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We study the semi-inclusive limit of the deep inelastic scattering and Drell-Yan (DY) processes in soft
collinear effective theory. In this regime so-called threshold logarithms must be resummed to render
perturbation theory well behaved. Part of this resummation occurs via the Dokshitzer, Gribov, Lipatov,
Altarelli, Parisi (DGLAP) equation, which at threshold contains a large logarithm that calls into question
the convergence of the anomalous dimension. We demonstrate here that the problematic logarithm is
related to rapidity divergences, and by introducing a rapidity regulator can be tamed. We show that
resumming the rapidity logarithms allows us to reproduce the standard DGLAP running at threshold as
long as a set of potentially large nonperturbative logarithms are absorbed into the definition of the parton
distribution function (PDF). These terms could, in turn, explain the steep falloff of the PDF in the end point.
We then go on to show that the resummation of rapidity divergences does not change the standard threshold
resummation in DY, nor do our results depend on the rapidity regulator we choose to use.
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I. INTRODUCTION

Lepton pair production in hadron-hadron collisions,
known as the Drell-Yan (DY) process, helped establish
the parton model as a valid leading-order description of
high energy QCD interactions. At present the DY process is
still of great interest as it provides a test bed for other final
states, such as the Higgs boson or beyond-the-standard-
model particles, which are similarly produced in the
collision of high energy partons [1].
Of particular theoretical interest is the so-called thresh-

old region, where the invariant mass of the lepton pair
approaches the center-of-mass energy of the collision. In
this regime large Sudakov logarithms must be resummed
[2–5]. Similar, but on less rigorous footing is the need for
partonic resummation. In this case one is not in the true end
point region, but rather in the region where the invariant
mass of the colliding partons is just above the threshold for
the production of the final state. It is argued [6,7] that the
sharp falloff of parton luminosity at large x enhances the
partonic threshold region, and thus requires resummation.
A quantitative study of this question was carried out in the
context of soft collinear effective theory (SCET) [8–11] in
Ref. [12], which concludes among other things that “the
dynamical enhancement of the threshold contributions
remains effective down to moderate values τ ≈ 0.2…,”
where τ ¼ 1 represents the true end point.
In the threshold region the large Sudakov logarithms

which need to be resummed have a simple form in Mellin
moment space, where leading terms appear in perturbation
theory as double logarithms αns ln2nðNÞ, where N is the
Mellin moment. The threshold region corresponds to the
limit of large N, so clearly the presence of these types of

terms poses problems for a naive perturbative expansion
and calls for resummation. Part of this resummation occurs
when the parton distribution function (PDF) is evolved
using the Dokshitzer, Gribov, Lipatov, Altarelli, Parisi
[13–15] equation, which in the threshold region becomes
particularly simple. In Mellin moment space the anomalous
dimension for the nonsinglet quark-to-quark PDF has the
form [16]

γðnÞns ¼ −
�
αsðμÞ
4π

�
nþ1

½An logðN̄Þ − Bn� þO
�
lnðNÞ
N

;
1

N

�
;

ð1Þ

where N̄ ¼ NeγE , γE being the Euler-Mascheroni constant.
At order n ¼ 0, for example, A0 ¼ 16=3 ≈ 5.3 and B0 ¼ 4.
What is peculiar about this result is that while An and Bn are
numbers of the same order, there is the large logarithm of N
enhancing the An term. From an effective field theory
(EFT) point of view the large logarithm is problematic
because a consistent power counting in the threshold region
should never encounter such enhanced terms.
This issue was addressed in a previous paper in which

we revisited deeply inelastic scattering (DIS) in the
threshold (or end point) region, where Bjorken-x
approaches its end point value of one [17]. In that work
we use SCET to show that the PDF in the threshold
region can be expressed as the product of a collinear
factor and a soft function. Since both the collinear and
soft degrees of freedom in the end point have an invariant
mass of order the hadronic scale such a separation
necessitates the introduction of a rapidity regulator to
keep the two modes separate. We use the rapidity
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regulator of Refs. [18,19]. This tool allows us to
reorganize the perturbative expansion of the anomalous
dimension for the nonsinglet quark-to-quark PDF in the
threshold region. We find the leading-order anomalous
dimension in Mellin moment space to be

γð0Þns ¼ −
�
αsðμÞ
4π

�
nþ1

�
A0 ln

�
νcνs
Q2=N̄

�
− B0

�
; ð2Þ

where νc ≈Q is the collinear rapidity scale, and νs ≈
Q=N̄ is the soft rapidity scale. The rapidity scales are set
by minimizing logarithms in the collinear and soft

anomalous dimensions, and result in a γð0Þns free of a
logarithmic enhancement. Now both terms in the anoma-
lous dimension are of “natural” size, Oð1Þ.
Unfortunately, there is a downside to separating modes

in rapidity: the PDF now depends on logarithms of the ratio
of νc to νs. In principle these logarithms can be resummed
using a rapidity renormalization group equation (rRGE);
however the anomalous dimension in the rRGE is not
infrared safe. As a result the running in rapidity can not be
reliably calculated and must be included in the function
chosen to model the PDF at the hadronic scale. This does
not mean that we cannot use our rapidity separated PDF as
the definition of the PDF in the end point: we can as long as
we let the scale νs approach Q as we move away from
threshold. This can be achieved by introducing a rapidity
profile function [20].
In our previous work we showed that one can

introduce a rapidity separated PDF in the end point of
DIS that has all the properties that a PDF should have,
and that DIS in the end point using our approach factors
in the same way as DIS factors in the region away from
the end point. This approach, however, must also
reproduce the well-known result in DY that threshold
resummation is expressed as a convolution of perturba-
tively resummed logarithms with the same PDF as
appears in DIS. The aim of this paper is to show that
this is indeed the case. Furthermore, we investigate an
alternative rapidity regulator, the delta regulator, and
show that our results are rapidity regulator independent
to the order we are working.
We begin in Sec. II by reviewing our calculation of the

DIS soft and collinear functions using the η regulator. In
Sec. III, we calculate the soft and collinear functions for DY
using the η regulator and resum the end point logarithms
using the rapidity renormalization group. In Sec. IV, we
repeat the calculations for both DIS and DYusing the delta
regulator and compare the results to those from using the η
regulator. For completeness, in Appendix A we calculate
the jet function (for DIS) using the delta regulator, which
has not previously appeared in the literature. We explore the
difference in the structure of the zero-bin subtraction
between DY and DIS in Appendix B.

II. DIS AT THE END POINT WITH
THE RAPIDITY REGULATOR

In this section, we review the SCET factorization and
resummation results for DIS in the end point regime which
we studied in Ref. [17]. At the end of this section we
remark on aspects of our results that were not addressed in
our previous work, and compare to previous work [21].
The DIS process is when a high energy electron with

momentum k strikes a proton with momentum p and
produces a final hadronic state XðpXÞ and a scattered
electron. We denote the final state electron momentum as
k0, and the square of the momentum transfer is

q2 ¼ ðk − k0Þ2. We define Q2 ≡ −q2, and x ¼ Q2

2p·q. With
this notation, we follow Ref. [17] and write the differential
cross section as

dσ ¼ d3k⃗

2jk⃗0jð2πÞ3
πe4

SQ4
Lμνðk; k0ÞWμνðp; qÞ; ð3Þ

where s ¼ ðpþ kÞ2 is the invariant mass square of the
collision, and the lepton tensor is

Lμν ¼ 2ðkμk0ν þ kνk0μ − k · k0gμνÞ: ð4Þ

Wμν is the DIS hadronic tensor, which at large x is the
subject of our analysis.
In this section, we first determine the kinematics and

power-counting specific to the end point. Then we match
QCD onto SCETI. Next at an intermediate scale of order
the invariant mass of the final state, we match the SCETI
onto SCETII. Using the rapidity regulator introduced in
Refs [18,19], we explicitly calculate both the collinear and
the soft functions to one loop in the SCETII.

A. Kinematics

There are a number of different approaches in the
literature [22–24] that describe how momentum compo-
nents separate and scale in the x ∼ 1 regime. In this
article, we choose the notations in Ref. [22]. We define
light-cone unit vectors nμ¼ð1;0;0;−1Þ and n̄μ¼ð1;0;0;1Þ,
which allows us to decompose the proton momenta
pμ ¼ nμ

2
n̄ · pþ n̄μ

2
n · pþ pμ

⊥, in which pþ ¼ n · p and
p−¼ n̄·p. In the target rest frame, p ¼ ðpþ; p−; p⊥Þ ¼
ðMp;Mp; 0Þ, and Q2 ¼ −q2 ¼ −qþq−. The direction of
the incoming electron fixes the z-axis, and in the target rest
frame, q− ≫ qþ. In this limit, Bjorken x simplifies to

x ¼ Q2

2p · q
¼ −

qþq−

pþq− þ p−qþ
≃ −

qþ

pþ : ð5Þ

We can express all momenta in terms of x,Mp andQ in the
target rest frame, and then boost them along the z-axis into
the Breit frame,
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q ¼
�
−xMp;

Q2

xMp
; 0

�
⟶
boostð−Q;Q; 0Þ

p ¼ ðMp;Mp; 0Þ⟶boost
�
Q
x
;
xM2

p

Q
; 0
�

pX ¼ pþ q ¼ ðMpð1 − xÞ; q−; 0Þ⟶boost
�
Qð1 − xÞ

x
;Q; 0

�
;

where pX is the (total) final state momentum. In the large-x
limit, the large component of the incoming proton is
pþ ¼ Q

x ¼ Qþ lþ, in which lþ ¼ Q 1−x
x is a rapidity scale

lying between the collinear momentum scale Q and soft
momentum scale ΛQCD. The rapidity scale, as we see later,
separates soft and collinear modes and gives rise to
logarithms of νs and νc. Correspondingly, we have natu-
rally separated momenta,

(i) hard modes with q ∼ ð−Q;Q; 0Þ and invariant mass
q2 ∼Q2 at the hard collision scale;

(ii) final state jet hard-collinear modes with pX ∼

ðQð1−xx Þ; Q;Q
ffiffiffiffiffiffi
1−x
x

q
Þ ∼ ðlþ; Q;

ffiffiffiffiffiffiffiffiffi
Qlþ

p
Þ and invariant

mass p2
X ∼Qlþ ≫ Λ2

QCD at the hard-collinear scale;
(iii) n-collinear modes with pc ∼ ðQ;

Λ2
QCD

Q ;ΛQCDÞ and
invariant mass M2

p ∼ Λ2
QCD at the soft scale;

(iv) soft modes with ps ∼ ðΛQCD;ΛQCD;ΛQCDÞ at the
soft scale.

We first integrate out the hard degrees of freedom in
QCD at the scale Q2 by matching onto SCETI with
off-shellness Qlþ. We then integrate out hard-collinear
degrees of freedom at Qlþ by matching onto SCETII

with off-shellness Λ2
QCD. In the case where the final

state momentum pþ
X is of order Qð1−xx Þ ∼ lþ≳

ΛQCD ≪ Q, the process is semi-inclusive in character.

If on the other hand lþ ∼ Λ2
QCD

Q , the collision would be
exclusive, and we would be unable to factor the
hadronic tensor.

B. Factorization

In Eq. (3), the DIS hadronic tensor is the matrix
element of the time-ordered product of two QCD currents
JμðxÞ ¼ ψ̄ðxÞγμψðxÞ between external in- and out-proton
states,

Wμνðp;qÞ¼ 1

2

X
σ

Z
d4xeiq·xhhðp;σÞjJμðxÞJνð0Þjhðp;σÞi;

ð6Þ

where σ is the spin of the proton. Matching QCD onto
SCET is carried out at the scale μq ∼Q, and the SCET
current is

JμðxÞ →
X
w1;w2

Cðw1; w2; μ; μqÞðe−i
2
w1n·xe

i
2
w2n̄·xχ̄n̄;w2

γμ⊥χn;w1
þ H:c:Þ; ð7Þ

where χ̄n̄;w2
, χn;w1

are SCET fields. Correspondingly, the hadronic tensor in SCETI is

Wμν
eff ¼

X
w1;w2;w0

1
;w0

2

C�ðw1; w2; μq; μÞCðw0
1; w

0
2; μq; μÞ

Z
d4x
4π

e−
i
2
ðQ−w1Þn·xei

2
ðQ−w2Þn̄·x

×
1

2

X
σ

hhnðp; σÞjT̄½χ̄n;w1
γμ⊥χn̄;w2

ðxÞ�T½χ̄n̄;w0
2
γν⊥χn;w0

1
ð0Þ�jhnðp; σÞi

¼ −gμν⊥
2

Nc

X
ω0
1
;ω0

2

C�ðQ;Q; μq; μÞCðω0
1;ω

0
2; μq; μÞ

×
Z

d4x
4π

1

2

X
σ

hhnðp; σÞjχ̄n;QðxÞ
n̄
2
χn;ω0

1
ð0Þjhnðp; σÞi

× h0j n
2
χn̄;QðxÞχ̄n̄;ω0

2
ð0Þj0i 1

Nc
h0jTrðT̄½Y†

nðxÞ ~Yn̄ðxÞ�T½ ~Y†
n̄ð0ÞYnð0Þ�Þj0i; ð8Þ

where T and T̄ denote time ordering and antitime ordering operations of the soft gluon fields Yn̄ and Yn respectively. The
two collinear sectors and one usoft sector are decoupled by the Bauer-Pirjol-Stewart (BPS) phase redefinition in Ref. [8].
In order to match Eq. (8) onto SCETII, it is convenient to introduce a jet function as in Ref. [25],

h0j n̄
2
χn̄;ω2

ðxÞχ̄n̄;ω0
2
ð0Þj0i≡Qδðn̄ · xÞδð2Þðx⊥Þ

Z
dre−

i
2
rn·xJn̄ðr; μÞ; ð9Þ
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which characterizes the final state with p2
X ∼Qlþ. The final

state is integrated out at the scale μc ∼
ffiffiffiffiffiffiffiffiffi
Qlþ

p
and Jn̄ðr; μÞ

becomes a matching coefficient in SCETII.
We define a soft function in SCETI as in Ref. [26],

1

Nc
h0jTrðT̄½Y†

nðn · xÞ ~Yn̄ðn · xÞ�T½ ~Y†
n̄ð0ÞYnð0Þ�Þj0i

≡
Z

dle−
i
2
ln·xSðDISÞðl; μÞ; ð10Þ

which describes usoft gluon emission throughout the
interaction, from the initial to final state. The Wilson lines
are defined as

YnðxÞ ¼ P exp

�
ig
Z

x

−∞
dsn · AsðsnÞ

�
;

~Y†
n̄ðxÞ ¼ P exp

�
ig
Z

∞

x
dsn̄ · Asðsn̄Þ

�
: ð11Þ

The usoft gluons in SCETI with off-shellness p2
us ∼ Λ2

QCD

become soft gluons of SCETII, so Eq. (10) retains its form
in matching SCETI to SCETII.
Using label momentum conservation, which is

just momentum conservation at fixed (large) Q, we
simplify the collinear matrix element in the n-collinear
direction,

hhnðp; σÞjχ̄n;QðxÞ
n̄
2
χn;ω0

1
ð0Þjhnðp; σÞi ¼ δQ;ω0

1
hhnðp; σÞjχ̄nðxÞ

n̄
2
δP̄;2Qχnð0Þjhnðp; σÞi: ð12Þ

We then define an n-direction collinear sector as the n-collinear function and match it onto SCETII. We insert an explicit
Kronecker delta to ensure the large momentum of the proton ~p · n̄ is Q at large x,

CnðQ − k; μÞ ¼
Z

dn · x
4π

e
i
2
kn·x 1

2

X
σ

δn̄· ~p;Qhhnðp; σÞjχ̄nðn · xÞ n̄
2
δP̄;2Qχnð0Þjhnðp; σÞi

¼ 1

2

X
σ

δn̄· ~p;Qhhnðp; σÞjχ̄nð0Þ
n̄
2
δP̄;2Qδðin̄ · ∂ − kÞχnð0Þjhnðp; σÞi; ð13Þ

where P̄ ¼ n̄ · ðP þ PþÞ and k ∼ ΛQCD is the residual
momentum lying in the SCETII soft region. Label momen-
tum conservation then forces w0

1 ¼ Q, meaning that the
large momenta of the incoming and outgoing protons are
both equal to Q.
In the SCETII soft and collinear fields have the same off-

shellness p2 ∼ Λ2
QCD. An arbitrary separation between

these soft and collinear modes may lead to rapidity
divergences [18,19], which we regulate by a Lorentz
invariant η regulator with a dimensionful scale ν. Since
the matching procedure shows that the final state jet
function is decoupled from the initial state n-collinear
function, we can express the n-collinear function as
CnðQ − k; μÞ → CnðQ − k; μ; νÞ and the soft function as
Sðl; μÞ → Sðl; μ; νÞ. Combining Eqs. (8), (9), (12) and (13),
we arrive at the SCETII factorized DIS hadronic tensor,

Wμν
eff ¼ −gμν⊥HðQ; μq; μcÞ

×
Z

dlJn̄ðl; μc; μÞfnsq
�
Q

�
1 − x
x

�
þ l; μ

�
; ð14Þ

with

fnsq ðl; μÞ ¼ δ ~n· ~p;QZnðμ; νÞSðDISÞðl; μ; νÞ ð15Þ

and

Znðμ; νÞ ¼ CnðQ − k; μ; νÞδðkÞδn̄· ~p;Q: ð16Þ

C. Renormalization and resummation with rapidity

In this section we study the collinear and soft functions
using the η regulator from Refs. [18,19]. The rapidity
logarithms in the collinear and soft functions are regulated
by a modification of the momentum space Wilson lines as
follows,

Wn ¼
X
perms

exp

�
−

gw2

n̄ · P
jn̄ · Pj−η

ν−η
n̄ · An

�
;

Sn ¼
X
perms

exp

�
−

gw
n̄ · P

j2P3j−η
ν−η

n · As

�
; ð17Þ

where ν is a rapidity scale and w is analogous to a coupling
constant, which is used to derive the rapidity renormaliza-
tion group equation. We take η → 0 at the end.

1. Collinear function to OðαsÞ for DIS
The n-collinear function in Eq. (13) has the tree-level

Feynman diagram shown in Fig. 1. We consider the explicit
calculation of this diagram using external parton states, and
find the Oðα0sÞ result
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Cð0Þ
n ðQ − kÞ ¼ δn̄· ~p;Qδðn̄ · pr − kÞm0; ð18Þ

where n̄ · ~p is the Oð1Þ quark label momentum at the hard
scaleQ, pr is the quark residual momentum at the soft scale
and

m0 ¼
1

2

X
σ

ξ̄σn
n̄
2
ξσn; ð19Þ

where ξσn is the SCET quark spinor in the n direction with
spin σ.
The OðαsÞ n-collinear function Feynman diagrams are

shown in Fig. 2. Figure 2(a) shows the virtual contribution,
while Figs. 2(b) and 2(c) show the real contribution.
We omit the mirror images of Figs. 2(a) and 2(b). With
the rapidity regulated collinear Wilson lines, we obtain the
naive result corresponding to the diagram in Fig. 2(a),

i ~mn
a ¼ ðim0Þð2g2CFÞδn̄·p;Qδðl−Þμ2ϵνη

Z
dDq
ð2πÞD

jn̄ · qj−η
n̄ · q

n̄ · ðp − qÞ
ðp − qÞ2 þ iϵ

1

q2 −m2
g þ iϵ

ð20Þ

in D ¼ 4 − 2ϵ dimensions. The Kronecker delta sets the large component of the external quark momentum to Q. The
integral in Eq. (20) overlaps with a region of soft momenta that must be subtracted to avoid double counting, the so-called
zero bin which was first discussed in Ref. [27] and then improved in Ref. [28]. Taking the limit n̄ · q ≪ n̄ · p in the collinear
gluon loop gives the overlap region, and the zero-bin subtraction for this diagram is

imnϕ
a ¼ im0ð2g2CFÞδn̄·p;Qδðl−Þμ2ϵνη

Z
dDq
ð2πÞD

jn̄ · qj−η
n̄ · q

n̄ · p
ðn̄ · pÞðn · qÞ þ iϵ

1

q2 −m2
g þ iϵ

: ð21Þ

Equation (21) is scaleless and thus vanishes. The naive results corresponding to the diagrams of Figs. 2(b) and 2(c) are

i ~mn
b ¼ ð−im0Þð2g2CFÞδn̄·pþn̄· ~q;Qδn̄·p;Qμ

2ϵνη
Z

dDq
ð2πÞD ð−2πiÞδðq2Þ jn̄ · qj−η

n̄ · q
n̄ · ðp − qÞ

ðp − qÞ2 þ iϵ
δðn̄ · qr − l−Þ; ð22Þ

i ~mn
c ¼ ðim0Þð2g2CFÞδn̄·pþn̄· ~q;Qδn̄·p;Qμ

2ϵðD − 2Þ
Z

dDq
ð2πÞD ð−2πiÞδðq2Þ ðn̄ · qÞðn · qÞ

ððp − qÞ2 þ iϵÞ2 δðn̄ · qr − l−Þ; ð23Þ

where ~q is the large component of the collinear gluon momentum which obeys label momentum conservation, and
q ¼ ~qþ qr with qr being the soft residual momentum. In the n-collinear function, the n-collinear quarks only couple with
n-collinear gluons, which means n · ~q ¼ 0 and n · q ¼ n · qr. The two Kronecker deltas in front of the integrals in both
Eq. (22) and Eq. (23) force n̄ · ~q ¼ 0, which implies that gluons emitted from initial to final state only have soft momentum.
As a result, Eqs. (22) and (23) can be reduced to

i ~mn
b ¼ ð−im0Þð2g2CFÞδn̄· ~q;0

Z
dDqr
ð2πÞD ð−2πiÞδðq2rÞ

jn̄ · qrj−η
n̄ · qr

n̄ · ðp − qrÞ
ðp − qrÞ2 þ iϵ

δðn̄ · qr − l−Þ; ð24Þ

i ~mn
c ¼ ðim0Þð2g2CFÞδn̄· ~q;0

Z
dDqr
ð2πÞD ð−2πiÞδðq2rÞ

ðn̄ · qrÞðn · qrÞ
ððp − qÞ2 þ iϵÞ2 δðn̄ · qr − l−Þ; ð25Þ

(a) (b) (c)

FIG. 2. The OðαsÞ Feynman diagram for the n-collinear
function (a) is the virtual contribution; (b) and (c) are the real
contribution.

FIG. 1. Oðα0sÞ Feynman diagram for the n-collinear function.
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which is equal to the zero-bin subtraction. Therefore, after subtracting Eqs. (24) and (25) from Eqs. (22) and (23)
respectively, the results vanish.
After computing the virtual collinear diagrams in Eqs. (20) and (21) and adding their mirrors, we have to OðαsÞ

X
m ¼ Cð0Þ

n ðQ − kÞ αsCF

π
w2

�
eϵγEΓðϵÞ

η

�
μ2

m2
g

�
ϵ

þ 1

ϵ

�
1þ ln

ν

n̄ · p

�
þ ln

μ2

m2
g
ln

ν

n̄ · p
þ ln

μ2

m2
g
þ 1 −

π2

6

�
; ð26Þ

which depends on the rapidity regulator. A natural choice of ν ∼ n̄ · p ¼ Q minimizes the rapidity logarithm. The collinear
matrix element is obtained by multiplying the above result by the quark wave function renormalization

Zξ ¼ 1 −
αsCF

4π

�
1

ϵ
þ ln

μ2

m2
g
þ 1

�
; ð27Þ

which gives

Cð1Þ
n ðQ − kÞ ¼ Cð0Þ

n ðQ − kÞ αsCF

π
w2

�
eϵγEΓðϵÞ

η

�
μ2

m2
g

�
ϵ

þ 1

ϵ

�
3

4
þ ln

ν

n̄ · p

�
þ ln

μ2

m2
g
ln

ν

n̄ · p
þ 3

4
ln

μ2

m2
g
þ 3

4
−
π2

6

�
: ð28Þ

2. Soft function to OðαsÞ for DIS
The soft function, given in Eq. (10), at tree level is

SðlÞð0Þ ¼ δðlÞ: ð29Þ

To OðαsÞ, with the η-regulated soft Wilson line Eq. (17), we can explicitly isolate the rapidity poles of the soft function.
The Feynman diagrams for the one-loop soft functions are shown in Fig. 3, where Fig. 3(a) is the virtual piece
and Fig. 3(b) is the real piece. The double lines represent the eikonal lines. Here we also omit the mirror images of
Figs. 3(a) and 3(b).
The naive virtual soft function amplitude determined from Fig. 3(a) is

~Sv ¼ ð2ig2CFÞδðlÞμ2ϵνηw2

Z
ddk

j2k3j−η
k2 −m2

g þ iϵ
1

k− þ iϵ
1

kþ þ iϵ

¼ δðlÞ αsCF

π
w2

�
−
eϵγEΓðϵÞ

η

�
μ

mg

�
2ϵ

þ 1

2ϵ2
þ 1

ϵ
ln
μ

ν
þ ln2

μ

mg
− ln

μ2

m2
g
ln

ν

mg
−
π2

24

�
: ð30Þ

The zero-bin subtraction for the naive virtual piece is the overlap with the n and n̄-collinear directions,

Sn̄vϕðk− ≫ kþÞ ¼ ð2ig2CFÞδðlÞμ2ϵνη
Z

dDk
ð2πÞD

jk−j−η
ðkþ þ iϵÞðk− þ iϵÞðk2 −m2

g þ iϵÞ ; ð31Þ

Snvϕðkþ ≫ k−Þ ¼ ð2ig2CFÞδðlÞμ2ϵνη
Z

dDk
ð2πÞD

jkþj−η
ðkþ þ iϵÞðk− þ iϵÞðk2 −m2

g þ iϵÞ : ð32Þ

These integrals are scaleless in rapidity regularization and vanish. This must be the case because adding the rapidity
regulator to the soft Wilson lines Eq. (17) restricts the soft function integral to lie only in the soft momentum region. In other
words, in the virtual contributions, the rapidity regulator properly separates soft and collinear modes in SCETII. Thus the
total virtual soft function is

Sv ¼ 2~Sv: ð33Þ

SEAN FLEMING and OU Z. LABUN PHYSICAL REVIEW D 95, 114020 (2017)

114020-6



The naive real contribution from the diagram in
Fig. 3(b) is

~Sr ¼ þ4πCFg2sμ2ϵw2νη
Z

dDk
ð2πÞD−1

× δðk2 −m2
gÞδðl − kþÞj2k3j−η

1

kþ
1

k−

¼ −
αsCF

π

�
eγE

μ2

m2
g

�
ϵ

w2νη
θðlÞ
l1þη ΓðϵÞ: ð34Þ

In the scheme introduced in our previous paper [17] the
collinear zero-bin subtraction for the real soft function is
given by expanding the real soft contribution about the
collinear limit everywhere in the integrand except in the
measurement function. Then our zero-bin subtraction is not
0 at this order, because overlap with the collinear regions in
the soft function is not suppressed by the rapidity regulator
in the initial state Wilson lines. Mathematically, we see this
by the presence of the scale brought into the integral by the
measurement function. The overlap of the integral in
Eq. (34) with the n-collinear region is given by taking
the limit kþ ≫ k− with kþk− ∼ k2⊥,

Srnϕ ¼ −4πCFg2sμ2ϵw2νη
Z

dDk
ð2πÞD−1

× δðk2 −m2
gÞδðl − kþÞjkþj−η 1

kþ
1

k−

¼ þ αsCF

π

�
eγE

μ2

m2
g

�
ϵ

w2νη
θðlÞ
l1þη ΓðϵÞ; ð35Þ

which is the same as the result in Eq. (34). The n̄-collinear
subtraction is given by taking the limit k− ≫ kþ with
kþk− ∼ k2⊥ in the first line of Eq. (34),

Srn̄ϕ ¼ −4πCFg2sμ2ϵw2νη
Z

dDk
ð2πÞD−1

× δðk2 −m2
gÞδðl − kþÞjk−j−η 1

kþ
1

k−

¼ −
αsCF

π

�
eγE

μ2

m2
g

�
ϵ

w2

�
ν

m2
g

�
η θðlÞ
l1−η

Γðηþ ϵÞ
Γð1þ ηÞ : ð36Þ

Comparing Eqs. (34)–(36), we see that the unsubtracted
soft function ~Sr is dominated by overlap with the n-
collinear region as Eq. (35) represents the n-collinear
modes running into the soft function. This is due to the
measurement being on soft radiation only in the n-collinear
direction. Radiation in the n̄-collinear direction has been
integrated out in the matching onto SCETII and subtracting
Eq. (36) from Eq. (34) removes the momentum in the soft
function that overlaps with the n̄-collinear momentum
region. Thus the zero-bin subtracted real contribution,
given by the diagrams in Fig. 3(b), is

Sr ¼ 2ð ~Sr − Srnϕ − Srn̄ϕÞ ¼ −2Srn̄ϕ

¼ 2
αsCF

π
w2

1

Q

��
1

2

eϵγEΓðϵÞ
η

�
μ

mg

�
2ϵ

−
1

2ϵ2
þ 1

2ϵ
ln
νQ
μ2

− ln2
μ

mg
þ ln

μ

mg
ln
νQ
m2

g
þ π2

24

�
δðzÞ

þ
�
1

2ϵ
þ ln

μ

mg

��
1

z

�
þ

�
; ð37Þ

where the plus function of the dimensionful variable l is
given in terms of the definition of a dimensionless variable
z ¼ l=κ,

�
1

l

�
þ
¼ 1

κ

�
1

z

�
þ
þ ln κδðκzÞ; ð38Þ

with

�
1

z

�
þ
≡ lim

β→0

�
θðz − βÞ

z
þ ln βδðzÞ

�
: ð39Þ

Adding the virtual and real contributions gives the one-
loop expression for the soft function

SðzÞð1Þ ¼ αsCF

π
w2

1

Q

�
−
eϵγEΓðϵÞ

η

�
μ

mg

�
2ϵ

δðzÞ

þ
�
1

ϵ
þ ln

μ2

m2
g

��
− ln

ν

Q
δðzÞ þ

�
1

z

�
þ

��
: ð40Þ

Logarithms in the soft function are minimized by setting
μ ∼mg and ν ∼ l ∼Qz ∼Qð1−xx Þ. Note that Qð1−xx Þ is an
end-point region energy scale, which is however different
from what one naturally chooses for the collinear function.
Clearly, resumming logarithms in ν is needed.
At this point we wish to alert the reader to an alternative

approach to deriving Eq. (40), developed in Ref. [29]. In
our work we strictly take the mg → 0 limit while holding
the momentum l fixed in the soft contribution, and
determine the zero-bin subtraction as outlined above. In
contradistinction, the authors of Ref. [29] hold mg fixed
and consider both l > mg and l < mg, and then take the

(a) (b)

FIG. 3. OðαsÞ soft function Feynman diagrams: (a) is the virtual
contribution; (b) is the real contribution.
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mg → 0 limit in the soft contribution. The zero-bin sub-
tractions are determined by expanding the soft integrand
around the collinear limit, including the measurement
function but excluding the rapidity regulator term
j2l3j−η. These two approaches result in different collinear
zero-bin subtractions for the soft function; while we have
both an n-collinear and n̄-collinear subtraction, the
approach of Ref. [29] requires no collinear zero-bin
subtraction in the soft function. In DIS at the end point
the two approaches give the same results up to Oðmg=lÞ,
which vanishes in the mg → 0 limit. Thus, there is no way
to determine from DIS if one of the two (or both) of the
approaches is inconsistent. However, as we point out in
Sec. III, DY cannot be treated with our approach, while the
approach used in Ref. [29] gives a consistent result.
Furthermore, our approach is not compatible with the
threshold expansion while that in Ref. [29] is [30].

3. Renormalization group running for DIS

To subtract the divergences in ϵ and η in Eqs. (28) and
(40), we introduce counterterms,

CnðQ − kÞR ¼ Z−1
n CnðQ − kÞB;

SðlÞR ¼
Z

dz0Zsðz − z0Þ−1Sðl0ÞB;

where l0 ¼ Qz0 and superscripts R and B indicate renor-
malized and bare. The one-loop collinear counterterm is

Zn ¼ 1þ αsCF

π
w2

�
eϵγEΓðϵÞ

η

�
μ

mg

�
2ϵ

þ 1

ϵ

�
3

4
þ ln

ν

n̄ · p

��
;

ð41Þ

and the one-loop soft counterterm is

ZsðzÞ ¼ δðzÞ þ αsCF

π
w2

�
−
eϵγEΓðϵÞ

η

�
μ

mg

�
2ϵ

δðzÞ

þ 1

ϵ

��
1

z

�
þ
− ln

ν

Q
δðzÞ

��
: ð42Þ

These counterterms obey the consistency condition put
forth in Ref. [25], as they must,

ZHZJn̄ðzÞ ¼ Z−1
n Z−1

s ðzÞ; ð43Þ

where ZJn̄ðzÞ is the jet-function counterterm and ZH is the
square of the counterterm for the SCET DIS current, which
has been given at one loop in Ref. [26] in 4 − ϵ dimensions.
Converting the result of Ref. [26] to 4 − 2ϵ dimensions and
squaring gives

ZH ¼ 1 −
αsCF

2π

�
2

ϵ2
þ 3

ϵ
þ 2

ϵ
ln

μ2

Q2

�
; ð44Þ

where Q2 ¼ n̄ · pn · pX. The one-loop result for ZJn̄ðzÞ is
given by Ref. [22],

ZJn̄ðzÞ¼ δðzÞþαsCF

4π

×

��
4

ϵ2
þ3

ϵ
−
1

ϵ
ln
ðn ·pÞQ

μ2

�
δðzÞ−4

ϵ

�
1

z

�
þ

�
: ð45Þ

Putting the factors together,

ZHZJn̄ðzÞ¼ δðzÞþαsCF

4π

×

��
−
3

ϵ
þ4

ϵ
ln

�
n̄ ·p
Q

��
δðzÞ−4

ϵ

�
1

z

�
þ

�
; ð46Þ

which is exactly equal to the product of inverses Z−1
n Z−1

s ðzÞ
taken from Eqs. (41) and (42).
From the one-loop results, we extract the μ anomalous

dimensions for the collinear and soft function respectively,

γμnðμ; νÞ ¼ 2αsðμÞCF

π

�
3

4
þ ln

ν

n̄ · p

�
;

γμsðμ; νÞ ¼ 2αsðμÞCF

π

��
1

z

�
þ
− ln

ν

Q
δðzÞ

�
: ð47Þ

Note that

γμ¼ γμnδðzÞþγμs ¼2αsCF

π

��
3

4
− ln

�
n̄ ·p
Q

��
δðzÞþ

�
1

z

�
þ

�
;

ð48Þ

which agrees with the known result, and the ν-dependence
cancels as expected. In Mellin moment space this is the
n ¼ 0 result given in Eq. (1). We can now trace the origin of
the large logarithm to the rapidity region. If we choose
ν ¼ νc ∼Q in the collinear anomalous dimension on the
first line of Eq. (47) and ν ¼ νs ∼Qð1 − xÞ in the soft
anomalous dimension in the second line, then neither term
contains large logarithms. Adding the two anomalous
dimensions together then gives

γμ ¼ γμnδðzÞ þ γμs ¼ 2αsCF

π

×

��
3

4
− ln

�
νs
νc

n̄ · p
Q

��
δðzÞ þ

�
1

z

�
þ

�
; ð49Þ

where the combination of plus-function and logarithmic term
is no longer anomalously enhanced compared to the 3=4.
Minimizing the logarithmic term in the μ anomalous

dimension requires choosing two widely separated rapidity
scales, νc and νs. This necessitates a resummation of
logarithms of ν. The ν anomalous dimensions for the
collinear and soft functions are
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γνnðμ; νÞ ¼
αsðμÞCF

π
ln

μ2

m2
g
;

γνsðμ; νÞ ¼ −
αsðμÞCF

π
ln

μ2

m2
g
δðzÞ: ð50Þ

Adding them together, we have γν ¼ γνnδðzÞ þ γνs ¼ 0, as is
dictated by the consistency condition. The presence of mg

in γνn and γνs indicates that the renormalization group
running in ν depends on an infrared scale, and therefore
is nonperturbative. Thus we are left with little choice but to
treat the ν resummation as part of the nonperturbative
aspect of DIS and to absorb it into the definition of the PDF.
The μ and ν running are independent and can be carried

out in either order; however they must obey the constraint

d
d ln μ

γν ¼ d
d ln ν

γμ: ð51Þ

For the collinear function, the μ running is given to one
loop by

CnðQ − k; μ; νcÞ ¼ Uðμ; μ0; νcÞCnðQ − k; μ0; νcÞ

Uðμ; μ0; νcÞ ¼ e
3
4
ωðμ0;μÞ

�
νc

n̄ · p

�
ωðμ0;μÞ

; ð52Þ

where νc is the collinear rapidity scale and

ωðμ0; μÞ ¼
4CF

β0
ln

�
αsðμ0Þ
αsðμÞ

�
: ð53Þ

Note that ωðμ0; μÞ ¼ 2aΓðμ; μ0Þ of Ref. [21]. For the soft
function, the one-loop μ running is

Sðl; μ; νsÞ ¼
Z

drUðl − r; μ; μ0; νsÞSðl; μ0; νsÞ

Uðl − r; μ; μ0; νsÞ ¼
ðeγEνsÞ−ωðμ0;μÞ
Γðωðμ0; μÞÞ

�
1

ðl − rÞ1−ωðμ0;μÞ
�

þ
:

ð54Þ

Combining the running factors we find

Uðμ; μ0; νcÞUðl − r; μ; μ0; νsÞ

¼
�
e−γEνc
n̄ · pνs

�
ωðμ0;μÞ e

3
4
ωðμ0;μÞ

Γðωðμ0; μÞÞ
�

1

ðl − rÞ1−ωðμ0;μÞ
�

þ
:

ð55Þ

This agrees with Eq. (66) of Ref. [21] if we set νc ¼ νs,
convert the plus-distribution to dimensionless variables, and
recognize that 2aγϕðμf; μ0Þ ¼ ð3=4Þωðμ0; μfÞ at this order.
To get a feel for which logarithms are being summed we

transform the combined running factors into Mellin
moment space (for large N),

Uðμ; μ0; νcÞUðN; μ; μ0; νsÞ ¼
�
e−γEνc
N̄νs

�
ωðμ0;μÞ

e
3
4
ωðμ0;μÞ:

ð56Þ

The first term on the right-hand side in square brackets can
be expressed as

�
e−γEνc
N̄νs

�
ωðμ0;μÞ

¼ Exp

�
ωðμ0; μÞ ln

�
e−γEνc
N̄νs

��

¼ Exp

�
4CF

β0
ln

�
N̄νs
e−γEνc

�X∞
n¼1

1

n

�
β0αsðμÞ

2π
ln

μ

μ0

�
n
�
; ð57Þ

which, in the exponent, gives a series in αnsðμÞlnnðμ=μ0Þ
times a single power of lnðN̄νs=νcÞ. If we make the choice
νc ¼ νs we reproduce the standard result of a single
logarithmic series multiplied by a single logarithm of N.
However, if we make the choice for νc and νs given above
then we merely have a single logarithmic series multiplied
by anOð1Þ quantity. We argue that this is the natural choice
from an EFT perspective.
Having widely separated rapidity scales then forces us to

consider the rRGE. Although the ν running is nonpertur-
bative it is still enlightening to see what the resummation
looks like, and we push ahead and determine the soft ν
running factor using the constraint Eq. (51) to sum large
logarithms in the rapidity anomalous dimension,

Sðl; μs; νÞ ¼ Vðμs; ν; ν0ÞSðl; μs; ν0Þ;

Vðμs; ν; ν0Þ ¼
�
ν

ν0

�
ωðμs;mgÞ

: ð58Þ

Note that if we choose ν ¼ νc and ν0 ¼ νs in the above
equations with μs ¼ μ then

Vðμ; νs; νcÞ ¼
�
νc
νs

�
ωðμ;mgÞ ¼

�
νc
νs

�
ωðμ;μ0Þ�νc

νs

�
ωðμ0;mgÞ

¼
�
νs
νc

�
ωðμ0;μÞ�νc

νs

�
ωðμ0;mgÞ

: ð59Þ

The first term in square brackets on the far right-hand side
cancels the νs=νc dependence in Eq. (55), and results in a
running factor identical to the one obtained without rapidity
resummation. However, the second term in square brackets
on the far right-hand side of this equation remains. This
term is infrared sensitive and is absorbed into the definition
of the PDF. Finally we expressed the leftover rapidity
running factor as
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Vðμ0; νs; νcÞ ¼ Exp

�
−
4CF

β0
ln

�
νc
νs

�X∞
n¼1

1

n

×

�
β0αsðμ0Þ

2π
ln

μ0
mg

�
n
�
; ð60Þ

with νc=νs ¼ N̄, making it clear that what is being summed
(in Mellin moment space) by the rRGE is the product
αns ðμ0Þlnnðμ0=mgÞ lnN. The large logarithm ofN multiplies
infrared logarithms, which explains why no one has tried to
sum these terms before.
Of course, this begs the question of why we should even

bother to separate collinear from soft in the PDF. One
answer is that we have a consistent EFT formalism that
never produces terms that violate power counting. There
are, however, more. Currently fits of the PDF produce a
very steeply falling function of momentum fraction as the
end point is approached, with no understanding of why; our
result offers an explanation. To see why we define our PDF
for large x in DIS as a modified form of the function fnsq in
Eq. (15),

fnsq ðz;μÞendpoint¼δ ~n· ~p;QZnðμ;νcÞSðDISÞðl;μ;νsÞVðμ0;νs;νcÞ:
ð61Þ

This is the same as the operator definition we give in our
previous paper, but we have made the presence of the
Vðμ0; νs; νcÞ factor explicit. Away from the end point νc
and νs must flow together so the PDF in the end point
matches smoothly onto the usual definition of the PDF.
Choosing to set the rapidity scales in Mellin space with
νc=νs ¼ N̄, we have

Vðμ0; νs; νcÞ ¼ N̄−ωðmg;μ0Þ: ð62Þ

If we transform back into momentum fraction space we find

Vðμ0; νs; νcÞ ¼
1

Γðωðmg; μ0ÞÞ
ð1 − zÞωðmg;μ0Þ−1;

where the exponent of (1 − z) is nonperturbative and could
be large. Thus we can interpret the conventional running of
the PDF in the end point using the anomalous dimension in
Eq. (1) as a combined running in μ and in ν, with a subset of
potentially large nonperturbative rapidity logarithms
remaining in the PDF. These remaining logarithms could
then be responsible for the steep falloff of the PDF in the
end point.
Finally, it is interesting to see how the above modifica-

tion to the PDF fairs in the analysis carried out in Sec. 3.5 of
Ref. [21]. Nothing in that analysis changes if we identify

bðμ0Þ ¼ bIR þ ωðmg; μ0Þ; ð63Þ

with bIR being the nonperturbative value of the b-parameter
with absolutely no running. Furthermore, the relation for
N ðμÞ remains unchanged.

4. Comparing to the perturbative QCD result

In this section, we compare the one-loop expression of
the hadronic tenor in SCET to that in QCD. This provides a
powerful check that nothing has been missed in the SCET
calculation. Extracting the scalar part of the SCET effective
hadronic tensor from Eq. (14), we have

Wμν
eff ¼ −

gμν⊥
2

Weff ð64Þ

where

Weff ¼ 2QHðQ; μq; μcÞ
Z

1

x

dw
w

Jn̄ðQw; μc; μÞCnððQ − kÞ; μc; μ; νÞSDISðQð1 − wÞ; μ; νÞ: ð65Þ

The renormalized hard functionHRðQ; μq; μcÞ and jet function JRn̄ ðQz; μc; μÞ are given in the literature [21,22,24,26,31,32],

HR
DISðQ; μÞ ¼ 1þ αsCF

2π

�
−ln2

μ2

Q2
− 3 ln

μ2

Q2
− 8þ π2

6

�
ð66Þ

JRn̄ ðQð1− xÞ;μÞ ¼ δð1− xÞ þ αsCF

2π

�
δð1− xÞ

�
3

2
ln

μ2

Q2
þ ln2

μ2

Q2
þ 7

2
−
π2

2

�
−
�

2

1− x

�
þ

�
ln

μ2

Q2
þ 3

4

�
þ 2

�
lnð1− xÞ
1− x

�
þ

�
:

ð67Þ
From Eqs. (28) and (41), we obtain the renormalized collinear function,

CRðQ − k; μ; νÞ ¼ m0δn̄; ~p;QδðkÞ
�
1þ αsCF

π

�
ln

μ2

m2
g
ln

νc
n̄ · p

þ 3

4
ln

μ2

m2
g
þ 3

4
−
π2

6

��
: ð68Þ
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From Eqs. (40) and (42), we obtain the renormalized soft function,

SRðQð1 − xÞ; μ; νÞ ¼ 1

Q
δð1 − xÞ þ αsCF

πQ

�
ln

μ2

m2
g

��
1

1 − x

�
þ
− ln

νs
Q
δð1 − xÞ

��
: ð69Þ

Inserting Eqs. (66)–(69) into (65), we arrive at the one-loop expression for the hadronic structure function calculated in
SCET which is valid in the end-point region,

Weff ¼ 2m0δn̄; ~p;Q

�
δð1 − xÞ þ αsCF

π

��
−
3

4
ln
m2

g

Q2
−
3

2
−
π2

3

�
δð1 − xÞ

−
�

1

1 − x

�
þ

�
ln
m2

g

Q2
þ 3

4

�
þ
�
lnð1 − xÞ
1 − x

�
þ
þ ln

μ2

m2
g
ln
νc
νs

��
: ð70Þ

Note the rapidity scale dependence in the last term is multiplied by an IR logarithm indicating once again that the logarithms
that are being summed are infrared in nature. In order to compare to W in QCD we first set νc ¼ νs.
The quark contribution to the hadronic structure function in perturbative QCD is given in Ref. [33],

F 2ðxÞ ¼
Z

1

x

dy
y
ðGð0Þ

p−qðyÞ þGð0Þ
p−q̄ðyÞÞ

�
δð1 − zÞ þ αs

2π
Pq→gqðzÞ ln

Q2

m2
g
þ αsf

qDIS
2 ðzÞ

�
; ð71Þ

where

Pq→qgðzÞ ¼
4

3

�
1þ z2

1 − z

�
þ
¼ 4

3

�
ð1þ z2Þ

�
1

1 − z

�
þ
þ 3

2
δð1 − zÞ

�
;

αsf
qDIS
2 ðzÞ ¼ 2αs

3π

�
ð1þ z2Þ

�
lnð1 − zÞ
1 − z

�
þ
−
1þ z2

1 − z
ð2 ln zÞ − 3

2

�
1

1 − z

�
þ
þ 4zþ 1 −

�
2π2

3
þ 9

4

�
δð1 − zÞ

�
; ð72Þ

z ¼ x=y, and Gð0Þ
p→q þ Gð0Þ

p→q̄ ¼ 2m0δn̄; ~p;Q. As x → 1, we have

F 2 →
z→1ð2m0δn̄·p̄;QÞ

�
δð1 − xÞ þ αsCF

π

��
−
3

4
ln
m2

g

Q2
−
3

8
−
π2

3

�
δð1 − xÞ −

�
1

1 − x

�
þ

�
ln
m2

g

Q2
þ 3

4

�
þ
�
lnð1 − xÞ
1 − x

�
þ
þ 9

��
:

ð73Þ

Comparing Eq. (73) to Eq. (70), we find that the low energy
behavior agrees. In particular, by comparing the jet function
and soft function separately in SCET, we can trace the origin
of them2

g dependence in the quark splitting term∼Pq→qg ln
Q2

m2
g

to the large scale difference between the collinear gluons and
the soft gluons entering the final state jet. The difference
between Eq. (73) and Eq. (70) is the constant coefficient of
δð1 − xÞ and the constant term. The former is regularization
scheme dependent, and the latter subleading. Since the SCET
calculation uses a different regularization scheme from
Ref. [33] this discrepancy is expected.

III. DRELL-YAN AT END POINT WITH
RAPIDITY REGULATOR

We now apply a similar analysis to the Drell-Yan
processes. We investigate DY in the semi-inclusive region

of phase space where the momentum fractions x, x̄ of the
two colliding partons become large, approaching the
maximal value x ∼ x̄ ∼ 1. Drell-Yan in the large-x region
has been investigated before using perturbative QCD
factorization techniques [3,34–37] as well as effective field
theory techniques based on SCET [12]. Although the end
point in Drell-Yan is not accessible in real experiments, it is
of theoretical interest to investigate how the parton dis-
tribution functions in two protons interfere with each other
at large x.
We analyze Drell-Yan at threshold by integrating out the

large scale ∼Q by matching QCD onto SCETII, and then
we factorize. We compute each piece in the factorization
formula to the first perturbative order and resum large
logarithms to next-to-leading-logarithm (NLL) order.
Finally, we discuss the PDF for two protons colliding at
large x.
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A. Kinematics

While we worked through the kinematics of the DIS
process in both the target rest frame and Breit frame,
we consider the Drell-Yan process only in the Breit
frame. The proton in the n̄ direction carries momentum
pμ ¼ n̄μ

2
n · pþ nμ

2
n̄ · pþ p̄μ

⊥, and the proton in the n direc-
tion carries momentum p̄μ ¼ nμ

2
n̄ · p̄þ n̄μ

2
n · p̄þ p̄μ

⊥. The
invariant mass squared of the proton-proton collision is
s ¼ ðpþ p̄Þ2 ≃ ðn · pÞðn̄ · p̄Þ, since n · p and n̄ · p̄ are the
large components of p and p̄ respectively. The squared
momentum transfer between the two protons isQ2 ¼ q2, so
for p we define

x ¼ Q2

2p · q
¼ Q2

ðn · pÞðn̄ · qÞ≃
n · q
n · p

; ð74Þ

while for p̄ we define

x̄ ¼ Q2

2p̄ · q
¼ Q2

ðn̄ · p̄Þðn · qÞ≃
n̄ · q
n̄ · p̄

: ð75Þ

Here τ ¼ Q2=s ¼ x · x̄ is the fraction of the energy squared
taken by the colliding partons from the protons. The end
point corresponds to τ → 1. As in DIS, we define
Q
x ¼ Qþ lþ, Q

x̄ ¼ Qþ l̄− with light cone momenta lþ and
l̄−. The separated scales are

(i) hard modes with q ¼ ðQ;Q; 0Þ at the hard scale;

(ii) n-collinear modes with pc ¼ ðQx ;
Λ2
QCD

Q ;ΛQCDÞ ∼
ðQþ lþ; l−;ΛQCDÞ with invariant mass p2 ∼ Λ2

QCD;

(iii) n̄-collinear modes with p̄c ¼ ðΛ
2
QCD

Q ; Qx̄ ;ΛQCDÞ ∼
ðl̄þ; Qþ l̄−;ΛQCDÞ with invariant mass p̄2 ∼ Λ2

QCD;

(iv) soft modes with ps ∼ ðΛQCD;ΛQCD;ΛQCDÞ at the
soft scale.

As x; x̄ → 1, the off-shellness of the initial statesQ ð1−xÞ
x ∼ lþ

and Q ð1−x̄Þ
x̄ ∼ l̄− goes to ΛQCD, bringing in new rapidity

singularities arising from the fact that both soft and collinear
modes have invariant mass squared of order Λ2

QCD. These
singularities are regulated with the covariant η regulator,
which allows us to resum the rapidity logarithms by running

from Q to Q ð1−xÞ
x ∼ lþ ∼Q ð1−x̄Þ

x̄ ∼ l̄−.

B. Factorization

A number of papers have discussed factorization of
Drell-Yan using SCET [11,12,38–42]. Here we follow
Ref. [11], starting with the unpolarized DY cross section,

dσ ¼ 32π2α2

sQ4
LμνWμν d3k1

ð2πÞ3ð2k01Þ
d3k2

ð2πÞ3ð2k02Þ
; ð76Þ

where Lμν is the lepton tensor, and Wμν is the DY hadronic
tensor. Equation (76) gives

dσ
dQ2

¼ −
2α

3Q2s

Z
d4q
ð2πÞ3 δðq

2 −Q2Þθðq0ÞWðτ; Q2Þ ð77Þ

where Q2 ¼ τs is the lepton pair’s center-of-mass energy
squared. Summing over final states, we obtain

Wðτ; Q2Þ ¼ −
1

4

X
spin

Z
d4ye−iq·yhpp̄jJμ†ðyÞJμð0Þjpp̄i;

ð78Þ

where JμðyÞ is the QCD current as in Eq. (7). Near the
end-point region, the magnitude of the 3-momentum trans-
ferred is

jq⃗j ≤ Q
2
ð1 − τÞ; ð79Þ

where Q ¼
ffiffiffiffiffiffi
Q2

p
. As a result, the zero component is

q0 ¼ QþOð1 − τÞ ≫ jq⃗j: ð80Þ

Therefore the δ-function in Eq. (77) is expanded,

δðq2 −Q2Þ ¼ 1

2Q
δðq0 −QÞ þOð1 − τÞ2: ð81Þ

Carrying out the q0 integration, the hadronic structure
function becomes

Wðτ;Q2Þ¼−
1

8Q

X
spins

Z
d3q
ð2πÞ3

×
Z

d4ye−iQy0þiq⃗·y⃗hpp̄jJμ†ðyÞJμð0Þjpp̄i: ð82Þ

We match W onto the SCETII, and get

Weff ¼ −
1

4

X
σ;σ0

Z
d3q
ð2πÞ3

Z
d4y

1

2Q

X
w̄;w

C�ðQ;Q0; μq; μÞCðw̄; w; ; μq; μÞδn̄·pn;Qδn·p̄n̄;Q

× hhðpn; σÞh̄ðp̄n̄; σ0ÞjT̄½χ̄n̄;w̄0Y†
n̄Ȳnγ

⊥
μ χn;w0 ðyÞ�T½χ̄n;wȲ†

n̄Ynγ
μ
⊥χn̄;w̄ð0Þ�jhðpn; σÞh̄ðp̄n̄; σ0Þi: ð83Þ
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Here, we have defined the n̄-direction incoming proton to
be carrying momentum p̄μ ¼ 1

2
ðn · pn̄ þ n · p̄rÞn̄μ with

the large component of p̄μ scaling as n · pn̄ ≃Q=x̄≃Q
and the residual momentum p̄μ

r containing the small
momentum p̄μ

r ≃ l̄− ≃Q 1−x̄
x̄ . Similarly, the n-direction

incoming proton momentum is pμ ¼ 1
2
ðn̄ · pn þ n̄ · prÞnμ

with the large component of pμ scaling as n̄ · pn ≃
Q=x≃Q and the residual momentum p̄μ

r containing
the small momenta pμ

r ≃ lþ ≃Q 1−x
x . We introduce

Kronecker deltas to fix the large components of p and
p̄ to be equal to Q and integrate over the residual

components of the coordinates in position space. The
Wilson lines Yn̄ and Ȳn are associated with soft radiation
from two incoming states,

YnðyÞ ¼ P exp

�
ig
Z

y

−∞
dsn · AusðsnÞ

�
;

Ȳ†
n̄ðyÞ ¼ P exp

�
−ig

Z
y

−∞
dsn̄ · Ausðsn̄Þ

�
: ð84Þ

The hadronic structure function can be factored into the
three sectors,

Weff ¼ −
1

4

X
σ

Z
d3q
ð2πÞ3

Z
d4y
2Q

eiq⃗·y⃗
X
w̄;w

C�ðQ;Q; μq; μÞCðw; w̄; μq; μÞ

× hhðpn; σÞh̄ðp̄n̄; σÞjT̄½ðχ̄αn̄;QÞiðY†
n̄ðγ⊥μ ÞαβȲnÞijðχ

β
n;QÞjðyÞ�δn̄·pn;Q

× δn·p̄n̄;QT½ðχ̄ρn;wÞlðȲ†
n̄ðγμ⊥ÞρλYnÞlmðχλn̄;w0 Þmð0Þ�jhðpn; σÞh̄ðp̄n̄; σÞi ð85Þ

¼ −
1

4

X
σ

Z
d4y
2Q

δ3ðy⃗Þ
X
w;w̄

C�ðQ;Q; μq; μÞCðw; w̄; μq; μÞδn̄·pn;Qδn·p̄n̄;Q

× hhðpn; σÞjT̄½ðχ̄αn̄;QÞiðyÞðχλn̄;w̄Þmð0Þ�jhðpn; σÞi
× hh̄ðp̄n̄; σÞjT½ðχ̄ρn;wÞlð0Þðχβn;QÞjðyÞ�jh̄ðp̄n̄; σÞi
× h0jT̄½ðY†

nȲnÞijðyÞ�T½ðȲ†
n̄YnÞlmð0Þ�j0iðγ⊥μ Þαβðγμ⊥Þρλ: ð86Þ

Integrating over y⃗, contracting the color indices and averaging the color of the initial states, we have

Weff ¼ 1

4

Z
dy0
2Q

1

2

X
w;w̄

C�ðQ;Q; μq; μÞCðw; w̄; μq; μÞ
1

Nc

X
σ

hhðp; σÞjχ̄n̄;Qðy0Þ
n
2
χn̄;w̄ð0Þjhðp; σÞiδn̄·pn;Q

×
1

Nc

X
σ0
hh̄ðp̄n̄; σ0Þjχ̄n;wð0Þ

n̄
2
χn;Qðy0Þjh̄ðp̄n̄; σ0Þiδp̄n̄·n;Qh0jT̄½ðY†

n̄ȲnÞ�ðy0ÞT½ðȲ†
n̄YnÞ�ð0Þj0i: ð87Þ

Due to label momentum conservation, w ¼ Q ¼ w̄, and
we rewrite the large component of the matter field as
χ̄n;w ¼ χ̄nδw;Q. We insert the identities

χ̄n̄;Qðy0Þ ¼ ei∂̂0y0 χ̄n̄;Qð0Þe−i∂̂0y0 ; ð88Þ

χn;Qðy0Þ ¼ ei∂̂0y0χn;Qð0Þe−i∂̂0y0 ð89Þ

to shift χ̄n̄ and χn to the same spacetime point. The
operator ∂̂0 is a residual momentum operator that acts on
the external states to yield

∂̂0jh̄ðp̄n̄; σ0Þi ¼
Q
2

1 − x̄
x̄

jh̄ðp̄n̄; σ0Þi; ð90Þ

hhðpn; σÞj∂̂0 ¼ hhðpn; σÞj
Q
2

1 − x
x

: ð91Þ

Thus the hadronic structure function is reduced to

Weff¼jCðQ;μq;μÞj2δn̄·pn;Qδn·p̄n̄;Q
1

Nc

Z
dy0
2Q

e−
i
2
Q1−x

x y0e−
i
2
Q1−x̄

x̄ y0

×
1

Nc
h0jT̄½Y†

n̄Ȳn�ðy0ÞT½Ȳ†
nYn̄�ð0Þj0i

×
1

2

X
σ

hhðpn;σÞjχ̄n̄e−i∂̂0y0
n
2
χn̄jhðpn;σÞi

×
1

2

X
σ0
hh̄ðp̄n̄;σ0Þjχ̄nei∂̂0y0

n̄
2
χnjh̄ðp̄n̄;σ0Þi: ð92Þ
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As in DIS, we define a hard coefficient HðQ; μÞ ¼
jCðQ; μq; μÞj2, and two collinear functions

1

2

X
σ

δn̄·pn;Qhhðpn; σÞjχ̄n̄e−i∂̂0y0
n
2
χn̄jhðpn; σÞi

≡
Z

dre−iry0Cn̄ðQþ r; μÞ; ð93Þ

1

2

X
σ0
δn·p̄n̄;Qhh̄ðp̄n̄; σ0Þjχ̄nei∂̂0y0

n̄
2
χnjh̄ðp̄n̄; σ0Þi

≡
Z

dr̄eir̄y0CnðQþ r̄; μÞ: ð94Þ

The SCET hadronic structure function can then be
expressed as

Weff ¼ HðQ; μÞ
2QNc

Z
dy0e−

i
2
Qð1−τÞy0

×
Z

drdr̄e−irye−ir̄yCn̄ðQþ r; μÞCnðQþ r̄; μÞ

×
1

Nc
h0jT̄½Y†

n̄Ȳn�ðy0ÞT½Ȳ†
nYn̄�ð0Þj0i; ð95Þ

where μ is the arbitrary energy scale brought in by
matching QCD onto SCET, and its dependence in the
hard coefficient HðQ; μÞ introduced by this matching
process is canceled by the dependence in the product of
the two collinear functions and one soft function. The
collinear functions become collinear factors because
momentum conservation forbids collinear radiation into
the final state. This then requires an additional rapidity
scale ν to separate soft from collinear modes. Including
the rapidity scale dependence,

Cn̄ðQþ r; μÞ → Cn̄ðQþ r; μ; νÞ ¼ Zn̄ðμ; νÞδðrÞδn̄·pn;Q;

ð96Þ

CnðQþ r̄; μÞ → CnðQþ r̄; μ; νÞ ¼ Znðμ; νÞδðr̄Þδn·p̄n̄;Q:

ð97Þ

As in DIS, these functions are proportional to δ functions
in r, r̄ because there is no real gluon emission into the
final state from either proton.
We redefine the soft Wilson lines analogously to the

collinear fields in Eq. (88), so that

h0jT̄½Y†
n̄Ȳn�ðyÞT½Ȳ†

nYn̄�ð0Þj0i
¼ h0jT̄½Y†

n̄Ȳn�ð0Þei∂̂0y0T½Ȳ†
nYn̄�ð0Þj0i: ð98Þ

Integrating over r, r̄ in Eq. (95) we obtain

Weff ¼ HðQ; μÞ 1

2QNc
Zn̄ðμ; νÞδn̄·pn;QZnðμ; νÞδn·p̄n̄;Q

×
Z

dy0
1

Nc

× h0jT̄½Y†
n̄Ȳn�ð0Þeið∂̂0−

Q
2
ð1−τÞÞy0T½Ȳ†

nYn̄�ð0Þj0i: ð99Þ

We define the DY soft function in momentum space to be

SðDYÞð1 − τ; μ; νÞ

¼ 1

Nc
h0jtrT̄½Y†

n̄Ȳn�ð0Þδð2∂̂0 −Qð1 − τÞÞT½Ȳ†
nYn̄�ð0Þj0i:

ð100Þ

The hadronic structure function becomes

Weff ¼ 2π

QNc
HðQ; μÞZn̄ðμ; νÞδn̄·pn;QZnðμ; νÞ

× δn·p̄n̄;QS
ðDYÞð1 − τ; μ; νÞ; ð101Þ

and the differential cross section is

�
dσ
dQ2

�
eff

¼ 2α2

3Q2s
2π

Nc
HðQ; μÞZn̄ðμ; νÞδn̄·pn;QZnðμ; νÞ

× δn·p̄n̄;Q
1

Q
SðDYÞð1 − τ; μ; νÞ: ð102Þ

The soft function and the collinear functions run to the
common rapidity scale ν in the end-point region, sug-
gesting the soft radiation contains information from both
incoming protons. Since the n-direction and n̄-direction
collinear functions are each connected to this soft function
at low momenta by the rapidity scale ν, they are coupled to
each other through the soft radiation. Therefore, in the end-
point region, it does not suffice to identify the PDF of each
proton with just the n- and n̄-collinear functions.
We introduce a luminosity function that defines the n-

collinear, n̄-collinear and soft functions all together,

Lnn̄sð1 − τ; μÞ ¼ δn̄·pn;QZnðμ; νÞδn·p̄n̄;QZn̄ðμ; νÞ
× SðDYÞð1 − τ; μ; νÞ: ð103Þ

On the right-hand side, the ν dependence of the n-collinear,
n̄-collinear and soft functions cancels between the three
factors. In order to relate the Drell-Yan luminosity function
in Eq. (103) to the definition of the PDF in DIS, we can
express Lnn̄s as

Lnn̄sð1− τ;μÞ ¼
Z

dxdx̄fn̄sq

�
1− x
x

;μ

�
fnsq0

�
1− x̄
x̄

;μ

�
IðDYÞτ→1

×

�
1− τ−

1− x
x

−
1− x̄
x̄

;μ

�
; ð104Þ
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where the two PDFs are defined in Eq. (61), and

IðDYÞτ→1 ð1 − τ; μÞ is an interference factor, independent of
ν, which represents the effect of the two protons interfering
with each other at the DY end point.
With this interference function, the SCETII hadronic

structure function is

Weff ¼ 2π

QNc
HðQ; μÞ

×
Z

dxdx̄fn̄sq

�
1 − x
x

; μ

�
fnsq0

�
1 − x̄
x̄

; μ

�
IðDYÞτ→1

×

�
1 − τ −

1 − x
x

−
1 − x̄
x̄

; μ

�
: ð105Þ

C. Renormalization and resummation with rapidity

In this section we study the renormalization at one loop
of the collinear and soft functions appearing in the Drell-
Yan hadronic structure function in the end-point region,
CnðQþ r̄; μ; νÞ, Cn̄ðQþ r; μ; νÞ and Sð1 − τ; μ; νÞ. As in
DIS, we use the η regulator to render rapidity divergences
finite.

1. Collinear and soft functions to OðαsÞ for DY
It is easy to show that the collinear functions in DIS and

DYare equal. As in DIS, Fig. 1 shows the Oðα0sÞ Feynman

diagram for the collinear function. The n-direction collinear
function tree-level structure calculated from that diagram is

CDY
n ðQþ r̄Þð0Þ ¼ CDISð0Þ

n ¼ δn̄·pn;Qδðr̄Þmð0Þ
n ; ð106Þ

where mn is

mð0Þ
n ¼ 1

2

X
σ

ξ̄σn
n̄
2
ξσn: ð107Þ

The n̄-direction collinear function at leading order is

CDY
n̄ ðQþ r̄Þð0Þ ¼ δn·p̄n̄;QδðrÞmð0Þ

n̄ ; ð108Þ

where

mð0Þ
n̄ ¼ 1

2

X
σ

ξ̄σn̄
n
2
ξσn̄: ð109Þ

The OðαsÞ n-collinear function Feynman diagrams are
shown in Fig. 2. As discussed in the DIS section, Fig. 2(a)
is the one-loop virtual correction to the collinear function,
while Figs. 2(b) and 2(c) are real corrections. We add the
diagrams of Figs. 2(a) and 2(b) with the mirror diagrams,
and multiply this by the quark wave function renormaliza-
tion to obtain

CDY
n ðQþ r̄; μ; νÞð1Þ ¼ CDISð1Þ

n

¼ Cð0Þ
n ðQþ r̄; μ; νÞ αsCF

π
w2

�
eϵγEΓðϵÞ

η

�
μ2

m2
g

�
ϵ

þ 1

ϵ

�
3

4
þ ln

ν

n̄ · p

�

þ ln
μ2

m2
g
ln

ν

n̄ · p
þ 3

4
ln

μ2

m2
g
þ 3

4
−
π2

6

�
: ð110Þ

For the OðαsÞ n̄-collinear function, we repeat the whole procedure and get

CDY
n̄ ðQþ r; μ; νÞð1Þ ¼ Cð0Þ

n ðQþ r; μ; νÞ αsCF

π
w2

�
eϵγEΓðϵÞ

η

�
μ2

m2
g

�
ϵ

þ 1

ϵ

�
3

4
þ ln

ν

n · p̄

�

þ ln
μ2

m2
g
ln

ν

n · p̄
þ 3

4
ln

μ2

m2
g
þ 3

4
−
π2

6

�
: ð111Þ

Next we turn our attention to the soft function. The tree-
level result is trivial,

Sð1 − τÞð0Þ ¼ δð1 − τÞ
Q

: ð112Þ

The OðαsÞ soft function Feynman diagrams are shown in
Fig. 3 (mirror diagrams are not shown). The soft Wilson
lines in Eq. (87) are defined in (84). Comparing these to the
soft Wilson lines in DIS in Eq. (11), we find that the

n̄-direction gluons are changed from outgoing to incoming.
Reference [43] however shows that up to Oðα2sÞ, the dijet
hemisphere soft function in DIS and DY are equal, so the
virtual DY soft function at OðαsÞ is the same as in DIS,

SDYv ¼ δð1 − τÞ 2αsCF

πQ
w2

�
−
eϵγEΓðϵÞ

η

�
μ

mg

�
2ϵ

þ 1

2ϵ2

þ 1

ϵ
ln
μ

ν
þ ln2

μ

mg
− ln

μ2

m2
g
ln

ν

mg
−
π2

24

�
: ð113Þ
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The naive contribution to theOðαsÞ real DY soft function
shown in Fig. 3(b) is

~SDYr ¼ −4CFg2μ2ϵνη
Z

dDk
ð2πÞD−1 δðk2 −m2

gÞ

× δðl0 − ðkþ þ k−ÞÞ j2k
3j−η

kþk−
ð114Þ

¼
�
−
αsCF

2πQ

��
2

�
ln
m2

g

Q2

��
1

1 − τ

�
þ

− 4

�
ln 1 − τ

1 − τ

�
þ
−
�
1

2
ln2

Q2

m2
g

�
δð1 − τÞ

�
; ð115Þ

where l0 ¼ Qð1 − τÞ. The measurement δ-function at the
end-point region of the Drell-Yan process requires the soft

momentum l to be the symmetric sum of n and n̄ gluon
momenta, l0 ¼ kþ þ k−, which has the consequence that
there are neither rapidity divergences nor ultraviolet diver-
gences. In Appendix B, we show that the kinematic
constraints in DY imply that no collinear modes overlap
with the soft momentum region. However, applying the
zero-bin subtraction prescription we used in DIS would
require both an n-collinear and an n̄-collinear subtraction,
while the prescription in Ref. [29] has no collinear zero bin
in the DY soft function. Thus the approach of Ref. [29] is
consistent while our approach is not. Thus,

SDYr ¼ 2~SDYr : ð116Þ

The OðαsÞ expression of the soft function is given by
adding virtual and soft pieces with their mirror amplitudes,

Sð1 − τ; μ; νÞð1Þ ¼ αsCF

πQ
w2

��
−
2ΓðϵÞeγE

η

�
μ

mg

�
2ϵ

þ 1

ϵ2
þ 2

ϵ
ln
μ

ν

þ 2ln2
μ

mg
− 2 ln

μ2

m2
g
ln

ν

mg
−
π2

12
þ 1

2
ln2

m2
g

Q2

�
δð1 − τÞ

þ 4

�
ln 1 − τ

1 − τ

�
þ
− 2

�
ln
m2

g

Q2

��
1

1 − τ

�
þ

�
: ð117Þ

Comparing this result with the OðαsÞ n- and n̄-collinear
functions given in Eqs. (110) and (111), we see that the
ν-dependence cancels in the cross section at OðαsÞ.
Forming the ratio of the DY soft function to the product
of the n and n̄ DIS soft functions gives an interference
factor Eq. (104) that is independent of ν to this order (and
presumably to all orders).

2. Anomalous dimensions for collinear and soft functions

The divergences in UV and rapidity in the collinear
and soft functions Eqs. (110), (111) and (117) can be
subtracted by counterterms in textbook fashion. We define
the relations between the renormalized and the bare
functions as

CnðQþ r̄ÞR ¼ Z−1
n CnðQþ r̄ÞB;

Cn̄ðQþ rÞR ¼ Z−1
n̄ Cn̄ðQþ rÞB;

Sð1 − τÞR ¼ −
Z

dτ0Zsðτ0 − τÞ−1Sð1 − τ0ÞB: ð118Þ

Thus, Eqs. (110), (111) and (117) yield for the OðαsÞ
collinear and soft renormalization factors

Zn ¼ 1þ αsCF

π
w2

�
ΓðϵÞ
η

�
μ

mg

�
2ϵ

þ 1

ϵ

�
3

4
þ ln

ν

n̄ · p

��
;

ð119Þ

Zn̄ ¼ 1þ αsCF

π
w2

�
ΓðϵÞ
η

�
μ

mg

�
2ϵ

þ 1

ϵ

�
3

4
þ ln

ν

n · p

��
;

ð120Þ

Zs ¼ δð1 − τÞ þ αsCF

π
w2

�
−
2ΓðϵÞ
η

�
μ

mg

�
2ϵ

þ 1

ϵ2
þ 2

ϵ
ln
ν

μ

�

× δð1 − τÞ: ð121Þ
These obey the consistency condition for Drell-Yan at the
limits x; x̄ → 1 and hence τ → 1,

ZHδð1 − τÞ ¼ Z−1
n̄ Z−1

n Z−1
s ; ð122Þ

where ZH is given in Eq. (44). The logarithms in the
collinear function are minimized by setting νc ∼Q, while
in the soft function νs ∼ μ ∼ ΛQCD. Therefore we must
resume these logarithms both in μ and ν. From Eq. (119) to
Eq. (121) we also can extract the OðαsÞ anomalous
dimensions. The μ anomalous dimensions are

γμnðμ; νcÞ ¼
2αsCF

π

�
3

4
þ ln

νc
n̄ · p

�
;

γμn̄ðμ; νcÞ ¼
2αsCF

π

�
3

4
þ ln

νc
n · p̄

�
;

γμsðμ; νsÞ ¼
4αsCF

π
ln

μ

νs
δð1 − τÞ: ð123Þ
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As in DIS, the sum γμnðμ; νÞδð1 − τÞ þ γμn̄ðμ; νÞδð1 − τÞ þ
γμsðμ; νÞ is independent of the rapidity scale ν, as expected.
However, the sum contains a large logarithm of
ðn̄ · pÞðn · p̄Þ ∼Q2. The ν anomalous dimensions are

γνnðμ; νcÞ ¼
αsCF

π
ln

μ2

m2
g
;

γνn̄ðμ; νcÞ ¼
αsCF

π
ln

μ2

m2
g
;

γνsðμ; νsÞ ¼ −
2αsCF

π
ln

μ2

m2
g
δð1 − τÞ: ð124Þ

Unsurprisingly, γνnðμ; νÞδð1 − τÞ þ γνn̄ðμ; νÞδð1 − τÞ þ
γνsðμ; νÞ ¼ 0 when νc ¼ νs in the limits x; x̄ → 1 and
τ → 1. The presence of mg suggests the same IR sensitivity
as occurred in DIS. As we see in the next section, this IR
dependence in anomalous dimensions also shows up in the
delta regulator scheme for the divergences in the end-point
region.

From the μ anomalous dimensions in Eq. (123), we can see
the soft function runs to the scale ν common also to the
collinear functions as we have already seen in the DIS case.
This is problematic because it means the two collinear
functions, which are traditionally identified with the proton
PDFs, are not independent from each other. At moderate x,
these scales would not run to the same point and the two
collinear functions can be separated. Thus at large x the two
collinear functions cannot be separated and we do not have a
uniqueway to define independent (and so universal) PDFs for
the colliding protons. Preserving the conventional description
of thecollidingprotons in termsofn-collinear, n̄-collinear and
soft functions, we arrive at the luminosity function in
Eq. (103), and at large x the two collinear pieces and one
soft piece are related by the common rapidity scale ν.
Now we connect the running and the resummation

results in DY with those in DIS by solving the renormal-
ization equation of the interference factor IDY we defined in
Eq. (104). Using the newly introduced PDF definition in
Eq. (15), we can write the PDF for the n-direction incoming
proton as

fnsq

�
1 − x
x

; μ

�
¼ δð1 − xÞ

Q

þ αsCF

πQ

��
ln

μ2

m2
g
ln
νn
νs

þ 3

4
ln

μ2

m2
g
þ 3

4
−
π2

6

�
δð1 − xÞ þ ln

μ2

m2
g

�
1

1 − x

�
þ

�
; ð125Þ

where νn is the n-direction incoming proton near end-point rapidity scale. Changing νn to νn̄ and x to x̄, we have the
n̄-direction incoming proton PDF

fnsq0

�
1 − x̄
x̄

; μ

�
¼ δð1 − x̄Þ

Q

þ αsCF

πQ

��
ln

μ2

m2
g
ln
νn̄
νs

þ 3

4
ln

μ2

m2
g
þ 3

4
−
π2

6

�
δð1 − x̄Þ þ ln

μ2

m2
g

�
1

1 − x̄

�
þ

�
: ð126Þ

Expanding the interference factor in Eq. (104) in powers of αs,

IðDYÞτ→1 ð1 − τ; μÞ ¼ IðDYÞ0 þ IðDYÞ1 þ � � � ð127Þ

Plugging Eqs. (125)–(127) into Eq. (104), we extract

IðDYÞ0 ¼ 2Qδð1 − τÞ; ð128Þ

and the unrenormalized order-αs interference function

IðDYÞ1 ð1 − τ; μÞ ¼ 2Q
αsCF

π

��
1

ϵ2
þ 1

ϵ
ln

μ2

Q2
þ 2ln2

μ

Q
−
π2

12

�
δð1 − τÞ

þ 4

�
ln 1 − τ

1 − τ

�
þ
− 2

�
ln

μ2

Q2

��
1

1 − τ

�
þ
−
2

ϵ

�
1

1 − τ

�
þ

�
; ð129Þ

which is independent of rapidity scale ν. This result is independent of any infrared scales and is consistent with the DY soft
function defined in Ref. [12], Eq. (45). The counterterm is
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ZDY
I ¼ δð1 − τÞ þ αsCF

π

��
1

ϵ2
þ 1

ϵ
ln

μ2

Q2

�
δð1 − τÞ − 2

ϵ

�
1

1 − τ

�
þ

�
; ð130Þ

and the μ anomalous dimension is

γDYI ð1 − τ; μÞ ¼ 4αsCF

π

�
ln

μ

Q
δð1 − τÞ −

�
1

1 − τ

�
þ

�
; ð131Þ

through which we can resum the logarithms brought in by the interference effect between the two protons. This anomalous
dimension is consistent with Eq. (43) of Ref. [12]. Note the appearance of the cusp in γDYI , which resums Sudakov double
logarithms. To OðαsÞ, the renormalized interference factor is

IðDYÞð1 − τ; μÞ ¼ 2Qδð1 − τÞ þ 2Q
αsCF

π

��
1

2
ln2

μ2

Q2
−
π2

12

�
δð1 − τÞ

þ 4

�
lnð1 − τÞ
1 − τ

�
þ
þ 2 ln

Q2

μ2

�
1

1 − τ

�
þ

�
: ð132Þ

3. Comparing to perturbative QCD results

The hard function HDY we extract from Ref. [12] is

HDYðQ; μÞ ¼ 1þ αsCF

π

�
−
1

2
ln2

μ2

Q2
−
3

2
ln

μ2

Q2
− 4þ 7π2

12

�
: ð133Þ

Taking Nc ¼ 3, and inserting the Drell-Yan collinear and soft functions with Eq. (133) into Eq. (106), we find at OðαsÞ
SCET the Drell-Yan cross section is

�
dσ
dQ2

�
eff

¼ m2
0δn·p̄n̄;Qδn̄·pn;Q

�
4πα2

9Q4

�
αsCF

π

��
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2
ln
Q2

m2
g
−
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2
−
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6
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þ 4

�
lnð1 − τÞ
ð1 − τÞ

�
þ
þ 2 ln
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m2
g

�
1

1 − τ

�
þ

�
: ð134Þ

To OðαsÞ in QCD, the quark contribution to the DY cross section is [33]

dσ
dQ2

¼ m2
0δn·p̄n̄;Qδn̄·pn;Q

4π

9

α2

Q4

Z
1

τ

dxa
xa

Z
1

τ=xa

dxb
xb

�
Gð0Þ

p→qðxaÞGð0Þ
p→qðxbÞ

×

�
σDYtot
σ0

δð1 − zÞ þ αs
π
Pq→qgðzÞ ln

Q2

m2
g
þ 2αsfqDYðzÞ

��
; ð135Þ

where z ¼ τ=ðxaxbÞ, Gð0Þ
p→qðxaÞ; Gð0Þ

p→qðxbÞ are zero-order PDFs, and

Pq→qgðτÞ ¼ CF

�
1þ z2

ð1 − zÞþ
þ 3

2
δð1 − zÞ

�

αsfqDYðτÞ ¼
αsCF

π
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ð1þ z2Þ

�
lnð1 − zÞ
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þ
−
�
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1 − z

�
ln z

− ð1 − zÞ − π2

3
δð1 − zÞ

�
;

σtot
σ0

¼ 1þ
�
8π

9
−

7

3π

�
αs þ � � � ð136Þ
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In the end point, z → 1 the perturbative QCD Drell-Yan
cross section at OðαsÞ becomes

dσ
dQ2

¼ m2
0δn·p̄n̄;Qδn̄·pn;Q

�
4πα2

9Q4

�
αsCF

π
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��
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m2
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−
7

4
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δð1 − τÞ þ 4

þ 4

�
lnð1 − τÞ
1 − τ

�
þ
þ 2 ln

Q2

m2
g

�
1

1 − τ

�
þ

�
: ð137Þ

Comparing Eqs. (137) and (134), we arrive at the same
conclusion as for DIS, that the SCETII hadronic structure
function reproduces all the low energy physics of the
perturbative QCD results in the end-point region up to
constant coefficients of δð1 − τÞ, which is regularization
scheme dependent. As in DIS, this discrepancy is expected
since the SCET and QCD calculations use different
regularization schemes.

IV. DIS AND DY AT END POINT WITH THE
DELTA REGULATOR

The method of the delta regulator was introduced to
implement a proper zero-bin subtraction sector so as to
remove the overlap between the collinear and soft functions
and restore the SCET factorization theorem. In this sense it
serves a similar role as the η-rapidity regulator, except that
the latter is gauge invariant and associated with a rapidity
scale making resummation in the rapidity region possible.
To exhibit the origin of this fact, we repeat our calculations
in the previous two sections using the delta regulator, and
note the pros and cons of these two regularization schemes
line by line.

A. Wilson lines and factorization with delta regulator

We define the Delta regulator, by adding a constant in the
propagator denominators as in Ref. [44],

1

ðpi þ kÞ2 −m2
i
→

1

ðpi þ kÞ2 −m2
i − Δi

: ð138Þ

The subscript i denotes the particle i. The form of Eq. (138)
makes the Δ regulator behave like a mass shift for the
particle i. Correspondingly, the collinear Wilson lines are

Wn ¼
X
perm

exp

�
−

g
n̄ · P − δ1

n̄ · An

�
;

W†
n̄ ¼

X
perm

exp

�
−

g
n · P − δ2

n · An̄

�
; ð139Þ

while the soft Wilson lines for DIS are

~Y†
n̄ ¼

X
perm

exp

�
−

g
n · Ps − δ2 þ iϵ

n̄ · As

�
;

Yn ¼
X
perm

exp

�
−

g
n̄ · Ps − δ1 − iϵ

n · As

�
; ð140Þ

and for DY are

~Y†
n̄ ¼

X
perm

exp

�
−

g
n · Ps − δ2 − iϵ

n̄ · As

�
;

Yn ¼
X
perm

exp

�
−

g
n̄ · Ps − δ1 − iϵ

n · As

�
; ð141Þ

where δ1 ¼ Δ1=pþ and δ2 ¼ Δ2=p−, with pþ or p− being
the collinear momentum in the n or n̄ direction.
Now we repeat the factorization procedure for semi-

inclusive DIS and DY using these delta-regulated Wilson
lines. Separating the hard collision scale and decoupling
soft degrees of freedom from collinear degrees, we reach
the same expressions for the SCETI hadronic tensor for DIS
Eq. (8) and for DY Eq. (95). Then we match the DIS and
DY hadronic tensors from SCETI to SCETII, and separate
soft and collinear modes with an explicit zero-bin sub-
traction. Adopting all the definitions for the soft function
Sðl; μÞ in Eq. (10), jet function in Eq. (9) and collinear
sectors as in Eq. (13), we have the DIS hadronic tensor in
SCETII with the delta regulator

ðWμνÞeffδ−DIS ¼ −gμν⊥HðQ; μÞ
Z
ϕ
dlJn̄ðr; μÞSðl; μ; δ2; m2

gÞ

× CnðQ − r − l; μ; δ2; m2
gÞ: ð142Þ

Likewise with the soft function Sðlþ; l̄−; μ; νÞ in Eq. (100)
and two collinear functions in Eqs. (96) and (97), the
DY hadronic structure function in SCETII with delta
regulator is

ðWÞeffδ−DY ¼ 2π

QNc
HðQ; μq; μÞCnðQ; μ; δ2; m2

gÞ

× Cn̄ðQ; μ; δ1; m2
gÞ

1

Q
Sð1 − τ; μ; δ1; δ2; m2

gÞ:

ð143Þ

The notation ϕ on the integral emphasizes the need to
remove the overlap of the zero bins of each function.

B. Renormalization and running with
the delta regulator

1. DIS collinear and soft functions

For DIS, the naive virtual n-collinear function shown in
Fig. 2(a) is
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~Cv
n ¼ ð2ig2CFÞδðk−Þμ2ϵ
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��
: ð144Þ

We see that δ2 is the infrared regulator for the quark propagator, which effectively is the quark mass in the loop integral. The
zero-bin amplitude for this virtual function is

Cvϕ
n ¼ ð−2ig2CFÞδðk−Þμ2ϵ

Z
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: ð145Þ

For the real collinear function, the naive real collinear amplitudes only get contributions from the soft momentum region,
which are their exact zero-bin subtraction amplitudes. Thus, after the zero-bin subtractions, the real collinear function
amplitudes shown in Figs. 2(b) and 2(c) vanish,

~Cr
n ¼ Crϕ

n ⇒ Cr
n ¼ ~Cr

n − Crϕ
n ¼ 0: ð146Þ

After multiplying the calculated amplitudes in Eqs. (144) and (145) by 2 for their mirror images, we have the collinear
function with quark wave function renormalization in semi-inclusive DIS with the delta regulator
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n ¼ 2ð ~Cv
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���
: ð147Þ

The infrared part of the final result of the n-collinear function is independent of δ1, which is the infrared regulator of the
n-direction Wilson line. In contrast, using the rapidity η regulator exhibited rapidity divergences in the n-collinear function
in Eq. (28) brought in by the n-direction Wilson line. The naive virtual soft function for DIS shown in Fig. 3(a) is the same
as the zero bin of the virtual collinear function, since the momentum contributing to that integral comes from the same soft
region

~Sv ¼
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: ð148Þ

The naive real soft function shown in Fig. 3(b) is

~Sr ¼ ð4πg2CFÞμ2ϵ
Z

d4−2ϵk
ð2πÞ4−2ϵ δðk

2 −m2
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�
; ð149Þ

where zQ ¼ l, and z is dimensionless. We omit the term proportional to lnð1 − zÞð1zÞþ, which contributes a constant in the
end-point limit z → 0. The delta regulator restricts the integrals leading to Eqs. (148) and (149) to the soft momentum
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region, so we do not need to subtract the collinear overlap. This differs from the prescription with the η regulator, which
serves as a smooth step function in the loop integral and may leave residual overlap with the collinear function that must be
eliminated by subtracting. Multiplying Eqs. (148) and (149) by 2 for their mirror images, we get the soft function with the
delta regulator

S ¼ 2ð ~Sv þ ~SrÞ

¼ 2
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�
: ð150Þ

Introducing κ to make the arguments of the logarithms
dimensionless as in Eq. (150) and choosing −δ2Q ¼ m2

g,
we can recombine logarithms to show that the infrared
divergence in the soft function is independent of δ1. We can
make this choice to relate the regulators, because in the soft
function one of the three infrared delta regulators, δ1, δ2 and
m2

g is redundant, and the system is underconstrained. Again
this is very different from what we obtain by using the η
regulator in Eq. (40), where we separate rapidity divergen-
ces from infrared divergences and get a result containing
both rapidity and IR divergences, each with an appropriate
regulator, η and m2

g. The counterterms that renormalize the
soft and collinear functions in Eqs. (150) and (147) are

Zn ¼ 1þ αsCF
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Zs ¼ δðzÞ − αsCF
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�
−
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Q

���
: ð152Þ

The result Eq. (150) is consistent with perturbative QCD in
the end-point limit, as we show later in this section;
however, it differs from Eq. (A.5) of Ref. [24] which is
also performed in the delta-regulator scheme. The last term
of Eq. (A.5) in Ref. [24] is not shown in the body of the
paper, as it should not be included in the combined result to
be consistent with QCD.
To check our results with the DIS consistency condition

Eq. (43), we must first calculate the counterterm of the jet
function with the delta regulator. The calculation is carried
out in Appendix A. The result is

ZJ ¼ δðzÞþαsCF

2π
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4
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−
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1
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þ

��
: ð153Þ

Combining this with Eqs. (151) and (152), we verify
the consistency condition Eq. (43). The anomalous
dimensions are

γμn ¼ 2αsCF

π

1

ϵ

�
3

4
þ ln
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�
; ð154Þ

γμs ¼ −
2αsCF

π

�
1

ϵ2
δðzÞ þ 1

ϵ

�
−
�
1

z

�
þ
þ δðzÞ ln μ2

−Δ2

��
:

ð155Þ

Analogous to Eqs. (47) and (50), we can see that (1) because
we only treat the rapidity divergences in the semi-inclusive
region as one type of infrared divergence, we cannot
separate and resum it using the dimensional regularization
scale μ. (2) Similar to the η regulator, the sum of the
anomalous dimensions γμ ¼ γμnδðzÞ þ γμs from Eqs. (154)
and (155) is independent of the additional scale δ2.
However, the presence of Δ2 means the running of both
the collinear and soft functions is nonperturbative. Since
the delta regulator and η regulator both exhibit nonpertur-
bative running, our calculations suggest that the depend-
ence on the infrared physics is independent of the regulator.
As a consequence, combining the collinear and soft
functions into the new definition of the PDF in Eq. (61)
is justified as a regulator-independent choice.
With the counterterms given in Eqs. (151) and (152), we

choose −δ2Q ¼ m2
g, subtract them along with the wave-

function renormalization given in Eq. (A12) from the
collinear function in Eq. (147) and soft function in
Eq. (150), and let δ1 → 0 to obtain the renormalized
collinear and soft functions
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ð157Þ

RAPIDITY REGULATORS IN THE SEMI-INCLUSIVE … PHYSICAL REVIEW D 95, 114020 (2017)

114020-21



We insert Eq. (158), Eq. (157), renormalized final-jet function Eq. (A15) and the hard function Eq. (66) into the hadronic
tensor Eq. (142) and replace z with (1 − x) to obtain

ðWμνÞeffδ−DIS ¼ 2m0δn̄· ~p;Q

�
δð1 − xÞ þ αsCF
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3

4
ln
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8
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12
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: ð158Þ

Again, we reproduced the perturbative QCD result except for the constant coefficient of the δð1 − xÞ term, which depends
on the regularization scheme we choose.

2. DY collinear and soft functions

The virtual and real collinear functions of DYare the same as in DIS, with the n̄-collinear function regulated by δ1 and the
n-collinear function regulated by Δ2,

CDY
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CDY
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The virtual soft function for DY is also the same as in DIS,

SDYv ¼ 2
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The real piece of the DY soft function is

SDYr ¼ −2ð2πg2CFÞ
μ2ϵ

ð2πÞ4−2ϵ

×
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We obtain the above result by setting δ1, δ2 to 0, which has the exact form of the real contribution to the soft function in the
η-regulator scheme Eq. (114). This is reasonable because the δi do not regulate any divergences in the integral and the
infrared divergence is regulated by m2

g. Since there is only one infrared divergence, the regulators δ1, δ2 are redundant,
similar to the DIS case. The soft function for DY is
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SDY ¼ SDYv þ SDYr
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Therefore, the counterterms for the DY collinear and soft functions are

Zn ¼ 1þ αsCF
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which are regulator dependent and satisfy the consistency condition at x; x̄ → 1 and τ → 1. The anomalous dimensions for
the DY collinear and soft functions are

γμn ¼ 2αsCF
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The delta regulators cancel in the sum of the anomalous dimensions in the end-point region, and a large logarithm in
ðn · pÞðn̄ · p̄Þ ∼ −Q2 remains. Similar to the DIS case, each piece of the collinear and soft functions is dependent on the
infrared physics regardless of the regularization scheme. As a result, combining the soft and two collinear functions to
define the new luminosity function as in Eq. (103) is a regulator-independent choice. The renormalized n- and n̄-collinear
functions are
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The renormalized soft function is
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Inserting Eqs. (166)–(168) with the hard function Eq. (134) into the DY hadronic structure function Eq. (143), we obtain

ðWμνÞeffDY−δ ¼
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We can clearly see that Eq. (169) reproduces the perturbative QCD result up to the constant coefficient of δð1 − τÞ which is
due to the regularization scheme.
We can also compute the interference factor defined in Eq. (104) with the soft functions in DIS Eq. (152) and DY

Eq. (163) as

IDY ¼ 2Qδð1 − τÞ þ 2Q
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In relating the DY and DIS soft functions, we exploit the
redundancy of our IR regulators and set δ1δ2 ¼ m2

g in the
virtual contribution to the DY soft function. Except for
the constant coefficient of δðzÞ, we have the exact same
interference factor as Eq. (129) obtained using the rapidity
regulator.

V. CONCLUSIONS

In this paper, we have studied the deep inelastic scattering
and Drell-Yan processes in the end-point x → 1 (τ → 1)
region using both the η-rapidity regulator and the δ regulator.
In this region, both DIS and DY exhibit a large Sudakov
logarithm, arising as the collinear and soft degrees of freedom
approach the same invariantmass scale,whichbecomesmuch
smaller than the collision center-of-mass scale. Using soft
collinear effective theory and the covariant rapidity regulator
to separate collinear and soft degrees of freedom, we see this
large logarithm as a logarithm of the ratio of collinear and soft
rapidity scales. We had previously resummed this end-point-
region rapidity logarithm in DIS using the rapidity renorm-
alization group, and here we additionally showed how the
logarithm of rapidity scales corresponds to the well-known
threshold logarithmby transforming the result toMellin space
where it is seen as a divergence going as lnN for N ≫ 1. We
also confirmed our previous results for DIS by comparing the
same calculations in the δ-regulator scheme and verified
agreementwith theperturbativeQCDresult in the limitx → 1.
However, it is notable that the δ regulator does not provide a
convenient mechanism to resum the logarithmic enhance-
ments,whichhavebeenargued tobeoperative evenwell away
from the true end point.
Although separating the parton distribution function

in the end-point region into collinear and soft factors
brings in dependence on an infrared scale, the rapidity
factorization is rigorous, as proven by its successfully
reproducing the standard results. Indeed, the factorization

cures the problematic large logarithm, which would otherw-
ise spoil the convergence of the effective theory expansion in
the threshold region. From this point of view, rapidity
factorization (and summation) is necessary, even if the
running must at some point be reabsorbed into the function
chosen tomodel thePDFat thehadronic scale.We remark that
our definitionof thePDF smoothly goes over to the traditional
definition away from the end point, and we undertake fitting
the experimentally determined PDF to our factorized form in
a future publication. The tangible gain from our analysis is
that the running in rapidity we identify may help explain the
steep falloff in the PDFs near the end point.
We demonstrated that this rapidity factorization works

more generally by performing the same analysis on DY
processes. We resummed the single large rapidity logarithm
and compared the resulting factorized collinear functions to
the definition of the end-point-region PDF we obtained in
DIS. Moreover, we verified the results by calculating again
in the δ-regulator scheme and by comparing to the
perturbative QCD result. The success of the resummation
establishes that rapidity factorization of the PDF is valid
also in DY processes, and the parton luminosity function
can be related to the PDFs measured in DIS.
An interesting outcome of separating the DY collinear

functions intosoft andcollinear factors is that the soft radiation
necessarily couples to both incoming n and n̄ protons.
Consequently there is only a single soft function and the n
and n̄ parton distribution functions can only be exhibited as
separate factors by defining an interference factor. The
hadronic structure function in SCETII has the form

Weff ¼ 2π

QNc
HðQ;μÞ

Z
dxdx̄fn̄sq

�
1− x
x

;μ

�
fnsq0

�
1− x̄
x̄

;μ

�

× IðDYÞτ→1 ð1− τ;μÞ; ð171Þ
in which each ϕðq;mÞ is a PDF defined to be identical to the
PDF determined from DIS in the end-point region, and
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IðDYÞτ→1 ð1 − τ; μÞ is the interference factor, whose renormalized
form is given in Eq. (132). Calculating its running proves that

IðDYÞτ→1 is a nontrivial function and is independent of the rapidity
scale. The running of the interference factor sums Sudakov
logarithms associated with the threshold region, but does not
bring in any infrared scale dependence.Understanding itmore
thoroughly thus appears a promising route to understanding
the transition to the elastic limit of hadron-hadron scattering.
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APPENDIX A: DIS FINAL JET FUNCTION TO
OðαsÞ WITH DELTA REGULATOR

In this section, we calculate the DIS jet function with the
delta regulator. The final jet function is defined in Eq. (9)

and has been previously calculated to OðαsÞ in
Refs. [22,24,31,32,45] with different regulators. Here we
use the delta-regulator prescription introduced in Ref. [44]
with m2

g in the gluon propagator and two delta regulators
for two Wilson lines. The delta regulators are added to the
collinear and soft Wilson lines the same way as in Sec. IV.
The OðαsÞ Feynman diagrams for the DIS jet function
are shown in Fig. 4 where we omit the mirror images of
Figs. 4(a) and 4(b).
The naive amplitude for virtual gluon emission in

Fig. 4(a) is

M̂jet
a ¼ ð2ig2CFÞμ2ϵδðrÞ

Z
dDq
ð2πÞD

n · ðp − qÞ
q2 −m2

g þ iϵ
1

ðp − qÞ2 − Δ1 þ iϵ
1

n · qþ δ2 þ iϵ
; ðA1Þ

where pX is the DIS final jet momentum. We let pμ
X ¼ ðpþ

X ; p
−
x ; pX⊥Þ ¼ ðQ; r; 0Þ and Eq. (A1) becomes
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which has the same form as the naive amplitude of the DIS n-collinear function Fig. 2(a). The zero bin for Fig. 4(a) is

M̂jet
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which, as expected, has the same form as the zero-bin amplitude of DIS n-collinear function Fig. 2(a). Including the mirror
image diagram, the amplitude of final jet function for virtual gluon emission is
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(a) (b) (c)

FIG. 4. OðαsÞ Feynman diagrams for the n̄ jet function.
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The naive amplitude for the real gluon emission in Fig. 4(b) is

M̂jet
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where we use Δ1 to regulate n̄-direction final jets. Carrying out the integral, we have
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The zero bin for this amplitude is
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Including the mirror image diagram, the amplitude of final jet function for real gluon emission in Fig. 4(b) is
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The naive amplitude for real gluon emission in Fig. 4(c) is
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The zero bin for this diagram is

M̂jet
cϕ ¼

�
1

2π

�
ð−g2CFÞ

� ðin · pXÞ2
ðp2

X − Δ1Þ2
�
ðD − 2Þμ2ϵ

Z
dDq
ð2πÞD ið−2πiÞδðq2 −m2

gÞ

×
q2⊥

ðn · pÞ2 ðin · pÞð−2πiÞδðp−ðpþ − qþÞ − Δ1Þθðp− − q−Þ

¼ 0: ðA10Þ

There is no mirror image for Fig. 4(c), so

Mjet
c ¼ M̂jet

c : ðA11Þ

The wave-function contribution to the final jet function is
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Mjet
wave ¼ αsCF

2πQ

�
1

ϵ
− 1 − ln

m2
g

μ2

�
δðzÞ: ðA12Þ

Combining all the results above, the OðαsÞ expression for the final jet function up to OðαsÞ is

Mjet ¼ Mjet
a þMjet

b þMjet
c −

1

2
Mjet

wave

¼
�
αsCF

πQ

��
1

ϵ2
þ
�
3

4

1

ϵ
δðzÞ þ 1

ϵ
ln

μ2

Δ1

δðzÞ þ 1

ϵ
ln
�
−
δ1
Q

�
−
1

ϵ

�
1

z

�
þ

�

þ
�
3

4

�
1

z

�
þ
þ
�
ln z
z

�
þ
þ ln

�
n · pQ
μ2

��
1

z

�
þ

�
þ δðzÞ

�
3

4
ln

μ2

m2
g
þ 3

4
ln

�
−
δ1
Q

�

þ ln

�
1 −

Δ1

m2
g

�
ln
Δ1

m2
g
þ 7

8
−
Δ1=m2

g
Δ1

m2
g
− 1

ln
Δ1

m2
g
þ π2

4

��
: ðA13Þ

This result is independent of δ2 for the same reason the n-collinear function in Eq. (147) is independent of δ1. The
counterterm for the final jet function is

Zjet
n̄ ¼ δðzÞ þ αsCF

2π

�
δðzÞ

�
3

4
þ ln

μ2

Δ1

þ ln

�
−

δ1
n · p

��
−
�
1

z

�
þ

�
: ðA14Þ

With the choice of −δ1Q ¼ m2
g, we have the renormalized jet function,

MR
jet ¼

�
αsCF

π

�
1

Q

�
3

4

�
1

z

�
þ
þ
�
ln z
z

�
þ
þ ln

Q2

μ2

�
1

z

�
þ

þ δðzÞ
�
3

4
ln

�
−
μ2

Q2

�
þ 7

8
þ π2

4

�
: ðA15Þ

APPENDIX B: KINEMATIC CONSTRAINTS OF THE ZERO-BIN SUBTRACTION
WITH THE RAPIDITY REGULATOR

The gauge-invariant rapidity regulator automatically ensures the zero bins of the following forms of integrals are
scaleless:
(1) the integrals in virtual diagrams;
(2) the integrals in real diagrams with measurement functions only involving k⃗⊥.

However, in this paper, we encounter integrals for both DIS and DY real soft functions that are not included in the above
cases. As a result, we must examine the zero-bin subtraction prescriptions for each of these soft functions carefully to
determine whether or not any momenta run into the collinear region.
After integrating over the perpendicular momentum, the real soft functions for DIS and DY have the following forms

respectively:

IDY ¼
Z

∞

0

dkþ
Z

∞

0

dk−
jkþk− −m2

gj−ϵ
kþk−

θðkþk− −m2
gÞjkþ − k−j−ηδðl − kþ − k−Þ; ðB1Þ

IDIS ¼
Z

∞

0

dkþ
Z

∞

0

dk−
jkþk− −m2

gj−ϵ
kþk−

θðkþk− −m2
gÞjkþ − k−j−ηδðl − k−Þ: ðB2Þ

In order to illustrate the origins of the rapidity divergences and the zero bins, we choose a different set of the variables,

kþ ¼ reφ; k− ¼ re−φ ðB3Þ

so that
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IDY ¼
Z

∞

−∞
dφ

Z
∞

mg

dr
21−η

r1þη

jr2 −m2
gj−ϵ

j sinhφjη
1

coshφ

× δ

�
r −

l
coshφ

�
; ðB4Þ

IDIS ¼
Z

∞

−∞
dφ

Z
∞

mg

dr
21−η

r1þη

jr2 −m2
gj−ϵ

j sinhφjη δðr − leφÞeφ:

ðB5Þ

As we can see in Eqs. (B1) and (B2), jkþ − k−j → ∞ can
bring in both a rapidity divergence and an ultraviolet
divergence. We separate these two types of divergences
by working with the r and φ variables, because the rapidity
divergence is only brought in by j sinhφj → ∞, and the
infrared regulator m2

g distinguishes an infrared divergence
from a rapidity divergence. We illustrate the relations of
these two sets of variables in Fig. 5. The hyperbolas show
the on-shell condition kþk− ¼ k2⊥ þm2

g, and the zero bins
are the rapidity regions kþ ≫ k−, k− ≫ kþ, or φ ≫ 0,
which is also known as the collinear contribution to the soft
function.
The kinematic constraints are shown in Figs. 6 and 7. In

Fig. 6, the (red) shaded part is the integration area, which is
constrained by the infrared regulatorm2

g. The black lines are
the constraints brought in by the measurement function. In
Fig. 6(A), while l becomes large, it is difficult to tell
whether the zero bins kþ ≫ k− or k− ≫ kþ contribute to
the naive soft function integral. However, in Fig. 6(B), it is

very clear that when integrating over the black curve
r coshφ ¼ l, r2 ¼ m2

g cuts off all the collinear contribu-
tions from φ → þ∞ or φ → −∞.
Therefore, we can conclude that there is no rapidity

divergence in the DY real soft function. Interestingly
because of the constraint from the measurement function,
r is always bounded by l, which suggests that we do not
have the ultraviolet divergence for this function either.
We analyze the DIS real function in a similar manner in

Fig. 7. Because the infrared regulator does not exclude the
region φ → ∞, collinear momenta contribute to the inte-
gral, which brings in the rapidity divergence and requires
the zero-bin subtraction.
Carrying out the integrals for the DY and DIS real soft

functions

IDY ¼
Z

arccoshðl=mgÞ

−arccoshðl=mgÞ

1

2ηl1þη

coshηφ
j sinhφjη

				 l2

cosh2φ
−m2

g

				
−ϵ
dφ

¼ ΓðϵÞΓð1 − ϵÞ
2ηðm2

gÞϵ
1

ðl2 −m2
gÞ

1þη
2

−
Γð1 − ϵÞΓðð1 − ηÞ=2Þ

2ηϵΓð1−2ϵ−η
2

Þ
1

ðl2 −m2
gÞ

1þ2ϵþη
2

þO
�
l2

a2
− 1

�−3=2
ðB6Þ

IDIS ¼
Z

∞

lnðmg=lÞ

21−η

l1þη

eφ

eφð1þηÞ
jl2e2φ −m2

gjϵ
j sinhφjη dφ

¼ 2−η

l1þηðm2
gÞϵ

ΓðϵÞ: ðB7Þ

FIG. 5. The integration area of kþ, k− and r, φ.

(a) (b)

FIG. 6. The kinematic constraints for the DY real soft function.
(a) is the kinematic constraint in ðkþ; k−Þ space; (b) is the
kinematic constraint in ðr;φÞ space.

(a) (b)

FIG. 7. The kinematic constraints for the DIS real soft
function. (a) is the kinematic constraint in ðkþ; k−Þ space;
(b) is the kinematic constraint in ðr;φÞ space.
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For DY, Eq. (B6) shows that the ϵ ultraviolet poles cancel
between the two terms, and η and ϵ do not regulate l in the
factors ðl2 −m2

gÞ−ð1þηÞ=2 and ðl2 −m2
gÞ−ð1þ2ϵþηÞ=2. How-

ever for DIS, we can extract both rapidity and ultraviolet
poles in Eq. (B7). This analysis clearly shows that the zero-
bin subtraction is required only in the presence of the
rapidity divergences.
The kinematic constraints seen in Fig. 7 actually produce

two distinct zero-bin subtractions in DIS: the first is the
“intuitive” collinear area in which k− ≫ kþ with l fixed.

This case corresponds to ϕ → −∞with r fixed. The second
collinear area occurs when kþ ≫ k−, because l is large and
the measurement function δðl − kþÞ fixes kþ ¼ l. In DY,
we cannot separate the limits kþ ≫ k− and k− ≫ kþ in the
integrand of Eq. (B6) because this requires letting l become
large, which opens up phase space at both ϕ large and
positive and ϕ large and negative; see Fig. 6(B). Therefore
DY does not have distinct kþ ≫ k− and k− ≫ kþ areas,
which is equivalent to the statement that there is no zero-bin
subtraction.
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