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We study the semi-inclusive limit of the deep inelastic scattering and Drell-Yan (DY) processes in soft
collinear effective theory. In this regime so-called threshold logarithms must be resummed to render
perturbation theory well behaved. Part of this resummation occurs via the Dokshitzer, Gribov, Lipatov,
Altarelli, Parisi (DGLAP) equation, which at threshold contains a large logarithm that calls into question
the convergence of the anomalous dimension. We demonstrate here that the problematic logarithm is
related to rapidity divergences, and by introducing a rapidity regulator can be tamed. We show that
resumming the rapidity logarithms allows us to reproduce the standard DGLAP running at threshold as
long as a set of potentially large nonperturbative logarithms are absorbed into the definition of the parton
distribution function (PDF). These terms could, in turn, explain the steep falloff of the PDF in the end point.
We then go on to show that the resummation of rapidity divergences does not change the standard threshold
resummation in DY, nor do our results depend on the rapidity regulator we choose to use.
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I. INTRODUCTION

Lepton pair production in hadron-hadron collisions,
known as the Drell-Yan (DY) process, helped establish
the parton model as a valid leading-order description of
high energy QCD interactions. At present the DY process is
still of great interest as it provides a test bed for other final
states, such as the Higgs boson or beyond-the-standard-
model particles, which are similarly produced in the
collision of high energy partons [1].

Of particular theoretical interest is the so-called thresh-
old region, where the invariant mass of the lepton pair
approaches the center-of-mass energy of the collision. In
this regime large Sudakov logarithms must be resummed
[2-5]. Similar, but on less rigorous footing is the need for
partonic resummation. In this case one is not in the true end
point region, but rather in the region where the invariant
mass of the colliding partons is just above the threshold for
the production of the final state. It is argued [6,7] that the
sharp falloff of parton luminosity at large x enhances the
partonic threshold region, and thus requires resummation.
A quantitative study of this question was carried out in the
context of soft collinear effective theory (SCET) [8—11] in
Ref. [12], which concludes among other things that “the
dynamical enhancement of the threshold contributions
remains effective down to moderate values 7~ 0.2...,”
where 7 = 1 represents the true end point.

In the threshold region the large Sudakov logarithms
which need to be resummed have a simple form in Mellin
moment space, where leading terms appear in perturbation
theory as double logarithms a’In**(N), where N is the
Mellin moment. The threshold region corresponds to the
limit of large N, so clearly the presence of these types of
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terms poses problems for a naive perturbative expansion
and calls for resummation. Part of this resummation occurs
when the parton distribution function (PDF) is evolved
using the Dokshitzer, Gribov, Lipatov, Altarelli, Parisi
[13—15] equation, which in the threshold region becomes
particularly simple. In Mellin moment space the anomalous
dimension for the nonsinglet quark-to-quark PDF has the
form [16]

A == () " o) - B, + O ).
1)

where N = Ne’t, y;, being the Euler-Mascheroni constant.
Atorder n = 0, for example, Ag = 16/3 ~ 5.3 and B, = 4.
What is peculiar about this result is that while A, and B,, are
numbers of the same order, there is the large logarithm of N
enhancing the A, term. From an effective field theory
(EFT) point of view the large logarithm is problematic
because a consistent power counting in the threshold region
should never encounter such enhanced terms.

This issue was addressed in a previous paper in which
we revisited deeply inelastic scattering (DIS) in the
threshold (or end point) region, where Bjorken-x
approaches its end point value of one [17]. In that work
we use SCET to show that the PDF in the threshold
region can be expressed as the product of a collinear
factor and a soft function. Since both the collinear and
soft degrees of freedom in the end point have an invariant
mass of order the hadronic scale such a separation
necessitates the introduction of a rapidity regulator to
keep the two modes separate. We use the rapidity
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regulator of Refs. [18,19]. This tool allows us to
reorganize the perturbative expansion of the anomalous
dimension for the nonsinglet quark-to-quark PDF in the
threshold region. We find the leading-order anomalous
dimension in Mellin moment space to be

o) (i) o) o

where v, =~ Q is the collinear rapidity scale, and v, =
Q/N is the soft rapidity scale. The rapidity scales are set

by minimizing logarithms in the collinear and soft

. . . 0
anomalous dimensions, and result in a ygm) free of a

logarithmic enhancement. Now both terms in the anoma-
lous dimension are of “natural” size, O(1).

Unfortunately, there is a downside to separating modes
in rapidity: the PDF now depends on logarithms of the ratio
of v, to vy. In principle these logarithms can be resummed
using a rapidity renormalization group equation (rRGE);
however the anomalous dimension in the rRGE is not
infrared safe. As a result the running in rapidity can not be
reliably calculated and must be included in the function
chosen to model the PDF at the hadronic scale. This does
not mean that we cannot use our rapidity separated PDF as
the definition of the PDF in the end point: we can as long as
we let the scale v, approach Q as we move away from
threshold. This can be achieved by introducing a rapidity
profile function [20].

In our previous work we showed that one can
introduce a rapidity separated PDF in the end point of
DIS that has all the properties that a PDF should have,
and that DIS in the end point using our approach factors
in the same way as DIS factors in the region away from
the end point. This approach, however, must also
reproduce the well-known result in DY that threshold
resummation is expressed as a convolution of perturba-
tively resummed logarithms with the same PDF as
appears in DIS. The aim of this paper is to show that
this is indeed the case. Furthermore, we investigate an
alternative rapidity regulator, the delta regulator, and
show that our results are rapidity regulator independent
to the order we are working.

We begin in Sec. II by reviewing our calculation of the
DIS soft and collinear functions using the # regulator. In
Sec. III, we calculate the soft and collinear functions for DY
using the # regulator and resum the end point logarithms
using the rapidity renormalization group. In Sec. IV, we
repeat the calculations for both DIS and DY using the delta
regulator and compare the results to those from using the
regulator. For completeness, in Appendix A we calculate
the jet function (for DIS) using the delta regulator, which
has not previously appeared in the literature. We explore the
difference in the structure of the zero-bin subtraction
between DY and DIS in Appendix B.
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I1. DIS AT THE END POINT WITH
THE RAPIDITY REGULATOR

In this section, we review the SCET factorization and
resummation results for DIS in the end point regime which
we studied in Ref. [17]. At the end of this section we
remark on aspects of our results that were not addressed in
our previous work, and compare to previous work [21].

The DIS process is when a high energy electron with
momentum k strikes a proton with momentum p and
produces a final hadronic state X(py) and a scattered
electron. We denote the final state electron momentum as
k', and the square of the momentum transfer is

¢* = (k—K)?. We define 0> =—¢’, and x =52 With
this notation, we follow Ref. [17] and write the differential
cross section as

&Pk met
6 =—5———=L,(kL,K)W*(p,q). 3
TP s e kW) O
where s = (p + k)? is the invariant mass square of the
collision, and the lepton tensor is

L,, = 2(kk, +kk, —k-kg,,). (4)

w

W,, is the DIS hadronic tensor, which at large x is the
subject of our analysis.

In this section, we first determine the kinematics and
power-counting specific to the end point. Then we match
QCD onto SCET;. Next at an intermediate scale of order
the invariant mass of the final state, we match the SCET;
onto SCETy;. Using the rapidity regulator introduced in
Refs [18,19], we explicitly calculate both the collinear and
the soft functions to one loop in the SCETy;.

A. Kinematics

There are a number of different approaches in the
literature [22-24] that describe how momentum compo-
nents separate and scale in the x~1 regime. In this
article, we choose the notations in Ref. [22]. We define
light-cone unit vectors n#=(1,0,0,—1) and ##=(1,0,0,1),
which allows us to decompose the proton momenta
pr=%n-p+%n-p+p, in which p"=n-p and
p~=n-p. In the target rest frame, p = (p*,p~,p,) =
(M,,M,.0), and Q* = —¢> = —q"¢q~. The direction of
the incoming electron fixes the z-axis, and in the target rest
frame, ¢~ > ¢T. In this limit, Bjorken x simplifies to

2 + - +
R L . O
2p-q  pq+pq  p’

We can express all momenta in terms of x, M » and Q in the
target rest frame, and then boost them along the z-axis into
the Breit frame,
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2 st
1= (oM, 5 0) ™ (-0.0.0)

x 0
pe = p+a= 0,0 -2.07022 (2122 g.),

boost Q XM2
p_(M[hMp’O)_)(_’—p’O)

where py is the (total) final state momentum. In the large-x
limit, the large component of the incoming proton is
ph= % = Q + 1", in which I = Q'=* is a rapidity scale
lying between the collinear momentum scale Q and soft
momentum scale Aqcp. The rapidity scale, as we see later,
separates soft and collinear modes and gives rise to
logarithms of v, and v,.. Correspondingly, we have natu-
rally separated momenta,

(i) hard modes with ¢ ~ (—Q, Q,0) and invariant mass

g*> ~ Q% at the hard collision scale;
(ii) final state jet hard-collinear modes with py ~

(0(%). 0,0,/ ~ (I, Q, \/OI) and invariant
mass pg ~ QI > A, at the hard;collinear scale;
(iii) n-collinear modes with p.~ (Q, 5 Aqcp) and
invariant mass M3, ~ Agcp at the soft scale;
(iv) soft modes with p; ~ (Aqcp. Ageps Agep) at the

soft scale.
|
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We first integrate out the hard degrees of freedom in
QCD at the scale Q> by matching onto SCET; with
off-shellness QI". We then integrate out hard-collinear
degrees of freedom at QIT by matching onto SCETy
with off-shellness AéCD. In the case where the final
state momentum py is of order Q(=X)~ITX
Aqep < O, the process is semi-inclusive in character.

2
If on the other hand [T ~AQ—QCD, the collision would be

exclusive, and we would be unable to factor the
hadronic tensor.

B. Factorization

In Eq. (3), the DIS hadronic tensor is the matrix
element of the time-ordered product of two QCD currents
JH(x) = w(x)y*y(x) between external in- and out-proton
states,

1 .
We(p.g) =53 [ et h(p.0) 00 (p.0),
(6)
where ¢ is the spin of the proton. Matching QCD onto

SCET is carried out at the scale Hg ™~ 0O, and the SCET
current is

]ﬂ(x) - ZC(WHWZ;.“7/’tq)(e_éw‘nhxe%wzr—l‘x)_(h.wzyﬁ_)(n,wl + H'C')7 (7)

wi,Wwy

where J;,,» Xnw, are SCET fields. Correspondingly, the hadronic tensor in SCET] is

Ho
Weg =

W W W W

D CHwrowaipg ) C(Wy Whs iy o)

4 .
dX i0wnr 0wy

iy 4

X %ZUln (p’ 6) |Tb_(n,wl}/i)(ﬁ,w2 (x)}TU(ﬁ,w’zyli)(n.w’] (0)} |hn (P, 6))

~90 .
= TNL ZC (Q’ Q,/,[q,,u)C(CU/] ’wé;ﬂq’ /’4)

/ !
o,

n 1

X (01 520050705 (0)10) -

(1 (P, ) 710(0) s O (0. )

(O[T (T (Y5 (x) Y5 (x)]T[¥5(0)Y,(0)])]0). (8)

where T and T denote time ordering and antitime ordering operations of the soft gluon fields Y¥; and Y, respectively. The
two collinear sectors and one usoft sector are decoupled by the Bauer-Pirjol-Stewart (BPS) phase redefinition in Ref. [8].
In order to match Eq. (8) onto SCETy, it is convenient to introduce a jet function as in Ref. [25],

2

(012 s (), (0)]0) = QB(7 - 1)) (x,) / dre 450 (). (9)
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which characterizes the final state with p% ~ QI*. The final

state is integrated out at the scale y. ~ v/ QI" and J;(r; u)
becomes a matching coefficient in SCETy;.
We define a soft function in SCET] as in Ref. [26],

1
N,
= / dtemxSOS) (¢ ), (10)

(OITe(T (Y (n - ) Y3 (n - )] T[V(0)Y,,(0)])|0)

which describes usoft gluon emission throughout the
interaction, from the initial to final state. The Wilson lines
are defined as

PHYSICAL REVIEW D 95, 114020 (2017)

Y,(x) = Pexp (ig / " dsn 'As(sn)>,

[Se]

7ix) :Pexp<ig[C°o dsﬁ-AS(s,—l)) (11)

The usoft gluons in SCET; with off-shellness pg, ~ Agcp
become soft gluons of SCETy;, so Eq. (10) retains its form
in matching SCET; to SCETy;.

Using label momentum conservation, which is
just momentum conservation at fixed (large) Q, we
simplify the collinear matrix element in the n-collinear
direction,

((p+0) B 03) 5 1, OV (-0)) = 8., U (1. 0) 20 x) 5 322 O (. ). (12)

2

We then define an n-direction collinear sector as the n-collinear function and match it onto SCET};. We insert an explicit
Kronecker delta to ensure the large momentum of the proton p - 71 is Q at large x,

dn - x

Ci(Q— ki) = /

S unolh(p. ) 0) ]

where P =ii-(P+P") and k~ Agcp is the residual
momentum lying in the SCET]; soft region. Label momen-
tum conservation then forces w’1 = @, meaning that the
large momenta of the incoming and outgoing protons are
both equal to Q.

In the SCETy; soft and collinear fields have the same off-
shellness p* ~ Ajcp. An arbitrary separation between
these soft and collinear modes may lead to rapidity
divergences [18,19], which we regulate by a Lorentz
invariant # regulator with a dimensionful scale v. Since
the matching procedure shows that the final state jet
function is decoupled from the initial state n-collinear
function, we can express the n-collinear function as
C,(Q—kiu) > C,(Q—k;p,v) and the soft function as
S(l, ) = S(I; u,v). Combining Egs. (8), (9), (12) and (13),
we arrive at the SCET}; factorized DIS hadronic tensor,

Wi = =g H(Q; ug» i)

x/dfjﬁ(f;ﬂc,ﬂ) q<Q<1;x> +f;ﬂ>, (14)

() = Bnp0 Za0 )P (Cipw)  (15)

with

and

o 1 _ #
. e §Z5ﬁ-p.g<hn(l7,f’)|)(n(”'x)§57'>,2Q)(n(0)|hn(P’0)>

6p200(int - O = k), (0) |1, (p. 0)). (13)

Z,(u.v) = Cp(Q = ks, 1)8(k) 5.5 .- (16)

C. Renormalization and resummation with rapidity

In this section we study the collinear and soft functions
using the 7 regulator from Refs. [18,19]. The rapidity
logarithms in the collinear and soft functions are regulated
by a modification of the momentum space Wilson lines as
follows,

perms n-P v
gw [2P5]™"
S, = L e TP 17
: zp[ 2 PR, Al )

where v is a rapidity scale and w is analogous to a coupling
constant, which is used to derive the rapidity renormaliza-
tion group equation. We take # — O at the end.

1. Collinear function to O(ay) for DIS

The n-collinear function in Eq. (13) has the tree-level
Feynman diagram shown in Fig. 1. We consider the explicit
calculation of this diagram using external parton states, and
find the O(a?) result
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n En @ ) ©

FIG. 1. O(a?) Feynman diagram for the n-collinear function. ~ FIG. 2. The O(a,) Feynman diagram for the n-collinear
function (a) is the virtual contribution; (b) and (c) are the real
contribution.

C(Q = k) = 83p08(7 - po = K)mg,  (18)

where &7 is the SCET quark spinor in the n direction with

where i - p is the O(1) quark label momentum at the hard  gpin .
scale Q, p, is the quark residual momentum at the soft scale The O(a,) n-collinear function Feynman diagrams are
and shown in Fig. 2. Figure 2(a) shows the virtual contribution,
while Figs. 2(b) and 2(c) show the real contribution.
1 A We omit the mirror images of Figs. 2(a) and 2(b). With
my = 5 ng 3 i (19) the rapidity regulated collinear Wilson lines, we obtain the

o naive result corresponding to the diagram in Fig. 2(a),
|

dq |i-q|™ n-(p—q) 1
2m)P? f-q (p-q)*+ieq* —m; +ic

i = (img) (2G2C) 5 p 08120 / (20)

in D =4 — 2¢ dimensions. The Kronecker delta sets the large component of the external quark momentum to Q. The
integral in Eq. (20) overlaps with a region of soft momenta that must be subtracted to avoid double counting, the so-called
zero bin which was first discussed in Ref. [27] and then improved in Ref. [28]. Taking the limit 7 - ¢ < 7 - p in the collinear
gluon loop gives the overlap region, and the zero-bin subtraction for this diagram is

d’q |- q|™" ii-p 1
2z)? f-q (A-p)(n-q)+ieq* —m+ie

im'? — imo(29°Cr)S;. 00(17 )u* V! (21)

Equation (21) is scaleless and thus vanishes. The naive results corresponding to the diagrams of Figs. 2(b) and 2(c) are

D (22i\5( ) g™ 7-(p—q)

(2m)P i-q (p_q)2+i€5(ﬁ‘qr—l_), (22)

iy, = (—img) (ZQZCF)5ﬁ'ﬂ+ﬁ-é,Q5ﬁ-P»Q”2€Dn /

it = (i) 24 Cr)n o (0 =2) [ s (2ol oD g, =), (@3

where g is the large component of the collinear gluon momentum which obeys label momentum conservation, and
q = q + q, with g, being the soft residual momentum. In the n-collinear function, the n-collinear quarks only couple with
n-collinear gluons, which means n-g =0 and n- g = n - q,. The two Kronecker deltas in front of the integrals in both
Eq. (22) and Eq. (23) force 2 - ¢ = 0, which implies that gluons emitted from initial to final state only have soft momentum.
As a result, Egs. (22) and (23) can be reduced to

it = (—im s dDQr —2xi |fl‘qr|_” fl'(p_Qr) g -

lmb _< 0)(292CF)5n~q,0/(2ﬂ_)D( 2 )5(q%> ﬁqr (p_qr)2+l€5( qr l )’ (24)
o (im0 [ L yase oy (Aoa)(ngn) oo
it = i) 2P0z [ 505 (<2mi)olad) (I o g, = ). (23)

114020-5



SEAN FLEMING and OU Z. LABUN PHYSICAL REVIEW D 95, 114020 (2017)

which is equal to the zero-bin subtraction. Therefore, after subtracting Eqgs. (24) and (25) from Egs. (22) and (23)
respectively, the results vanish.
After computing the virtual collinear diagrams in Eqgs. (20) and (21) and adding their mirrors, we have to O(«y)

c S0y 2\e 1 2 2 2
Sm=co-n% Fw2{e ©) (”—2> +—{1+1n—_” ]+1n”—21n—_” +1n”—2+1—”—}, (26)
b4 n € n-p my n-p my 6

which depends on the rapidity regulator. A natural choice of v ~ 72 - p = Q minimizes the rapidity logarithm. The collinear
matrix element is obtained by multiplying the above result by the quark wave function renormalization

aSCF 1 ”2
Z:=1- —+Ih—+1], 27
¢ <€+ nm2+ (27)
which gives

(1) (0) a,Cr ,fe7 T(e) (u*\¢ 13 ? v 3.4t 3
Cy —k)=0C, —k 1— 1—1— In—+-——>. 28
(Q-k) (Q—k)— w{ . n +o |3 +nmgn p+4 5 i (28)

2. Soft function to O(ay) for DIS

The soft function, given in Eq. (10), at tree level is
SO = (1. (29)

To O(ay), with the n-regulated soft Wilson line Eq. (17), we can explicitly isolate the rapidity poles of the soft function.
The Feynman diagrams for the one-loop soft functions are shown in Fig. 3, where Fig. 3(a) is the virtual piece
and Fig. 3(b) is the real piece. The double lines represent the eikonal lines. Here we also omit the mirror images of
Figs. 3(a) and 3(b).

The naive virtual soft function amplitude determined from Fig. 3(a) is

S = (2ig*C )5(1)/126U”W2/ddk |2ks| ™" 1 1
ﬂ ) kz_m2+i€k_+iek++i€
C €YET 2¢ 1 ) ,
R R LN "
P n m, 2e v mg mg m, 24

The zero-bin subtraction for the naive virtual piece is the overlap with the n and 7-collinear directions,

; Pk |7
1 (k= > k) = (2ig?Cp)a(1)uw 1
k> k) = Qg Criolp / Qa)P k" 1 i)k + i) —mE + ie)’ (31)

dPk |k |
Q)P (k" + ie) (k™ + ie) (K2 — m2 + i€)

St (k> k7) = (2i2Cr)3(Dpy! / (32)

These integrals are scaleless in rapidity regularization and vanish. This must be the case because adding the rapidity
regulator to the soft Wilson lines Eq. (17) restricts the soft function integral to lie only in the soft momentum region. In other
words, in the virtual contributions, the rapidity regulator properly separates soft and collinear modes in SCETy;. Thus the
total virtual soft function is

S, =28,. (33)
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(@) (b)

FIG.3. O(a,) soft function Feynman diagrams: (a) is the virtual
contribution; (b) is the real contribution.

The naive real contribution from the diagram in
Fig. 3(b) is

. dPk
S, = +4xCr@u*w V”/W
11
Kk
C 2\« o
_ _&bF <ergﬂ_2> w2 ( )F(G)- (34)
g9

T m it

X 5(k* = m2)8(¢ — kT)|2k3| ™1 —

In the scheme introduced in our previous paper [17] the
collinear zero-bin subtraction for the real soft function is
given by expanding the real soft contribution about the
collinear limit everywhere in the integrand except in the
measurement function. Then our zero-bin subtraction is not
0 at this order, because overlap with the collinear regions in
the soft function is not suppressed by the rapidity regulator
in the initial state Wilson lines. Mathematically, we see this
by the presence of the scale brought into the integral by the
measurement function. The overlap of the integral in
Eq. (34) with the n-collinear region is given by taking
the limit k™ > k= with KTk~ ~ k2,

dPk
roo_ 2,2¢
Spp = —4nCrpgsp=w V"/W

11
mE(E = K[

a,C u*\ ¢ 0(¢)
:+—F(67E —!2]> WZUWWF(€>7 (35)

x §(k* —

T m

which is the same as the result in Eq. (34). The 7-collinear
subtraction is given by taking the limit k= > k* with
kTk~ ~ k% in the first line of Eq. (34),

dPk
(ZH)D_I

S;¢ = —42Crg’u 2ﬁwzlﬂ/

11

-n__

— M) kY
__aCr (eyEﬂ_z{%)SWz (m%z])”@w (36)

n m; 171T(1 +1n)

x 8(k?

PHYSICAL REVIEW D 95, 114020 (2017)

Comparing Egs. (34)—(36), we see that the unsubtracted

soft function 5‘, is dominated by overlap with the n-
collinear region as Eq. (35) represents the n-collinear
modes running into the soft function. This is due to the
measurement being on soft radiation only in the n-collinear
direction. Radiation in the 7i-collinear direction has been
integrated out in the matching onto SCETy; and subtracting
Eq. (36) from Eq. (34) removes the momentum in the soft
function that overlaps with the 7n-collinear momentum
region. Thus the zero-bin subtracted real contribution,
given by the diagrams in Fig. 3(b), is

S, =2(8, - Sh, = Sp,) = =28%,

€YE 2e
:zas_Cszi{[}e F()<_> _ by e
7 oLL|12 17 my u

om
1 1
]G &
2¢e my|\z/
where the plus function of the dimensionful variable £ is
given in terms of the definition of a dimensionless variable

z="7/k,
<;> ) — % (%) . + Ink8(kz), (38)

G) =l [@ +In ﬁé(z)} . (39)

Adding the virtual and real contributions gives the one-
loop expression for the soft function

_aCr H 1 [ T T(e) ()
=—_w Q{ p m, 8(z)

) oweos () o

Logarithms in the soft function are minimized by setting
p~myand v~E ~Qz~ Q(lx;x) Note that Q(lfx) is an
end-point region energy scale, which is however different
from what one naturally chooses for the collinear function.
Clearly, resumming logarithms in v is needed.

At this point we wish to alert the reader to an alternative
approach to deriving Eq. (40), developed in Ref. [29]. In
our work we strictly take the m, — 0 limit while holding
the momentum 7 fixed in the soft contribution, and
determine the zero-bin subtraction as outlined above. In
contradistinction, the authors of Ref. [29] hold m, fixed
and consider both £ > m, and 7 < mg, and then take the

with

S(z)(')

1
+<——|—ln
€
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m, — 0 limit in the soft contribution. The zero-bin sub-
tractions are determined by expanding the soft integrand
around the collinear limit, including the measurement
function but excluding the rapidity regulator term
|2¢5|7". These two approaches result in different collinear
zero-bin subtractions for the soft function; while we have
both an n-collinear and 7i-collinear subtraction, the
approach of Ref. [29] requires no collinear zero-bin
subtraction in the soft function. In DIS at the end point
the two approaches give the same results up to O(m,/?),
which vanishes in the my, — 0 limit. Thus, there is no way
to determine from DIS if one of the two (or both) of the
approaches is inconsistent. However, as we point out in
Sec. III, DY cannot be treated with our approach, while the
approach used in Ref. [29] gives a consistent result.
Furthermore, our approach is not compatible with the
threshold expansion while that in Ref. [29] is [30].

3. Renormalization group running for DIS

To subtract the divergences in € and # in Eqgs. (28) and
(40), we introduce counterterms,

Cn(Q - k)R = Z;]Cn(Q - k)Ba

S()k = / d7Z,(z—7)7'8(¢")8,

where £/ = Q7' and superscripts R and B indicate renor-
malized and bare. The one-loop collinear counterterm is

6'}’1;'1—‘ 2e 1
z, =1+asCFw2r (©) <i> +—<§+ln—_y )}

7 n m, e \4 n-p

(41)

and the one-loop soft counterterm is

Z,(2) = 8(z) + B2 { _eTTle) <i> “5(2)

b2 n m,

DTS S

These counterterms obey the consistency condition put
forth in Ref. [25], as they must,

1
+ —
€

ZnZ; (z) = Z,'Z3'(z). (43)

where Z; (z) is the jet-function counterterm and Zy is the
square of the counterterm for the SCET DIS current, which
has been given at one loop in Ref. [26] in 4 — ¢ dimensions.
Converting the result of Ref. [26] to 4 — 2¢e dimensions and
squaring gives

ZHZI—

aCr(2 3 2 @
i e B T 44
2r <€2+€+€nQ2 (44)
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where Q% = ii- pn - px. The one-loop result for Z 7. (2) is
given by Ref. [22],

a,C
Z;,(2) =8(2) + =~

(g 1) }

Putting the factors together,

asCF
ZyZ =0 —_—
wZ3,(2) = 8(2) + %

{[n)eot) ) o

which is exactly equal to the product of inverses Z,,'Z;!(z)
taken from Egs. (41) and (42).

From the one-loop results, we extract the g anomalous
dimensions for the collinear and soft function respectively,

2a,(1)Cr (3
}’ﬁ(ﬂ,l/) = m <Z+ IH_L),

7 iop
Fuw) = % Kéh - lnéé(z)} (47)

Note that

posasen B ) )

(48)

which agrees with the known result, and the v-dependence
cancels as expected. In Mellin moment space this is the
n = O result given in Eq. (1). We can now trace the origin of
the large logarithm to the rapidity region. If we choose
v =1v,.~ Q in the collinear anomalous dimension on the
first line of Eq. (47) and v = v, ~ Q(1 —x) in the soft
anomalous dimension in the second line, then neither term
contains large logarithms. Adding the two anomalous
dimensions together then gives

7 =rnd(z) +75 =

(e Q) o

where the combination of plus-function and logarithmic term
is no longer anomalously enhanced compared to the 3/4.

Minimizing the logarithmic term in the x anomalous
dimension requires choosing two widely separated rapidity
scales, v, and v,. This necessitates a resummation of
logarithms of v. The v anomalous dimensions for the
collinear and soft functions are

za.s‘ CF
T
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as (ﬂ)CF /"2
Y ’ Sl 1 R
Vn (,“ V) p n mg
) a;(u)Cr, 1
Pl = =SB s (s0
g

Adding them together, we have y* = y45(z) +y% = 0, as is
dictated by the consistency condition. The presence of m,
in ¥4 and y% indicates that the renormalization group
running in v depends on an infrared scale, and therefore
is nonperturbative. Thus we are left with little choice but to
treat the v resummation as part of the nonperturbative
aspect of DIS and to absorb it into the definition of the PDF.

The p and v running are independent and can be carried
out in either order; however they must obey the constraint

d d

v — " 51
T (51)

dinpu

For the collinear function, the u running is given to one
loop by

Cn(Q - k;.u’yc) = U(ﬂ?/‘O?”c)Cn<Q - k;/’lO’Uc)
o (po.p)
Ui, . v.) = ei@lkon) | _Fe_ ’ 52
() = el |2 (52)
where v, is the collinear rapidity scale and
4'CF |:as‘(ﬂ0):|
(o, p) = ——1In|— . 53
( 0 ) ﬁO as(/") ( )

Note that w(pg, u) = 2ar(u, pg) of Ref. [21]. For the soft
function, the one-loop u running is

ﬂﬁ%%%i/mUW—mmwaﬂﬂMWJ

(e}’El/S)—a’(ﬂqu) < 1 >
U f— r; N ’DS =
( Hs Ko ) F(a)(,uo,/t)) (f _ r)l—w(ﬂo,y) N
(54)
Combining the running factors we find
Ulp, o, ve)U(E = 131, g, V)
[6_751/6] (o) e%w(ﬂovﬂ) ( 1 )
2 C(@(po, ) \(£ = r)!=0om) )
(55)

This agrees with Eq. (66) of Ref. [21] if we set v, = vy,
convert the plus-distribution to dimensionless variables, and
recognize that 2a.4 (uy, po) = (3/4)w(po, p) at this order.

To get a feel for which logarithms are being summed we
transform the combined running factors into Mellin
moment space (for large N),

PHYSICAL REVIEW D 95, 114020 (2017)

eTEY, @(Ho.p) S0 )
U(M?MO?”C)U(N;/'{7M07US) = NI/ ea?HoH),

(56)

The first term on the right-hand side in square brackets can
be expressed as

e_VEyC @ (po.p)
]
= Ex P{w(ﬂo 1) 1n<e]\;zy >]
B 4CF Nug \ <=1 (Boas(u n
~eol () 3 () o

which, in the exponent, gives a series in a¥ (u)In" (/)
times a single power of In(Nv,/v,). If we make the choice
v, = vy we reproduce the standard result of a single
logarithmic series multiplied by a single logarithm of N.
However, if we make the choice for v, and v, given above
then we merely have a single logarithmic series multiplied
by an O(1) quantity. We argue that this is the natural choice
from an EFT perspective.

Having widely separated rapidity scales then forces us to
consider the rRGE. Although the v running is nonpertur-
bative it is still enlightening to see what the resummation
looks like, and we push ahead and determine the soft v
running factor using the constraint Eq. (51) to sum large
logarithms in the rapidity anomalous dimension,

S(f;ﬂx’ V) = V(ﬂsvy’ VO)S(f;ﬂS’ V())’
17 :| w(ﬂx’mg)

V(/"s’yv VO) = l:V_O

(58)

Note that if we choose v = v, and v, = v, in the above
equations with g, = u then

v, w(ﬂ'mg) v, @(p.po) U, w(ﬂﬂﬂmg)
Vip.vyve) = |~ =|— —

s l/‘, l/S

_ |:ﬁ:| (po.) |:&:| w(ﬂo,m_,,)‘ (59)
Z/L'

Vg

The first term in square brackets on the far right-hand side
cancels the v,/v,. dependence in Eq. (55), and results in a
running factor identical to the one obtained without rapidity
resummation. However, the second term in square brackets
on the far right-hand side of this equation remains. This
term is infrared sensitive and is absorbed into the definition
of the PDF. Finally we expressed the leftover rapidity
running factor as

114020-9
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4CF U, - 1
V(uo, Vss U, —Exp[——ln(—‘) -
o) = Bxp =201 (1) 31

Vs n=1
Boag(Ho) . Ho )"

with v, /v, = N, making it clear that what is being summed
(in Mellin moment space) by the rRGE is the product
a (o)In" (uo/m,) In N. The large logarithm of N multiplies
infrared logarithms, which explains why no one has tried to
sum these terms before.

Of course, this begs the question of why we should even
bother to separate collinear from soft in the PDF. One
answer is that we have a consistent EFT formalism that
never produces terms that violate power counting. There
are, however, more. Currently fits of the PDF produce a
very steeply falling function of momentum fraction as the
end point is approached, with no understanding of why; our
result offers an explanation. To see why we define our PDF
for large x in DIS as a modified form of the function f7* in
Eq. (15),

fZS (Z;ﬂ)endpoint :5ﬁ~[7,an (.uvyc)S(DIS) (f;ﬂvys)V(MOstJ/c)‘
(61)

This is the same as the operator definition we give in our
previous paper, but we have made the presence of the
V(uo, vy, v,) factor explicit. Away from the end point v,
and vy must flow together so the PDF in the end point
matches smoothly onto the usual definition of the PDF.
Choosing to set the rapidity scales in Mellin space with

PHYSICAL REVIEW D 95, 114020 (2017)

If we transform back into momentum fraction space we find

1

— (1 -2 w(my-ﬂo)_]’
Mamym) |~

V(ﬂo’l/ml/c) =

where the exponent of (1 — z) is nonperturbative and could
be large. Thus we can interpret the conventional running of
the PDF in the end point using the anomalous dimension in
Eq. (1) as a combined running in ¢ and in v, with a subset of
potentially large nonperturbative rapidity logarithms
remaining in the PDF. These remaining logarithms could
then be responsible for the steep falloff of the PDF in the
end point.

Finally, it is interesting to see how the above modifica-
tion to the PDF fairs in the analysis carried out in Sec. 3.5 of
Ref. [21]. Nothing in that analysis changes if we identify

b(uo) = bir + w(my, po). (63)

with br being the nonperturbative value of the h-parameter
with absolutely no running. Furthermore, the relation for
N (u) remains unchanged.

4. Comparing to the perturbative QCD result

In this section, we compare the one-loop expression of
the hadronic tenor in SCET to that in QCD. This provides a
powerful check that nothing has been missed in the SCET
calculation. Extracting the scalar part of the SCET effective
hadronic tensor from Eq. (14), we have

v. /vy = N, we have Wi = —% Wege (64)
V(o vsive) = N=otmes), (62) where
|
Ldw DIS
Werr = 20H(Qs g te) | = Ja(Qwipei ) Ca((Q = K)s i, v)SPP(Q(1 = w)ir. ). (65)

The renormalized hard function H?(Q; Hqs ) and jet function J. R(Qz; pe; ) are given in the literature [21,22,24,26,31,32],

2 2

C 2
Hgls(Q,ﬂ)z1+“S—F<—1n2”——31n”——8+”—) (66)

2w

2

JRO(1 =x),p) =6(1—x) —l—a;CF {5(1 —X) (glnﬂ——l—ln2

0’ 0’ 6

o275) - (5) (i) ()

n 2 Q?
(67)
From Egs. (28) and (41), we obtain the renormalized collinear function,
a,C u? v 3.4 3 A
CR(Q — ki, v) = mody 5 00(k) |1+ =L (In“SIn——+>In"5 +>——]|. 68
(Q ﬂV) mO VLP,Q()|: + (nménﬁp+4nm?]+4 6 ( )
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From Egs. (40) and (42), we obtain the renormalized soft function,

SRO(1 = x): 1, ) = éé(l —x)+ “;ZF {1“:7; Kl 1x>+ - 1%5(1 - x)] } (69)

Inserting Eqgs. (66)—(69) into (65), we arrive at the one-loop expression for the hadronic structure function calculated in
SCET which is valid in the end-point region,

a,C
Weff = 2m05n’ﬁg{5(1 - .X') + TF |:<—

() (e e (=) i) o

Note the rapidity scale dependence in the last term is multiplied by an IR logarithm indicating once again that the logarithms

that are being summed are infrared in nature. In order to compare to W in QCD we first set v, = v,.
The quark contribution to the hadronic structure function in perturbative QCD is given in Ref. [33],

Fato) = [ L@+ G0N {30 =0+ P 0 a0 )
where
4120 S 0( ), 1)
a,f37(2) = [ <lnI_ZZ)>+—lltzzz(zlnz)—%<l—iz>++4z+1—(2?”2%)6(1—@} (72)

z=x/y, and Gp_,q + GE,_),

z—1

2 2mos, Q){5(1 —0)+ aSnCF K_

Comparing Eq. (73) to Eq. (70), we find that the low energy
behavior agrees. In particular, by comparing the jet function
and soft function separately in SCET, we can trace the oﬁgin

4=qg In m?

to the large scale difference between the collinear gluons and
the soft gluons entering the final state jet. The difference
between Eq. (73) and Eq. (70) is the constant coefficient of
5(1 — x) and the constant term. The former is regularization
scheme dependent, and the latter subleading. Since the SCET
calculation uses a different regularization scheme from
Ref. [33] this discrepancy is expected.

of the mg dependence in the quark splitting term ~ P

III. DRELL-YAN AT END POINT WITH
RAPIDITY REGULATOR

We now apply a similar analysis to the Drell-Yan
processes. We investigate DY in the semi-inclusive region

= 2my05 5 0- As x — 1, we have

3. my 3 1 m2 3 In(1 —x)
z“@‘é‘s)‘s“‘x)‘(mX(I“EW)Wﬁ)ﬁ]}-

of phase space where the momentum fractions x, X of the
two colliding partons become large, approaching the
maximal value x ~ x ~ 1. Drell-Yan in the large-x region
has been investigated before using perturbative QCD
factorization techniques [3,34-37] as well as effective field
theory techniques based on SCET [12]. Although the end
point in Drell-Yan is not accessible in real experiments, it is
of theoretical interest to investigate how the parton dis-
tribution functions in two protons interfere with each other
at large x.

We analyze Drell-Yan at threshold by integrating out the
large scale ~Q by matching QCD onto SCETy;, and then
we factorize. We compute each piece in the factorization
formula to the first perturbative order and resum large
logarithms to next-to-leading-logarithm (NLL) order.
Finally, we discuss the PDF for two protons colliding at
large x.
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A. Kinematics

While we worked through the kinematics of the DIS
process in both the target rest frame and Breit frame,
we consider the Drell-Yan process only in the Breit
frame. The proton in the 7 direction carries momentum
pF = ”” n-p+% "7 p+ ph iF and the proton in the n direc-
tion carries momentum p* = 2 n-p+5 “n-p+ p'l. The
invariant mass squared of the proton-proton collision is
s=(p+p)?=(n-p)ii-p),sincen-pandii-p are the
large components of p and p respectively. The squared
momentum transfer between the two protons is Q% = g2, so
for p we define

Y% 0? _n-q
x_2p-q_ =— (74)

while for p we define

. 0 _n-
T GRwa ap

Nl
ES)

ae]]

Here 7 = Q?/s = x - X is the fraction of the energy squared
taken by the colliding partons from the protons. The end
point corresponds to 7 — 1. As in DIS, we define
_% =Q+ 1", % = Q + [~ with light cone momenta /™ and
[~. The separated scales are
(i) hard modes with g = (Q
(ii) n-collinear modes with p.= (Q AQCD)
(Q + 17,17, Agcp) with invariant mass P* ~ Ageps

,Q,0) at the hard scale;

QCD

(iii) 7-collinear modes with p, :( N @ AQCD)

’x’

(I, Q + I", Agcp) with invariant mass P* ~ Adeps

(iv) soft modes with p; ~ (Aqcp, Agep: Agep) at the

soft scale.

As x, X — 1, the off-shellness of the initial states O @ ~ [t
and Q @ ~ 1~ goes to Aqcp, bringing in new rapidity
singularities arising from the fact that both soft and collinear
modes have invariant mass squared of order AQCD These
singularities are regulated with the covariant # regulator,
which allows us to resum the rapidity logarithms by running
from Q to Q=0 ~ it ~ QUD LT

|

We match W onto the SCETy;, and get

1
Weff:_ZZ/(
X (h(py, 6)h(P;

w,w
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B. Factorization

A number of papers have discussed factorization of
Drell-Yan using SCET [11,12,38-42]. Here we follow
Ref. [11], starting with the unpolarized DY cross section,

32n°a? &k
do = %Lﬂywﬂu 1
N

Pk,
(27)* (24Y) (27)*(243)

(76)

where L, is the lepton tensor, and W** is the DY hadronic
tensor. Equation (76) gives

- a +
j—Qz - _%/(376)135(‘12 —0%)0(q0)W(z. Q%) (77)

where Q? = 7s is the lepton pair’s center-of-mass energy
squared. Summing over final states, we obtain

W(z, 0%) =——Z/d4y€"‘” (PPl (v)7,(0)|pP).

spin

(78)

where J#(y) is the QCD current as in Eq. (7). Near the
end-point region, the magnitude of the 3-momentum trans-
ferred is

_)|

lq] <

10

(1-1), (79)

where Q = \/Q?. As a result, the zero component is
g0 =0+ O(1 —7) > [q]. (80)

Therefore the §-function in Eq. (77) is expanded,

5(q? - 0?) = i(s(qo —0)+O(1-2R. (81

Carrying out the g, integration, the hadronic structure
function becomes

W(z.0%) :——Z/

spins

x [ dtye T pplar (3)3,00)lpp). - (82

d*q .
s [ 43 (0. QW05 01,000,

/)lTb_(ﬁ,w’Y;lYnyf[)(n.w< )]Tb(nw}_ﬁﬁ n}/li)(r‘z,w( )”h(pn, ) (pnv )> (83)
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Here, we have defined the 7i-direction incoming proton to
be carrying momentum p* =1(n-p; +n-p,)i* with
the large component of p* scaling as n- p; = Q/x=Q
and the residual momentum p) containing the small
momentum pi = £~ = Q = Similarly, the n-direction
incoming proton momentum is p* =1(ii- p, + - p,)n*

with the large component of p* scahng as n-p, =

Q/x=Q and the residual momentum p5 containing
the small momenta ph =¢t = le;x. We introduce
Kronecker deltas to fix the large components of p and
p to be equal to Q and integrate over the residual

Wer = 2 Z /

x (h(py. 0)h(pa. 0)|T|

PHYSICAL REVIEW D 95, 114020 (2017)

components of the coordinates in position space. The
Wilson lines Y; and Y, are associated with soft radiation
from two incoming states,

Y,(y) = Pexp {ig [ dsn -A,,s(sn>] ,
Pi(y) = Pexp {—ig /_ : dsﬁ-Aus(sﬁ)]. (84)

The hadronic structure function can be factored into the
three sectors,

/ TN "CH(Q. Qs g ) C(w, s g 1)

ww

7.0) (Vh(ri)as¥ ) s Un.0) (9B,
X 5n-ﬁa,QTK)?€hW)I(Y; (J/i)p/lyn)lm h

2 )" ON|A(py, 0)R(P5s0)) (85)

13 [ S P05l

w.Ww

x (h(py 0)|T((75 )" (v
x (h(Pa- )IT[%W)(
< (OT((Y27,),; T3y

)0.)" 0)]|A(Py- )
0)(21.0) W)]A(Ps )
) imO0) (73 ) ap (VL) p1- (86)

Integrating over y, contracting the color indices and averaging the color of the initial states, we have

W = 4 ] 3 D@ @iy b0 ) 5 (P 00) 51O (P,
o S P ) 0) 0 00) (i )5, 0 OIT (VT )] O0)T(F37,))0)0) (57)

[

Due to label momentum conservation, w = Q = w, and
we rewrite the large component of the matter field as
Inw = XnOw - We insert the identities

Zi.0(vo) = €07, 5(0)e 000, (88)

Ino(0) = €%y, 5(0)e~idb (89)

to shift y; and y, to the same spacetime point. The

operator 30 is a residual momentum operator that acts on
the external states to yield

Oolh(ps. o)) =5 —=h(psa).  (90)

O1l—x

((pa o) 5

(h(pys0)[o = ©on

X
Thus the hadronic structure function is reduced to

d il
yO -3 l—)oe—j —YO

W =[CQu) POy, 0np o [

X (O[T Y17, (o) TIT4Y3](0)[0)

N.
1 = —ibyy n
x5 (h(pa0)Eae ™ alh(p,-0))

1 - 5 A=
— — la —
O (on Ve Salbpr). ()
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As in DIS, we define a hard coefficient H(Q;u) =
|C(Q; g p)|*, and two collinear functions

1 A
5> 1,0 h(pa: @) zne 0 Zalh(p,. )

o

E/dre""yoC,-,(Q-l-V;/l), (93)

1 I
E;@rﬁﬁ,dh@- o')|zne oo 5)(n|h(pﬁ76/)>

= /d?eﬁyOCn(Q + 7). (94)

The SCET hadronic structure function can then be
expressed as

H(Q.u)
eff _ —50(1-7)y,
w 20N, dyge
X /drd?e‘i’ye_i7yC,—l(Q +ru)C(Q + Fiu)
1

(OIT(Y3Y,] (o) T[¥5Y5)(0)[0). (95)

N
where p is the arbitrary energy scale brought in by
matching QCD onto SCET, and its dependence in the
hard coefficient H(Q;u) introduced by this matching
process is canceled by the dependence in the product of
the two collinear functions and one soft function. The
collinear functions become collinear factors because
momentum conservation forbids collinear radiation into
the final state. This then requires an additional rapidity
scale v to separate soft from collinear modes. Including
the rapidity scale dependence,

Ca(Q + r3p) = Co(Q + 1 v) = Z4(u,v)8(r)3s, 0,

(96)
C,(Q+TFp) = CQ+TFipv) = Z,(u,0)8(F)8,5, 0
(97)

As in DIS, these functions are proportional to § functions
in r, ¥ because there is no real gluon emission into the
final state from either proton.

We redefine the soft Wilson lines analogously to the
collinear fields in Eq. (88), so that

(OIT[Y3Y,) () T(V1Y3](0)[0)
=0

IT[Y;7,)(0)e™nT[¥}¥;](0)[0).  (98)

Integrating over r, 7 in Eq. (95) we obtain

PHYSICAL REVIEW D 95, 114020 (2017)

WA = H(Q:1) 35 2ol )0, 020 013050

X
>

"N,

x (0|T[Y5Y,)(0)e Qo=51-n T [F]Y,](0)[0). (99)

We define the DY soft function in momentum space to be
S<DY)(1 — T U, V)

= L 0T ¥ 7,0(0)5(2, — Q(1 - ) TIF}¥4)(0)[0).

c

(100)
The hadronic structure function becomes
weff = 27 1) Z
_Q—A’c (Q /’l) ( ) np,,0 n(/’l’ )
X 8,5 oSPY(1 = 1ip,v), (101)

and the differential cross section is

do 202 2
— =———H(O;u)Z; 50 0Z
<dQ2>eff 30%s N, (Qs 1) Za(H. V)53 p,.02n (V)
1
X‘snanQS(DY)(l—f;u,v)- (102)

The soft function and the collinear functions run to the
common rapidity scale v in the end-point region, sug-
gesting the soft radiation contains information from both
incoming protons. Since the n-direction and 7i-direction
collinear functions are each connected to this soft function
at low momenta by the rapidity scale v, they are coupled to
each other through the soft radiation. Therefore, in the end-
point region, it does not suffice to identify the PDF of each
proton with just the n- and 7i-collinear functions.

We introduce a luminosity function that defines the n-
collinear, 7i-collinear and soft functions all together,

L' (1 = 131) = 85, 02, (V)85 027 (1, 1)

x SPY(1 — 73 u,0). (103)

On the right-hand side, the v dependence of the n-collinear,
n-collinear and soft functions cancels between the three

factors. In order to relate the Drell-Yan luminosity function
in Eq. (103) to the definition of the PDF in DIS, we can

express L™ as
_ 1-
L""S(l—r;/,t)—/dxdxf’”( )fns(

< l-x 1-X >
X(l-t———————u |,
X X

ey

(104)
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where the two PDFs are defined in Eq. (61), and
(

T_,1>(l —1;p) is an interference factor, independent of
v, which represents the effect of the two protons interfering
with each other at the DY end point.

With this interference function, the SCETy hadronic
structure function is

Wt = = 1 (01 )

ON.
- s
/ dxdsfy ( ,/4> ;f( xw)lﬁ‘i‘?
( l1-x 1-x )
X(1—-7- —-——u .
X X

C. Renormalization and resummation with rapidity

(105)

In this section we study the renormalization at one loop
of the collinear and soft functions appearing in the Drell-
Yan hadronic structure function in the end-point region,
C,(Q+7Fu,v), Co(Q+rip,v) and S(1 —7;u,v). As in
DIS, we use the # regulator to render rapidity divergences
finite.

1. Collinear and soft functions to O(ay) for DY

It is easy to show that the collinear functions in DIS and
DY are equal. As in DIS, Fig. 1 shows the O(a?) Feynman
J

CPY(Q + Fp.v)V) = S

PHYSICAL REVIEW D 95, 114020 (2017)

diagram for the collinear function. The n-direction collinear
function tree-level structure calculated from that diagram is

— PO _ g

CY(Q +7)© (106)

where m,, is
(107)

1 _aﬂ c

The #n-direction collinear function at leading order is

COY(Q + )0 =5, oo(r)m?, (108)
where
I #
2Zj§n2§n (109)
The O(a,) n-collinear function Feynman diagrams are

shown in Fig. 2. As discussed in the DIS section, Fig. 2(a)
is the one-loop virtual correction to the collinear function,
while Figs. 2(b) and 2(c) are real corrections. We add the
diagrams of Figs. 2(a) and 2(b) with the mirror diagrams,
and multiply this by the quark wave function renormaliza-
tion to obtain

7l (e ¢ 1
(Q+rﬂuaCF 2 < ) +—F+ln_L]

€ |4 n-p
2
u 3. 4% 3
In—In— In—+- 110
i nmf] g +4 nm +4 6} (110)
For the O(ay) 7i-collinear function, we repeat the whole procedure and get
C Ve 2\¢ 13
Y+ ru )V = V(0 + rip ) sz{e “ <ﬂ_2) e {_Hn y']
7 n my € |4 n-p
2 2 2
u 3. u 3 7z
In—1 —+-——". 111
+nm!2]nn']_7+4 §+4 6} (111)

Next we turn our attention to the soft function. The tree-
level result is trivial,

6(1-1)

S(1-17)0 = 0

(112)

The O(a,) soft function Feynman diagrams are shown in
Fig. 3 (mirror diagrams are not shown). The soft Wilson
lines in Eq. (87) are defined in (84). Comparing these to the
soft Wilson lines in DIS in Eq. (11), we find that the

|
n-direction gluons are changed from outgoing to incoming.
Reference [43] however shows that up to O(a?), the dijet
hemisphere soft function in DIS and DY are equal, so the
virtual DY soft function at O(a;) is the same as in DIS,

2a,C el (e) (w2 1
SOY = 5(1 —g) By | (A
C =m0, W[ n (m_q) T2e
1. u ) woov oo
+—In=+In"— ln—l ——— (113)
€ U mg mg m, 241"
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The naive contribution to the O(a;) real DY soft function
shown in Fig. 3(b) is

SPY = —4Cr Uy ki —m
g (Zﬂ)D_l ( - m_(})
2063|~"
x8(¢y — (Kt + k7)) |k+k|_ (114)

- (52 3) ().
_4(11111_—Tr>+ ~ (Elnz%g)é(l _,)}, (115)

where 7y = Q(1 — 7). The measurement S-function at the
end-point region of the Drell-Yan process requires the soft

|
ol
ﬂQ

S(1=zu, ) =

+2n? o

my

Inl -7 m 1
+4< -7 )+_2<ln@)<1_7>+}

Comparing this result with the O(a;) n- and i-collinear
functions given in Eqgs. (110) and (111), we see that the
v-dependence cancels in the cross section at O(ay).
Forming the ratio of the DY soft function to the product
of the n and 7 DIS soft functions gives an interference
factor Eq. (104) that is independent of v to this order (and
presumably to all orders).

2. Anomalous dimensions for collinear and soft functions

The divergences in UV and rapidity in the collinear
and soft functions Eqgs. (110), (111) and (117) can be
subtracted by counterterms in textbook fashion. We define
the relations between the renormalized and the bare
functions as

C.(Q+ PR =2Z"C,(0+ 7>,
Co(O + r)F = Z:1Co (0 + r)B,

S1—-7)R = —/dT/ZS(T/ —7)7Is(1=7)8.  (118)

Thus, Egs. (110), (111) and (117) yield for the O(a)
collinear and soft renormalization factors

r 2 1
zn_1+Z££M{iQ<ﬁ> +_<§+m719}
T no\my, e \4 n-p

(119)

20 (e)ere 2 1 2
_E%;<ﬁ> NLRNE W
m g € €
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momentum £ to be the symmetric sum of n and 7 gluon
momenta, £, = k™ + k=, which has the consequence that
there are neither rapidity divergences nor ultraviolet diver-
gences. In Appendix B, we show that the kinematic
constraints in DY imply that no collinear modes overlap
with the soft momentum region. However, applying the
zero-bin subtraction prescription we used in DIS would
require both an n-collinear and an 7-collinear subtraction,
while the prescription in Ref. [29] has no collinear zero bin
in the DY soft function. Thus the approach of Ref. [29] is
consistent while our approach is not. Thus,
SPY = 28PY, (116)

The O(a;) expression of the soft function is given by
adding virtual and soft pieces with their mirror amplitudes,

v

—1n
m, 122 Q2

2¢
S O TP RN | |
/1 n \my e \4 n-p
(120)
2r 2 1 2
0 B O () 1 2
7 n my € € U
x6(1-1). (121)

These obey the consistency condition for Drell-Yan at the
limits x,x — 1 and hence 7 — 1,

Zyd(l —1) = Z;'Z,' 71, (122)
where Zy is given in Eq. (44). The logarithms in the
collinear function are minimized by setting v, ~ Q, while
in the soft function v;~u ~ Agep. Therefore we must
resume these logarithms both in  and v. From Eq. (119) to
Eq. (121) we also can extract the O(a,) anomalous

dimensions. The y anomalous dimensions are

2an<3 I/C>
+ In— ,
7 4 n-p

2a,Cr (3
valu.ve) = ”F< +1In )

rn(p.ve) =

4 n-p
4
P (y) = BCE 1 P 51— ), (123)
z Vg
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As in DIS, the sum yh(u,v)5(1 — 1) + y4(u,v)56(1 — 7) +
7s (4, v) is independent of the rapidity scale v, as expected.
However, the sum contains a large logarithm of

(- p)(n- p) ~ Q% The v anomalous dimensions are
a,Cp . u?
nlve) =——In_5,
9
a,Cr. >
ra(wve) ==Fln s,
7
2 C 2
Plpv) = ==L -0). (124)
n m

9

Unsurprisingly, 75, (4. v)6(1 — 7) + yi(p, v)6(1 — 7) +
Y4(u, v) = 0 when v, =v, in the limits x,x — 1 and
7 — 1. The presence of m,, suggests the same IR sensitivity
as occurred in DIS. As we see in the next section, this IR
dependence in anomalous dimensions also shows up in the
delta regulator scheme for the divergences in the end-point
region.

|

3
+“CF([1 L PR Ml
v, 4

7Q
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From the ; anomalous dimensions in Eq. (123), we can see
the soft function runs to the scale ¥ common also to the
collinear functions as we have already seen in the DIS case.
This is problematic because it means the two collinear
functions, which are traditionally identified with the proton
PDFs, are not independent from each other. At moderate x,
these scales would not run to the same point and the two
collinear functions can be separated. Thus at large x the two
collinear functions cannot be separated and we do not have a
unique way to define independent (and so universal) PDFs for
the colliding protons. Preserving the conventional description
of the colliding protons in terms of n-collinear, 7i-collinear and
soft functions, we arrive at the luminosity function in
Eq. (103), and at large x the two collinear pieces and one
soft piece are related by the common rapidity scale v.

Now we connect the running and the resummation
results in DY with those in DIS by solving the renormal-
ization equation of the interference factor I°Y we defined in
Eq. (104). Using the newly introduced PDF definition in
Eq. (15), we can write the PDF for the n-direction incoming
proton as

2 3 ”2 ”2 1
STl - +m (—) ), 125
276 anm; <1—x>+> (125)

where v, is the n-direction incoming proton near end-point rapidity scale. Changing v, to v; and x to X, we have the

n-direction incoming proton PDF

(1= 6(1 —X)
f‘f’( ¥ ’”)Z 0

2 2 2
+0‘;—ZF([1 m—gl Z+il :‘1!2] %-% 5(1—x)+1n:"1—§<11?>+>. (126)
Expanding the interference factor in Eq. (104) in powers of a,

5_,1>(1—Tu)—1 J+1(1DY)_|_... (127)

Plugging Egs. (125)—(127) into Eq. (104), we extract
1Y =2068(1 - 1), (128)

and the unrenormalized order-a, interference function

1PV (1 =z p) _2Q“ Cr ([1 +€1 @—I-Zln o ;’—15(1 —7)

(7). o) () 65 ) )

which is independent of rapidity scale v. This result is independent of any infrared scales and is consistent with the DY soft
function defined in Ref. [12], Eq. (45). The counterterm is
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ZPY = 5(1 — 1) +afF { Fﬁélnﬁ}s(l —7) —%( ! >+} (130)

1-17

and the u anomalous dimension is

DY(]—ﬁﬂ)Z@{ln%é(l—r)—( ! )J (131)

1-7

through which we can resum the logarithms brought in by the interference effect between the two protons. This anomalous
dimension is consistent with Eq. (43) of Ref. [12]. Note the appearance of the cusp in y?Y, which resums Sudakov double
logarithms. To O(ay), the renormalized interference factor is

2
1PV —7i4) =2068(1 - 7) +2Qas—:F (Bl 2%—%} 5(1-1)

) (L))

3. Comparing to perturbative QCD results

The hard function HPY we extract from Ref. [12] is

Cr( 1 i 3 4 722
HPY(Q.p) = 1+ &5F (——1n2”———1n”——4+i>. (133)
V3

Taking N, = 3, and inserting the Drell-Yan collinear and soft functions with Eq. (133) into Eq. (106), we find at O(«)
SCET the Drell-Yan cross section is

do dror 3.0 5
— ) =mds O \ ————16(1 -
<dQ2)eff oo <9Q4> 7 { [2 "wg 726
In(1 - 2701
LU=y 2In- o . (134)
(1-17) /), 1-7 +

To O(a;) in QCD, the quark contribution to the DY cross section is [33]

do dr o [ldx, dx, (0)

sz m%én D Q np..0 o 9 Q4 / //Xa { P—q .X )Gp—ﬂ](xb)

Ot s 0’ DY
X <—5(1 _Z)+_Pq—>qg(z)1n_2+2asfq (Z)>}’ (135)
T mg

oo

where z = 7/(x,x;), Gg,olq(xa), Gg,olq(xb) are zero-order PDFs, and

%:1+<8—”—l)as+m (136)
T
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In the end point, z — 1 the perturbative QCD Drell-Yan
cross section at O(a,) becomes

do ne’) e
TQZ = m%én'i’ﬁsQéh'p”’Q <9Q4>

x{Fan—z—z}é(l —7)+4

T

2m§4

+4(%>+ +2ln% (1 iT>+}- (137)

Comparing Egs. (137) and (134), we arrive at the same
conclusion as for DIS, that the SCET}; hadronic structure
function reproduces all the low energy physics of the
perturbative QCD results in the end-point region up to
constant coefficients of §(1 —z), which is regularization
scheme dependent. As in DIS, this discrepancy is expected
since the SCET and QCD calculations use different
regularization schemes.

IV. DIS AND DY AT END POINT WITH THE
DELTA REGULATOR

The method of the delta regulator was introduced to
implement a proper zero-bin subtraction sector so as to
remove the overlap between the collinear and soft functions
and restore the SCET factorization theorem. In this sense it
serves a similar role as the #-rapidity regulator, except that
the latter is gauge invariant and associated with a rapidity
scale making resummation in the rapidity region possible.
To exhibit the origin of this fact, we repeat our calculations
in the previous two sections using the delta regulator, and
note the pros and cons of these two regularization schemes
line by line.

A. Wilson lines and factorization with delta regulator

We define the Delta regulator, by adding a constant in the
propagator denominators as in Ref. [44],

1 1
- .
(pit+k)?=m?  (pi+k)?*—m?—A

(138)

The subscript i denotes the particle i. The form of Eq. (138)
makes the A regulator behave like a mass shift for the
particle i. Correspondingly, the collinear Wilson lines are

9 _
= _— -A
W,=> eXp[ P }

perm

W; = Zexp [_Tg—éznAﬁ}’

perm

(139)

while the soft Wilson lines for DIS are

PHYSICAL REVIEW D 95, 114020 (2017)

- g _
yi= S —
" ZCXP[ n-PS—Sz—I—ien S]

g
Y = - n-A,|, 140
e S

and for DY are

?T:Zexp —41‘1-&,
" et n-P,—5,—ie ’

g
Y, = S —— 141
e e Y N

where §; = A;/p* and 6, = A,/p~, with p* or p~ being
the collinear momentum in the n or 7 direction.

Now we repeat the factorization procedure for semi-
inclusive DIS and DY using these delta-regulated Wilson
lines. Separating the hard collision scale and decoupling
soft degrees of freedom from collinear degrees, we reach
the same expressions for the SCET; hadronic tensor for DIS
Eq. (8) and for DY Eq. (95). Then we match the DIS and
DY hadronic tensors from SCET; to SCETy;, and separate
soft and collinear modes with an explicit zero-bin sub-
traction. Adopting all the definitions for the soft function
S(l,u) in Eq. (10), jet function in Eq. (9) and collinear
sectors as in Eq. (13), we have the DIS hadronic tensor in
SCETy; with the delta regulator

(W,)SToss = ~¢“H(Q. 1) /¢ AL (7 ) S(£: s 85 m2)

XC,I(Q—I’—/;M;ﬁz,mf]), (142)
Likewise with the soft function S(£*, #~; u, v) in Eq. (100)
and two collinear functions in Egs. (96) and (97), the
DY hadronic structure function in SCETy with delta
regulator is

2
(W)(esf—fDY = ON,

H(Q; ptg, 1) Cy (O 3 85, m3)

1
X Cﬁ(Q;u;él,m;‘ﬁ)aS(l = T3 81,83, m3).
(143)

The notation ¢ on the integral emphasizes the need to
remove the overlap of the zero bins of each function.

B. Renormalization and running with
the delta regulator
1. DIS collinear and soft functions

For DIS, the naive virtual n-collinear function shown in
Fig. 2(a) is
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=~ diq 1 P +q 1
C = (2ig*Cp)(k 26/
(2ig"Cr)o(k ) Qr) =g+ 6 +ie(p”+q )g" — ¢4 — Ay +ieq q" — g} —m3 + ie
(& 1 o U 0
= < % F>5( )( ( ln—l—1> 1n— <ln——|—1>
2r € p mg p
A, A A 2
—[In(l——)l e Y e 2/ —+L ( 2)—”—}). (144)
mg mg ?— 1 mg mg 6

We see that 8, is the infrared regulator for the quark propagator, which effectively is the quark mass in the loop integral. The
zero-bin amplitude for this virtual function is

a? 1 1 1

vp . 9 -\, 2 4q

Cy _(_Zlg CF)(S(k )/’l / 27zdq‘—él+i€q+—52+i€q2—m2+ie
g

—asCF 1 1 ”2
= | —|6(k™ 1 -—
< 27 ) ( )< e 616,

2 2 2
H Y 552
1 mt om0 - 145
+n( >n552 2" e 12( m? +12 (145)

For the real collinear function, the naive real collinear amplitudes only get contributions from the soft momentum region,
which are their exact zero-bin subtraction amplitudes. Thus, after the zero-bin subtractions, the real collinear function
amplitudes shown in Figs. 2(b) and 2(c) vanish,

C=Ccl=c=C-cy=o. (146)

After multiplying the calculated amplitudes in Eqs. (144) and (145) by 2 for their mirror images, we have the collinear
function with quark wave function renormalization in semi-inclusive DIS with the delta regulator

Ci =2(C;, - C7)

—a,Cr 1 1 w3 7 3 u? u? w3
=2 5 ) sy (== -~ (1 Tz 12——1 Ly PR
( 2r )( )( e e(nA2 i)t 4+2 2\, T

P A A A
+Liz<1—¥) L12< 2>+1 —< 2/ —In (1——2>>>. (147)
m; m; my \ 25— 1 mg

my

The infrared part of the final result of the n-collinear function is independent of §;, which is the infrared regulator of the
n-direction Wilson line. In contrast, using the rapidity 5 regulator exhibited rapidity divergences in the n-collinear function
in Eq. (28) brought in by the n-direction Wilson line. The naive virtual soft function for DIS shown in Fig. 3(a) is the same
as the zero bin of the virtual collinear function, since the momentum contributing to that integral comes from the same soft

region
~ a,Cr 11, 2 wooour u? ) 0105 7’
S, =[-= S(D{5+-In——+4+In5In———=-In*> 5 —Li, [ 1 - —5 — . 148
v < 2 ) (){€2+€ R R G AT (148)

The naive real soft function shown in Fig. 3(b) is

— (4rg? Cp)ue / AT s Vs — ko)
r (2m)4=2¢ g k=8, k =6,

(EYpCtaomg () o) sn (e o

where zQ = [, and z is dimensionless. We omit the term proportional to In(1 — z)(%) ..» Which contributes a constant in the
end-point limit z — 0. The delta regulator restricts the integrals leading to Eqgs. (148) and (149) to the soft momentum
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region, so we do not need to subtract the collinear overlap. This differs from the prescription with the # regulator, which
serves as a smooth step function in the loop integral and may leave residual overlap with the collinear function that must be
eliminated by subtracting. Multiplying Eqs. (148) and (149) by 2 for their mirror images, we get the soft function with the

delta regulator

S = 2(31 + Sr)
C

:2(-2‘25) <+l25(z)+é[6( )ln5—52+6 (

+ln<—5Q> ln—5(z)—ﬁé( 2)

Introducing x to make the arguments of the logarithms
dimensionless as in Eq. (150) and choosing —6,0 = mg,
we can recombine logarithms to show that the infrared
divergence in the soft function is independent of §;. We can
make this choice to relate the regulators, because in the soft
function one of the three infrared delta regulators, §;, 6, and
mg is redundant, and the system is underconstrained. Again
this is very different from what we obtain by using the 7
regulator in Eq. (40), where we separate rapidity divergen-
ces from infrared divergences and get a result containing
both rapidity and IR divergences, each with an appropriate
regulator, # and m!z}. The counterterms that renormalize the

soft and collinear functions in Eqgs. (150) and (147) are

o aSCF 1 1 3 qu
Z, =1+ L—2+€(4+1A—2>] (151)
=5 = %Cr (L ot
2ot L L [(1)
+1n£5(z)+5(z)1n<—ﬁ> ] (152)
616, 0

The result Eq. (150) is consistent with perturbative QCD in
the end-point limit, as we show later in this section;
however, it differs from Eq. (A.5) of Ref. [24] which is
also performed in the delta-regulator scheme. The last term
of Eq. (A.5) in Ref. [24] is not shown in the body of the
paper, as it should not be included in the combined result to
be consistent with QCD.

To check our results with the DIS consistency condition
Eq. (43), we must first calculate the counterterm of the jet
function with the delta regulator. The calculation is carried
out in Appendix A. The result is

uoononi8)-()

9-(0))-0).2
o (-54)uc)

Combining this with Egs. (151) and (152), we verify
the consistency condition Eq. (43). The anomalous
dimensions are

2a,Cr 1 (3 2
#_ s F - InZ—
& r €<4+ A2>

o5 (g o2 (-(1) +som )

(155)

MQ

( ) - (150)

(154)

Analogous to Egs. (47) and (50), we can see that (1) because
we only treat the rapidity divergences in the semi-inclusive
region as one type of infrared divergence, we cannot
separate and resum it using the dimensional regularization
scale p. (2) Similar to the # regulator, the sum of the
anomalous dimensions y* = y4,6(z) + 75 from Egs. (154)
and (155) is independent of the additional scale &,.
However, the presence of A, means the running of both
the collinear and soft functions is nonperturbative. Since
the delta regulator and # regulator both exhibit nonpertur-
bative running, our calculations suggest that the depend-
ence on the infrared physics is independent of the regulator.
As a consequence, combining the collinear and soft
functions into the new definition of the PDF in Eq. (61)
is justified as a regulator-independent choice.

With the counterterms given in Egs. (151) and (152), we
choose —0,0 = m , subtract them along with the wave-
function renormahzatlon given in Eq. (A12) from the
collinear function in Eq. (147) and soft function in
Eq. (150), and let §; —» 0 to obtain the renormalized
collinear and soft functions

2 2 2
R_(_%Cr\o |7 _3_ 1 op 3 n
c,,_( . )5(k)[12 T : 4lnm§, (156)

r_ (_%Cr\|_(1 ﬁ_ﬂ: 1 2'u_2
s _( ”Q)[ (Z>+lnm2 " 8(2) 4 5(0)|.
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We insert Eq. (158), Eq. (157), renormalized final-jet function Eq. (A15) and the hard function Eq. (66) into the hadronic
tensor Eq. (142) and replace z with (1 — x) to obtain

() 5 () GRe]) o

Again, we reproduced the perturbative QCD result except for the constant coefficient of the 5(1 — x) term, which depends
on the regularization scheme we choose.

C 3
(W/w gffDIS = 2mO5an{ (1 _x) +as r |:<—— n&>5(1 —x)

2. DY collinear and soft functions

The virtual and real collinear functions of DY are the same as in DIS, with the 72-collinear function regulated by §; and the
n-collinear function regulated by A,

M2 2 2 ﬂ2
m )+ om (s m? 2
" )+12 nmg<nA2+ >+2nmg

(2/:7115 —In(1 - Az/m§)>>, (159)

C 1 1 /42 ”2 ’u2 /42 1 ’u2
DY =2 ) sy (== (1) + S-S (1) o
" ( 2 RN ey, T T b\ A ) T,
) A A, /m? A
+L12<1——2>—L12<—;>+1 —;(Al/m9—1n<1——;)>>. (160)
mg my my \ =1 m

The virtual soft function for DY is also the same as in DIS,

Cr1 11, 2 wooour 1 u? n?
SDY — o _HTE 2 )5y m rmm
v < w00 et "5, w2 "85, )t

ny

—Li2<1 —’222” (161)

The real piece of the DY soft function is

SPY = 2(27¢*Cr) ———>- o )4 >

" 2\ Ok k™ — K2 —m3)8(£ — (k" + k7))
/dk dk~ / Ql_e k1) (ki 1) (k™ = 6,)

) )

We obtain the above result by setting d;, §, to 0, which has the exact form of the real contribution to the soft function in the
n-regulator scheme Eq. (114). This is reasonable because the §; do not regulate any divergences in the integral and the

infrared divergence is regulated by mg. Since there is only one infrared divergence, the regulators o, 6, are redundant
similar to the DIS case. The soft function for DY is
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SPY = $pY 4 Y

a,Cp\ 1 (1 1. W 1. ,0* o2 1. ,u?
=(-= —<—0o(l — ~In——6(1—17) = |zIn> = + =+ =-In*
( ”)Q{€2< 1)+€n152( ) an2+ T

2 2 2
u u i 5,6, 1 my In(1-7)
—In—In——+Lip,| 1 ——— ] |6(] — 2l — | Inl—= ) —4(—— . 163
nm§ n5152+ 12( mfz;)] 1=+ <1_7)+ n<Q2 -z /, (163)

Therefore, the counterterms for the DY collinear and soft functions are

aYCp 1 1 3 ,Ltz
Z, =1+=2L |- (24+mn—
" + |:€2 €<4+nA2 ’
Cr[1 1/3 2
Zi=1+% F[—ﬁ—(—ﬂn”—)},
zr |leo e \4 1
aYCF 1 1 ﬂz
Z,=6(1-17)— =L |- 4 “Int—|5(1 —7), 164
(== ) =2 a1 ) (164)

which are regulator dependent and satisfy the consistency condition at x,x — 1 and 7 — 1. The anomalous dimensions for
the DY collinear and soft functions are

2 2
J/I;l: (XSCF (§+lnﬂ—>,

T 4 AZ
20,Cr (3 w
o s F > InZ—
=Ty (4+ nm)’
ZasCF /42
s =————In—6(1 — 7). 165
A== 51 - (165)

The delta regulators cancel in the sum of the anomalous dimensions in the end-point region, and a large logarithm in
(n-p)(ii- p) ~—Q?* remains. Similar to the DIS case, each piece of the collinear and soft functions is dependent on the
infrared physics regardless of the regularization scheme. As a result, combining the soft and two collinear functions to
define the new luminosity function as in Eq. (103) is a regulator-independent choice. The renormalized n- and 7-collinear
functions are

C 7 3 1 wr ot 5,0

YR = (B2 sy | D m s o2 e i i B, (1 - 22
" ( P A TR R L e ™

. 2 Az Az/mz A2
_L12<m_%]>+lnm_3 A_%—_g—ln 1_1’}1_%/ s (166)

.C ~ 3 1 u? u? 2 o

vk — (B ey | D2y 2 o g, (122
G < P KR TR R h 2

S .
g
(A Ay (A /mg 1
—L12<m—§> —|’1I1—5 A_lz_ g—ln 1—m—[2] . (167)

The renormalized soft function is
Cr\ 1 z L | 2 2 6,0
SoY-R — (BE) (i B B 2 (B 2, (122
P2 (0] my 616, 2 m; 12 m;

—%lnzi—;]é(l—r)—2<111)+ln<g—§>+4(ln(11%:)>+). (168)
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Inserting Egs. (166)—(168) with the hard function Eq. (134) into the DY hadronic structure function Eq. (143), we obtain

V] 1-1 m 1-7

. (;_71_@5(1_1)}

We can clearly see that Eq. (169) reproduces the perturbative QCD result up to the constant coefficient of 5(1 — ) which is
due to the regularization scheme.
We can also compute the interference factor defined in Eq. (104) with the soft functions in DIS Eq. (152) and DY

(169)

Y —=205(1 - 1)

Eq. (163) as
Cr {(1

(2w 61,);40‘?:?)}-

In relating the DY and DIS soft functions, we exploit the
redundancy of our IR regulators and set 6,0, = mg in the
virtual contribution to the DY soft function. Except for
the constant coefficient of §(z), we have the exact same
interference factor as Eq. (129) obtained using the rapidity
regulator.

V. CONCLUSIONS

In this paper, we have studied the deep inelastic scattering
and Drell-Yan processes in the end-point x — 1 (z — 1)
region using both the n-rapidity regulator and the 6 regulator.
In this region, both DIS and DY exhibit a large Sudakov
logarithm, arising as the collinear and soft degrees of freedom
approach the same invariant mass scale, which becomes much
smaller than the collision center-of-mass scale. Using soft
collinear effective theory and the covariant rapidity regulator
to separate collinear and soft degrees of freedom, we see this
large logarithm as a logarithm of the ratio of collinear and soft
rapidity scales. We had previously resummed this end-point-
region rapidity logarithm in DIS using the rapidity renorm-
alization group, and here we additionally showed how the
logarithm of rapidity scales corresponds to the well-known
threshold logarithm by transforming the result to Mellin space
where it is seen as a divergence going as In N for N > 1. We
also confirmed our previous results for DIS by comparing the
same calculations in the J-regulator scheme and verified
agreement with the perturbative QCD resultin the limitx — 1.
However, it is notable that the ¢ regulator does not provide a
convenient mechanism to resum the logarithmic enhance-
ments, which have been argued to be operative even well away
from the true end point.

Although separating the parton distribution function
in the end-point region into collinear and soft factors
brings in dependence on an infrared scale, the rapidity
factorization is rigorous, as proven by its successfully
reproducing the standard results. Indeed, the factorization

2

2
LR 12”——”—>5(1—r)
€

022 9 12
(170)

|

cures the problematic large logarithm, which would otherw-
ise spoil the convergence of the effective theory expansion in
the threshold region. From this point of view, rapidity
factorization (and summation) is necessary, even if the
running must at some point be reabsorbed into the function
chosen to model the PDF at the hadronic scale. We remark that
our definition of the PDF smoothly goes over to the traditional
definition away from the end point, and we undertake fitting
the experimentally determined PDF to our factorized form in
a future publication. The tangible gain from our analysis is
that the running in rapidity we identify may help explain the
steep falloff in the PDFs near the end point.

We demonstrated that this rapidity factorization works
more generally by performing the same analysis on DY
processes. We resummed the single large rapidity logarithm
and compared the resulting factorized collinear functions to
the definition of the end-point-region PDF we obtained in
DIS. Moreover, we verified the results by calculating again
in the §-regulator scheme and by comparing to the
perturbative QCD result. The success of the resummation
establishes that rapidity factorization of the PDF is valid
also in DY processes, and the parton luminosity function
can be related to the PDFs measured in DIS.

An interesting outcome of separating the DY collinear
functions into soft and collinear factors is that the soft radiation
necessarily couples to both incoming n and 7 protons.
Consequently there is only a single soft function and the n
and 7 parton distribution functions can only be exhibited as
separate factors by defining an interference factor. The
hadronic structure function in SCETj; has the form

L H(Q; M)/dde ’”(1_ >f’”< __7,U>

ON,
<12V (1= 7). (171)

in which each ¢(q; m) is a PDF defined to be identical to the
PDF determined from DIS in the end-point region, and
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T—>1) (1 = 7; ) is the interference factor, whose renormalized
form is given in Eq. (132). Calculating its running proves that

I

1 gj) is anontrivial function and is independent of the rapidity
scale. The running of the interference factor sums Sudakov
logarithms associated with the threshold region, but does not
bring in any infrared scale dependence. Understanding it more
thoroughly thus appears a promising route to understanding

the transition to the elastic limit of hadron-hadron scattering.
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APPENDIX A: DIS FINAL JET FUNCTION TO
O(a,) WITH DELTA REGULATOR

In this section, we calculate the DIS jet function with the
delta regulator. The final jet function is defined in Eq. (9)
|

PHYSICAL REVIEW D 95, 114020 (2017)

FIG. 4. O(a,) Feynman diagrams for the 7 jet function.

and has been previously calculated to O(a,) in
Refs. [22,24,31,32,45] with different regulators. Here we
use the delta-regulator prescription introduced in Ref. [44]
with mg in the gluon propagator and two delta regulators
for two Wilson lines. The delta regulators are added to the
collinear and soft Wilson lines the same way as in Sec. I'V.
The O(a,) Feynman diagrams for the DIS jet function
are shown in Fig. 4 where we omit the mirror images of
Figs. 4(a) and 4(b).

The naive amplitude for virtual gluon emission in
Fig. 4(a) is

i = @@q&%@/

where py is the DIS final jet momentum. We let pi = (py, px, px1) =

d’q n-(p—q) 1 1 (A
(2n)P q* —m2 +ie(p—q)* — Ay +ien-q+ 5, +ic’
(Q,r,0) and Eq. (A1) becomes
N 1 o 2 0,
Mg = (—ascp>5(r){—<lni+1> In2 <ln+1>
2 € )2 mg p
l/m Al A 71'2
ﬂ_191 2—|—L12<mz)—g , (A2)

- {ln<l —A—>1 A
my mg

mJ 9

which has the same form as the naive amplitude of the DIS n-collinear function Fig. 2(a). The zero bin for Fig. 4(a) is

dPq 1

1 1 1

et _ (5 2 2¢
ity = CigCowaty) [ Gt

€ 552

L (2 86\
() —Li (1 -
2" <m§) 12( m? >+12

(¢~ - )

, 1 >
—<—a55F>5(r){ +- 1n——|—1n

q~ + 06, —ie

(IMZ) ! ( qu )
5 n
mg 5152

—qt -6, —ie

(A3)

which, as expected, has the same form as the zero-bin amplitude of DIS n-collinear function Fig. 2(a). Including the mirror
image diagram, the amplitude of final jet function for virtual gluon emission is

ME =2V - 1)

:< aziF)zé(){_iz él A_Zl___

1 (i 5,6
() (%)
g

1/(] 2

+1 In + Li, <A1)
my -1 mg 12 mg

2 2 A A
n L 1n”——1n(1 —> In2L
mg A m2

(A4)

114020-25



SEAN FLEMING and OU Z. LABUN PHYSICAL REVIEW D 95, 114020 (2017)

The naive amplitude for the real gluon emission in Fig. 4(b) is

M5 = (4ng*Cr) pzﬂ_enA'lpj P / (Zﬂ)qu ’2'.(5 — (sqz (47 — m2)3l(p — a)2 = AJB(* —g")O(p~ —q7),  (AS)

where we use A, to regulate 7i-direction final jets. Carrying out the integral, we have

i - () pon(4)u(2) o) ()08 Q) o

The zero bin for this amplitude is

N . dPq 1 A
W% = (~4ngPC Zenpx/ 8¢ —m2)0(p~ — g )( p~— g~ - =L
by = (479 Cp)p " a | 2P (g nt o) (> —mg)0(p~—q )6\ P~ —q~ ——

()5 ). |
() n-5)1 () o) () )

Including the mirror image diagram, the amplitude of final jet function for real gluon emission in Fig. 4(b) is

t t Crjet
My =2(M}" ~ tyy)

e (on()- e
—I—é[—é(z)ln(—a—Q]) + G)J +5(Z){ * _Eln 5—Q1+ miln E] (lnTZ)J (A8)

The naive amplitude for real gluon emission in Fig. 4(c) is

et — (L) e B p) gy [ 0 Conis(t - m
ME = <2ﬂ'>( QZCF) (pg(—Al)z (D 2)/42 /(ZE)D()< 2 )5(q2 3)

x (=27))[(p — q)* = Ay] - in- (p — q)[n-(;]—iq)}ze(f -q7)0(p™—q")

(i ()]

The zero bin for this diagram is

it = (52 ren (B2 ) -2 [ & ti-amiat -y

q1

x 5 (in- p)(=27i)6(p~(p™ —q*) = A)O(P™ = q7)
(n-p)
=0. (A10)
There is no mirror image for Fig. 4(c), so
ME = e, (Al1)

The wave-function contribution to the final jet function is
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: Cr (1 2
ML = % F<__1_1nﬂ>5(z>. (A12)

270 \e u?

Combining all the results above, the O(«,) expression for the final jet function up to O(«a,) is

. . . 1
o t t t
M = MY+ MY+ MY —EMJ‘Save
aCr\ (1 [31 1, @2 1/ 8\ 1/1
_(BEE) ) 2l s e - 2 — 2 (=
<EQ>{€2+[4€ (Z)+enA1 (Z)+€n 0) e\z).

RO (5) on(E) () oo [y ()

A1 A] 7 Al/mé Al 7[2
Infl—-—)In—+=-— In— +—| ;. Al3
+n< m§>n §+8 %_ nm§+4 (A13)

9

This result is independent of d, for the same reason the n-collinear function in Eq. (147) is independent of §;. The
counterterm for the final jet function is

; C 3 u? 0 1
2= s+ B (s (2 aemErm (=2 ) )= (2) ). Al4
With the choice of —6,0 = mé, we have the renormalized jet function,
Ce\1 (3/1 1 2 /1
MR = (% F)— —(— + E) —|—1nQ—2<—
J V3 0 4\z/. z ). wo\z/)

+5(2) Eln (—2—1) +z+”—2]. (A15)

APPENDIX B: KINEMATIC CONSTRAINTS OF THE ZERO-BIN SUBTRACTION
WITH THE RAPIDITY REGULATOR

The gauge-invariant rapidity regulator automatically ensures the zero bins of the following forms of integrals are
scaleless:

(1) the integrals in virtual diagrams; R

(2) the integrals in real diagrams with measurement functions only involving & .
However, in this paper, we encounter integrals for both DIS and DY real soft functions that are not included in the above
cases. As a result, we must examine the zero-bin subtraction prescriptions for each of these soft functions carefully to
determine whether or not any momenta run into the collinear region.

After integrating over the perpendicular momentum, the real soft functions for DIS and DY have the following forms

respectively:

by o e KR =g .
Y = i dk i dk T_-e(kk —m2) |kt =k~ [18(1 - kT — k™), (B1)

DIS S N N NY] E -
w5 = [Tae [T S ok = m)k - k15— ) (B2)

In order to illustrate the origins of the rapidity divergences and the zero bins, we choose a different set of the variables,
kT = re?, k-=re? (B3)

so that
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_ @ = const
k
( increases
r = const
k+
FIG. 5. The integration area of k™, k= and r, ¢.

d o1 11|r 2|—e 1
ri*1 | sinhg|? cosh ¢

)
_ , B4
% <r cosh(p> (B4)
210172 = i
DIS — ]p®)
/ d(pL pEr Sinh g’ ——08(r—1le?)e
(BS)

As we can see in Egs. (B1) and (B2), |k" — k™| — oo can
bring in both a rapidity divergence and an ultraviolet
divergence. We separate these two types of divergences
by working with the  and ¢ variables, because the rapidity
divergence is only brought in by |sinh¢| — oo, and the
infrared regulator mg distinguishes an infrared divergence
from a rapidity divergence. We illustrate the relations of
these two sets of variables in Fig. 5. The hyperbolas show
the on-shell condition "k~ = k% + m3, and the zero bins
are the rapidity regions kT > k=, k= > k*, or ¢ >0,
which is also known as the collinear contribution to the soft
function.

The kinematic constraints are shown in Figs. 6 and 7. In
Fig. 6, the (red) shaded part is the integration area, which is
constrained by the infrared regulator m2. The black lines are
the constraints brought in by the measurement function. In
Fig. 6(A), while [ becomes large, it is difficult to tell
whether the zero bins k™ > k= or k= > k™ contribute to
the naive soft function integral. However, in Fig. 6(B), it is

|

PHYSICAL REVIEW D 95, 114020 (2017)
k= T

A

=~ r=1/coshe

7 7771

i < —
kt ¥

—0o0

(a) (b)

FIG. 6. The kinematic constraints for the DY real soft function.
(a) is the kinematic constraint in (k*, k™) space; (b) is the
kinematic constraint in (r, @) space.

_ r=1le?
k =kt r
A
_/ 22 2
];*’k’:m? T —7’779
o — > ¢
—0o0 +00

(a) (b)

FIG. 7. The kinematic constraints for the DIS real soft
function. (a) is the kinematic constraint in (k™, k™) space;
(b) is the kinematic constraint in (r, ¢) space.

very clear that when integrating over the black curve
rcoshg = I, r» = m cuts off all the collinear contribu-
tions from ¢ — +o00 or ¢ — —co.

Therefore, we can conclude that there is no rapidity
divergence in the DY real soft function. Interestingly
because of the constraint from the measurement function,
r is always bounded by [, which suggests that we do not
have the ultraviolet divergence for this function either.

We analyze the DIS real function in a similar manner in
Fig. 7. Because the infrared regulator does not exclude the
region ¢ — oo, collinear momenta contribute to the inte-
gral, which brings in the rapidity divergence and requires
the zero-bin subtraction.

Carrying out the integrals for the DY and DIS real soft
functions

Y _ /arccosh(l/m_,/) 1 COShn(p 2 e _gd(p
—arccosh(l/m,) 21t | sinh (ﬂ|r’ COShzgo 9
(el —e 1 (1 —e)((1=7)/2 1 2 -3/2
- (227 (2 € ) 2 2Lt - ( n ) (1(—25—;7'])/ ) 0 > I+2e+q + O( > (B6)
(M3 (12— m2)> V() (P — )t
o [ 2_er ey
in(m,/1y I' T e?1+1 | sinh |
2T (B7)
=—-—TI(e). B7
ll+n(m§)e
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For DY, Eq. (B6) shows that the € ultraviolet poles cancel
between the two terms, and # and e do not regulate / in the
factors (12 —m2)~(1+0/2 and (2 — m2)=(1+2¢40/2 How-
ever for DIS, we can extract both rapidity and ultraviolet
poles in Eq. (B7). This analysis clearly shows that the zero-
bin subtraction is required only in the presence of the
rapidity divergences.

The kinematic constraints seen in Fig. 7 actually produce
two distinct zero-bin subtractions in DIS: the first is the
“intuitive” collinear area in which k= > k™ with [ fixed.

PHYSICAL REVIEW D 95, 114020 (2017)

This case corresponds to ¢p — —oo with r fixed. The second
collinear area occurs when k™ > k=, because / is large and
the measurement function §(/ — k™) fixes k™ = [. In DY,
we cannot separate the limits k™ > k= and k= > k™ in the
integrand of Eq. (B6) because this requires letting / become
large, which opens up phase space at both ¢ large and
positive and ¢ large and negative; see Fig. 6(B). Therefore
DY does not have distinct k™ > k= and k= > k' areas,
which is equivalent to the statement that there is no zero-bin
subtraction.
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