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The transport coefficients of quark matter at nonzero chemical potential and temperature are computed
within the two-flavor Nambu–Jona-Lasinio model. We apply the Kubo formalism to obtain the thermal (κ)
and electrical (σ) conductivities as well as an update of the shear viscosity (η) by evaluating the
corresponding equilibrium two-point correlation functions to leading order in the 1=Nc expansion. The
Dirac structure of the self-energies and spectral functions is taken into account as these are evaluated from
the meson-exchange Fock diagrams for on-mass-shell quarks. We find that the thermal and electrical
conductivities are decreasing functions of temperature and density above the Mott temperature TM of
dissolution of mesons into quarks, the main contributions being generated by the temporal and vector
components of the spectral functions. The coefficients show a universal dependence on the ratio T=TM

for different densities, i.e., the results differ by a chemical-potential dependent constant. We also show that
the Wiedemann-Franz law for the ratio σ=κ does not hold. The ratio η=s, where s is the entropy density, is
of order of unity (or larger) close to the Mott temperature and, as the temperature increases, approaches
the AdS=CFT bound 1=4π. It is also conjectured that the ratio κT=cV , with cV being the specific heat, is
bounded from below by 1=18.
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I. INTRODUCTION

The transport coefficients of strongly interacting matter
in the regime where quarks are liberated to form an
interacting quark-gluon plasma are of interest in a number
of contexts. The high-temperature and low-density regime
of the phase diagram of deconfined QCDmatter is explored
by heavy-ion collision experiments at RHIC and LHC, the
collective dynamics of which is well described by hydro-
dynamical models with an extremely low value of the shear
viscosity [1–9]. The high-density and low-temperature
regime of the phase diagram is of great interest in the
astrophysics of compact stars, where transport coefficients
of deconfined QCD matter are an important input in
modelling an array of astrophysical phenomena [10–13].
The intermediate regime of moderately dense and cold
deconfined QCD matter, which is targeted by the FAIR
program at GSI [14] and the NICA facility at JINR [15],
provides a further motivation for studies of the transport
coefficients in moderately dense QCD matter close to the
chiral phase-transition line.
The nonperturbative nature of QCD in the phenomeno-

logically interesting regimes mentioned above precludes
the computation of the transport coefficients in full QCD,

therefore effective models that capture its low-energy
dynamics are required. In this work we use the Nambu–
Jona-Lasinio (NJL) model [16,17], which provides a well-
tested framework of low-energy QCD for studies of
vacuum and in-matter properties of ensembles of quarks
[18–20]. Because it captures the dynamical chiral sym-
metry-breaking feature of QCD it is most suited for the
studies of transport coefficients in the vicinity of the chiral
phase transition, where the elementary processes contrib-
uting to the scattering-matrix elements are dominated by
mesonic fluctuations.
The transport formalism based on the Boltzmann equa-

tion for the quark distribution functions can be applied to
strongly interacting ensembles in the limit where the
quasiparticle concept is applicable; in that case the collision
integral is dominated by two-body collisions between
quarks moving in a mean-field between collisions. In this
work we use the Kubo-Zubarev formalism [21,22] as an
alternative, in which the transport coefficients are computed
from equilibrium correlation functions at nonzero temper-
ature and density. It provides a general framework valid for
a strongly interacting system, which is characterized by
nontrivial spectral functions, but requires a resummation of
an infinite series of diagrams in order to obtain the correct
scaling of the transport coefficients with the coupling (even
in the weak-interaction regime).
The understanding of the elliptic flow observed at

heavy-ion collider experiments in terms of dissipative
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hydrodynamics, in particular the description of the elliptic
flow by a low shear viscosity-to-entropy density ratio of the
deconfined quark phase stimulated extensive studies of the
shear viscosity of strongly interacting matter. Transport
coefficients of QCD matter have been investigated using
various methods including perturbative QCD [23–30],
equilibrium correlation functions within the Kubo formal-
ism [31–38], transport simulations of the Boltzmann
equation [39–42], relaxation-time approximation to the
Boltzmann equation [43–46], lattice methods [47–52]
and holographic methods [53–58] with the main emphasis
on the low values of the shear viscosity-to-entropy density
ratio indicated by the hydrodynamical modeling of heavy-
ion collision experiments [1–9]. The shear viscosity of
quark matter was computed within the NJL model using the
Kubo formalism by several authors [32–37]. The problem
of the resummation of an infinite series of loops required to
obtain the finite-temperature correlation functions of quark
matter is simplified by applying a 1=Nc power-counting
scheme [59], where Nc is the number of colors. At leading
order the resummation then reduces to keeping a single-
loop diagram with full (dressed) propagators. Close to the
chiral phase transition the quark self-energies are domi-
nated by processes involving mesonic fluctuations, which
can be obtained within the NJL model consistent with the
two-point correlation functions.
In this work we compute the transport coefficients of

quark matter at nonzero temperature and density within the
NJL model and the Kubo-Zubarev formalism. Our main
results concern the electrical and thermal conductivities of
quark matter within the setup appropriate for relativistic
quantum fields [60,61]. These would enter the hydrody-
namical description of a dense quark-gluon plasma in the
cases where thermal and charge relaxations play a phe-
nomenological role. We discuss and update for complete-
ness the shear viscosity of quark matter which was already
studied in Refs. [32–35]. We consider the regime where the
quark self-energies are dominated by mesonic fluctuations,
i.e., the regime close to the chiral phase-transition line,
which is relevant for heavy-ion collisions. Although our
method and results can be straightforwardly applied to the
dense and cold regime of compact stars, a number of
factors, such as nonzero isospin, color superconductivity,
and the presence of leptons, would require additional effort.
The paper is organized as follows. Section II derives the

expressions for the thermal and electrical conductivities
from the Kubo-Zubarev formalism. In Sec. III we discuss
the quark and meson masses within the two-flavor NJL
model and derive the spectral function of quarks taking into
account the Dirac structure of the self-energies. Numerical
results for the transport coefficients are given in Sec. IV.
Our results are summarized in Sec. V. Appendix A is
devoted to the equilibrium properties of the two-flavor NJL
model, Appendix B computes the quark self-energy due to
meson exchange, and finally Appendix C lists some of the

relevant thermodynamic relations used in our computa-
tions. We use natural (Gaussian) units with ℏ ¼ c ¼ kB ¼
ke ¼ 1, e¼ ffiffiffiffiffiffiffiffi

4πα
p

, α ¼ 1=137, and the metric signature
ðþ;−;−;−Þ.

II. KUBO FORMULAS FOR
TRANSPORT COEFFICIENTS

The Kubo-Zubarev formalism relates the transport proper-
ties of a statistical ensemble to different types of equilibrium
correlation functions, which in turn can be computed using
equilibrium many-body techniques [21,22]. We start our
discussion with the Lagrangian of the underlying effective
model, as it will specify the power counting required for the
computation of the two-point correlation functions.

A. Lagrangian

We consider two-flavor quark matter described by the
NJL Lagrangian of the form

L ¼ ψ̄ði∂ −m0Þψ þG
2
½ðψ̄ψÞ2 þ ðψ̄iγ5τψÞ2�; ð1Þ

where ψ ¼ ðu; dÞT is the isodoublet quark field, m0 ¼
5.5 MeV is the current quark mass, G ¼ 10.1 GeV−2 is
the effective four-fermion coupling constant, and τ is the
vector of Pauli isospin matrices. This Lagrangian describes
four-fermion scalar-isoscalar and pseudoscalar-isovector
interactions between quarks with the corresponding bare
vertices Γ0

s ¼ 1 and Γ0
ps ¼ iτγ5. The symmetrized energy-

momentum tensor is given in the standard fashion by

Tμν ¼
i
2
ðψ̄γμ∂νψ þ ψ̄γν∂μψÞ − gμνL; ð2Þ

and the quark-number and charge currents are defined as

Nμ ¼ ψ̄γμψ ; Jμ ¼ ψ̄ Q̂ γμψ ; ð3Þ

where

Q̂ ¼ e

�
2=3 0

0 −1=3

�
ð4Þ

is the charge matrix in flavor space, with e being the
elementary charge. The expression for the energy-momentum
tensor (2) is symmetric in its indices; this form is necessary
for the implementation in the Kubo formulas.

B. Thermal and electrical conductivities

Within the Kubo-Zubarev approach the thermal and
electrical conductivities are given by

κ ¼ −
β

3

d
dω

ImΠR
κ ðωÞjω¼0; ð5Þ
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σ ¼ −
1

3

d
dω

ImΠR
σ ðωÞjω¼0; ð6Þ

where β ¼ T−1 is the inverse temperature, and the retarded
correlation functions on the right-hand sides are defined
as [22,61]

ΠR
κ ðωÞ ¼ i

Z
∞

0

dteiωt
Z

drh½qμðr; tÞ; qμð0Þ�i0; ð7Þ

ΠR
σ ðωÞ ¼ i

Z
∞

0

dteiωt
Z

drh½jμðr; tÞ; jμð0Þ�i0; ð8Þ

i.e., they are the statistical averages of commutators
(denoted by ½·; ·�) of the heat and electrical currents defined,
respectively, as

qμ ¼ ΔμαuβTαβ − hΔμαNα; ð9Þ

jμ ¼ ΔμαJα: ð10Þ

Here uβ is the 4-velocity of the fluid, Δμν ¼ gμν − uμuν is
the projector on the direction transverse to the fluid
velocity, h is the enthalpy per particle, and the energy-
momentum tensor Tμν is assumed to be symmetric in its
indices. Note that the heat current (9) differs from the net
energy flow by the particle-convection term ∝ h.
Equations (5)–(8) apply to arbitrary quantum statistical

ensembles without restrictions on the strength of the cou-
plings of the underlying theory. In the following we will
derive more specific expressions suitable for the NJL model
with contact scalar and pseudo-scalar couplings among
quarks by applying the1=Nc expansion to select the dominant
diagrams contributing to the correlation functions.
It is convenient to evaluate the correlation functions of

interest using the thermal equilibrium Green’s functions of
the imaginary-time Matsubara technique. In the fluid rest
frame uμ ¼ ð1; 0; 0; 0Þ,Δμν ¼ diagð0;−1;−1;−1Þ, and the
Matsubara correlation functions read

ΠM
κ ðωnÞ ¼ ΠM

TTðωnÞ − 2hΠM
TNðωnÞ þ h2ΠM

NNðωnÞ;
ð11Þ

−
1

3
ΠM

TTðωnÞ ¼
Z

β

0

dτeiωnτ

Z
drhTτðT01ðr; τÞ; T01ð0ÞÞi0;

ð12Þ

−
1

3
ΠM

TNðωnÞ ¼
Z

β

0

dτeiωnτ

Z
drhTτðT01ðr; τÞ; N1ð0ÞÞi0;

ð13Þ

−
1

3
ΠM

NNðωnÞ ¼
Z

β

0

dτeiωnτ

Z
drhTτðN1ðr; τÞ; N1ð0ÞÞi0;

ð14Þ

−
1

3
ΠM

σ ðωnÞ ¼
Z

β

0

dτeiωnτ

Z
drhTτðJ1ðr; τÞ; J1ð0ÞÞi0; ð15Þ

where T01ðr; τÞ, N1ðr; τÞ, and J1ðr; τÞ are obtained from
T01ðr; tÞ, N1ðr; tÞ, and J1ðr; tÞ via Wick rotation t → −iτ,
Tτ is the time-ordering operator for imaginary time τ, and
the factor 3 arises from summation over the directions of
isotropic three-dimensional space. In Eq. (11) we decom-
posed the thermal current according to Eq. (9) and used the
symmetry of the correlation function with respect to its
arguments [61]. The required retarded correlation functions
(7) and (8) can be obtained from (11)–(15) by analytic
continuation iωn → ωþ iδ. Note that the transformation to
imaginary time implies a change of the derivative ∂0 → i∂τ.
Because Tμν, and therefore also Nμ and Jμ, are bosonic
operators, the Matsubara frequencies assume even integer
values ωn ¼ 2πnT, n ¼ 0;�1;…. The T01 component of
Eq. (2) is given by

T01ðr; τÞ ¼ iψ̄ðr; τÞ γ0
2
∂1ψðr; τÞ þ iψ̄ðr; τÞ γ1

2
i∂τψðr; τÞ:

Substituting T01ðr; τÞ, N1ðr; τÞ, and J1ðr; τÞ into
Eqs. (11)–(15) we obtain

−
1

3
ΠM

TTðωnÞ ¼
X
α;α0

Z
β

0

dτeiωnτ

×
Z
dr
�
Tτ

�
iψ̄

γμ
2
∂αψ jðr;τÞ; iψ̄

γμ0

2
∂α0ψ j0

��
0

;

ð16Þ

−
1

3
ΠM

TNðωnÞ ¼
X
α

Z
β

0

dτeiωnτ

×
Z

dr
�
Tτ

�
iψ̄

γμ
2
∂αψ jðr;τÞ; ψ̄γ1ψ j0

��
0

;

ð17Þ

−
1

3
ΠM

NNðωnÞ ¼
Z

β

0

dτeiωnτ

Z
drhTτðψ̄γ1ψ jðr;τÞ; ψ̄γ1ψ j0Þi0;

ð18Þ

−
1

3
ΠM

σ ðωnÞ ¼
Z

β

0

dτeiωnτ

×
Z

drhTτðψ̄ Q̂ γ1ψ jðr;τÞ; ψ̄ Q̂ γ1ψ j0Þi0;

ð19Þ

where α;α0; μ; μ0 assume values 1,0, with μ ≠ α; μ0 ≠ α0,
i.e., the sums in Eqs. (16) and (17) contain four and two
terms, respectively.
To select the relevant diagrams contributing to the

correlation functions we apply the 1=Nc power-counting
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scheme, in which each loop contributes a factor of Nc
from the trace over color space [32–37,59]. Each coupling
G (which is associated with a pair of Γ0

s=ps matrices)
contributes a factor of 1=Nc. Therefore, for any given
number of Γ0

s=ps vertices the leading diagram in the 1=Nc

approximation is the one that has the maximum number of
loops. Figure 1 shows the diagrammatic expansion for the
two-point correlation function, which we define in a
generic form

Παα0
μμ0 ðωnÞ ¼

Z
β

0

dτeiωnτ

×
Z
drhTτðiψ̄γμ∂αψ jðr;τÞ; iψ̄γμ0∂α0ψ j0Þi0; ð20Þ

where ∂α ¼ ði∂τ; ∂iÞ. The diagrams are arranged accord-
ing to the 1=Nc expansion. The first line contains a loop
and no coupling G and is of order Nc; the second line
contains two loops and a coupling, and therefore is again
of order of Nc; the third line, which contains a loop and a
coupling, is of order of N0

c. Thus, the correlation function
(20) in the leading [OðN1

cÞ] order is given by a sum of
loop diagrams which contain the single-loop contribution
(first line in Fig. 1)

T
X
l

Z
dp

ð2πÞ3 p
αpα0Tr½γμGðp; iωl þ iωnÞγμ0Gðp; iωlÞ�;

ð21Þ

plus multiloop contributions which necessarily contain
loop contributions of the type

T
X
l

Z
dp

ð2πÞ3 p
αTr½γμGðp; iωl þ iωnÞΓ0

s=psGðp; iωlÞ�;

ð22Þ

see the second line in Fig. 1. Here Gðp; iωlÞ is the dressed
Matsubara Green’s function of quarks, the summation goes
over fermionic Matsubara frequencies ωl ¼ πð2lþ 1ÞT −
iμ, l ¼ 0;�1;…, with temperature T and chemical
potential μ; (in isospin-symmetric two-flavor quark matter
there is a single chemical potential for both u and d
quarks). The traces should be taken in Dirac, color, and
flavor space. The Lorentz structure of the Green’s function
implies that (a) diagrams of type (22) with pseudoscalar
vertices vanish due to the trace over the Dirac space and
(b) those with scalar vertices vanish if α ≠ μ, because the
integrand has an odd power of momentum, which implies
that the momentum integral vanishes in isotropic momen-
tum space. Thus, the only term contributing to Eq. (16) is
the one-loop expression (21). In the same way one can see
that the multiloop diagrams vanish also for the other three
correlation functions (17)–(19). Thus, for the correlation
functions (16)–(19) we obtain

1

3
ΠM

TTðωnÞ ¼
T
4

X
l

X
α;α0

Z
dp

ð2πÞ3 pαpα0

× Tr½γμGðp; iωl þ iωnÞγμ0Gðp; iωlÞ�; ð23Þ

1

3
ΠM

TNðωnÞ ¼
T
2

X
l

X
α

Z
dp

ð2πÞ3 pα

× Tr½γ1Gðp; iωl þ iωnÞγμGðp; iωlÞ�; ð24Þ

1

3
ΠM

NNðωnÞ ¼ T
X
l

Z
dp

ð2πÞ3

× Tr½γ1Gðp; iωl þ iωnÞγ1Gðp; iωlÞ�; ð25Þ

1

3
ΠM

σ ðωnÞ¼T
X
l

Z
dp

ð2πÞ3

×Tr½Q̂γ1Gðp;iωlþ iωnÞQ̂γ1Gðp;iωlÞ�; ð26Þ
where pα; pα0 assume values p1 and p0 ¼ iωl þ iωn=2.
Note that the expressions (23)–(26) are valid in a wider
context, i.e., in any relativistic theory (both bosonic and
fermionic) where the single-loop (skeleton) diagram with
fully dressed propagators constitutes the leading-order
contribution in the power-counting scheme.
The Matsubara summations appearing in these expres-

sions can be cast into the general form

Sμν½f�ðp; iωnÞ ¼ T
X
l

Tr½γμGðp; iωl þ iωnÞ

× γνGðp; iωlÞ�fðiωl þ iωn=2Þ; ð27Þ

where fðzÞ ¼ zn with n ¼ 0, 1, 2. The summation is
standard upon introducing the spectral representation of
the temperature Green’s functions

FIG. 1. Contributions to the two-point correlation functions
from OðN1

cÞ (first and second lines) and OðN0
cÞ (the third line)

diagrams which contain a single interaction line G.
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Gðp; zÞ ¼
Z

∞

−∞
dε

Aðp; εÞ
z − ε

; ð28Þ

where the spectral function is given by

Aðp; εÞ ¼ −
1

2πi
½GRðp; εÞ −GAðp; εÞ�; ð29Þ

and GR=A are the retarded/advanced Green’s functions.
After summation and subsequent analytical continuation
iωn → ωþ iδ we find

Sμν½f�ðp;ωÞ¼
Z

∞

−∞
dε

Z
∞

−∞
dε0Tr½γμAðp;ε0ÞγνAðp;εÞ�

×
~nðεÞfðεþω=2Þ− ~nðε0Þfðε0−ω=2Þ

ε−ε0 þωþ iδ
; ð30Þ

where nðεÞ ¼ ½eβðε−μÞ þ 1�−1 is the Fermi distribution
function and ~nðεÞ ¼ nðεÞ − 1=2. Substituting this result
into the correlation functions (23)-(26) we obtain compact
expressions in terms of Eq. (30)

1

3
ΠTTðωÞ ¼

1

4

Z
dp

ð2πÞ3 fp
2
1S00½f ¼ 1� þ 2p1S01½f ¼ ε�

þ S11½f ¼ ε2�gðp;ωÞ; ð31Þ

1

3
ΠTNðωÞ ¼

1

2

Z
dp

ð2πÞ3 fp1S10½f ¼ 1� þ S11½f ¼ ε�gðp;ωÞ;

ð32Þ

1

3
ΠNNðωÞ ¼

Z
dp

ð2πÞ3 S11½f ¼ 1�ðp;ωÞ; ð33Þ

1

3
ΠσðωÞ ¼

1

3
ΠNNðωÞ ×

TrQ̂2

Nf
; ð34Þ

withNf being the number of flavors. These expressions can
now be substituted into Eqs. (5) and (6) to find the thermal
and electrical conductivities. It is, however, convenient to
first separate the real and imaginary parts in Eq. (30) via the
Dirac identity in order to find the required ω → 0 limit. We
find from Eq. (30)

d
dω

ImSμν½f�ðp;ωÞjω¼0 ¼ π

Z
∞

−∞
dε

∂nðεÞ
∂ε fðεÞT μνðp; εÞ;

ð35Þ

where

T μνðp; εÞ≡ Tr½γμAðp; εÞγνAðp; εÞ�: ð36Þ

Using expressions (31)–(36) we finally obtain from
Eqs. (5) and (6)

κ ¼ −
π

4T

Z
∞

−∞
dε

∂nðεÞ
∂ε

Z
dp

ð2πÞ3 ½p
2
1T 00ðp; εÞ

þ 2p1ðε − 2hÞT 01ðp; εÞ þ ðε − 2hÞ2T 11ðp; εÞ�; ð37Þ

σ ¼ −πTr
TrQ̂2

Nf

Z
∞

−∞
dε

∂nðεÞ
∂ε

Z
dp

ð2πÞ3 T 11ðp; εÞ: ð38Þ

Thus, the problem of computing the transport coefficients
reduces to the determination of the spectral function of
the quarks followed by computing the components of the
trace T μνðp; εÞ.
The quark spectral function in an isotropic medium has

a general decomposition in terms of Lorentz-invariant
components,

Aðp; p0Þ ¼ −
1

π
ðmAs þ p0γ0A0 − p · γAvÞ; ð39Þ

where the coefficients As; A0; Av are expressed in terms
of the analogous components of the self-energy in
Appendix A. Substituting the decomposition (39) into
Eqs. (37) and (38) we obtain

κ ¼ −
NcNf

πT

Z
∞

−∞
dε

∂nðεÞ
∂ε

×
Z

dp
ð2πÞ3 fp

2
1ðA2

sm2 þ A2
0ε

2 þ A2
vp2Þ

þ 4p2
1εðε − 2hÞA0Av − ðε − 2hÞ2

× ðA2
sm2 − A2

0ε
2 þ A2

vp2 − 2A2
vp2

1Þg; ð40Þ

σ ¼ −
4Nc

π
TrQ̂2

Z
∞

−∞
dε

∂nðεÞ
∂ε

×
Z

dp
ð2πÞ3 ð−A

2
sm2 þ A2

0ε
2 − A2

vp2 þ 2A2
vp2

1Þ; ð41Þ

where we summed over the quark flavor (Nf) and color
(Nc) numbers. Finally we note that the Lorentz-invariant
coefficients As; A0; Av of the decomposition of the spectral
function depend only on p2 and ε (see Appendix A),
therefore the angular integration can be done trivially by
substituting p2

1 → p2=3≡ p2=3, after which we finally
obtain

κ ¼ −
NcNf

6π3T

Z
∞

−∞
dε

∂n
∂ε

Z
Λ

0

dpp2f½A2
sðp; εÞm2

− A2
0ðp; εÞε2 þ A2

vðp; εÞp2�½p2 − 3ðε − 2hÞ2�
þ 2½A0ðp; εÞεþ Avðp; εÞðε − 2hÞ�2p2g; ð42Þ

σ ¼ 40Ncα

27π2

Z
∞

−∞
dε

∂n
∂ε

Z
Λ

0

dpp2½3A2
sðp; εÞm2

− 3A2
0ðp; εÞε2 þ A2

vðp; εÞp2�; ð43Þ
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where Λ ¼ 650 MeV is the ultraviolet cutoff of the NJL
model. Given the Lorentz components of the spectral
function we are in a position to compute the thermal
and electrical conductivities of two-flavor quark matter
using our final expressions (42) and (43).

C. Shear viscosity

Within the Kubo formalism the shear viscosity is given
as [60]

η ¼ −
1

10

d
dω

ImΠR
η ðωÞjω¼0; ð44Þ

where the retarded correlation function has the form

ΠR
η ðωÞ ¼ −i

Z
∞

0

dteiωt
Z

drh½πμνðr; tÞ; πμνð0Þ�i0; ð45Þ

with πμν being the shear-viscosity tensor, defined as

πμν ¼ Δαβ
μνTαβ; ð46Þ

where

Δαβ
μν ¼ Δα

μΔ
β
ν þ Δβ

μΔα
ν

2
−
1

3
ΔμνΔαβ: ð47Þ

It is useful to note that Δαβ
μνgαβ ¼ 0 by definition, therefore

the component of the energy-momentum tensor (2) con-
taining gμν does not contribute to Eq. (46).

In the fluid rest frame Δj
i ¼ δij, Δ0

0 ¼ Δj
0 ¼ 0, where i,

j ¼ 1, 2, 3, and δij is the Kronecker symbol. In this frame
only the spatial components of Eq. (46), πij ¼ Tij −
δijTmm=3, are nonzero. Then, the two-point correlation
function (45) takes the form

ΠR
η ðωÞ ¼ −2i

Z
∞

0

dteiωt
Z

drh½T11; T11�

− ½T11; T22� þ 3½T12; T12�i0; ð48Þ

where we took into account the isotropy of the medium
and for the sake of brevity omitted the arguments of the
Tij tensors. Note that the commutator ½T11; ðT11 − T22Þ� is
manifestly nonzero at the operator level, and a computation
shows that its statistical average does not vanish in an
isotropic medium and cannot be neglected. The Matsubara
counterpart of this retarded two-point function is given by

ΠM
η ðωnÞ ¼ −2

Z
β

0

dτeiωnτ

Z
drhTτðT11ðr; τÞT11ð0Þ

− T11ðr; τÞT22ð0Þ þ 3T12ðr; τÞT12ð0ÞÞi0: ð49Þ

We next compute the components of the energy-momentum
tensor contributing to Eq. (49), which leads to the expression

ΠM
η ðωnÞ ¼ −2Πxx

11 þ 2Πxy
12 −

3

2
ðΠyy

11 þ Πyx
12 þ Πxy

21 þ Πxx
22Þ;
ð50Þ

where the lower indices indicate the components of the Dirac
matrices, whereas the upper indices indicate the component
of the spatial derivative, see Eq. (20). The last four terms in
Eq. (50) obtain contributions only from one-loop diagrams
by the same arguments as before, see Eqs. (21) and (22).
For the first two terms in Eq. (50) the diagrams containing
more than one loop do not vanish. However, the multiloop
contributions cancel each other after integration due to the
isotropy. Thus we conclude that only one-loop diagrams are
contributing to Eq. (50). After carrying out the Matsubara
sums and analytical continuation we obtain the retarded
correlator, which we write using Eq. (30) as

ΠR
η ðωÞ ¼ 2

Z
dp

ð2πÞ3
�
p2
xS11 − pxpyS21 þ

3

4
ðp2

yS11

þ pxpyS21 þ pxpyS12 þ p2
xS22Þ

�
; ð51Þ

where we have suppressed the ðp;ωÞ arguments of the
Sμν½f ¼ 1� functions. We obtain the shear viscosity from
the Kubo-Zubarev formula (44) by using the relation (35)
and the symmetry px ↔ py

η ¼ −
π

10

Z
∞

−∞
dε

∂nðεÞ
∂ε

×
Z

dp
ð2πÞ3 ½ð2p

2
x þ 3p2

yÞT 11 þ pxpyT 12�; ð52Þ

where the T μν tensor is defined in Eq. (36). Substituting
the decomposition for the spectral function (39) into this
expression we obtain

η ¼ −
2NcNf

5π

Z
∞

−∞
dε

∂nðεÞ
∂ε

Z
Λ

0

dp
2π2

p2

Z
dΩ
4π

× ½5p2
xð−A2

sm2 þ A2
0ε

2 − A2
vp2Þ þ 4A2

vp4
x þ 8A2

vp2
xp2

y�

¼ NcNf

15π3T

Z
∞

−∞
dε

∂n
∂ε

Z
Λ

0

dpp4

× ½5A2
sðp; εÞm2 − 5A2

0ðp; εÞε2 þ A2
vðp; εÞp2�: ð53Þ

We conclude that, as in the case of the thermal and electrical
conductivities, the knowledge of the Lorentz components of
the spectral function completely determines the shear vis-
cosity of quark matter. We note that our expression (53)
for the shear viscosity differs from the expressions given
in Refs. [32–35], where only the ½T12; T12� commutator has
been considered; our expression contains all possible com-
mutators as indicated above and is consistent with the
definition given in Ref. [60].
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III. QUARK SPECTRAL FUNCTION IN THE
TWO-FLAVOR NJL MODEL

Equations (42), (43), and (53) provide the general
expressions for the transport coefficients in terms of the
Lorentz components of the quark spectral function. Further
progress requires the knowledge of the specific form of
this spectral function in the regime of physical interest,
which is determined by the elementary processes that lead
to a nonzero imaginary part of the quark self-energy. We
turn now to the derivation of these components within the
two-flavor NJL model and start with the phase structure of
matter predicted by this model.
At nonzero temperature and density the constituent quark

mass mðT; μÞ is found to leading OðN0
cÞ order in the 1=Nc

expansion from a Dyson-Schwinger equation, where the
self-energy is taken in the Hartree approximation, see Fig. 2.
The mesonic propagator is obtained from the Bethe-Salpeter
equation, shown in Fig. 3, which resums contributions from
quark-antiquark polarization insertions. The meson masses
are obtained as the poles of the propagator in real space-time
for p ¼ 0. The relevant calculations are reviewed in
Appendix A. The behavior of quark and meson masses as
functions of density and temperature are shown in Fig. 4 in
the cases of explicitly broken chiral symmetry m0 ≠ 0 as
well as the chiral limit m0 ¼ 0.
As seen from Fig. 4, there is always a nontrivial solution

for the quark masses with m > m0 if chiral symmetry is
explicitly broken. In the chiral limit, for fixed chemical
potential, the quark mass is nonzero below a certain
temperature T≤Tc¼TM0 and is strictly zero for T ≥ Tc.
More generally, at sufficiently high densities and temper-
atures (for example, T > Tc ≃ 190 MeV for μ ¼ 0 or
μ > μc ≃ 330 MeV for T ¼ 0) one finds that chiral sym-
metry is restored (m0 ¼ m ¼ 0).
The meson masses found from the Bethe-Salpeter

equation for the meson propagator are also shown in
Fig. 4. At sufficiently low temperatures and densities we
find two solutions for the masses of the π and σ mesons.

The two low-mass solutions correspond to the masses of
the well-known π and σ mesons, and they satisfy numeri-
cally the relation m2

σ ¼ m2
π þ 4m2 within 2% precision.

The high-mass solutions are approximately the same for the
scalar and pseudoscalar modes and may correspond to a
resonance state. Note that in the chiral limit m0 ¼ 0 the
low-mass solutions are given by mπ ¼ 0 and mσ ¼ 2m,
below the critical temperature Tc for chiral phase transition.
Above the critical temperature these solutions become
degenerate. As seen from Fig. 4, the lower and upper
solutions approach each other with increasing temperature
and coincide at a temperature Tmax ≃ 400 MeV in the case
μ ¼ 0. This limiting temperature decreases with increasing
chemical potential.
Above Tmax no solutions are found for the meson masses

anymore, i.e., the mesonic modes exist only for T ≤ Tmax
within the zero-momentum pole approximation for the
meson propagator. The maximal temperature of existence
of mesons Tmax versus chemical potential is shown in
Fig. 5. In the limit T → 0 the transition line ends at
μmax ¼ Λ, which implies mM → 2Λ.
Another important temperature shown here is the Mott

temperature TM, which is defined by the condition
mπ ¼ 2m in the cases m0 ¼ 0 and m0 ≠ 0. Above this
temperature mπ > 2m, and the pion can decay into an on-
shell quark-antiquark pair. As seen from Figs. 4 and 5,
TM decreases with chemical potential from the value
TM ≃ 213 MeV at μ ¼ 0 and vanishes at μ ≈ 345 MeV.
It coincides with the chiral transition temperature in the
chiral limit m0 ¼ 0.
To express the components of the spectral function in

terms of the self-energies we write the full quark retarded/
advanced Green’s function as

FIG. 2. Dyson-Schwinger equation for the constituent quark
mass. The dashed and solid lines are the bare and dressed
propagators, respectively, and Γ ¼ 1.

FIG. 3. Bethe-Salpeter equation for mesons: the double lines
are the dressed meson propagators.
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FIG. 4. Quark and meson masses as functions of temperature at
chemical potential μ ¼ 0 (upper row) and μ ¼ 200 MeV (lower
row). The symbols correspond to twice the quark mass, the
dashed and dash-dotted lines correspond to the low-mass mesonic
solutions, while the dash-double-dotted lines correspond to the
high-mass mesonic solution (see discussion in text). Left panels:
m0 > 0, right panels: m0 ¼ 0.
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GR=Aðp0; pÞ ¼
1

p −m − ΣR=Aðp0; pÞ
; ð54Þ

where ΣR=A is the quark-antiquark retarded/advanced
self-energy, which in the most general case (due to parity
conservation, translational and rotational invariance, as
well as time-reversal invariance) can be written in the
following form

ΣRðAÞ ¼ mΣð�Þ
s − p0γ0Σ

ð�Þ
0 þ p · γΣð�Þ

v : ð55Þ

According to the definition of the spectral function (29)
we find

Aðp0; pÞ ¼ −
1

π
ðmAs þ p0γ0A0 − p · γAvÞ; ð56Þ

with

Ai ¼
1

d
½n1ϱi − 2n2ð1þ riÞ�; d ¼ n21 þ 4n22; ð57Þ

where

n1 ¼ p2
0½ð1þ r0Þ2 − ϱ20�

− p2½ð1þ rvÞ2 − ϱ2v� −m2½ð1þ rsÞ2 − ϱ2s �; ð58Þ

n2 ¼ p2
0ϱ0ð1þ r0Þ − p2ϱvð1þ rvÞ −m2ϱsð1þ rsÞ; ð59Þ

with the short-hand notations ϱi ¼ ImΣi and ri ¼ ReΣi,
i ¼ s; 0; v. From now on we will neglect the irrelevant
real parts of the self-energy, which lead to momentum-
dependent corrections to the constituent quark mass in
next-to-leading order OðN−1

c Þ.
We now consider the quark self-energy that contributes

to the transport phenomena because of a nonvanishing
imaginary part, closely following similar computations
by Refs. [35,36]. The dominant processes, according to
the discussion of the phase structure above, are the meson
decays into two quarks and the inverse process above the
Mott temperature TM. The quark self-energy arising from
meson exchange is given in Matsubara space by

ð60Þ

where Sðq;ωmÞ is the quark propagator with constituent
mass, and the index M ¼ π, σ indicates the meson. Using
Γσ ¼ 1 and Γπ ¼ iγ5τ we find the decomposition

ΣMðp;ωnÞ ¼ PMmΣM
s þ iωnγ0ΣM

0 − p · γΣM
v ; ð61Þ

where Pσ ¼ 1, Pπ ¼ −1 and

ΣM
s;v ¼ g2M

Z
dq

ð2πÞ3
Ds;v

4EqEM

×

�
iωnL3 − 2EþL1

E2þ þ ω2
n

−
iωnL3 þ 2E−L2

E2
− þ ω2

n

�
; ð62Þ

ΣM
0 ¼ g2M

Z
dq

ð2πÞ3
D0

4EqEM

×

�
2iωnL1 − EþL3

E2þ þ ω2
n

þ 2iωnL2 þ E−L3

E2
− þ ω2

n

�
; ð63Þ

with the short-hand notations

L1 ¼ 1þ nBðEMÞ −
1

2
½nþðEqÞ þ n−ðEqÞ�;

L2 ¼ nBðEMÞ þ
1

2
½nþðEqÞ þ n−ðEqÞ�;

L3 ¼ nþðEqÞ − n−ðEqÞ; ð64Þ

and (see Appendix B for details)

Ds ¼ 1; Dv ¼
q · p
p2

; D0 ¼ −
Eq

iωn
: ð65Þ
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FIG. 5. The Mott temperature TM and the temperature Tmax (see
discussion in the text) as functions of the chemical potential. The
dashed line is the Mott temperature in the chiral limit TM 0 ≡ Tc.
The shaded area shows the portion of the phase diagram where
our computations are applicable.
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The retarded self-energy is now obtained by analytical
continuation iωn → p0 þ iε and has the same Lorentz
structure as its Matsubara counterpart. To obtain the quark
self-energy one has to take into account the contributions
from three pions and one σ-meson. The components of this
self-energy sum up as follows

Σs ¼ Σσ
s − 3Σπ

s ; Σ0=v ¼ −Σσ
0=v − 3Σπ

0=v: ð66Þ

For the imaginary part of the on-shell quark self-energy
(ϱ≡ ImΣ) one finds

ϱMj ðpÞjp0¼Ep
¼ g2M
16πp

Z
Emax

Emin

dET j½nBðEMÞþn−ðEÞ�; ð67Þ

where j ¼ s; 0; v, EM ¼ Eþ Ep, and

T s¼1; T v¼
m2

M−2m2−2EEp

2p2
; T 0¼−

E
Ep

: ð68Þ

The distribution function for quarks and antiquarks is
defined as n�ðEÞ ¼ ½eβðE∓μÞ þ 1�−1, and nBðEÞ ¼
ðeβE − 1Þ−1 is the Bose distribution function for zero
chemical potential. In the same way we find for the
antiquark on-shell self-energy (p0 ¼ −Ep)

ϱMj ðpÞjp0¼−Ep
¼ −

g2M
16πp

Z
Emax

Emin

dET j½nBðEMÞ þ nþðEÞ�;

ð69Þ
where

Emin;max ¼
1

2m2

�
ðm2

M − 2m2Þp0�pmM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

M − 4m2

q �
:

ð70Þ

The range of integration is according to Eq. (70)

Emax − Emin ¼
pmM

m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

M − 4m2

q
: ð71Þ

We note that ifmM ≥ 2m the integration range is not empty.
If m ¼ 0, we have

Emin ¼
m2

M

4p
; Emax → ∞: ð72Þ

The full quark-antiquark self-energy in on-shell approxi-
mation can be written as

ϱjðp0; pÞ ¼ θðp0Þϱþj ðpÞ þ θð−p0Þϱ−j ðpÞ; ð73Þ

with ϱ�j ðpÞ ¼ ϱjðp0 ¼ �Ep; pÞ. It is seen from Eqs. (67)
and (69) that ϱþ and ϱ− are related by the relation
ϱ−j ðμ; pÞ ¼ −ϱþj ð−μ; pÞ, therefore

ϱjðμ;−p0; pÞ ¼ θð−p0Þϱþj ðμ; pÞ þ θðp0Þϱ−j ðμ; pÞ
¼ −θð−p0Þϱ−j ð−μ; pÞ − θðp0Þϱþj ð−μ; pÞ
¼ −ϱjð−μ; p0; pÞ; ð74Þ

where we indicated the μ-dependence of the self-energy
explicitly.
Now for any transport coefficient χðμÞ we can write

χðμÞ ¼
Z

∞

−∞
dεnþðεÞ½1 − nþðεÞ�

Z
Λ

0

dpF ðp; ε; μÞ; ð75Þ

where F ðp; ε; μÞ≡ F ðp; ε; hðμÞ; ϱjðμ; ε; pÞÞ is an even
function of p and ϱj, as seen from Eqs. (42), (43),
(53), and (57)–(59). It is invariant under the inversion
ε → −ε in the cases of the electrical conductivity and
the shear viscosity, and under the simultaneous inver-
sions ε → −ε, h → −h in the case of the thermal
conductivity. Because h is an odd function of the
chemical potential, see Appendix C, it follows from
Eq. (74) that (ε≡ p0)

ℱðp;−ε; μÞ ¼ ℱðp;−ε; hðμÞ; ϱjðμ;−ε; pÞÞ
¼ ℱðp; ε;−hðμÞ;−ϱjð−μ; ε; pÞÞ
¼ ℱðp; ε; hð−μÞ; ϱjð−μ; ε; pÞÞ
¼ ℱðp; ε;−μÞ:

Using thisproperty incombinationwith relationsnþðμ;−εÞ ¼
1 − n−ðμ; εÞ, n−ðμ; εÞ ¼ nþð−μ; εÞ, and employing Eq. (73)
we rewrite Eq. (75) as

χðμÞ ¼ χþðμÞ þ χ−ðμÞ; ð76Þ

where we separated the contributions from positive and
negative energies

χþðμÞ ¼
Z

∞

0

dεnþðμ; εÞ½1 − nþðμ; εÞ�

×
Z

Λ

0

dpF ðp; ε; ϱþj ðμ; pÞÞ; ð77Þ

χ−ðμÞ ¼
Z

0

−∞
dεnþðμ; εÞ½1 − nþðμ; εÞ�

×
Z

Λ

0

dpF ðp; ε; ϱ−j ðμ; pÞÞ ¼ χþð−μÞ: ð78Þ

Therefore from Eq. (76) we obtain

χðμÞ ¼ χþðμÞ þ χþð−μÞ; ð79Þ
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which implies that the transport coefficients are even functions
of the chemical potential, as expected.

IV. NUMERICAL RESULTS

A. Self-energies and spectral functions

The imaginary parts of the quark and antiquark on-shell
self-energies, given by Eqs. (67) and (69), respectively, are
shown in Fig. 6 as functions of the quark momentum p at
fixed values of the temperature and the chemical potential.
For each value of μ the temperature values are chosen to
cover the range TM < T < Tmax, as displayed in Fig. 5.
Below TM, which is defined by the continuum condition
mπ ¼ 2m, the imaginary parts of the on-shell self-energies
of quarks are negligible, since the processes of quark
scattering with meson exchange are kinematically forbid-
den in the case of π-mesons, and are strongly suppressed in
the case of σ-mesons if compared to off-shell processes.
The three components of the self-energies differ by the

factors T j. As in the case of the scalar self-energy T s ¼ 1,
we conclude that the differences seen between the compo-
nents ϱj in Fig. 6, as for example the sign change between
ϱs and ϱ0 and more pronounced maxima in ϱ0 and ϱv than
in ϱs, originate from the T j factors in Eq. (68). To
understand the small-p behavior of the self-energies, note
first that the explicit p−1 divergence in Eqs. (67) and (69) is
cancelled by the linear-in-p dependence of the integration
range, given by Eq. (71). Furthermore, when p → 0 the

limits of integration tend to ðm2
M − 2m2Þ=2m, see Eq. (70).

If this limiting value is comparable to the temperature,
then the quark and antiquark distribution functions are
nonzero and contribute to the self-energies for p → 0; this
is the case in Figs. 6(a), 6(d), and 6(g). In case where
ðm2

M − 2m2Þ=2m ≫ T the small-p contributions are sup-
pressed by the vanishingly small distribution functions, see
Figs. 6(b), 6(e), and 6(h), as well as 6(c), 6(f), and 6(i).
However, in the chiral limit m0 ¼ 0 we always find the
asymptotic behavior ImΣ → 0, when p → 0, because the
lower bound of the integral (67) becomes infinitely large as
seen from Eq. (72).
In the large-p limit the integration range is broad and the

asymptotics is controlled by the cutoff of high-momentum
contributions by the distribution functions, as well as the
factors T j. Thus the appearance of the maxima in the self-
energies [necessarily in the case ðm2

M − 2m2Þ=2m ≫ T] is
the consequence of this asymptotic behavior. The shifts of
the maxima to higher momenta with increasing temperature
is caused by the shift in energy sampling of the distribution
functions.
Next we examine the self-energies at fixed chemical

potential, i.e., the vertical columns in Fig. 6. Because the
difference mM − 2m increases with temperature as we
move away from the Mott line the integration region
increases. At the same time the distribution functions cover
phase space with higher energies. In combination this leads
to an increase of the imaginary parts of self-energies of

0
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FIG. 6. The imaginary parts of the three Lorentz components of the quark and antiquark on-shell self-energies as functions of
momentum at various values of temperature and chemical potential. The signs of the antiquark self-energies have been inverted.

HARUTYUNYAN, RISCHKE, and SEDRAKIAN PHYSICAL REVIEW D 95, 114021 (2017)

114021-10



quarks and antiquarks with temperature, which is well
pronounced for high momenta. This increase is also caused
by the additional temperature dependence of the coupling
constant gM, see Fig. 16 in Appendix A.
Consider now the dependence of the self-energies on the

chemical potential for fixed temperature by comparing, for
example, Figs. 6(a), 6(e), and 6(h) with 6(b), 6(f), and 6(i).
We observe two effects: (i) the contributions to the self-
energies from large p becomes larger for μ ≠ 0 both for
quarks and antiquarks; (ii) the overall magnitude of
the quark self-energies (for example the maximum) is
reduced for μ ≠ 0. Nonzero μ affects quark self-energies
stronger than that of antiquarks because of a stronger
depletion of the antiquark population at nonzero baryon
density, on which the quark self-energy depends. In fact,
at any temperature the quark self-energies are by a factor
of two smaller than their antiquark counterparts for
μ ¼ 200 MeV and this difference grows for large μ; e.g.,
for μ ¼ 300 MeV the suppression factor is ten at
T ¼ 100 MeV. A similar comparison for antiquarks [see
Figs. 6(a)–6(c) and 6(d)–6(f)] shows that the antiquark self-
energies at nonzero μ are comparable to the self-energies
for the μ ¼ 0 case.
Next we turn to the three Lorentz components of the

spectral function given by Eqs. (56)–(59), which are shown
in Fig. 7 as functions of the quark momentum at three
values of the quark (off-shell) energy, ε1 ¼ 100, ε2 ¼ 300,

and ε3 ¼ 500 MeV. The quasiparticle peak in the
spectral functions appears for p≃ ε, as expected from
Eqs. (58). An estimate gives n1 ≈ ðp2

0 − p2Þð1 − ϱ20;vÞ and
n2 ≈ ðp2

0 þ p2Þϱ0, therefore the denominator d attains its
minimum roughly at p≃ p0. In all cases it is seen that the
heights of the peaks increase with the quark energy. As
expected on physical grounds, the quasiparticle peaks are
broadened with increasing temperature and are replaced by
more complex structures in the high-temperature regime,
see Figs. 7(c), 7(f), and 7(i).
A comparison of quark and antiquark spectral functions

shows that the quasiparticle peaks of quarks are sharper
than that of antiquarks for the same temperature and
chemical potential. As indicated in Fig. 7, for μ ¼
300 MeV the peak in the spectral function of quarks is
by a factor of 102 larger than that of antiquarks at T ¼
100 MeV and by factor of ten at T ¼ 200 MeV. Finally
note that the temporal and vector components of the
spectral function are of the same order of magnitude and
are almost coinciding at high energies, whereas the scalar
component is always suppressed. Thus, we may already
conclude that the main contribution to the transport
coefficients will originate from the temporal and vector
components of the spectral functions. Note that the vector
component of the imaginary self-energy energy changes the
sign, consequently the corresponding spectral function
changes its sign as well. However, the overall spectral
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FIG. 7. Dependence of three Lorentz components of the quark and antiquark spectral functions −mAs (solid line), −εA0 (dash-dotted
line) and −pAv (dashed line) on the momentum. Figures (a)–(c) correspond to μ ¼ 0, (d)–(f) to antiquarks with μ ¼ 300 MeV, and
(g)–(i) to quarks with μ ¼ 300 MeV. These spectral functions are shown at three energies ε1 ¼ 100, ε2 ¼ 300, and ε3 ¼ 500 MeV, as
indicated in the plot. Note that the vector component of the spectral function changes its sign, whereas the remaining components do not,
see the discussion in the text.
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width of the quasiparticles, which defines their decay rate
and contains the contributions from all Lorentz components
remains positive [36].

B. Thermal and electrical conductivities

We now turn to the evaluation of the thermal and
electrical conductivities as given by Eqs. (42) and (43).
Before discussing the numerical results, consider the
generic structure of these expressions. For a given value
of ε the inner integrand has a peak structure with a
maximum located at p≃ ε, as implied by the shape of
the spectral functions. The heights of the peaks rapidly
increase with ε. As a consequence, the inner momentum
integral in Eqs. (42) and (43) is a rapidly increasing
function of jεj as long as jεj ≤ Λ. For energies larger than
Λ the peaks are outside of the integration range (because of
the momentum cutoff) and the integral sharply decreases
with ε. The outer integration contains the factor ∂nðεÞ=∂ε
which at low temperatures is strongly peaked at the
energy ε ¼ μ. At high temperature it transforms into a
broad, bell-shaped structure which samples energies far
away from μ.
It is evident from Eqs. (42) and (43) that for μ → 0 the

integrands of the momentum integrals are even functions
of ε, as discussed above, and the quark and antiquark
contributions originating from positive and negative
ranges of the ε-integration are equal. At nonzero chemi-
cal potentials the contribution of antiquarks is sup-
pressed by both spectral functions and by the factor
∂n=∂ε. We will give an explicit numerical example
below in Fig. 10.
Figure 8 shows the temperature dependence of κ and

σ for several values of the chemical potential. The con-
ductivities decrease with temperature for all values of the
chemical potential. The observed decrease is the result
of the broadening of the spectral functions with temper-
ature, which physically corresponds to stronger dispersive
effects and shorter relaxation times. This implies smaller
conductivities.
Note that at the Mott temperature and below the

conductivities become very large because the dispersive
effects incorporated in the spectral functions via the
imaginary parts of the self-energies vanish for pions and
are very small for the σ-meson. This is the consequence of
the on-shell approximation, and can be improved if one
incorporates off-shell contributions to the self-energies.
This improvement close to (and below) the Mott temper-
ature that incorporates off-shell kinematics is unimportant
at temperatures already slightly above the Mott temper-
ature, where the transport coefficients are described by on-
shell kinematics quite well. (For a computation of off-shell
self-energies see Ref. [35], where their impact for the shear
viscosity were found to be small.)
Comparing the overall behavior of the thermal and

electrical conductivities we observe two main differences:

(i) the electrical conductivity drops faster with temperature
than the thermal conductivity, (ii) for small chemical
potentials the thermal conductivity diverges, whereas the
electrical conductivity remains almost independent of the
chemical potential. Both effects originate from those terms
in Eq. (42) for κ which contain the enthalpy h. In the
relevant temperature-density range, the minimal value of
the enthalpy per particle is hmin ≃ 0.8 GeV, see Fig. 18 in
Appendix C. This value already exceeds the cutoff param-
eter Λ≃ 0.65 GeV, which is the characteristic energy scale
of the model, therefore one may conclude that the dominant
terms in κ are the terms containing h, i.e., the terms arising
from the second and third correlators on the right-hand
side of Eq. (11). The enthalpy per particle rapidly increases
with the decrease of the chemical potential, therefore at
small chemical potentials the main contribution comes
from the third term. Numerically we find that the first
two terms are negligible compared to the third one for
μ ≤ 100 MeV. The second correlator becomes important
once μ ≥ 100 MeV, whereas the first one is always sup-
pressed for μ ≤ 250 MeV. Thus, using Eqs. (5), (6), (11),
and (34), we obtain for small chemical potentials μ ≤
100 MeV a simple relation between thermal and electrical
conductivities

κ

σ
¼ Nf

TrQ̂2

h2

T
¼ 9h2

10παT
: ð80Þ

Note that the first equality holds for any number of flavors,
whereas in the second step we substituted Nf ¼ 2. For
μ ≪ T we have the asymptotic behavior h≃ 7π2T2=15μ,
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FIG. 8. The temperature dependence of (a) thermal and
(b) electrical conductivity at various values of the chemical
potential. The vertical lines show the Mott temperature at the
given value of μ.
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therefore the thermal conductivity diverges at vanishing
baryon density as κ ∝ μ−2 [43]. Substituting the expression
for h in Eq. (80) we find in the nondegenerate regime

κμ2

σT3
¼ Nf

TrQ̂2

�
7π2

15

�
2

¼ 49π3

250α
≃ 830: ð81Þ

It is seen that the Wiedemann-Franz law σT=κ∼ const. does
not hold in this case. Finally, we note that away from the
Mott line we have the scalings σ ∝ T−6 and κ ∝ T−γ with
γ ¼ 3 for μ ≤ 100 MeV and γ ¼ 2 for μ ≥ 200 MeV.
The dependence of conductivities on the chemical

potential is shown in Fig. 9. The electrical conductivity
is seen to be nearly independent of the chemical potential
away from the Mott transition line. Only close to this
transition σ increases because of the vanishing of the
spectral width at TM. Note that for temperatures T ≥
250 MeV the electrical conductivity remains almost con-
stant because of the absence of the Mott line at these
temperatures. However, the thermal conductivity is always
a rapidly decreasing function of the chemical potential
because of the reasons discussed above, and becomes
infinitely large in the limit μ → 0.
At nonzero μ the symmetry between quarks and anti-

quarks is broken; its consequences discussed above are
illustrated in Fig. 10, where the quark and antiquark
contributions to σ are shown separately. At temperatures
close to TM both contributions decrease with quarks
contributing dominantly. For temperatures away from the
Mott transition line, the moderate increase in the conduc-
tivity of quarks up to μ≃ 200 MeV is accompanied by a

rapid decrease in the contribution of antiquarks, which
becomes negligible at μ > 200 MeV. The sum of these two
contributions turns out to be a slowly decreasing function
of μ in the entire range of μ and T, see Fig. 9.
In order to remove the effect of the variations of the

position of the Mott line with the chemical potential, we
show in Fig. 11 again the conductivities as in Fig. 8, but
with the temperature axis scaled by the corresponding
TMðμÞ. In this case the conductivities display a universal
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FIG. 9. The dependence of (a) thermal and (b) electrical
conductivity on the chemical potential at various temperatures.
The vertical lines show the value of the chemical potential where
the temperature approaches the Mott temperature.
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TRANSPORT COEFFICIENTS OF TWO-FLAVOR QUARK … PHYSICAL REVIEW D 95, 114021 (2017)

114021-13



dependence on this scaled temperature, their values being
only shifted by a μ-dependent constant.
Apart from the Wiedemann-Franz relation, the ratios the

κT=cV and κ�T=cV are of interest. Here κ� is defined by
Eq. (42) with h ¼ 0 and cV is the specific heat capacity as
defined in Appendix C. These ratios are shown in Fig. 12.
We conjecture that the ratio κ�T=cV , which is associated

with the energy transfer, is bounded from below due to the
quantum mechanical uncertainty principle. To motivate this
conjecture we refer to kinetic theory of noninteracting
gases. Because for temperatures T > TM the quark masses
are negligible compared to other scales, we can set their
average velocity v̄≃ 1. Furthermore, in this regime the
characteristic energy ε≃ 3T. Now, according to the
kinetic theory of dilute gases the thermal conductivity is
estimated as

κkin ≃ 1

3
cVv̄l≃ 1

3
cVτ; ð82Þ

where l is the mean free path and τ ¼ l=v̄ is the mean
collision time. Therefore, we find that at high temperatures
κT=cV ≃ Tτ=3≃ ετ=9. Because of the uncertainty princi-
ple ετ ≥ 1=2, we find the following bound (recovering the
natural constants)

κkinT
cV

≥
ℏc2

18kB
: ð83Þ

In the present context κkin in Eq. (83) should be associated
with κ� because this quantity serves as the analogue of the
thermal conductivity defined in the kinetic theory of gases.
Indeed, both quantities involve the total energy transport

and do not separate the convective particle current which is
excluded from κ by definition.
Note that in the case of shear viscosity the discussion of

an analogous bound was given by Ref. [43] and a more
stringent limit (the so-called KSS bound) was suggested
later on from gauge-gravity duality considerations [53].
According to panel (a) of Fig. 12 the bound (83) is

violated for the ratio involving κ� at high temperatures
T > 300 MeV. It is remarkable that this occurs in the same
range where the shear-viscosity bound is violated (see
below, Sec. IV C). The inclusion of gluonic degrees of
freedom will mitigate this violation. The quark-meson
exchange processes will not be the most dominant proc-
esses away from the Mott temperature and the gluonic
degrees of freedom are expected to play a significant role in
thermal transport.

C. Shear viscosity

The shear viscosity of quark matter has been studied
extensively because of the experimental evidence for its
very low value in heavy-ion collisions where quark-matter
formation is expected and because of the conjectured
universal lower bound of the ratio η=s derived from
gauge-gravity duality. We now evaluate the expression
for η given by Eq. (53) and compare it to earlier studies, in
particular those based on the two-flavor NJL model.
Figure 13 shows the temperature dependence of the shear

viscosity and the ratio η=s. The entropy density of the
present model is discussed in Appendix C. As in the case
of the conductivities, the shear viscosity is a decreasing
function of the temperature, for the reasons already
explained in detail above: the dispersive effects increase
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FIG. 12. The ratios κ�T=cV (a) and κT=cV (b) as functions of
the temperature at several values of the chemical potential.
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with the temperature and the viscosity of matter is reduced.
The entropy density of quark matter is an increasing
function of temperature (linear in the degenerate regime
T ≪ μ and cubic in the nondegenerate regime T ≫ μ),
therefore the ratio η=s decreases faster than η with
increasing temperature. In the high-temperature regime η
and η=s have the scaling T−6 and T−9, respectively. The
enhancement of both quantities as T → TM is understood
as due to vanishing of the relevant on-shell self-energies at
the Mott temperature. At high temperatures T ≳ 270 MeV
the ratio η=s undershoots the KSS bound 1=4π [53]. This is
an indication of the change in the processes that dominate
the viscosity, namely from quark-meson fluctuations to
those including gluonic degrees of freedom, which are
integrated out from the NJL model. Their contribution
becomes increasingly important at high temperatures and
leads to an increase of the viscosity with temperature, see
Refs. [24,25,39,62].
The dependence of η and η=s on the chemical potential

is shown in Fig. 14. As in the case of the electrical
conductivity, these are slowly decreasing functions of μ
at fixed temperature except at the corresponding Mott line
where η formally diverges. Finally, in Fig. 15 we show
these quantities as functions of the ratio T=TM. As in the
case of the conductivities, we observe a universal behavior
of η and η=s on T=TM for fixed μ values, i.e., the curves
belonging to different values of μ are only shifted vertically
by a μ-dependent constant.

D. Fitting transport coefficients

The observed nearly universal behavior of the transport
coefficients with the scaled temperature T=TM for fixed

values of the chemical potential suggests fitting transport
coefficients as functions of T=TM and the chemical
potential, as displayed in Figs. 11 and 15.
For this purpose we first fit the Mott temperature,

displayed in Fig. 5, with the formula

Tfit
MðμÞ ¼ T0

(
1− ffiffiffiffiffi

γy
p

e−π=ðγyÞ 0 ≤ y ≤ 0.5;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1.55ð1− yÞ þ 0.04ð1− yÞ2

p
0.5< y ≤ 1;

ð84Þ

with T0 ¼ TMðμ ¼ 0Þ ¼ 213 MeV, y ¼ μ=μ0, where
μ0 ¼ 345 MeV corresponds to the point where TM ¼ 0
and the chemical potential attains its maximum on the Mott
line, and γ ¼ 2.7. The formula (84) has relative accuracy
≤ 3% for chemical potentials μ ≤ 320 MeV.
Next, all transport coefficient can be fitted with a generic

formula

χfit ¼ C

�
T
TM

�
−α

exp½a1y2 þ a2y4 þ a3y6� × χdiv; ð85Þ

where χfit ∈ fσ; κ; κ�; η; η=sg. The term χdiv is diverging in
the limit μ → 0 in the case of κ and is given by the formula

χdiv ¼
�

T
TM

�
2

þ y−2: ð86Þ

For all other coefficients χdiv ¼ 1. The values of the
constants in formula (85) are given in Table I (for each
transport coefficient C is given in relevant units). A
comparison between the exact results and the fits is shown
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in Figs. 11 and 15, where an excellent agreement is
observed for temperatures above T=TM ≥ 1.1. In this
domain all fit formulas have relative accuracy ≤ 10%.

V. CONCLUSIONS

In this work we have studied the electrical and thermal
conductivities as well as provided an update on the shear
viscosity of quark matter within the two-flavor NJL model
using the Kubo-Zubarev formalism [21,22]. We have
derived Kubo formulas for the electrical and thermal
conductivities of a relativistic quark plasma taking into
account the full Lorentz structure of the self-energies
(spectral functions) of the quarks. The two-point correla-
tion functions are evaluated with the full propagator and
within the 1=Nc approximation to the multiloop con-
tributions; these then imply that vertex corrections are
suppressed and the leading-order contributions to the
correlation functions arise from single-loop diagrams. It
is worthwhile to note that our Kubo formulas for the
conductivities have generic validity and can be applied in
the broader context of field theories of relativistic plasmas,
in a straightforward manner when the vertex corrections are
suppressed by some mechanism. We have also revised the
corresponding Kubo formula for the shear viscosity.
We have applied this general formalism to compute the

electrical and thermal conductivities of the NJL model for
quark matter in the regime where the dispersive effects arise
from quark-meson scattering above the Mott temperature
for dissolution of mesons into quarks. We find that the
conductivities are decreasing functions of temperature at
fixed chemical potential; they show nearly universal
behavior when temperature is scaled by the Mott temper-
ature, i.e., as functions of T=TM. We find that the ratio κ=σ
does not follow the Wiedemann-Franz law. We then moved
on to recompute the shear viscosity of the model with our
derived Kubo formula; we find a qualitative agreement with
previous results of Refs. [32–35]. In particular the ratio
of η=s tends to the KSS bound 1=4π [53] but undershoots
this bound at some intermediate temperature and fails to
describe the high-temperature limit where gluonic degrees
become important. We have also conjectured a lower bound
on the ratio κ�T=cV > 1=18. This conjecture needs further
studies from different standpoints, including those well
suited for nonperturbative calculations. Within the NJL
model we find that this ratio undershoots the lower bound

1=18 at high temperature predicted by the uncertainty
principle.
We have provided simple fit formulas for the electrical

and thermal conductivities as well as the shear viscosity
with a good relative accuracy, which can be utilized in
numerical simulations of hydrodynamics of the quark
plasma.
The present work can be expanded in a number of ways

by extending the Lagrangian (1) of the model. The role of
the confinement can be assessed by extending the NJL
model to include the Polyakov loop at finite temperature.
The mesons, which appear in the present model as
scatterers, can carry momentum and charge in heavy ion
experiments and can contribute to transport, as established
in numerical simulations of such experiments (see
Refs. [39–42] and references therein). In addition, having
an access to the spectral functions of quarks, will allows us
to compute the rates of the photon and dilepton emission
from quark matter in the present model, which is again of
interest for the description of heavy ion collisions.
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APPENDIX A: DETAILS OF THE
NJL-MODEL CALCULATIONS

The constituent quark mass m is found from the gap
equation, which to leading order OðN0

cÞ is given by the
Hartree approximation (see Fig. 2) and analytically reads

S−10 ¼ S−1 −Ghψ̄ψi; ðA1Þ

where S−10 ¼ p −m0, S−1 ¼ p −m are the free and inter-
acting quark propagators. The quark condensate hψ̄ψi,
represented by the loop in diagram Fig. 2, is given by

hψ̄ψi ¼ T
X
m∈Z

Z
dp

ð2πÞ3 Tr½Sðp;ωmÞ�; ðA2Þ

where the summation is over the fermionic Matsubara
frequencies ωm¼ð2mþ1ÞπT− iμ. The trace is over Dirac,
color, and flavor space and the quark propagator is given by

Sðp;ωmÞ ¼
Λþ
p γ0

iωm − Ep
þ Λ−

pγ0
iωm þ Ep

; ðA3Þ

where Λþ
p and Λ−

p are the projection operators onto positive
and negative energy states

TABLE I. The values of the fit parameters in Eq. (85).

χfit C α a1 a2 a3

σ 0.032 6 2.64 1.23 2.67
κ 2.10 3 −0.95 1.27 0.0
κ� 1.55 7 3.47 1.08 3.34
η 0.065 6 2.92 0.95 2.7
η=s 0.75 9 3.89 1.72 3.47
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Λ�
p ¼ Epγ0 ∓ γ · p�m

2Ep
γ0: ðA4Þ

Substituting Eqs. (A3) and (A4) into Eq. (A2) and perform-
ing the Matsubara sums we obtain

hψ̄ψi ¼ −4NcNfmI1; ðA5Þ

where we defined

I1 ¼
1

4π2

Z
Λ

0

dp
p2

Ep
½1 − nþðEpÞ − n−ðEpÞ�: ðA6Þ

From Eqs. (A1) and (A5) follows

m ¼ m0 þ 4GNcNfmI1: ðA7Þ

If m0 ≠ 0, Eq. (A7) always has a nontrivial solution
m > m0. If m0 ¼ 0, there is a trivial solution m ¼ 0, but
Eq. (A7) may have nontrivial solutions satisfying

4GNcNfI1 ¼ 1: ðA8Þ

In this case the vacuum energy is minimized by the solution
with the largest m [20]. At high densities and temperatures
(T > Tc ≃ 190 MeV for μ ¼ 0 or μ > μc ≃ 332 MeV for
T ¼ 0) Eq. (A8) does not have solutions anymore, and we
find that chiral symmetry is restored with m0 ¼ m ¼ 0.
The meson propagators are obtained from the Bethe-

Salpeter equation, shown in Fig. 3,

DM ¼ GþGΠMDM ¼ G
1 − GΠM

; ðA9Þ

where the quark-antiquark polarizations for the σ-meson
and pion ΠM;M ¼ σ, π are given by the formula

ΠMðp;ωnÞ ¼ −T
X
m∈Z

Z
dq

ð2πÞ3 Tr½ΓMSðqþ p;ωm þ ωnÞ

× ΓMSðq;ωmÞ� ðA10Þ

with Γσ ¼ 1, Γπ ¼ iγ5τj, j ¼ 1, 2, 3. From Eq. (A3) we
obtain

ΠMðp;ωnÞ ¼ −
Z

dq
ð2πÞ3

X
��

T ��
M S��; ðA11Þ

where we defined

T ��
M ¼ Tr½ΓMΛ�

qþpγ0ΓMΛ�
q γ0�; ðA12Þ

S�� ¼ T
X
m

1

ðiωm þ iωn − E�
qþpÞðiωm − E�

q Þ
; ðA13Þ

with E�
q ¼ �Eq. In Eq. (A11) the sum runs over all

possible combinations of the signs of E�
qþp and E�

q . It is
enough to calculate only one term of the sum, for example
T þþ

M and Sþþ, and the others can be obtained by an
appropriate choice of signs. Below we skip these signs and
recover them in the final expressions. The computation of
traces gives

T M ¼ NcNf
PMm2 þ EqþpEq − q · ðqþ pÞ

EqþpEq
; ðA14Þ

where Pσ ¼ 1, and Pπ ¼ −1.
The sum over the Matsubara frequencies gives

S ¼ nþðEqÞ − nþðEqþpÞ
Eq − Eqþp þ iωn

: ðA15Þ

Using the results (A14) and (A15) we find for the
polarization tensor (A11)

ΠMðp;ωnÞ ¼ −NcNf

Z
dq

ð2πÞ3
	
PMm2 þ EqþpEq − q · ðqþ pÞ

EqþpEq

�
nþðEqÞ − nþðEqþpÞ

E− þ iωn
−
n−ðEqÞ − n−ðEqþpÞ

−E− þ iωn

�

þ PMm2 − EqþpEq − q · ðqþ pÞ
EqþpEq

�
n−ðEqÞ þ nþðEqþpÞ − 1

−Eþ þ iωn
−
nþðEqÞ þ n−ðEqþpÞ − 1

Eþ þ iωn

�

; ðA16Þ

with E� ¼ Eq � Eqþp. Define the short-hand notation NMðp;ωnÞ ¼ −ðp2 þ ω2
nÞ − 2ð1þ PMÞm2, which gives for the

π- and σ-modes, respectively, Nπðp;ωnÞ ¼ −ðp2 þ ω2
nÞ and Nσðp;ωnÞ ¼ Nπðp;ωnÞ − 4m2. Then Eq. (A16) can be written

in a compact form

ΠMðp;ωnÞ ¼ 2NcNf½2I1 þ NMðp;ωnÞI2ðp;ωnÞ�; ðA17Þ
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where

I2ðp;ωnÞ ¼
Z

dq
ð2πÞ3

1

4EqEq−p

	
2Eþ

ω2
n þ E2þ

þ ðiωn − EþÞ½n−ðEqÞ þ nþðEq−pÞ� − ðiωn þ EþÞ½nþðEqÞ þ n−ðEq−pÞ�
ω2
n þ E2þ

þ ðiωn þ E−Þ½nþðEqÞ − nþðEq−pÞ� − ðiωn − E−Þ½n−ðEqÞ − n−ðEq−pÞ�
ω2
n þ E2

−



; ðA18Þ

with redefined E� ¼ Eq � Eq−p.
Now we can write the meson propagator according to

Eqs. (A9) and (A17) as

D−1
M ðp;ωnÞ ¼ G−1 − 2NcNf½2I1 þ NMðp;ωnÞI2ðp;ωnÞ�:

ðA19Þ

The momentum-independent meson mass is defined as
the pole of the propagator in real space-time for p ¼ 0
(iωn → mM þ iδ)

ReD−1
M ½0;−iðmM þ iδÞ� ¼ 0; ðA20Þ

or,

m2
πI2ð0;−imπÞ ¼

1 − 4GNcNfI1
2GNcNf

; ðA21Þ

ðm2
σ − 4m2ÞI2ð0;−imσÞ ¼

1 − 4GNcNfI1
2GNcNf

; ðA22Þ

where we took into account that ReI2½0;−iðmM þ iδÞ� ¼
I2ð0;−imMÞ in principal-value prescription. From
Eq. (A18) we have for p ¼ 0 (E− ¼ 0, Eþ ¼ 2Eq)

I2ð0;ωnÞ ¼
1

8π2

Z
Λ

0

q2dq
1 − nþðEqÞ − n−ðEqÞ

EqðE2
q þ ω2

n=4Þ
; ðA23Þ

and after analytic continuation iωn → ωþ iδ we obtain

ReI2ð0;ωÞ¼ I2ð0;−iωÞ

¼ 1

8π2

Z
EΛ

m
qdEq

1−nþðEqÞ−n−ðEqÞ
E2
q−ω2=4

; ðA24Þ

where EΛ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ Λ2

p
. For m < ω=2 the integrand of

Eq. (A24) has a single pole, and the integral should be
understood in the sense of its principal value. For ω > 0
we have

ImI2ð0;ωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − 4m2

p

16πω

sinhðβω=2Þθðω − 2mÞ
sinhðβω=2Þ þ coshðβμÞ

× θð2EΛ − ωÞ: ðA25Þ

As seen from Eq. (A25), the pion propagator obtains an
imaginary part when ω > 2m, therefore it becomes unsta-
ble to the on-shell decay into a quark-antiquark pair.
From Eqs. (A6), (A7), (A21), (A22), and (A24) we

obtain the following equation for mπ and mσ

1 ¼ GNcNf

π2

Z
EΛ

m
qdEðE2 − αMm2Þ 1 − nþðqÞ − n−ðqÞ

E2 − ðmM=2Þ2
;

ðA26Þ

where απ ¼0, ασ ¼ 1. The solutions provided by Eq. (A26)
are displayed in Fig. 4 and are discussed in the main text.
The Mott temperature TM, defined by the condition

mπ ¼ 2m, can be found from the following equation

GNcNf

π2

Z
Λ

0

dqE½1 − nþðqÞ − n−ðqÞ� ¼ 1: ðA27Þ

Now we evaluate the meson propagator using the
standard mass-pole approximation (the imaginary part of
the pion self-energy is neglected)

DMðp;−iωÞ ¼
−g2M

ω2 − p2 −m2
M þ iε

; ðA28Þ

where the quark-meson coupling is defined as the residue
of the full meson propagator at vanishing momentum

g−2M ¼ −
d

dω2
D−1

M ½0;−iω�jω2¼m2
M
: ðA29Þ

Employing Eqs. (A19) and (A23) we obtain for the π- and
σ-modes

g−2π ¼ 2NcNf½I2ð0;−imπÞ þm2
π

d
dω2

I2ð0;−iωÞjω2¼m2
π
�;

ðA30Þ

g−2σ ¼ 2NcNf½I2ð0;−imσÞ

þ ðm2
σ − 4m2Þ d

dω2
I2ð0;−iωÞjω2¼m2

σ
�: ðA31Þ

To compute the derivative appearing in Eqs. (A30)–(A31)
one can formally replace d=dω2→−1

4
ðd=dE2

qÞ in Eq. (A24)
and integrate by parts to obtain
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64π2
d

dω2
I2ð0;−iωÞ ¼ −

Λ½1 − nþðEΛÞ − n−ðEΛÞ�
EΛðE2

Λ − ω2=4Þ
þ
Z

EΛ

m
dEq

1

qðE2
q − ω2=4Þ

×

	
m2

E2
q
½1 − nþðEqÞ − n−ðEqÞ�

þ q2

EqT
½nþðEqÞð1 − nþðEqÞÞ

þ n−ðEqÞð1 − n−ðEqÞÞ�


: ðA32Þ

Figure 16 shows the temperature dependence of the
couplings at zero and nonzero chemical potentials. Note
that the jump in the coupling of the π-meson arises at the
Mott temperature, i.e., gπ → 0 at T → TM, which can be
verified from Eq. (A30), where the integral (A32) diverges
for ω → 2m. The two couplings are almost identical above
the Mott temperature.
In the chiral limit the overall behavior of the coupling

constants remains the same, except for the absence of a
discontinuity in the π-meson coupling at the Mott line.
Above the Mott temperature the π- and σ-meson coupling
constants nearly coincide.

APPENDIX B: MESON-EXCHANGE
QUARK SELF-ENERGY

Here we provide some details of the computation of the
self-energy (60) and its imaginary part. Analogous calcu-
lations for relativistic nucleonic matter were carried out
in Ref. [63] and for two-flavor quark matter in Ref. [35].

Substituting the quark and meson propagators into Eq. (60),
see Eqs. (A3), (A4), (A28), we find

ΣMðp;ωnÞ ¼ g2M

Z
dq

ð2πÞ32
X
�

1

2E�
q

× T
X
m

ΓMðE�
q γ0 − γ · qþmÞΓM

ðiωm − E�
q Þ½ðωn − ωmÞ2 þ E2

M�
;

ðB1Þ

where E2
M ¼ ðp − qÞ2 þm2

M. For Γσ ¼ 1 and Γπ ¼ iγ5τj
we can write ΓMðE�

q γ0 − γ · qþmÞΓM ¼ E�
q γ0 − γ · qþ

PMm, with Pσ ¼ 1, Pπ ¼ −1, therefore

ΣMðp;ωnÞ ¼ PMmΣM
s þ iωnγ0ΣM

0 − p · γΣM
v ; ðB2Þ

where we defined

ΣM
s ¼ g2M

Z
dq

ð2πÞ3
X
�

S�

2E�
q
; ðB3Þ

ΣM
0 ¼ g2M

Z
dq

ð2πÞ3
1

2iωn

X
�
S�; ðB4Þ

ΣM
v ¼ g2M

Z
dq

ð2πÞ3
q · p
p2

X
�

S�

2E�
q
; ðB5Þ

and

S� ¼ 1

2EM

�
nþðE�

q Þ þ nBð−EMÞ
E�
q þ EM − iωn

−
nþðE�

q Þ þ nBðEMÞ
E�
q − EM − iωn

�
:

ðB6Þ

Defining E� ¼ Eq � EM and using the properties
nBð−EÞ ¼ −1 − nBðEÞ, nþð−EÞ ¼ 1 − n−ðEÞ we obtain

X
�
S� ¼ 1

2EM

�
EþL3 − 2iωnL1

E2þ þ ω2
n

−
E−L3 þ 2iωnL2

E2
− þ ω2

n

�
;

ðB7Þ

where L1, L2, and L3 are defined in Eqs. (64). In the
same manner we obtain

X
�

S�

2E�
q
¼ 1

4EqEM

�
iωnL3 − 2EþL1

E2þ þ ω2
n

−
iωnC3 þ 2E−C2

E2
− þ ω2

n

�
:

ðB8Þ

Now using Eqs. (B7) and (B8) in Eqs. (B3)–(B5) we obtain
Eqs. (62) and (63) of the main text.
We now turn to the computation of the imaginary parts

of Eqs. (62) and (63), which are extracted using the Dirac
identity by writing

2

4

g π,
σ 

gπ
gσ

0 100 200 300 400
T [MeV]

2

4

μ = 0

μ = 200 MeV

(a)

(b)

FIG. 16. Dependence of the couplings gπ and gσ on temperature
for zero and nonzero chemical potentials. The chiral limit for the
π-meson is shown by short-dashed lines.
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Im
1

E2 þ ω2
n
jiωn→p0þiε ¼ πsgnðp0ÞδðE2 − p2

0Þ

¼ π

2p0

½δðEþ p0Þ þ δðE − p0Þ�:

ðB9Þ

For on-shell quarks with p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
Eqs. (62)

and (63) generate four contributions after analytical con-
tinuation and application of the Dirac identity, each of
which is proportional to a δ-function

δðEMþEqþp0Þ≡δ1; δðEMþEq−p0Þ≡δ2; ðB10Þ

δðEM−Eqþp0Þ≡δ3; δðEM−Eq−p0Þ≡δ4: ðB11Þ

For p0 ≥ 0, the term δ1 vanishes trivially. As we will show
later, the terms δ2 and δ3 do not give any contribution as
well. For δ4 we can write

δ4¼
EM

pq
δðx−x−Þ; x−¼

m2
M−2m2−2Eqp0

2pq
; ðB12Þ

and for an arbitrary function fðqÞ we then have

Z
dq

ð2πÞ3 fðqÞδ4 ¼
Z

Emax

Emin

dEq

ð2πÞ2
EqEM

p
fðq; x−Þ; ðB13Þ

where the limits of integration are found from the condition
x2− ≤ 1

�
m2

M − 2m2 − 2Eqp0

2pq

�
2

≤ 1; ðB14Þ

which leads us to Eq. (70) of the main text.
In analogy to Eqs. (B12) and (B13) we have

δ2 þ δ3 ¼ δðEM þ Eq − p0Þ þ δðEM − Eq þ p0Þ
¼ EM

pq
δðx − xþÞ;

xþ ¼ m2
M − 2m2 þ 2Eqp0

2pq
; ðB15Þ

therefore

Z
dq

ð2πÞ3fðqÞðδ2þδ3Þ¼
Z

∞

m

dEq

ð2πÞ2
EqEM

p
fðq;xþÞθð1−x2þÞ:

ðB16Þ

The condition x2þ ≤ 1 is satisfied for Eq ∈ ðE0
min; E

0
maxÞ

with E0
min ¼ −Emax, E0

max ¼ −Emin, as can be seen from
Eq. (70) (note that xþ is obtained from x− by the inversion

p0 → −p0). In this case the integration range is empty, and
the integral vanishes.
We are now in a position to take the imaginary parts

of the self-energies; keeping the only nonvanishing part
∝ Im½E2

− þ ω2
n�−1 ¼ πð2p0Þ−1δ4 we find

ImΣM
s;v ¼ −g2M

Z
dq

ð2πÞ3Ds;vðqÞ
p0L3 þ 2E−L2

4EqEM

1

E2
− þ ω2

n

¼ g2M
16πp

Z
Emax

Emin

dEqDs;vðq; x−Þ½nBðEMÞ þ n−ðEqÞ�;

ðB17Þ

and

ImΣM
0 ¼ g2M

Z
dq

ð2πÞ3D0ðqÞ
2p0L2 þ E−L3

4EqEM

1

E2
− þ ω2

n

¼ g2M
16πp

Z
Emax

Emin

dEqD0ðqÞ½nBðEMÞ þ n−ðEqÞ�:

ðB18Þ

Combining Eqs. (B17) and (B18) we finally obtain Eq. (67)
of the main text. The imaginary part of the on-shell
self-energy of antiquarks (p0 ¼ −Ep), given by Eq. (69),
is obtained through a similar calculation. To support the
discussion of the various contributions to the self-energies
(67) and (69) in the main text we show in Fig. 17 the ranges
of integration in these equations.

10
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10
2

10
4

E
 [

M
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]

1 10 100
p [MeV]

10
2

10
4

1 10 100

T = 220 MeV

T = 300 MeV

T = 380 MeV

T = 100 MeV

T = 200 MeV

T = 300 MeV

μ = 0 μ = 300 MeV

FIG. 17. Dependence of the ranges of integration (shaded area)
in the self-energies (67) and (69) on momentum at various values
of temperature and chemical potential. The ranges are limited
by Emin;π (heavy solid line) and Emax;π (heavy dashed line) for π-
mesons and by Emin;σ (light solid line) and Emax;σ (light dashed
line). The chiral limit Eq. (72) is shown by the dotted lines. The
value of the quark mass is shown by the heavy horizontal line.
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APPENDIX C: THERMODYNAMIC QUANTITIES

The particle number and entropy densities of quark
matter within the 1=Nc approximation are given by the
formulas

n ¼ NcNf

π2

Z
∞

0

p2dp½nþðEpÞ − n−ðEpÞ�; ðC1Þ

s¼NcNf

π2

Z
∞

0

p2dp½βðEp−μÞnþðEpÞþ βðEpþμÞn−ðEpÞ

− logð1−nþðEpÞÞ− logð1−n−ðEpÞÞ�; ðC2Þ
with n�ðEÞ ¼ ½eβðE∓μÞ þ 1�−1. The integrals in Eqs. (C1)
and (C2) should be calculated without momentum cutoff,
but for momenta p > Λ the quark energy should be
evaluated with its bare mass, i.e., Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

0

p
.

The enthalpy per particle is defined as

h ¼ Tsþ μn
n

¼ NcNf

π2n

Z
∞

0

p2dp

×

�
Ep þ

p2

3Ep

�
½nþðEpÞ þ n−ðEpÞ�: ðC3Þ

Figure 18 shows the quark number density, the enthalpy
density, and the enthalpy per particle given by Eqs. (C1)

and (C3). In the non-degenerate regime T ≫ μ we distin-
guish the following limiting cases: (i) T ≫ m, i.e., high
temperatures where chiral symmetry is (approximately)
restored; and (ii) T ≪ m, i.e., the regime where quarks are
non-relativistic. In the first case p≃ ε ∼ T, therefore we
have the scalings n ∝ μT2, nh ∝ T4, and h ∝ T2=μ → ∞
at μ → 0. In the second case the integrands of Eqs. (C1)
and (C3) are exponentially suppressed by the distribution
function for energies ε −m≳ T, and we find the scalings
n ∝ mμðmTÞ1=2e−m=T , nh ∝ mðmTÞ3=2e−m=T , and h ≃
mT=μ ≫ m. Thus, the quark number density and the
enthalpy density are exponentially suppressed because of
the non-vanishing quark condensate at low temperatures.
The enthalpy per particle again diverges as the chemical
potential tends to zero. In the opposite, strongly degenerate
limit T ≪ μ consider the cases: (i) μ ≫ m and (ii) Δ ≫ T,
where Δ≡m − μ. The first case is realized at high
chemical potentials μ ≳ 350 MeV, where we have degen-
erate matter along with (approximate) chiral symmetry
restoration. In this case all three quantities depend only on
the chemical potential: n ∝ μ3, nh ∝ μ4, and h → μ. The
second case is realized for intermediate values of the
chemical potential μ≲ 300 MeV, where the constituent
quark mass still exceeds the chemical potential. In this
case the quark number density and the enthalpy density
vanish exponentially when T → 0 according to the scalings
n ∝ ðmTÞ3=2e−Δ=T , nh ∝ mðmTÞ3=2e−Δ=T , with Δ > 0, and
the enthalpy per particle has a finite limit h → m, as seen
in Fig. 18.
Using Eqs. (C1)–(C2) we can calculate the specific

heat of quark matter via the standard formula for the heat
capacity per unit volume

cV ¼ T

�∂s
∂T

�
n
¼ −β

�∂s
∂β

�
μ

− β

�∂s
∂μ

�
β

�∂μ
∂β

�
n
: ðC4Þ

Using the relations

�∂n�
∂β

�
μ

¼ −ðEp ∓ μÞn�ð1 − n�Þ; ðC5Þ

�∂n�
∂μ

�
β

¼ �βn�ð1 − n�Þ; ðC6Þ

by taking the derivatives of Eq. (C2) we find�∂s
∂β

�
μ

¼ −
NcNf

π2T

Z
∞

0

p2dp½ðEp − μÞ2nþð1 − nþÞ

þ ðEp þ μÞ2n−ð1 − n−Þ�; ðC7Þ
�∂s
∂μ

�
β

¼ NcNf

π2T2

Z
∞

0

p2dp½ðEp − μÞnþð1 − nþÞ

− ðEp þ μÞn−ð1 − n−Þ�; ðC8Þ
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FIG. 18. Dependence of (a) quark number density, (b) enthalpy
density, and (c) the enthalpy per particle on the temperature for
several values of the chemical potential.
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which implies that Eq. (C4) can be written as

cV ¼ NcNf

π2T2

Z
∞

0

p2dp½ðEp − μÞðEp − μ�Þnþð1 − nþÞ

þ ðEp þ μÞðEp þ μ�Þn−ð1 − n−Þ�; ðC9Þ

where we introduced

μ�ðβ; μÞ ¼ μþ β

�∂μ
∂β

�
n
: ðC10Þ

Here we neglected the dependence of the constituent quark
mass on the temperature and the chemical potential, as it is
of minor importance above the Mott temperature. In order
to find ð∂μ=∂βÞn we take the derivative of Eq. (C1) with
respect to β for n ¼ const. As the left-hand side vanishes,
we obtainZ

∞

0

p2dp½−ðEp − μÞnþð1 − nþÞ þ ðEp þ μÞn−ð1 − n−Þ�

þ β

�∂μ
∂β

�
n

Z
∞

0

p2dp½nþð1 − nþÞ þ n−ð1 − n−Þ� ¼ 0.

ðC11Þ

From Eqs. (C10) and (C11) it follows that

μ�ðβ;−μÞ ¼ −μ�ðβ; μÞ ðC12Þ

and Z
∞

0

p2dp½ðEp − μ�Þnþð1 − nþÞ

− ðEp þ μ�Þn−ð1 − n−Þ� ¼ 0; ðC13Þ

therefore Eq. (C9) can be written as

cV ¼ NcNf

π2T2

Z
∞

0

p2dpEp½ðEp − μ�Þnþð1 − nþÞ

þ ðEp þ μ�Þn−ð1 − n−Þ�; ðC14Þ

which is an even function of μ, as expected.
Figure 19 shows the entropy density, the specific heat

capacity, and their ratio given by Eqs. (C2) and (C14).
In the nondegenerate ultrarelativistic limit μ� ≃ 3μ ≪ T, s
and cV scale as T3, therefore their ratio tends to its

classical limit cV=s → 3. In the nondegenerate non-
relativistic limit (m ≫ T ≫ μ) we find μ� ∝ μm=
T ≪ m as well as the scalings s ∝ m2ðmTÞ1=2e−m=T and
cV ∝ m3ðm=TÞ1=2e−m=T , which demonstrate the exponen-
tial suppression of these quantities by the quark condensate.
In this case their ratio cV=s≃m=T diverges as T → 0,
as seen from the solid line in panel (c). At very high
chemical potentials μ ≫ T;m we find μ� → μ and the
scaling s≃ cV ∝ μ2T, which implies therefore cV=s → 1.
In the degenerate regime when T ≪ Δ, the scaling is
s ∝ mΔðmTÞ1=2e−Δ=T . In order to find the leading term
contributing to cV , we need to keep the first thermal
correction in μ�, which gives μ� ≃mþ 3T=2. Then the
integral (C14) can be estimated as cV ∝ ðmTÞ3=2e−Δ=T ,
and, therefore, the ratio cV=s ∝ T=Δ → 0 as T → 0
[see dashed line in panel (c)]. In this limiting case the
entropy per particle diverges as s=n ∝ Δ=T, and the
specific heat per particle tends to the nonrelativistic
limit cV=n → 3=2.

10
-2

10
-1

10
0

s 
[G

eV
3 ]

μ = 0 
μ = 200 MeV

μ = 400 MeV10
-2

10
-1

10
0

c V
 [G

eV
3 ]

0 100 200 300 400 500
T [MeV]

0

2

4

6

c V
/s

(a)

(b)

(c)

FIG. 19. Dependence of (a) entropy density, (b) specific heat,
and (c) their ratio on the temperature for several values of the
chemical potential.
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