained from the
same LF dynamics, allows one to investigate the role of
parton correlations on potentially sensitive observables.
Theoretical systematic errors are associated with our
predictions as follows. Uncertainties related to missing
higher order corrections, denoted by δμF, are estimated for
all models, varying μF in the range 0.5MW < μF < 2.0MW ;
the ones due to Q0 fixing, denoted by δQ0, are given by
varying this parameter in the range 0.24<Q2

0< 0.28GeV2.
A further error, δσ̄eff , is assigned to MSTW and GS09
predictions, due to σ̄eff uncertainty. In Table II we report
DPS cross sections, integrated in the fiducial volume,
evaluated using the above models. Predictions based on
MSTWand GS09 are close, while the QM one is smaller by
around 15%, although they are all consistent within errors.
Our results for the GS09 model are in line with those

listed in Table III of Ref. [8], provided the kinematics,
kinematical cuts, and values of σ̄eff of Ref. [8], different

from ours, are used. In particular, the invariant mass cut
used in the present analysis, and not included in Ref. [8],
reduces the predicted cross sections by about 30%.
Moreover, the different values of σ̄eff (17.8 mb here versus
14.5 mb in Ref. [8]) amounts to a further reduction of 20%.
For all the considered models, cross sections rise as μF
increases, an effect induced by the sea quark growth at
hxi ∼ 10−2 (typical of this process). The central values of
the QM and GS09 predictions can be discriminated if the
error on the measurement, assumed to be one sigma, is
smaller than their difference. Assuming that statistical
experimental errors follow a Poisson distribution (i.e. they
scale as

ffiffiffiffiffiffiffiffi
Nev

p
where Nev is the number of observed events)

and the measurement is dominated by statistical uncertain-
ties, by using the predicted values for the integrated cross
sections in Table II, a lower limit on the required integrated
luminosity needed to discriminate QM and GS09 models is
derived to be 300 fb−1. It is worth noting that, if the
measurement were performed also in the eμ (eμþ ee)
channel, the number of signal events would increase by a
factor of 3 (4), and the obtained lower limit on the
integrated luminosity would decrease.
In Table III, predictions of models GS09 and QM for

default values of parameters of charged ssWW cross
sections (indicated by σ−− and σþþ) integrated in the
fiducial volume are compared. While agreement between
model predictions is found for σþþ, a rather smaller σ−− is
obtained in model QM, due to the assumption in Eq. (10).
The ratio σ−− and σþþ is therefore a suitable observable to
investigate the flavor structure of dPDFs.
In Ref. [8], the DPS cross section has been analyzed as a

function of the variable η1 · η2 which, neglecting the boost
generated by W decay into leptons, can be approximated
via Eqs. (10) as

η1 · η2 ≃ 1

4
ln
x1
x3

ln
x2
x4

; ð15Þ

TABLE I. Fiducial DPS phase space used in the analysis.

pp,
ffiffiffi
s

p ¼ 13 TeV
pleading
T;μ > 20 GeV, psubleading

T;μ > 10 GeV

jpleading
T;μ j þ jpsubleading

T;μ j > 45 GeV
jημj < 2.4
20 GeV < Minv < 75 GeV or Minv > 105 GeV

TABLE II. Model predictions for W-charge summed cross
sections in the fiducial region in Table I.

dPDFs σþþ þ σ−− [fb]

MSTW 0.77þ0.23
−0.21 (δμF)

þ0.18
−0.18 (δσ̄eff )

GS09 0.82þ0.24
−0.26 (δμF)

þ0.19
−0.19 (δσ̄eff )

QM 0.69þ0.18
−0.18 (δμF)

þ0.12
−0.16 (δQ0)

TABLE III. Ratio of cross sections for same sign muons
production in the fiducial region.

dPDFs σþþ [fb] σ−− [fb] σþþ=σ−−

GS09 0.54 0.28 1.9
QM 0.53 0.16 3.4
GS09=QM 1.01 1.78
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where fractional momenta are subject to the invariant mass
constraint x1x3 ¼ x2x4 ¼ M2

W=s. Our result for the DPS
cross section, differential in η1 · η2 and converted into per
bin number of events assuming an integrated luminosity
L ¼ 300 fb−1, is presented in Fig. 2. The maximun is
located at η1 · η2 ∼ 0, where annihilating partons equally
share the momentum fractions, x ∼MW=

ffiffiffi
s

p
, in at least one

scattering. At large and positive (negative) values of η1 · η2,
muons are produced in the same (opposite) hemisphere,
and the fast drop of the cross section is associated with the
fall off of dPDFs as one (η1 · η2 ≪ 0) or both (η1 · η2 ≫ 0)
partons in the same proton approach the large x limit. We
note that predictions based on GS09 and QM models show
a rather similar shape and are compatible within their
sizable errors. To deal with such large uncertainties,
differential cross sections, normalized to the total ones
(Table II), may be considered. In this way, the predictions
of MSTWand GS09 models do not depend any more on the
particular value of σeff and the corresponding error cancels.
Moreover, for model QM, we verified that the scale
variations δμF and δQ0, acting basically on normalizations,
almost cancel in the ratio as well. A shape comparison can
then be used to discriminate among models and their
factorized structure. In the present analysis, however, we
prefer to discuss the effects of correlations on a more
familiar quantity, σeff , showing its dependence on η1 · η2.
To this aim we use the LF approach for both PDFs and

dPDFs to evaluate SPS and DPS differential cross sections,
Eqs. (11) and (14), respectively, integrated in bins of η1 · η2.
With these ingredients we obtain, through Eq. (2), a
prediction for σeff intrinsic to the LF model, called hereafter
~σeff . If a corresponding procedure is performed on cross
sections integrated in the fiducial volume, one obtains the
constant value

h ~σeffi ¼ 21.04þ0.07
−0.07ðδQ0Þ þ0.06

−0.07ðδμFÞ mb: ð16Þ

This value is compatible, within errors, with σ̄eff
experimentally determined. Both ~σeff and h ~σeffi are
shown in Fig. 3 and, being ratios, are both stable
against μF and Q0 variations. The departure of ~σeff
from a constant value is a measure of two parton
correlations in the proton. These are primarily correla-
tions in longitudinal momenta but, as shown using the
fully correlated model QM, they are related to the ones
in transverse space in an irreducible way [35]. Given the
trend of ~σeff displayed in Fig. 3, a nonconstant behavior
of the latter can be appreciated if its values in the first
and last bins differ by more than one sigma. Imposing
this condition and again assuming that the future
measurements will be dominated by statistical uncer-
tainties, a lower limit on the required integrated lumi-
nosity is derived to be 1000 fb−1, reachable in the
planned LHC runs. It is worth noting that this limit
would decrease if measurements were performed also in
the eμ and ðeμþ eeÞ channels.
Our conclusion is that this observable analyzed as a

function of η1 · η2 is a convenient one to look for parton
correlations.
Summarizing, we have calculated ssWW cross sections

in a LF model for dPDFs, carefully estimating the
corresponding uncertainties. Our predictions, completely
intrinsic to the approach, are in line with those obtained
by other approaches which make use of the external
parameter σeff. This indicates that, since the DPS cross
section is given by an integral over the transverse relative
positions of the partons in the nucleon [cf. Eq. (1)], the
model is able to catch such a global transverse structure.
Furthermore, we have established that, in this specific
final state, transverse and longitudinal correlations,
embodied in dPDFs, could be observed in the next
LHC runs.

FIG. 2. Number of expected events with L−1 ¼ 300 fb−1 as a
function of the product of muon rapidities.

FIG. 3. ~σeff and h ~σeffi as a function of the product of muon
rapidities. The error band represents scale variations added in
quadrature.
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