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The Lam-Tung relation breaking coefficient ALT ¼ A0 − A2 in the Drell-Yan dilepton angular distributions
in the Z0 boson mass region at the LHC is analyzed in the kT -factorization approach. This observable was
recently measured with high precision by the ATLAS Collaboration.Within the kT-factorization approach we
perform an approximate Oðαemα2sÞ calculation of the off-shell parton hard matrix elements in which we
include the leading tree-level contributions of valence quarks and off-shell gluons: the qvalg� → qZ0 channel
and the g�g� → qq̄Z0 channel. The resulting ALT exhibits high sensitivity to the gluon transverse momentum
distribution (TMD). Several gluon TMDs are probed derived from the Catani-Ciafaloni-Fiorani-Marchesini
and Balisky-Fadin-Kuraev-Lipatov evolution equations, and given by QCD-inspired phenomenological
parameterizations. The ATLAS data favor a simple “Weizsäcker-Williams” (WW) hard gluon TMD with the
asymptotic behavior of one-gluon exchange at large gluon transverse momenta and moderate x. It is verified
that the proposed approach with theWWgluon TMD describes well also the A0 and A2 angular coefficients at
the Z0 peak, as well as the Drell-Yan dilepton mass distribution at lower masses. We conclude that the
inclusion of gluon transverse momentum effects improves the description of the angular distributions of
Drell-Yan dileptons and that the Drell-Yan scattering provides an excellent probe of the parton TMDs.
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I. INTRODUCTION AND CONCLUSIONS

The Drell-Yan (DY) process [1] is an excellent probe of
the proton structure in proton-proton or proton-antiproton
collisions. In this process a lepton-antilepton pair is pro-
duced by an intermediate neutral electroweak boson: a
virtual γ or a quasireal or virtual heavy boson Z0. The
lepton-antilepton pair distributions from this process can be
well measured over a wide range of kinematical parameters
providing data on the Drell-Yan structure functions Wτ

that depend on the pair invariant mass, total transverse
momentum and rapidity; see e.g. Ref. [2]. Four independent
structure functions Wτ parametrize the γ� or the
parity-conserving Z0 contribution, and five more structure
functions are necessary to describe the odd-parity Z0

contributions. Various Drell-Yan observables were measured
recently at the LHC, for example the Drell-Yan mass
distribution [3,4], the transverse momentum dependence
of the Z0 boson [5,6], and the coefficients of the lepton
angular distributions at the Z0 peak [7,8]. In particular the
ATLAS Collaboration measured with excellent precision all
the Drell-Yan structure functions at the resonant Z0 pro-
duction peak [8], that is for Mlþl− ≃MZ, as functions of the
lepton pair transverse momentum, qT . Both the total cross
section and most of the measured structure functions were

found consistent with the theoretical predictions of pertur-
bative QCD at the next-to-next-to-leading order (NNLO)
[8–10]. A striking exception from this agreement was found,
however, in the Lam-Tung combination of the structure
functions proportional to a difference of the lepton angular
distribution coefficients, ALT ¼ A0 − A2 (for the explicit
definition see Sec. III A) where the experimental measure-
ment of ALT reaches about 0.15 for qT > MZ, and the
NNLO QCD prediction provides about half of this value in
this region of qT . This discrepancy is clearly visible for about
ten experimental data points of ALT with typical experi-
mental errors of about 0.01–0.02.
The Lam-Tung combination of Drell-Yan structure func-

tions is a particularly interesting probe of subtle QCD
effects. It follows from the fact that it vanishes at the leading
twist up to the NLO in the collinear approximation. Thus, the
Lam-Tung relation breaking may occur through higher twist
effects or by QCD effects at the NNLO and beyond. For this
reason ALT has been considered to be a promising probe
of higher twist effects in the Drell-Yan process at small
lepton pair masses, and at very high hadron collision
energies [11–15]. The Lam-Tung relation breaking may
occur however, also at the leading twist as a result of the
parton transverse momenta [16–19]. In particular it was
demonstrated [19] that the Lam-Tung relation breaks down
when both the quark and antiquark carry nonzero transverse
momenta at the quark-antiquark–electroweak boson vertex.
In the collinear framework such transverse momenta may be
generated at higher orders, when additional emissions occur
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in the hard matrix element. In the kT-factorization frame-
work [20,21], however, the incoming partons already have
nonzero transverse momenta. Hence the Lam-Tung breaking
coefficient ALT is sensitive to the details of the transverse
momentum distribution of the incoming partons and may be
used to probe parton transverse momentum distributions
(TMDs). On the other hand, the angular distributions of
dileptons in heavy electroweak boson hadroproductions may
be used to probe anomalous couplings of the bosons to
quarks [22], and a good control of the QCD effects in these
observables is necessary to enhance the sensitivity of the
probes.
The parton TMDs—in particular the gluon TMD—

parametrize important properties of the proton structure
and allow to test and improve the QCD evolution
equations with transverse momentum dependence, e.g.
the Balisky-Fadin-Kuraev-Lipatov (BFKL) [21,23] or
Catani-Ciafaloni-Fiorani-Marchesini (CCFM) [24] evolu-
tion equations. The procedure of calculating hard matrix
elements for the partons with nonzero kT was studied in
detail in classical papers by Catani, Ciafaloni and
Hautmann [25]. Since then, the formalism based on kT
factorization (or the high-energy factorization) was suc-
cessfully applied to numerous processes in high-energy
hadron scattering.
In the standard form and notation, the gluon TMD

F ðx; k2T; μFÞ, depends on the gluon x and kT , and on the
factorization scale μF. The parton TMDs provide valuable
insight into proton structure and properties of QCD; for a
recent review see Ref. [26]. Their accurate determination is
also important as the kT-factorization formalism when
applicable, may represent the scattering process kinematics
more accurately than collinear QCD at a given order of
perturbation theory. Thus with better control of parton
TMDs a more precise description of hadron scattering
should be possible. Currently there exist many parametri-
zations of the gluon TMD with significantly different
properties and it is important to find and probe observables
sensitive to parton TMDs and to constrain the distributions
[26]. It should be stressed that although the kT-factorization
(or high-energy factorization) approach was initially
proposed for small-x physics, the concepts of parton
TMDs and the hard matrix elements with partons that
carry nonzero transverse momentum may also be used
beyond the small-x limit; see Sec. III C for a more detailed
discussion and the references.
The Drell-Yan process was analyzed within the kT-

factorization framework in three main approaches. Hence,
the forward Drell-Yan cross sections may be described in
terms of the color-dipole formulation [27] of the kT-
factorization framework [14,28–33]. In this approach a
quasi-Compton emission of the electroweak boson from a
fast (collinear) quark scattering by an off-shell gluon
exchange takes place. In the second approach adopted
e.g. in Refs. [34–38], an off-shell quark and antiquark

fusion into the electroweak boson is considered. In the
former the gluon TMD enters, while in the latter the quark
and antiquark TMDs are used. The kT-factorization frame-
work is quite successful in both the approaches in describ-
ing Drell-Yan observables integrated over the lepton angles,
but it does not give a satisfactory description of all the
Drell-Yan structure functions. In the third approach the
contribution to the Drell-Yan process comes from two
initial gluons with nonzero kT , hence the g�g� partonic
channel contribution. This partonic channel enters in QCD
at the order Oðα2sÞ. The inclusion of the g�g� partonic
channel in the electroweak boson production was per-
formed first for the prompt photon hadroproduction [39]
(see also ref. [40] for a recent study), and then the
formalism was applied to the Drell-Yan process and the
heavy electroweak boson hadroproduction [41,42]. For
the Drell-Yan scattering, however, the g�g� contributions
were considered only for the total cross section and not for
the structure functions.
In conclusion, in this paper we analyze the sensitivity of

ALT to the shape of quark and gluon TMDs within the kT-
factorization framework. We take into account both the
lowest-order contribution to the process, given by a simple
fusion of quark and antiquark that both carry nonzero
transverse momentum kT , and channels that enter at higher
orders of QCD (assuming the fixed-order perturbative
expansion). Namely these are the already-known quark-
gluon channel, and the gluon-gluon channel computed in
this paper for the DY structure functions. The calculations
are performed in the high-energy limit in which the parton
evolution is driven by the gluon evolution. We consider
gluon TMDs emerging from solutions of the kT-dependent
evolution equations, BFKL and CCFM, and coming from
QCD-inspired models. It turns out that none of the existing
quark and gluon TMDs used gives a satisfactory descrip-
tion of ALT at large Z0 transverse momentum. However,
one should note that for such kinematics the TMDs are
probed at relatively high gluon x ∼ 0.1, where existing
parametrizations are practically unconstrained. On the
other hand we show that the application of the used
formalism is well justified in this kinematic region. We
therefore introduce a new simple QCD-inspired model of
the gluon TMD which provides a good estimate of the Lam-
Tung relation breaking at large Z0 transverse momentum,
that is for qT > MZ and a reasonably good estimate for
smaller transverse momenta. This model is based on a simple
concept of the gluon TMD at moderately small gluon x and
at large gluon kT , to be driven by the Weizsäcker-Williams
gluon emission from valence quarks, resulting in ∼1=k2T
behavior of the gluon TMD F ðx; k2T; μFÞ at large kT . We
verify that this “Weizsäcker-Williams” model of the gluon
TMD provides not only a reasonable description of ALT at
the Z0 peak, but also a good description of the Drell-Yan
pair mass M distribution shape, probed by recent ATLAS
measurements in the range of 15 GeV < M < 55 GeV.
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Furthermore we demonstrate that the qT dependence of ALT

at the Z0 peak is highly sensitive to the shape of the gluon
TMD at large kT and hence this observable may be used to
constrain the gluon TMD with competitive precision.

II. KINEMATICS AND NOTATION

We consider the high-energy proton-proton collision
with a lepton-antilepton pair, lþl− ¼ eþe− or μþμ−, in
the final state, pðP1ÞpðP2Þ → lþl−X, and the lepton four-
momenta lþ and l− are measured; see Fig. 1. The lepton
four-momenta are denoted by l1 and l2 for l− and lþ
respectively. At the leading order in the electroweak
coupling constants this process is mediated by a virtual
photon γ�ðqÞ or by a real or virtual Z0ðqÞ boson, with the
four-momentum q ¼ l1 þ l2, and q2 ¼ M2 > 0 is the
lepton pair invariant mass squared. The four-momenta
of proton projectiles are P1 and P2, and they are nearly
lightlike; in the center-of-mass system (c.m.s.) of the pp
pair and in the standard Minkovskian coordinates, one
has P1 ≃ ð ffiffiffi

S
p

=2; 0; 0;−
ffiffiffi
S

p
=2Þ, P2 ≃ ð ffiffiffi

S
p

=2; 0; 0;
ffiffiffi
S

p
=2Þ,

where the invariant collision energy squared S ¼ ðP1 þ
P2Þ2 is much greater than the proton mass squared, M2

p.
In what follows, the effects of nonzero Mp are neglected.
We define light-like components of a four-vector vμ as
v� ¼ v0 � vz, where the Z axis is given by the beam
direction in the proton-proton c.m.s. From now on we
shall use the light-cone coordinates for four-vectors,
v ¼ ðvþ; v−; vTÞ, and a perpendicular part v⊥ of the
four-vector v is defined as v⊥ ¼ ð0; 0; vTÞ. Thus, in the
light-cone coordinates one has P1 ¼ ð ffiffiffi

S
p

; 0; 0Þ, P2 ¼
ð0; ffiffiffi

S
p

; 0Þ, and in what follows the Sudakov decomposition
of four-vectors is employed, v ¼ αvP1 þ βvP2 þ v⊥. In
particular, for the DY intermediate electroweak boson one
has q ¼ αqP1 þ βqP2 þ q⊥, with q⊥ ¼ ð0; 0; qTÞ, where
αq is equal to the boson Feynman xF, and βq is determined
from the mass constraint, βq ¼ M2

T=xFS, and the boson
transverse mass squared M2

T ¼ M2 þ q2T . The boson rap-
idity in the laboratory frame is Y ¼ log ðxF

ffiffiffi
S

p
=MTÞ.

In this paper the intermediate boson polarization vectors
are defined in the Collins-Soper frame [44] through

normalized four-vectors Xμ, Yμ and Zμ given in the
following way (note that differently to the rest of
the paper, in the formulas below the � labels do not
denote the light-cone components of the four-vectors):

Xμ ¼ −
M

SqTMT

�
aðþÞ ~P

μ
ðþÞ þ að−Þ ~P

μ
ð−Þ

�
;

Zμ ¼ 1

SMT

�
að−Þ ~P

μ
ðþÞ þ aðþÞ ~P

μ
ð−Þ

�
; ð1Þ

where ~Pμ
ð�Þ ¼ Pμ

ð�Þ − ðq · Pð�Þ=M2Þqμ, Pμ
ð�Þ ¼ Pμ

1 � Pμ
2,

að�Þ ¼ �q · Pð�Þ, and Yμ is defined by orthogonality and
normalization conditions, q · Y ¼ X · Y ¼ Y · Z ¼ 0, Y2 ¼
−1. Hence the Collins-Soper polarization four-vectors are

ϵμð0Þ ¼ Zμ; ϵμð�Þ ¼∓ 1ffiffiffi
2

p ðXμ � iYμÞ: ð2Þ

III. DRELL-YAN CROSS SECTIONS

A. Generalities

The Drell-Yan process of lepton-antilepton pair produc-
tion at the LHC receives contributions from γ� and Z0 or
Z0� exchange amplitudes. The contributions from γ� are
parity conserving, and those from Z0 include both parity-
conserving and parity-violating terms. In the present paper
we do not consider the odd-parity effects coming from the
Z0 exchange as they do not affect the Lam-Tung relation
breaking and the other observables studied in this paper.
The differential Drell-Yan cross section in the parity-

conserving sector may be decomposed into independent
angular components (see e.g. Refs. [8,9,45]),

dσ
dYdM2d2qTdΩl

¼
X
τ

dστ
dYdM2d2qT

gτðΩlÞ;

Ωl ¼ ðθ;ϕÞ; τ ∈ fL; T; TT; LTg; ð3Þ

where

dσL ¼ CLdσH00; dσT ¼ CL
dσHþþ þ dσH−−

2
;

dσTT ¼ CL
dσHþ− þ dσH−þ

2
;

dσLT ¼ CL
dσHþ0 þ dσH0þ − dσH−0 − dσH0−

2
ffiffiffi
2

p ; ð4Þ

where dσHσσ0 are the hadronic cross sections1; for the
electroweak boson production in the helicity basis,

FIG. 1. The kinematics of the Drell-Yan process in pp collisions.
The diagrams in this paper are drawn with JaxoDraw [43].

1More accurately, dσHσσ0 are the cross sections only for σ ¼ σ0,
and are proportional to density matrix elements for the boson
production in the boson helicity basis when the initial and final
boson helicities, σ and σ0 are different.
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and the proportionality constant CL ¼ αemM2

8π2
jDVðM2Þj2

accounts for the boson exchange amplitude and the
normalization of the leptonic part of the amplitude. The
scalar part of the boson propagator with q2 ¼ M2 reads
DVðM2Þ ¼ 1=ðM2 −M2

V þ iΓVMVÞ, where MV and ΓV
are the boson V mass and decay width respectively. The
functions of the lepton angles ðθ;ϕÞ in the lepton pair
c.m.s. read

gLðΩlÞ ¼ 1 − cos2θ; gTðΩlÞ ¼ 1þ cos2θ;

gTTðΩlÞ ¼ sin2θ cos 2ϕ; gLTðΩlÞ ¼ sin 2θ cosϕ: ð5Þ

It is customary to parametrize the Drell-Yan lepton angular
distributions exchange in terms of harmonic functions with
Ai coefficients in the following way:

�
dσ

dYdM2d2qT

�
−1 dσ

dYdM2d2qTdΩl

¼ 3

16π

�
ð1þ cos2θÞ þ 1

2
A0ð1 − 3cos2θÞ

þ A1 sin 2θ cosϕþ 1

2
A2sin2 cos 2ϕ

�
; ð6Þ

where the odd-parity effects coming from the Z0 exchange
are neglected. It is straightforward to express the coef-
ficients Ai through the boson hadroproduction cross sec-
tions dστ. The results read

A0 ¼
σL

σT þ σL=2
; A1 ¼

σLT
σT þ σL=2

; A2 ¼
2σTT

σT þ σL=2
;

ð7Þ

where στ stands for a suitably integrated dστ.
Note that in the parity-conserving part of the Drell-Yan

cross section the Z0 boson hadroproduction cross sections
are proportional to the γ� hadroproduction cross sections.
At the amplitude level, the photon coupling eefγμ to a
quark of flavor f is proportional to the quark charge ef,

while the quark coupling to the Z0 boson is gfVγμ − gfAγμγ5
where gfV and gfA are the vector and axial-vector quark
couplings to the Z0 boson. In the parity-even cross sections
the γ5 may be anticommuted and eliminated from the
amplitudes squared and the resulting expressions are
proportional to the virtual photon production cross sections,
with a substitution ðeefÞ2 → ðgfAÞ2 þ ðgfVÞ2.

B. Approximations applied

The high-energy limit and the kT-factorization
approach: In this paper we describe the Drell-Yan
amplitudes within the kT-factorization (or high-energy
factorization) framework, in which the high-energy limit
is employed. This limit combined with the (fixed-order)

perturbative expansion of scattering amplitudes allows for a
systematic selection of leading diagrams that contribute to
the scattering amplitudes. The key feature of this approach
is the explicit inclusion of the initial parton transverse
momenta and virtualities.
The typical value of the quark-parton xq in Drell-Yan

processes at the LHC at
ffiffiffi
S

p ¼ 8 TeV is xq ∼MT=
ffiffiffi
S

p
<

0.02 for masses up to the Z0 peak and the boson transverse
momentum qT < 100 GeV. In this range of xq the quark
distributions are dominated by the sea quarks, and for pp
collisions antiquarks come entirely from the sea. Due to the
spin of 1=2 the exchange of quarks and antiquarks in the t
channel decreases exponentially with the exchange rapidity
span, while the spin-1 gluon exchange amplitude grows
with the rapidity span. This feature motivates the standard
approximation in which the sea parton evolution is driven
by the evolution of the exchanged gluon density, and the
sea quarks that enter the hard matrix element are generated
in the matrix element, or in the last step of parton evolution
as a result of the gluon splitting. In our analysis we adopt
this approximation.
Below we discuss in some detail approximations made in

the kT-factorization framework and the consistency of the
obtained formulas for the contribution of two gluons
with nonzero kT (i.e. the g�g� contribution) to the Drell-
Yan scattering. A thorough analysis of this channel within
the kT-factorization framework was performed in
Refs. [41,42]. For completeness of the presentation we
shortly quote below the main steps and results obtained in
these papers, and discuss the necessary kinematic con-
ditions for the approximation to hold. The framework and
the approximations applied are based on the classical
papers in Ref. [25].
A particularly convenient starting point for such an

analysis was proposed in Ref. [41], where the electroweak
boson V production in association with a heavy bb̄ quark
pair in the g�g� channel was analyzed. In this reference a
tree-level topology for scattering of two light quarks, qA
and qB, with four-momenta pA and pB respectively, into a
qAðp0

AÞqBðp0
BÞbðp3Þb̄ðp4ÞVðqÞ final state was considered;

see Fig. 2(a). For the light quarks one assumes the zero
mass approximation, p2

A ¼ p2
B ¼ p0

A
2 ¼ p0

B
2 ¼ 0. At the

lowest order in QCD this process occurs via the exchange
of two virtual gluons between the scattering light quarks
and the produced heavy b quarks. The scattering ampli-
tude is evaluated in the standard way with all Feynman
diagrams at Oðα2sÞ in QCD, and hence it is gauge
invariant.
Next, one uses the high-energy approximation to sepa-

rate the amplitude of virtual gluon emission from the light
quarks from the g�g� → bb̄V scattering amplitude. This is
done in the following way: the virtual gluon momenta, k1
and k2, are written in terms of Sudakov variables,
ki ¼ αipA þ βipB þ ki⊥, where ki⊥ stands for the gluon
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i four-momentum component transverse to the plane
spanned by pA and pB. In what follows, we shall also
use the transverse momenta, ki corresponding to ki⊥.
It is convenient to introduce the Mandelstam variables:

s¼ðpAþpBÞ2; s1¼ðpBþk1Þ2; s2¼ðpAþk2Þ2; ð8Þ

and

t1 ¼ ðp0
A − pAÞ2 ¼ k21; t2 ¼ ðp0

B − pBÞ2 ¼ k22: ð9Þ

Clearly, the bulk of the cross section comes from the region
of strong hierarchy of the invariants si ≫ jtjj, i, j ¼ 1, 2.
This hierarchy follows from the fact that the transverse
momenta of the scattered light quarks are much smaller
than the c.m.s. energy of the process and the invariant
masses,

ffiffiffiffi
si

p
, of the gluon-light quark pairs. We do not

assume a strong hierarchy of si and s.
The straightforward kinematic analysis of the scattering

process gives the following results for the Sudakov
coefficients αi and βi:

α1 ¼
s1 þ k21
ð1þ β1Þs

; β1 ¼ −
k21

sð1 − α1Þ
;

α2 ¼ −
k22

ð1 − β2Þs
; β2 ¼

s2 þ k22
sð1þ α2Þ

: ð10Þ

Taking into account that ti ≪ sj, we obtain the following
approximate expressions:

α1 ≃ s1
s
; β1 ≃ t1

sð1 − α1Þ
;

α2 ≃ t2
sð1 − β2Þ

; β2 ≃ s2
s
; ð11Þ

that hold up to Oðti=sjÞ accuracy. Although α1 and β2 are
not necessarily small, the regions of α1, β2 → 1 where two
of the denominators are close to zero are strongly sup-
pressed in the cross sections due to the strong suppression
of parton distributions for α1, β2 → 1. It follows that
α1 ∼ β2 ≫ α2 ∼ β1 and t1 ¼ k21 ≃ −k21, t2 ¼ k22 ≃ −k22.
Hence in the high-energy approximation one neglects β1
and α2. In the explicit numerical analysis performed in
the next sections we checked that in the kinematic con-
ditions of Z0 production at the LHC one probes typically
si ∼ 1 TeV2 and jkij ∼ 0.1 TeV, and the approximation
parameter is small, jti=sjj ∼ 0.01; thus this approximation
is justified. Note also, that in the collinear approximation
for the gluons one sets jkij ¼ 0; then β1 ¼ α2 ¼ 0 and α1
and β2 are identified with the gluon-parton x variables,
x1 ¼ α1, x2 ¼ β2.
After the kinematic hierarchy and approximations are

established, one turns to the coupling of gluons to the
scattering light quarks. The amplitude of the gluon coupling
to the quark qA is proportional to −iūλ0Aðp0

AÞγμuλAðpAÞ,
where uλAðpAÞ and uλ0Aðp0

AÞ denote the spinors of the
incoming and outgoing quark with helicity λA and λA

0
respectively. In the high-energy approximation described
above, one gets

−iūλ0Aðp0
AÞγμuλAðpAÞ ¼ −2ipμ

Aδλ0A;λA þ � � � ð12Þ

where the neglected terms denoted by “…” are power
suppressed in the kinematic small-β1 expansion. This
motivates the eikonal approximation for the virtual gluon
polarization assumed in the high-energy limit; see Sec. III C
for more details and the explicit formulas. Note, that for this
approximation to be valid it is not necessary to assume that
x1 ¼ α1 of the gluon is small.

(a) (b) (c)

FIG. 2. Diagrams illustrating the discussion of the g�g� channel in the Drell-Yan process: (a) embedding of the g�g� channel into
scattering of two fast quarks, where the four-momenta of particles and selected Mandelstam invariants are indicated; (b) an example of a
diagram with explicitly factorizing topology; (c) an example of a diagram that apparently breaks factorization (see the text for
explanations).
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The above analysis is carried out for the process initiated
by the light quark scattering, and the discussed amplitude is
gauge invariant by construction. In order to complete the
description of the process in the kT-factorization framework
it is necessary to factorize the gluon coupling to incoming
quarks/hadrons from the off-shell hard matrix element
describing the g�g� → bb̄V process. In an arbitrary gauge
the factorization may not be obvious, as there are contribu-
tions to the process that correspond to diagram topologies
of a direct gluon exchange between the scattering hadrons
accompanied by a virtual gluon emission followed by a
splitting g� → bb̄V as illustrated in Fig. 2(c); see e.g.
Ref. [41] for more details. Such contributions are, however,
not independent of the remaining diagrams corresponding to
the standard g�g� scattering [as illustrated in Fig. 2(b)]; the
amplitudes of the different topologies are related by the
gauge invariance constraint. The emerging factorization
can be seen in two ways: (i) one may work in an axial
(hence physical) gauge, in which the apparent nonfactorizing
contributions explicitly vanish, or (ii) combine all the
diagrams in an arbitrary gauge and show that the apparently
nonfactorizing diagrams may be absorbed into a universal,
gauge-invariant effective triple virtual gluon vertex, that
explicitly obeys Ward identities. Both approaches are
described extensively in the literature; see e.g. Refs. [25,
41,42]. It is important to stress that, again, in this procedure
one adopts the high-energy approximation relying on the
condition of small β1 and α2, and it is not necessary to
assume that gluon x’s are small. In the present analysis we
use the latter approach, incorporating the gauge-invariant
effective triple gluon vertex Veff (see Appendix B for the
explicit form), and the gluon propagators are taken in the
Feynman gauge.
So far we followed the process selection of Ref. [41]: the

electroweak boson production associated with the heavy bb̄
quark pair. This is particularly convenient for studies of the
g�g� partonic channel, as the b quark partons in the proton
may be safely assumed to come only from gluon splittings,
and the g�g� channel contributions exhaust the cross
section. The logic applied here closely follows the classical
approach for heavy quark production in the high-energy
approximation [25]. If, instead of the heavy quarks bb̄ the
light quarks are produced in association with the electro-
weak boson, the evaluation of the g�g� channel contribution
is exactly the same (see e.g. Refs. [39,42]); however for the
light quarks in the final state, additional initial qq̄, gq and
gq̄ parton channel contributions are included.
Relation of the chosen scheme to the collinear factori-

zation approach: It may be useful for more clarity to
discuss the connection between the high-energy limit
approach described above and the collinear factorization
framework. In the collinear approximation the following
channels contribute to the neutral electroweak (real or
virtual) boson V production in pp collisions:
(1) From the LO, OðαemÞ: qq̄ → V.

(2) From the NLO, OðαemαsÞ: qg → Vq, q̄g → Vq̄,
qq̄ → Vg.

(3) From the NNLO,Oðαemα2sÞ: qq̄ → Vgg, qq̄ → qq̄V,
qq → qqV, q̄ q̄ → q̄ q̄ V, qg → qgV, q̄g → q̄gV
and gg → qq̄V.

In the above partonic channels one may treat separately
contributions of the valence quarks, qval and of the sea
quarks, qsea, q̄sea. In the high-energy approximation
described above the sea (anti)quarks enter only in the hard
matrix element, so from the partonic channels up to the
NNLO, one is left with contributions of qvalg → qV,
qvalg → qgV, qvalqval → qqV, and gg → qq̄V. In the
high-energy limit the channel qvalqval → qqV is driven
by a gluon exchange between the valence quarks and is
absorbed into the qvalg → qV channel, as the gluon dis-
tribution contains gluon emissions from valence quarks; see
the discussion above. The contribution of qvalg → qV to
the boson production cross section carries the first power of
αs, and both qvalg → qgV and gg → qq̄V enter as Oðα2s Þ
contributions in QCD.
In the relevant kinematic regime the quark-parton xq ∼

0.01 in the electroweak boson emission vertex; however,
due to the gluon and sea quark distributions being much
greater than the distribution of the valence quarks, the
contribution of gg → qq̄V is expected to be significantly
larger than qvalg → qgV so we neglect the latter. Thus,
the two dominant channels in the high-energy limit are
qvalg → qV [Fig. 3(b)], and gg → qq̄V [Fig. 3(c)]. In our
approach, which includes the treatment of nonzero gluon
transverse momentum kT , the incoming gluons, g�, are
virtual, and the g� density in the proton will be para-
metrized in terms of the gluon transverse momentum
distribution F ðx; k2T; μFÞ. The valence quark distributions
are expected to have a much narrower distribution in the
transverse momentum, so for the valence quarks we keep
the collinear approximation, which is viewed in our
approach as the small-kT-width limit of the corresponding
quark TMD.
The partonic diagram selection based on the gluon

exchange dominance in the high-energy limit may be
related to the rigorous systematic expansion of the collinear
approach. Thus, the qvalg� → qV hard matrix element
contains the LO Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) g → q̄ splitting combined with the LO
qvalq̄sea → V matrix element, the contribution of the NLO
qvalg → qV term and contributions beyond the collinear
NLO level that emerge because of the exact treatment of
parton kinematics. On the other hand, the loop corrections
to the qq̄ → V amplitude are neglected, that also contribute
to the collinear NLO approximation. For the g�g� → qq̄V
channel, the hard matrix element accounts for the collinear
LO qseaq̄sea → V contribution preceded by g → qsea and
g → q̄sea DGLAP splittings, the NLO contributions
qseag → qV and q̄seag → q̄V, preceded by g → qsea or
g → q̄sea DGLAP splittings, the leading contribution to
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the NNLO collinear matrix element gg → qq̄V, and some
contributions beyond the DGLAP NNLO coming from the
exact treatment of parton scattering kinematics. Again, loop
corrections are not included in this treatment. Hence our
approximation is expected to cover the leading contribu-
tions to the collinear partonic channels qvalq̄sea → V,
qseaq̄sea → V, qvalg → qV, qseag → qV, q̄seag → q̄V and
gg → qq̄V. These channels are dominant ones in the neutral
electroweak boson production, and a certain loss of
completeness with respect to the existing collinear
NNLO calculation is justified by the more accurate treat-
ment of parton scattering kinematics in the kT-factorization
approach.

C. Drell-Yan cross sections in the partonic channels

With the approximations described above the Drell-Yan
cross sections may be expressed as sums of the corre-
sponding contributions from the qvalg� channel and the g�g�
channel,

dσHσσ0 ¼ dσðqg
�Þ

σσ0 þ dσðg
�g�Þ

σσ0 : ð13Þ

[see Figs. 3(b) and 3(c)]. The quark-gluon channel con-
tribution in the kT-factorization approach was derived
in Refs. [28–30] (see also Refs. [14,33]). The original
calculation was performed in the Gottfried-Jackson frame
[46] (alternatively called the u-channel helicity frame [28]).
The explicit expression reads,

d ~σðqg
�Þ

σσ0

dYdM2d2qT
¼

X
f

Z
1

xF

dxq℘f;valðxq; μFÞ

×
Z

d2kT
πk2T

4παsðμFÞ
3

F ðxg; k2T; μFÞ

× ~ΦðfÞ
σσ0 ðqT; kT; z ¼ xF=xqÞ; ð14Þ

where xg ¼ ðð1 − zÞM2 þ q2TÞ=ðSxFð1 − zÞÞ, λ1 and λ2 are
helicities of the incoming and outgoing quark, the index f
runs over quark flavors, f ∈ fd; u; s; c; bg, ℘f;val is the
collinear valence quark f distribution function, and all the

quarks are assumed to be massless when compared to the
DY pair mass M. The helicity-dependent γ� impact factors
are

~ΦðfÞ
σσ0 ðqT; kT; zÞ ¼ e2f

X
λ1;λ2¼þ;−

AðσÞ
λ1;λ2

†Aðσ0Þ
λ1;λ2

; ð15Þ

where with the chosen set of γ� polarization vectors,

Að0Þ
λ1;λ2

¼ e
4π

δλ1;λ2

�
Mð1 − zÞ

M2ð1 − zÞ þ q2T

−
Mð1 − zÞ

M2ð1 − zÞ þ ðqT − zkTÞ2
�
; ð16Þ

Að�Þ
λ1;λ2

¼ e
8π

δλ1;λ2ð2 − z ∓ λ1zÞ

×

�
−qT

M2ð1 − zÞ þ q2T

−
−ðqT − zkTÞ

M2ð1 − zÞ þ ðqT − zkTÞ2
�
· ϵð�Þ

⊥ ; ð17Þ

are proportional to the DY γ� emission amplitudes. Note

that we suppressed the arguments qT , z and kT of AðσÞ
λ1;λ2

.
Next, the polarization vectors are transformed from the

u-channel helicity frame to the Collins-Soper frame [44].
This results with linear transformation of the cross sections
in the helicity basis that may be written as,

dσðqg
�Þ

τ ¼
X
τ0
Rττ0d ~σ

ðqg�Þ
τ0 ; τ; τ0 ∈ L; T; TT; LT: ð18Þ

The explicit form of the transformation represented byRττ0

is given in Appendix A.
The g�ðk1Þg�ðk2Þ → qðp3Þq̄ðp4ÞVðq; ϵðσÞÞ hard subpro-

cesses cross section is calculated in the kT-factorization
framework. The gluons are virtual, k2i ≃ −k2i < 0, and we
shall assume the quarks to be massless, p2

3 ¼ p4
4 ¼ 0. In the

high-energy limit one may decompose the gluon momenta
as follows: k1 ¼ x1P1 þ k1⊥ and k2 ¼ x2P2 þ k2⊥. The
parton-level scattering amplitude is described by eight

(a) (b) (c)

FIG. 3. Partonic channels in the electroweak boson (V ¼ γ�, Z0 or Z0�) hadroproduction: a) the q�q̄� → V channel, b) the qvalg� → qV
channel and c) the g�g� → qq̄V channel. The black blobs represent channel-dependent effective vertices.
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diagrams shown in Fig. 4. The high-energy limit for
virtual gluon polarizations is used, in which the virtual
gluon polarization vectors πg� ðkiÞ are approximated as

πμg�ðk1Þ≃ x1P
μ
1=

ffiffiffiffiffi
k21

p
, πμg� ðk2Þ≃ x2P

μ
2=

ffiffiffiffiffi
k22

p
, the so-called

“nonsense polarizations.”2 Hence we introduce the impact

factors T ðiÞ
μ defined as

T ðiÞ
μ ¼ MðiÞ

μ;αβP
α
1P

β
2; ð19Þ

where MðiÞ
μ;αβ is the amplitude with amputated polarization

vectors of the incoming gluons and the outgoing vector

boson. The impact factorsT ðiÞ
μ corresponding to the diagrams

shown in Fig. 4 are proportional to corresponding partonic

g�g� amplitudesMðiÞ
μ . The explicit expressions for the impact

factors are given in Appendix B. As was discussed in
Sec. III B, the elementary triple gluon vertex is replaced by
the effectiveLipatovvertexVeff [21] thatmaybeconveniently
derived e.g. from the Lipatov effective action [48].
The g�g� → qq̄V impact factor is given by T g�g�

μ ¼P
8
i¼1 T

ðiÞ
μ . This impact factor is then used to calculate

g�g� channel contributions to the Drell-Yan cross sections

dσðg
�g�Þ

σσ0 ,

dσðg
�g�Þ

σσ0 ¼
Z

dx1

Z
d2k1
πk21

F ðx1; k21; μFÞ
Z

dx2

×
Z

d2k2
πk22

F ðx2; k22; μFÞ
ð2πÞ4Hσσ0

2S

× dPS3ðk1 þ k2 → p3 þ p4 þ qÞ; ð20Þ

with

Hσσ0 ¼
X
f

1

ðN2
c − 1Þ2

X
a;b

X
i3;i4

X
r3;r4

T g�g�
μ ϵμðσÞðT g�g�

ν ϵνðσ0ÞÞ†;

ð21Þ

where the summations are performed over the quark flavor
f, the color indices a, b of the gluons and i3, i4 of the
quarks, and over the quark helicities r3 and r4. The
summation over the quark helicities leads to traces over
Dirac spinors which are evaluated with the FORM program
for symbolic manipulations [49]. The resulting expressions
are extremely lengthy and are not explicitly displayed.
They were obtained in two independent calculations and it
was verified that all Hσσ0 tend to zero as k2i when the
corresponding gluon transverse momentum k2i → 0, as
required by the gauge invariance condition in the high-
energy limit.
The phase space for the final-state particles of partonic

scattering is parametrized in terms of the rapidity Y, and the
transverse momentum vector qT of the intermediate

FIG. 4. Feynman diagrams that contribute to the g�g� → qq̄V partonic channel corresponding to amplitudes MðiÞ ordered in
i ¼ 1; 2;…; 8. The black blobs in the last two diagrams denote the effective triple gluon vertex Veff ; see Appendix B for the explicit
definition.

2The so-called Collins-Ellis trick [47] is used in the
derivations.

MOTYKA, SADZIKOWSKI, and STEBEL PHYSICAL REVIEW D 95, 114025 (2017)

114025-8



electroweak boson, and the variables ðz;ϕκÞ describing the
qq̄ kinematic configuration,

dPS3ðk1 þ k2 → p3 þ p4 þ qÞ

¼ dYd2qTdzdϕκ

8ð2πÞ9 dκ2δ

�
κ2 − zð1 − zÞ

×

�
xqq̄x2S − xqq̄

M2
T

xF
− Δ2

��
; ð22Þ

where the variables z and κ are implicitly defined by the
parametrization

p3 ¼ zxqq̄P1 þ
p23

zxqq̄S
P2 þ p3⊥;

p4 ¼ ð1 − zÞxqq̄P1 þ
p24

ð1 − zÞxqq̄S
P2 þ p4⊥; ð23Þ

and

p3⊥ ¼ ð0; 0; p3Þ; p4⊥ ¼ ð0; 0; p4Þ;
p3 ¼ zΔþ κ; p4 ¼ ð1 − zÞΔ − κ; ð24Þ

Δ ¼ k1 þ k2 − q; xqq̄ ¼ x1 − xF: ð25Þ

For comparison with data it is necessary to integrate over the
phase space of the final-state quark and antiquark kinemati-

cal variables, dσðg
�g�Þ

σσ0 =dYd2qT ¼ R
dz

R
dϕκ½dσðg

�g�Þ
σσ0 =

dYd2qTdzdϕκ�.

D. Amplitudes in the Reggeized
quark-antiquark channel

For completeness, we also consider the Drell-Yan cross
sections assuming the kT factorization for quarks; see
Fig. 3(a). Hence we consider the lowest-order q�q̄�
amplitude of virtual quark-antiquark fusion into the electro-
weak boson. We apply the off-shell incoming quark
amplitudes and resulting hadronic cross sections that were
derived in Ref. [37] in the so-called quark parton
Reggeization approach. For the sea quark and antiquark
TMDs Qsea in the proton we use the following approxi-
mation [35]:

Qseaðx;p2T;μFÞ¼
1

p2T

Z
1

x

dz
z

Z
dk2TΘ

�
μ2F−

p2Tþzð1−zÞk2T
1−z

�

×
αsðμFÞ
2π

Pq�g�ðz;p2T;k2TÞF ðx;k2T;μFÞ;
ð26Þ

where the splitting function

Pq�g� ðz; p2T; k2TÞ ¼ TR

�
p2T

p2T þ zð1 − zÞk2T

�
2

×

�
ð1 − zÞ2 þ z2 þ 4z2ð1 − zÞ2 k

2
T

p2T

�
:

ð27Þ

This approximation assumes that the off-shell quark is
produced in the last step of the kT-dependent parton
evolution from a splitting of the off-shell gluon. Thus
the resulting qq̄ → V cross sections represent only the sea
quark–sea antiquark contribution and they approximate
the g�g� → qq̄V cross sections described above. For this

reason, the virtual quark-antiquark cross sections, dσðq
�q̄�Þ

σσ0

in the quark parton Reggeization approach will be used

only as a reference for the more accurate dσðg
�g�Þ

σσ0 cross
sections.

IV. GLUON TMD MODELS

In this paper selected gluon TMDs are applied in the
computations of the Drell-Yan cross sections. The param-
eterizations of the gluon TMD are the following:
(1) The Jung-Hautmann (JH) TMD, F JH. This model of

the gluon TMD is obtained [50] from the CCFM
evolution equation [24]. We use the parametrization
JH-2013-set1 from the TMDlib [51].

(2) The BFKL gluon TMD, FBFKL, that emerges from
the LO BFKL evolution [21] with parameters
adjusted to describe HERA F2 data [52]. The details
of the TMD are presented below.

(3) A new simple model of the gluon TMD that we call
the “Weizsäcker-Williams” (WW) gluon TMD,
FWW characterized by ∝ 1=k2T behavior of the gluon
TMD at large gluon transverse momenta. See the
next paragraphs for a detailed description.

(4) A quasicollinear gluon TMD FG described by a
narrow Gaussian distribution FGðx;k2TÞ¼N2ð1−xÞ7
expð−k2T=Q2

SÞ inspired by the Golec-Biernat–
Wüsthof (GBW) gluon TMD extracted from the
color dipole cross section in the GBW saturation
model, with N2¼68.4GeV−2, Q2

S ¼ GeV2ðx0=xÞλ,
x0 ¼ 3 × 10−4 and λ ¼ 0.29. The very small width
in kT of the gluon TMD is not realistic. This gluon
TMD model is used to probe the quasicollinear limit
of the DY cross sections which is useful to disen-
tangle the parton kT effects from the effects of the
emissions in the hard matrix element.

The BFKL gluon TMD FBFKLðx; k2TÞ: This TMD is
obtained [52] from a solution of the LO BFKL equation
assuming the input extracted from the GBW saturation
model [53]. Although the LO BFKL evolution equation
receives very large corrections at higher orders and the LO
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BFKL predictions were not expected to provide an accurate
description of data, the higher-order effects may be partially
absorbed by a redefinition of the model parameters and the
LO BFKL solution may be used as a reasonable QCD-
inspired model of the gluon TMD shape. In more detail, in
our realization the input at gluon x ¼ 0.1 for the BFKL
evolution comes from the GBW model and it is very
narrow in kT with a Gaussian cutoff of kT > 1 GeV. At
asymptotically small x the BFKL gluon TMD scales
according to the asymptotic BFKL anomalous dimension,
FBFKL ∼ 1=kT . For the intermediate value of x, FBFKL
interpolates between these two regimes and this should lead
to an interesting nontrivial prediction of the ALT depend-
ence on M and S.
Our model of the BFKL gluon TMD takes the following

form for x < xin:

FBFKLðx; k2TÞ ¼
ð1 − xÞ7

k2T

Z
1=2þi∞

1=2−i∞

ds
2πi

ðk2TÞs exp½ᾱsχðsÞ

× logðxin=xÞ� ~f0ðsÞ ð28Þ

where the LO BFKL eigenvalues are χðsÞ ¼ 2ψð1Þ−
ψðsÞ − ψð1 − sÞ, ψðzÞ is the digamma function, and

~f0ðsÞ ¼
Z

∞

0

dk2Tðk2TÞ−s−1fgðxin; k2TÞ

¼ N0ðQ2
0Þ−sþ1Γð2 − sÞ ð29Þ

is the inverse Mellin transform of the GBW unintegrated
gluon density fgðx; k2TÞ at the input x ¼ xin, fgðxin; k2TÞ ¼
N0k4 expð−k2T=Q2

0Þ. Note the difference in convention:
fgðx; k2TÞ ¼ k2TF ðx; k2TÞ. In the BFKL TMD model the
exact solution of the LO BFKL equation is multiplied
by a phenomenological factor ð1 − xÞ7 that has marginal
influence on the gluon TMD at small x and ensures that the
gluon TMD vanished at x → 1. For x ≥ xin, we take a
phenomenological continuation to x → 1: FBFKLðx; k2TÞ ¼
ð1 − xÞ7N0k2TR

2
0ðxÞ exp ð−k2TR2

0ðxÞÞ. The parameters of the
BFKL gluon TMD model were adjusted to describe HERA
F2 data at small x [52], and they are the following:
R2
0ðxÞ ¼ 1

GeV2 ð x
9.32×10−4Þλ, ᾱs ¼ 0.087, N0 ¼ 3.325 GeV−2,

Q0 ¼ 0.51 GeV and xin ¼ 0.1.
The WW gluon TMD FWWðx; k2TÞ: This distribution

takes the form

FWWðx;k2TÞ¼
	ðN1=k20Þð1−xÞ7ðxλk2T=k20Þ−b for k2T ≥k20;

ðN1=k20Þð1−xÞ7x−λb for k2T <k20;

ð30Þ

where k0 ¼ 1 GeV, λ ¼ 0.29 and b ¼ 1 (we introduce b as
a parameter in order to allow for its variations later on). The
kT shape of the gluon distribution is motivated by the kT

dependence of the one-gluon exchange in the t channel
between a pointlike parton and a hard probe at large
momentum transfer. Such gluon exchange behaves like
a virtual photon exchange, and hence the corresponding
virtual gluon density resembles the Weizsäcker-Williams
virtual photon density around a pointlike charge. In QCD
this picture of gluons as quanta emitted from pointlike
partons breaks down below the scale of about 1 GeV, where
the color confinement effects and/or parton coherence
effects in a hadron become important. Hence the kT
dependence of FWWðx; k2TÞ is frozen below k0 ¼ 1 GeV.
This dynamics of gluon emission from large-x partons
(predominantly the valence quarks) leading to an approx-
imately 1=k2T shape of the gluon density F was employed
in the joined DGLAP/BFKL evolution equation proposed
by Kwieciński, Martin and Staśto (KMS) in Ref. [54],
where the nonuniform terms in the gluon TMD evolution
take the 1=k2T form (up to logarithmic modifications), and
the resulting gluon TMD at moderate x also scales as 1=k2T
at larger k2T. Unfortunately, the KMS gluon TMD is not
directly applicable for gluon x > 0.01, and cannot be used
for the Z0 production at the LHC. In the analysis of the
data we also allow for different values of the parameter b
in order to probe the sensitivity of ALT for the shape of
the gluon.
Note that we also proposed an x dependence of the WW

gluon TMD. The x dependence of the gluon TMD should
come from the x profile of the sources (predominantly the
valence quarks) and from the QCD evolution. The full
study of those effects is beyond the scope of this paper,
so a simple model of the x dependence is assumed that
employs the geometric scaling property [55] at small x
where the x dependence of the factor ð1 − xÞ7 is mild and
may be neglected. The geometric scaling parameter λ was
chosen in order to match the GBW model exponent. The
factor ð1 − xÞ7 is introduced to represent the gluon dis-
tribution suppression at large x ∼ 1, and the exponent of
1 − x was chosen in accordance with the dimensional
counting rules for spectator constituents in high-energy
scattering; see e.g. the discussion in Ref. [56]. In addition
a phenomenological parameter b is introduced that
controls the kT scaling of the WW gluon TMD model
that allows to test the sensitivity of observables to the
details of the TMD shape. The normalization constant
N1 ¼ 0.889 was adjusted by comparison to recent ATLAS
data [3] on the intermediate-mass total Drell-Yan cross
section dσðγ�Þðpp → lþl−XÞ=dM, driven by the virtual
photon exchange; see Sec. V. It is important to add that
the predictions for the lepton distribution angular coeffi-
cients A0 and A2 and for ALT weakly depend on the x
dependence of gluon TMDs; they are sensitive to the details
of the shape in kT .
A comment is in order here on the applicability of the

kT-factorization framework and the existing gluon TMDs
in the region of gluon x ∼ 0.1, that contributes to the
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large-pT Z0 production at the LHC. As discussed in
Sec. III B, the necessary approximations of the general
framework do not require the limit of small gluon x; the
approximation accuracy is controlled by the ratio kT=

ffiffiffiffi
si

p
,

of the gluon transverse momentum kT to the invariant
mass of the gluon-target pair,

ffiffiffiffi
si

p ≃ ffiffiffiffiffiffiffi
xiS

p
, that stays

small enough. The existing parametrizations of the gluon
TMDs, however, are not well constrained at moderate
gluon x. The BFKL evolution is derived assuming the
small-x limit, so for gluon x ∼ 0.1 it does not provide
predictions, and one probes only the assumed input
distribution for the gluon TMD. The CCFM formalism
is not limited to the small-x domain; in particular the JH
gluon TMD parametrization was extended up to x ¼ 1
[50]. In this parametrization, however, the uncertainty of
the gluon TMD grows quickly with increasing x and in
the region of moderate gluon x is rather large. In
particular, the kT shape of the gluon JH TMD for x ∼
0.1 is practically unconstrained. This implies that our
predictions for the DY structure functions with BFKL and
JH gluon TMDs will have sizable model uncertainties.
This is not, however, a fundamental feature of the
approach, but rather the result of the observables chosen
for fits of TMDs performed so far; e.g. in Ref. [50],
the total deep inelastic scattering cross section at small x
was used. As we explicitly show in Sec. V the Drell-Yan
structure functions exhibit a strong sensitivity to
the kT shape of the gluon TMD, and therefore these
observables may be used to constrain the poorly known
region of moderate x and sizable kT of the gluon TMDs.
A step towards this goal is the proposed WW gluon
TMD, a model of kT shape of the gluon TMD, that, as it is
shown in Sec. V provides an improved description of the

Drell-Yan structure functions in Z0 production at
larger pT.

V. RESULTS

A. Lam-Tung relation breaking at the Z0 peak

Up to now the most accurate measurements of the Lam-
Tung relation breaking coefficient ALT ¼ A0 − A2 at the
LHC were performed by the ATLAS Collaboration [8] and
this is the key data set for the present analysis. Recall that
up to the NNLO approximation in QCD the predictions
obtained in the collinear framework do not describe the
ATLAS data well [8]. We consider contributions of both
partonic channels: qvalg� and g�g�. The following models of
the gluon TMD F ðx; k2; μFÞ are considered: the Jung-
Hautmann gluon, the BFKL gluon and the “Weizsäcker-
Williams” model of the gluon TMD. For reference we also
show the predictions of the Reggeized quark model. The
obtained results are compared to ATLAS data in Fig. 5(a).
In order to estimate effects of the gluon TMD shape in kT
on ALT we also analyze different simple shape models of
the gluon TMD, by altering the exponent of 1=ðk2TÞb
dependence of the WW gluon TMD from the central value
b ¼ 1 to b ¼ 0.75 and b ¼ 1.25. We also consider a
quasicollinear gluon with a narrow Gaussian profile in
kT , FGðx; k2TÞ. The results of the analysis are shown in
Fig. 5(b). In the calculations we use the NLO MMHT2014
parton distribution function parametrization [57] for the
valence quarks and the two-loop running coupling constant
αs with nf ¼ 5 flavors and αsðMZÞ ¼ 0.12. The mass of the
Z0 boson MZ ¼ 91.1876 GeV is used and in comparisons
to the ATLAS data we set

ffiffiffi
S

p ¼ 8 TeV for the observables
of the Z0 peak. In the calculations we set the factorization

(a) (b)

FIG. 5. The Lam-Tung relation breaking coefficient ALT ¼ A0 − A2 in the Collins-Soper frame for the Z0 production in pp collisions
at the LHC at

ffiffiffi
S

p ¼ 8 TeV as a function of Z0 transverse momentum pZ
T ≡ qT . The ATLAS data [8] are compared to results of

calculations obtained assuming the Reggeized q�q̄� production channel and approximate Oðαemα2s Þ kT -factorization approach,
assuming seven models of the gluon TMD; see the text for details.
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scale equal to the transverse mass of the exchanged boson,
μF ¼ MT . The renormalization scale is chosen to be equal
to μF.
Clearly, Fig. 5 shows that the Lam-Tung breaking

coefficient ALT at the Z0 peak is rather sensitive to the
gluon TMD shape, especially at large kT , where the
differences between the used models of F are largest.
This is particularly visible in Fig. 5(b) where simple
analytical parametrizations of F are tested. This means
that ALT is an excellent probe of the gluon TMD. The
quasicollinear parametrization of the gluon TMD, which
leads to much too low predictions for ALT (only about a
quarter of the measured result at best), shows that even with
the (partial) inclusion of NNLO matrix element topologies,
it is essential to take into account the incoming parton
transverse momenta. A straightforward conclusion from
Fig. 5(b) is that among the considered TMD shape models
the WW gluon leads to the best overall description of
data and its prediction is closest to ALT at large Z0 boson
transverse momentum.
In Fig. 5(a) predictions of the gluon TMD models are

shown that are based on some underlying physics mech-
anisms: the Jung-Hautmann gluon TMD based on the
CCFM evolution equation, the BFKL gluon TMD,3 the
WW model inspired by the one-gluon exchange kT profile,
and the Reggeized quark approach with the off-shell sea
quark TMDQsea obtained using the JH gluon TMD.Within
this set of models the WW gluon TMD gives the best
overall prescription of ALT, and the BFKL model is close to
the data at lower boson momenta, but falls off from the data
at larger momenta. The large differences between the
predicted ALT can be traced back to the difference of the
gluon TMD shape at moderate x ∼ 0.1, a typical value of
gluon x needed to create the qq̄Z0 state at a large Z0 boson
transverse momentum. In this region of gluon x the JH and
BFKL gluon TMDs are rather narrow in kT as a conse-
quence of the narrow, quasicollinear gluon input shapes
and small x length of the QCD evolution. Still, the
applied model of the LL BFKL evolution leads to a higher
population of the large-momentum region by the gluons.
The WW gluon, with its power-like behavior F ∼ 1=k2T at
large gluon momenta for all x is much broader in kT in the
relevant region of gluon x, and this leads to an improved
description of data. The approximation of the g�g� → qq̄V
matrix element by the Reggeized quark model with the
Reggeized quarks coming from the virtual gluon splittings
leads to the poorest description of ALT.

It should be stated that the best overall description of the
ALT data at the Z0 peak achieved with the WWmodel of the
gluon TMD is not perfect. Our predictions overestimate
the data for intermediate boson momenta and are slightly
below the data at large boson momenta. Nevertheless the
WW description of ALT is quite competitive with predic-
tions of collinear QCD at the NNLO, even when combined
with parton showers in the full-fledged Monte Carlo
simulation approaches [8]. In particular, at larger boson
qT our approach with the WW gluon TMD describes ALT
better than full NNLO QCD predictions. Certain deviations
of the description from ALT data of about 0.02–0.04 are not
surprising given the simplicity of the WW gluon TMD
model. We conclude from this analysis that both the
inclusion of gluon transverse momenta in the analysis
and a “hard” large-kT behavior of the gluon TMD at
moderate x are essential for a good description of ALT at the
Z0 peak.
It is interesting to determine the relative importance in

the Z0 production of the two considered partonic channels.
Hence in Fig. 6 we show the ratio of the qg� channel cross
section to the sum of cross sections from all channels,
Rqg ¼ σðpp → qg� → Z0XÞ=½σðpp → g�g� → Z0XÞþ
σðpp → qg� → Z0XÞ�, as a function of Z0 transverse
momentum. As seen from the figure, for the intermediate
momenta the g�g� contribution to the cross section is larger
than that of qg�, typically 0.2 < Rqg < 0.5. At large boson
transverse momentum, however, the qg� channel becomes
increasingly important and with the JH gluon TMD it
becomes dominant. The main reason for that is the
increasing values of parton x needed to produce a system
with large transverse momentum, which results in the
increasing importance of the valence quarks in this region,
and with the decreasing width in kT of the gluon TMD.

FIG. 6. Fraction Rqg of the qg� channel contribution to the Z0

cross section integrated over the lepton angles as a function of Z0

transverse momentum pZ
T ≡ qT in four models.

3Note that in Fig. 5 as well and in the next figures, the BFKL
TMD results are plotted up to qT ¼ 200 GeV. For larger qT
larger values of the gluon TMD x > 0.1 contribute significantly
in the g�g� channel where the BFKL TMD is described by a
very narrow distribution in kT which combined with nontrivial
cancellations in the matrix elements leads to a low efficiency of
numerical integration and large integration uncertainties.
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Hence it is not surprising that the estimated g�g� channel
contribution at large boson momenta is largest for the
widest WW gluon and it is smallest for the most narrow JH
gluon TMD. For completeness we also show the ratio Rqg

for the q�q̄� channel where the contribution of the g�g�
channel is replaced by the one of the q�q̄� channel.
In the last step of the ALT analysis we show in Fig. 7 the

ALT obtained assuming a contribution of only one of
the partonic channels to the DY cross sections. Thus, in
Fig. 7(a) we show the ALT obtained from the qg� channel
and in Fig. 7(b) we show the g�g� channel prediction. The
dependencies of ALT from the qg� and g�g� channel are
rather similar to each other for the BFKL gluon TMD, and

with the JH gluon TMD the g�g� channel leads to somewhat
larger values of ALT than the qg� channel. For the WW
gluon TMD the g�g� channel leads to much larger values of
ALT than the qg� channel. Combining the dominance of the
g�g� channel contribution to the total cross section in the
WW gluon model (see Fig. 6) with the content of Fig. 7 one
clearly sees that the Lam-Tung relation breaking at large
boson momenta is driven by the g�g� channel in the WW
model and this feature is essential for a good description of
ALT at large boson momenta. The Reggeized quark
approach prediction approximating the g�g� channel is
quite far from the data. For this model the qvalg� contri-
bution is the same as in the JH model.

(a) (b)

FIG. 8. The cross section for the Drell-Yan process in the low mass range in pp collisions at the LHC at
ffiffiffi
S

p ¼ 7 TeV. (a) The ATLAS
data [3] is compared to the predictions of three models. (b) The contributions of the partonic channels are plotted: the g�g� channel
(upper curves) and the qvalg� channel (lower curves).

(a) (b)

FIG. 7. The Lam-Tung relation breaking coefficient ALT ¼ A0 − A2 in partonic channels as a function of Z0 transverse momentum
pZ
T ≡ qT : (a) the qvalg� → qZ0 channel, and (b) the g�g� → qq̄Z0 channel.
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B. Tests of the approach: dσðγ�Þðpp → l + l −XÞ=dM,
A0 and A2

The approach taken in the paper is based on some
approximations, and our best description of the Lam-Tung
relation breaking is based on a newWWmodel of the gluon
TMD shape. Thus it is necessary to check whether the
chosen approach predictions are also consistent with other
Drell-Yan observables. For the checks we select the total
Drell-Yan cross section at the LHC with the intermediate
virtual photon, dσðγ�Þðpp → lþl−XÞ=dM, and the coeffi-
cients A0 and A2 of the angular lepton distributions at the
Z0 peak.
In Fig. 8(a) we show descriptions of dσðγ�Þðpp →

lþl−XÞ=dM obtained with the JH, BFKL and WW gluon
TMDs. In this mass region the Z0 contribution is small and
we neglect it. We show the ATLAS data extrapolated to the
full acceptance [3]. In the calculations with the JH and

BFKL gluon TMDs a K-factor was applied that partially
accounts for resummed higher-order QCD corrections. The
motivation to use an approximate K-factor of the form of
K ¼ expðπCFαsðμqÞ=2Þ in the DY cross section calculation
with the optimal choice of the scale μq ¼ ðqTM2Þ1=3, was
given in Refs. [34,58] and this K-factor was successfully
applied in several analyses of the DY process at high
energies; see e.g. Refs. [34,37,38]. In our analysis we do
not impose the full qT dependence of theK-factor but select
a global, average value K ¼ 1.5 instead. For the WW
model the gluon normalization was not constrained by the
analysis of ALT, and in order to fix it we use the data for
dσðγ�Þðpp → lþl−XÞ=dM. For simplicity, the K-factor is
absorbed here into the WW gluon normalization. A
reasonably good description of the data is obtained with
all three models of the gluon TMD; however the JH TMD
leads to a slightly too steepM dependence. The WW gluon

(a) (b)

(c) (d)

FIG. 9. Coefficients A0 and A2 in the Collins-Soper frame for the Z0 production in pp collisions at the LHC at
ffiffiffi
S

p ¼ 8 TeV as a
function of Z0 transverse momentum pZ

T ≡ qT . The ATLAS data [8] are compared to results of the approximate Oðαemα2s Þ
kT-factorization approach, assuming different gluon TMD models: (a) the WW TMD, (b) the Jung-Hautmann TMD, (c) the BFKL
TMD, and (d) the q�q̄� production mechanism.
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TMD leads to an M dependence that is consistent with the
data. In Fig. 8(b), the partonic channel contributions of g�g�
and qg� are displayed separately for the three gluon TMD
models. In the considered DY pair mass range the g�g�
channel is the dominant one; its contribution is a factor of a
few greater than the contribution of the qg� channel.
Finally we consider the coefficients A0 and A2 at the Z0

peak; see Fig. 9. The ATLAS data are compared with
predictions obtained with the WW gluon TMD in Fig. 9(a),
the JH gluon TMD in Fig. 9(b), the BFKL gluon TMD in
Fig. 9(c), and with the predictions of the Reggeized quark
model in Fig. 9(d). All of the models’ predictions have
similar shapes to the data but they do not describe the data
within experimental errors. Among these models the best
simultaneous description of A0 and A2 is obtained with the
WW gluon TMD. This model’s results agree with the data
for both A0 and A2 within errors except for a region of
intermediate Z0 boson momenta, between 5 and 50 GeV,
where the WW model slightly overestimates the data for
both coefficients.
To summarize, from the simultaneous analysis of ALT, A0

and A2 at the Z0 peak and dσðγ�Þðpp → lþl−XÞ=dM one
concludes that the proposed WW model of the gluon TMD
describes all of these observables reasonably well, and
provides a competitive (or the best) description among the
studied models of the data over most of the kinemati-
cal range.

VI. DISCUSSION

The main conclusions coming from the analysis of the
Lam-Tung relation breaking at the Z0 peak within an
approximate Oðαemα2s Þ kT-factorization approach are the
following: (i) the gluon off-shellness effects have an essential
impact on ALT up to the NNLO in QCD; (ii) the angular
distributions of Drell-Yan dileptons provide a sensitive probe
of the gluon TMD with high discrimination power; (iii) for a
correct description of the Lam-Tung relation breaking at
large boson momenta it is essential to use a gluon TMDwith
a hard ∼1=k2T behavior at large kT .
The validity of these conclusions relies upon the important

assumption of our approach that the performed selection of
the NNLO contributions does not affect the results signifi-
cantly. In fact, on top of the applied high-energy approxi-
mation, the terms of qvalg� → qgV and one-loop corrections
to qvalg� → qV are not taken into account. These terms were
not treated in the present paper as the one-loop computations
in the kT-factorization framework still pose a serious theo-
retical challenge that deserves a separate study. It may be
argued, however, that the neglected terms should not alter our
main conclusions. The key argument comes from the
dominance of the g�g� → qq̄V channel over the qvalg� →
qV̄ channel in the total Drell-Yan cross section at theZ0 peak
over most of the boson transverse momentum range; see
Fig. 6. Next, the one-loop corrections to qvalg� → qV and the

contribution of the NNLO channel qvalg� → qgV combine
together into the OðαsÞ correction to the qvalg� → qV
channel (performing this combination is necessary, as it is
needed for the cancellation of infrared divergences). So, the
two neglected contributions of the NNLO enter only as a
OðαsÞ correction to a subdominant partonic channel.
Therefore neglecting these terms should have only a limited
impact on the predicted observables and should not affect the
main features of the result. Moreover the approximation
applied should work with even better accuracy for smaller
DY dilepton masses and/or for larger beam collision energyffiffiffi
S

p
. Still it is a natural and desired direction of further

analysis to complete the calculation of the NNLO Drell-Yan
cross section in the kT-factorization framework.
The description of ALT obtained in this paper is not perfect

yet and the application of a phenomenological model of the
gluon TMD for the best description is not fully satisfactory.
The next steps in this direction should be to combine the
extracted information on the relevance of the Weizsäcker-
Williams picture of the gluon TMD emerging as conse-
quence of the gluon emissions from the pointlike partons at
larger x, with QCD evolution equations for the off-shell
gluon density. This may be done e.g. by an extension of the
KMS formalism to larger x or by suitably adjusting the input
and nonuniform terms in the gluon TMD evolution.
It is interesting to note that the approximation of the

g�g� → qq̄V matrix element by a hard matrix element with
virtual quarks q�q̄� → V preceded by the splitting of the
off-shell gluons, g� → q� and g� → q̄�, does not work well
in theoretical estimates of A0, A2 and ALT. It should be
interesting to identify the reason why this approximation is
not accurate in this application.
Taking into account the variety and precision of the

already performed and coming measurements of DY lepton
observables and their sensitivity to the gluon TMD features,
DY process should serve as the key data set for constraining
parton transverse momentum distributions.
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APPENDIX A: TRANSFORMATION FROM THE
GOTTFRIED-JACKSON HELICITY FRAME TO

THE COLLINS-SOPER FRAME

The transformation of the Drell-Yan cross sections in the
helicity basis from the Gottfried-Jackson [46] helicity
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frame to the Collins-Soper frame [44] is described by a linear transformation. In Sec. III C this transformation is denoted by
Rττ0 . The explicit form of the transformation is the following:

dσðqg
�Þ

L ¼ M2d ~σðqg
�Þ

L þ 2MqTd ~σ
ðqg�Þ
LT þ ðd ~σðqg�ÞT − d ~σðqg

�Þ
TT Þq2T

M2
T

;

dσðqg
�Þ

T ¼ M2d ~σðqg
�Þ

T −MqTd ~σ
ðqg�Þ
LT þ ðd ~σðqg�ÞL þ d ~σðqg

�Þ
T þ d ~σðqg

�Þ
TT Þq2T=2

M2
T

;

dσðqg
�Þ

TT ¼ M2d ~σðqg
�Þ

TT þMqTd ~σ
ðqg�Þ
LT þ ð−d ~σðqg�ÞL þ d ~σðqg

�Þ
T þ d ~σðqg

�Þ
TT Þq2T=2

M2
T

;

dσðqg
�Þ

LT ¼ ðq2T −M2Þd ~σðqg�ÞLT þMqTðd ~σðqg
�Þ

L − d ~σðqg
�Þ

T þ d ~σðqg
�Þ

TT Þ
M2

T
: ðA1Þ

APPENDIX B: IMPACT FACTORS OF DIAGRAMS CONTRIBUTING TO THE g�g� → qq̄V PROCESS

The impact factors corresponding to the diagrams shown in Fig. 4 are the following:

T ð1Þ
μ ¼ eefg2s ū

i3
r3ðp3ÞðtatbÞ

�
γμ

v̂1
v21

P̂1

v̂2
v22

P̂2

�
vi4r4ðp4Þ;

T ð2Þ
μ ¼ eefg2s ū

i3
r3ðp3ÞðtatbÞ

�
P̂1

v̂3
v23

γμ
v̂2
v22

P̂2

�
vi4r4ðp4Þ;

T ð3Þ
μ ¼ eefg2s ū

i3
r3ðp3ÞðtatbÞ

�
P̂1

v̂3
v23

P̂2

v̂4
v24

γμ

�
vi4r4ðp4Þ;

T ð4Þ
μ ¼ eefg2s ū

i3
r3ðp3ÞðtbtaÞ

�
γμ

v̂1
v21

P̂2

v̂5
v25

P̂1

�
vi4r4ðp4Þ;

T ð5Þ
μ ¼ eefg2s ū

i3
r3ðp3ÞðtbtaÞ

�
P̂2

v̂6
v26

γμ
v̂5
v25

P̂1

�
vi4r4ðp4Þ;

T ð6Þ
μ ¼ eefg2s ū

i3
r3ðp3ÞðtbtaÞ

�
P̂2

v̂6
v26

P̂1

v̂4
v24

γμ

�
vi4r4ðp4Þ;

T ð7Þ
μ ¼ −ieefg2s

Vα
eff

ðk1 þ k2Þ2
fabcūi3r3ðp3Þtc

�
γμ

v̂1
v21

γα

�
vi4r4ðp4Þ;

T ð8Þ
μ ¼ −ieefg2s

Vα
eff

ðk1 þ k2Þ2
fabcūi3r3ðp3Þtc

�
γα

v̂4
v24

γμ

�
vi4r4ðp4Þ; ðB1Þ

where the three-gluon effective vertex is given by [48]

Vα
eff ¼

S
2
ðkα2 − kα1Þ þ

�
2P2 · k1 þ

P1 · P2

P1 · k2
k21

�
Pα
1 −

�
2P1 · k2 þ

P1 · P2

P2 · k1
k22

�
Pα
2; ðB2Þ

the four momenta carried by the intermediate lines are

v1 ¼ p3 þ q; v2 ¼ p3 þ q − k1; v3 ¼ p3 − k1; ðB3Þ

v4 ¼ p3 − k1 − k2; v5 ¼ p3 þ q − k2; v6 ¼ p3 − k2; ðB4Þ

and ta are Gell-Mann matrices. The quark spinors ui3r3 and v
i4
r4 carry helicities r3 and r4, and colors i3 and i4. Gluon colors are

denoted by a and b for the external gluons and c for the exchanged gluon. Note that we consistently assume a zero mass for
the quarks. In the above formulas we adopted the notation v̂ ¼ vμγμ. Our result agrees with expressions from Refs. [41]
and [42].
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