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We present a systematic investigation of the possible molecular states composed of a pair of doubly
charmed baryons (ΞccΞcc) or one doubly charmed baryon and one doubly charmed antibaryon ðΞccΞ̄ccÞ
within the framework of the one-boson-exchange-potential model. For the spin-triplet systems, we take into
account the mixing between the 3S1 and 3D1 channels. For the baryon-baryon system ΞccΞcc with ðR; IÞ ¼
ð3̄; 1=2Þ and ð3̄; 0Þ, where R and I represent the group representation and the isospin of the system,
respectively, there exist loosely bound molecular states. For the baryon-antibaryon system ΞccΞ̄cc with
ðR; IÞ ¼ ð8; 1Þ, ð8; 1=2Þ and (8,0), there also exist deuteron-like molecules. The BccB̄cc molecular states
may be produced at LHC. The proximity of their masses to the threshold of two doubly charmed baryons
provides a clean clue to identify them.
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I. INTRODUCTION

In 2003, the Belle Collaboration discovered the
charmonium-like state Xð3872Þ [1]. Subsequently, more
charmonium-/bottomonium-like states such as Yð4260Þ
[2], Zcð3900Þ [3,4], Yð4140Þ [5] and Ybð10888Þ [6] were
observed by the BABAR, BESIII, Belle, CDF and Belle
collaborations respectively. Recently, two hidden-charm
pentaquark states Pcð4380Þ and Pcð4450Þ were observed
by the LHCb Collaboration [7]. The experimental and
theoretical progress on the hidden-charm multiquark states
can be found in the recent review [8].
It’s difficult to accommodate all these XYZ states in the

conventional hadron spectrum. Especially the charged
charmonium-like states are probably good candidates of
multiquark states. Some XYZ states lie very close to the
threshold of two charmed hadrons. They are speculated to
be candidates of the hadronic molecular states.
A hadronic molecule is a loosely bound state formed by

two color-singlet hadrons. The molecular states are bound
by the residual strong interaction. For example, the deu-
teron is a well-established hadronic molecule, which is a
loosely bound state formed by the proton and neutron. Its
binding energy is about 2.225 MeV and root-mean-square
radius around 2.0 fm. Compared to the size of the conven-
tional meson and baryon, the deuteron is really loosely
bound. Besides the deuteron, Voloshin and Okun inves-
tigated the possible molecular states formed by a charmed
meson and a charmed antimeson forty years ago [9]. Also,
De Rujula et al. tried to explain ψð4040Þ as a D�D̄�

molecular state in [10]. In [11,12], Törnqvist analyzed
the possible deuteron-like DD̄� and D�D̄� molecules. In
literature, there are many investigations on the hadronic
molecules such as the Λð1405Þ as a candidate of the K̄N
molecule [13,14], the dibaryon composed of two light
baryons [15–22], the possible molecular states composed
of a pair of heavy mesons [23–29], the molecular states
composed of a pair of heavy baryons [30–35], ΛcΛc and
ΛcN bound states [36,37] and the possible bound states of
ΣcN, Ξ0

cN, ΞccN, ΞΞcc, [38,39].
Very recently, many events with four heavy quarks

(QQQ̄ Q̄) were reported by different collaborations. For
example, the J=ψ pairs were observed by LHCb [40] and
CMS collaborations [41]. The simultaneous J=ψϒð1SÞ
events were reported by both D0 [42] and CMS [43]. CMS
Collaboration also observed the simultaneous ϒð1SÞϒð1SÞ
events [44]. Some of theseQQQ̄ Q̄ events may be resonant.
There are extensive theoretical discussions about the
possible QQQ̄ Q̄ states [45–50].
In this work, we investigate the possible deuteron-like

hadronic molecules composed of two doubly charmed
baryons. These states have the configurations such as
ΞccΞcc or ΞccΞ̄cc. Especially, the possible ΞccΞ̄cc molecular
states can be searched for at LHC. We will adopt the one-
boson-exchange-potential model (OBEP). Aside from the
long-range π exchange force [51], the OBEP model also
introduces the medium-range σ exchange as well as the
short-range ρ and ω exchange forces.
We organize the paper as follows. After the introduction,

we present the theoretical formalism including the
Lagrangians, the derivations of the coupling constants
and the interaction potential in Sec. II. Our numerical
results are given in Sec. III. We summarize our results
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and make some discussions in Sec. IV. Some useful
formulas are collected in the Appendix.

II. FORMALISM

In 2002, the SELEX Collaboration reported a doubly
charmed state with mass 3520 MeV [52]. This structure
contains two charm quarks and a down quark, and it is
denoted by Ξcc. Later this state was confirmed by the
same collaboration [53]. In a conference report [54],
another state containing two charm quarks and an up
quark at 3780 MeV was reported also by the SELEX
Collaboration. In Refs. [55–60], the mass of the doubly
charmed baryon was estimated from 3511 to 3685 MeV.
The particular isospin splitting of the states observed by
SELEX was discussed in Ref. [61].
The doubly charmed baryon Ξcc is composed of two

charm quarks and one light quark. The wave function of the
two charm quarks is

ψcc ¼ ψ flavor
cc ⊗ ψ color

cc ⊗ ψ spin
cc ⊗ ψ space

cc : ð1Þ

For the ground state, both the flavor wave function ψ flavor
cc

and space wave function ψ space
cc are symmetric while its

color wave function ψ color
cc is antisymmetric under the

exchange of the two charm quarks. Hence, the spin wave
function ψ spin

cc is symmetric as required by the Pauli
principle, i.e., Scc ¼ 1. As a result, the spin of Ξcc for
the ground state is 1

2
or 3

2
. In the present work, we focus on

the molecular systems composed of two spin-1
2
Ξcc. They

should be the lightest states among molecular states with
various spin configurations.
The heavy charm quarks act as the static color source.

The doubly charmed baryons form the fundamental rep-
resentation in the SU(3) flavor space regarding to the light
quarks. For convenience, we adopt the notation, Bcc ¼
ðΞu

cc;Ξd
cc;Ξs

ccÞT , where the superscripts of Ξcc denote the
corresponding light quarks and superscript T means trans-
pose of the matrix.
Under the SU(3)-flavor symmetry, the BccBcc systems

are decomposed as 3F ⊗ 3F ¼ 6F ⊕ 3̄F while the BccB̄cc

systems can be decomposed as 3F ⊗ 3̄F ¼ 8F ⊕ 1F.

For simplicity, we use ðR; IÞ to denote the systems, where
R and I represent the group representation and isospin,
respectively. The relevant flavor wave functions are given
in Table I.

A. The Lagrangian

The notations for the exchanged pseudoscalar and vector
mesons read

M ¼

0
BBB@

π0ffiffi
2

p þ ηffiffi
6

p πþ Kþ

π− − π0ffiffi
2

p þ ηffiffi
6

p K0

K− K̄0 − 2ffiffi
6

p η

1
CCCA;

Vμ ¼

0
BBB@

ρ0ffiffi
2

p þ ωffiffi
2

p ρþ K�þ

ρ− − ρ0ffiffi
2

p þ ωffiffi
2

p K�0

K�− K̄�0 ϕ

1
CCCA

μ

: ð2Þ

Some heavier-meson exchanges which provide very short-
range interactions are not included since we focus on the
very loosely bound states. Under the SU(3)-flavor sym-
metry, we construct the Lagrangian for the pseudoscalar
exchange as

Lphh ¼ gphhB̄cciγ5MBcc: ð3Þ

One may also use the axial-vector coupling,

Lphh ¼ fphhB̄ccγ5γμ∂μMBcc; ð4Þ

The above two Lagrangians are equivalent at the tree level.
In the current calculation, we adopt Eq. (3). For the vector-
meson exchange, we have

Lvhh ¼ gvhhB̄γμVμBcc þ
fvhh
2m

B̄σμν∂μVνBcc; ð5Þ

and for the scalar-meson exchange,

Lσhh ¼ gσhhB̄ccσBcc: ð6Þ

TABLE I. Flavor wave functions of the BccBcc and BccB̄cc systems. R and I denote the group representation and the isospin
respectively.

Systems=ðR; IÞ Flavor Systems=ðR; IÞ Flavor Systems=ðR; IÞ Flavor

(6, 1) uu ð3̄; 1
2
Þ 1ffiffi

2
p ðus − suÞ ð8; 1

2
Þ us̄

1ffiffi
2

p ðudþ duÞ 1ffiffi
2

p ðds − sdÞ ds̄

dd ð3̄; 0Þ 1ffiffi
2

p ðud − duÞ ð8; 1
2
Þ sd̄

ð6; 1
2
Þ 1ffiffi

2
p ðusþ suÞ (8, 1) ud̄ sū
1ffiffi
2

p ðdsþ sdÞ 1ffiffi
2

p ðuū − dd̄Þ (8, 0) 1ffiffi
6

p ðuūþ dd̄ − 2ss̄Þ
(6, 0) ss dū (1, 0) 1ffiffi

3
p ðuūþ dd̄þ ss̄Þ
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In the previous expressions, gphh, gvhh, fvhh and gσhh are the
coupling constants. Their values are given in Sec. II B.

B. Coupling constants

In this subsection, we focus on the derivation of the
coupling constants used in the current work. The coupling
constants for the light bosons interacting with the nucleon
are relatively well known. They can either be extracted
from experimental data or calculated from various models.
We will derive the values of the coupling constants with the
help of the quark model. We denote the coupling constants
between the light mesons and the doubly charmed baryons
as gmBccBcc

, those between the light mesons and the quarks
as gmqq, and those between the light mesons and the
nucleon as gmNN . We make use of the relations as follows,

hp↑jLmNN jp↑i ¼ hp↑jLmqqjp↑i; ð7Þ

hΞu
cc↑jLmhhjΞu

cc↑i ¼hΞu
cc↑jLmqqjΞu

cc↑i: ð8Þ

where “↑” means the third component of the spin is þ1=2.
The matrix elements are calculated both at hadron and
quark level respectively. We first derive the relation
between gmqq and gmNN from Eq. (7), and then obtain
the relation between gmBccBcc

and gmqq from Eq. (8). Both
relations contain quark masses. Finally, we combine the
two relations and obtain the relation between gmBccBcc

and
gmNN without the quark mass dependence.
At the hadron level, the Lagrangians for the light mesons

and the nucleon are

LπNN ¼ gπNNN̄iγ5τ · πN; ð9Þ

LρNN ¼ gρNNN̄γμτ · ρμN þ fρNN

2mN
N̄σμνðτ · ∂μρνÞN; ð10Þ

LσNN ¼ gσNNN̄σN; ð11Þ

where N ¼ ðp; nÞT with p and n the proton and neutron
respectively. The numerical values of the coupling con-
stants, gπNN , gρNN , fρNN and gσNN are taken from
Refs. [62–64] and collected in Table II.

At the quark level, the Lagrangian reads

Lq ¼ gpqqq̄iγ5Mqþ gvqqq̄γμVμqþ gσqqq̄σq ð12Þ

where q ¼ ðu; d; sÞT is the light quark triplet. Notice that in
the above expression we do not consider the tensor part as
we do at the hadron level [the second part of the Eq. (10)]
for the vector-meson exchange because the quarks are taken
as point particles whereas the hadrons are not.
The amplitudes for the two baryons and π0 vertices read,

iMπ0p↑p↑ ¼ gπNN
Q3

mN
¼ 1ffiffiffi

2
p gpqq

Q3

mq
×
5

3
; ð13Þ

iMπ0Ξu
cc↑Ξu

cc↑ ¼ 1ffiffiffi
2

p gphh
Q3

mΞcc

¼ 1ffiffiffi
2

p gpqq
Q3

mq
×

�
−
1

3

�
;

ð14Þ

where mq, mN and mΞcc
are the masses of the quark,

nucleon and doubly charmed baryon respectively while Q3

is the third component of the pion momentum. With the
above relation, one obtain gphh directly. Finally, we obtain
all the coupling constants used in the current work as

gσhh ¼
1

3
gσNN; gphh ¼ −

ffiffiffi
2

p

5

mΞcc

mN
gπNN; ð15Þ

gvhh ¼
ffiffiffi
2

p
gρNN;

gvhh þ fvhh ¼ −
ffiffiffi
2

p

5
ðgρNN þ fρNNÞ

mΞcc

mN
: ð16Þ

For the vector-meson exchange, we use the values of gρNN

but not gωNN because gρNN is more stable than gωNN in
different models. The numerical values of the coupling
constants are given in Table II. For the doubly charmed
baryon masses, we assume the exact SU(3)-flavor sym-
metry and take the results from the SELEX Collaboration
[52], 3520 MeV, for all the doubly charmed baryons
covered in the work.

C. The interaction potentials

With the Lagrangians in Sec. II A, we derive the
interaction potentials in momentum space. Due to the large

TABLE II. The Coupling constants and the masses of the relevant hadrons [62–65]. For the pion and kaon multiplets, their averaged
masses are used. mΞcc

is the mass of Ξþ
cc reported in Refs. [52,53].

Baryons Mass (MeV) Mesons Mass (MeV) Mesons Mass (MeV) Coupling Value Coupling Value

Ξu;d;s
cc 3520 π 137.27 ϕ 1019.46 g2πNN=4π 13.6 gphh −13.86

Proton (p) 938.27 η 547.85 K 495.65 g2ρNN=4π 0.84 gvhh 4.60
Neutron (n) 939.57 ρ 775.49 K� 893.80 fρNN=gρNN 6.1 fvhh −29.06

ω 782.65 σ 600 g2σNN=4π 5.69 gσhh 2.82
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masses of the doubly charmed baryons, the interaction
potential in the momentum space VðQÞ is expanded in
terms of Q=mΞcc

, or k=mΞcc
, where Q is ðpf − piÞ while k is

ðpi þ pjÞ=2, and kept up to order OðQ2=m2
Ξcc

; k2=m2
Ξcc

Þ. In
our case, Q2

0 is in fact a high order term and can be
neglected directly, see Appendix A for a short analysis
of Q2

0. After transforming the potential into the coordinate
space, the conjugate variable of Q is r and that of k is −i∇.
The latter provides the only nonlocal potential in the
present calculations, i.e., the spin-orbit force. Other non-
local interactions such as the recoil effect are neglected. It is
mentioned in Ref. [62] that the nonlocal potential changes
the off-shell behavior. However, in the present work we are
mainly interested in the hadronic molecular states com-
posed of the doubly charmed baryons, in which the
bounded hadrons are approximately on-shell. Hence, it is
reasonable to neglect the nonlocal potential other than the
spin-orbit force in our calculation.
When performing the Fourier transformation, we intro-

duce a monopole form factor,

F ðQÞ ¼ Λ2 −m2
ex

Λ2 −Q2
¼ Λ2 −m2

ex

λ2 þ Q2
; ð17Þ

for each vertex. Λ is a cutoff parameter, which is used to
suppress the high-momenta contribution or equivalently, to
soften the short-range interactions. mex and Q are the mass
and four momentum of the exchanged meson respectively,
and λ2 ¼ Λ2 −Q2

0. After the Fourier Transformation,

VðrÞ ¼ 1

ð2πÞ3
Z

dQeiQ·rVðQÞF 2ðQÞ; ð18Þ

one obtains the interaction potentials in coordinate space
which read

(i) Pseudoscalar exchange:

Vp
SSðr; αÞ ¼ Cp

α
g1pg2p
4π

m3
α

12m2
Ξcc

H1ðΛ; mα; rÞσ1 · σ2;

Vp
Tðr; αÞ ¼ Cp

α
g1pg2p
4π

m3
α

12m2
Ξcc

H3ðΛ; mα; rÞS12ðr̂Þ;

ð19Þ

(ii) Vector exchange:

Vv
Cðr; βÞ ¼ Cv

β

mβ

4π

�
g1vg2vH0ðΛ; mβ; rÞ þ

m2
β

8m2
Ξcc

ðg1vg2v þ 2g1vf2v þ 2g2vf1vÞH1ðΛ; mβ; rÞ
�
;

Vv
SSðr; βÞ ¼ Cv

β½g1vg2v þ g1vf2v þ g2vf1v þ f1vf2v�
1

4π

m3
β

6m2
Ξcc

H1ðΛ; mβ; rÞσ1 · σ1;

Vv
Tðr; βÞ ¼ −Cv

β½g1vg2v þ g1vf2v þ g2vf1v þ f1vf2v�
1

4π

m3
β

12m2
Ξcc

H3ðΛ; mβ; rÞS12ðr̂Þ;

Vv
LSðr; βÞ ¼ −Cv

β

1

4π

m3
β

2m2
Ξcc

H2ðΛ; mβ; rÞ½3g1vg2vL · Sþ 4g2vf1vL · S1 þ 4g1vf2vL · S2�; ð20Þ

(iii) Scalar exchange:

Vs
Cðr; σÞ ¼ −Cs

σmσ
g1sg2s
4π

×
�
H0ðΛ; mσ; rÞ −

m2
σ

8m2
Ξcc

H1ðΛ; mσ; rÞ
�
;

Vs
LSðr; σÞ ¼ −Cs

σ
g1sg2s
4π

m3
σ

2m2
Ξcc

H2ðΛ; mσ; rÞL · S:

ð21Þ

In the above expressions, the superscripts p, s, and v denote
the pseudoscalar, scalar, and vector mesons, respectively.
α ¼ π, η or K while β ¼ ω, ρ, ϕ and K�. The specific
expressions of the scalar functions H0, H1, H2, and H3 are

given in Appendix A. Some details about the so-called
“contact interaction” are also included in Appendix A. Cp

α ,
Cv
β, and Cs

σ are the isospin factors. Their numerical values
are given in Table III. L is the relative orbit angular
momentum operator between the two baryons while
S1ð2Þ is the spin operator for baryon 1(2). The total spin
operator of the two-baryon system is S ¼ S1 þ S2.
S12ðr̂Þ ¼ 3ðσ1 · r̂Þðσ2 · r̂Þ − σ1 · σ2 is the tensor operator
which mixes the S- and D-waves.
With the specific expressions in Eqs. (19)–(21) and the

isospin factors given in Table III, one can obtain the
potentials for the BccBcc systems. Instead of calculating
Feynman amplitude of tree diagram, we can use the
“G-parity” rule to derive the potentials of the BccB̄cc
systems directly from the potentials for the BccBcc
systems if the exchanged meson has certain “G-parity.”
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For example, one immediately obtains the pion-exchange
potential for the BccB̄cc system with ðR; IÞ ¼ ð8; 1Þ by
multiplying the corresponding potential for the BccBcc

system with ðR; IÞ ¼ ð6; 1Þ by an factor ð−1ÞGπ where Gπ

is the G-parity of the pion, see Table III. For the baryon-
antibaryon systems, some annihilation potentials corre-
sponding to the very short-range interactions are not
included in the current calculation since we focus on the
study of the loosely bound states.
Since we focus on the system composed of a pair of

spin-1
2
particles, the total spin of the system can be 0 or 1.

For the spin-0 case, we focus on the 1S0 channel while for
the spin-1 case we must deal with the 3S1 and 3D1

simultaneously because of the tensor potential. The wave
functions of the spin-singlet channel read

Ψðr; θ;ϕÞχssz ¼ ySðrÞj1S0i; ð22Þ

while the wave functions of the spin-triplet channels are

Ψðr;θ;ϕÞTχTssz ¼
�
TSðrÞ
0

�
j3S1iþ

�
0

TDðrÞ

�
j3D1i; ð23Þ

In Eq. (22), ySðrÞ is the radial wave function for the 1S0
channel while TT

SðrÞ and TT
D in Eq. (23) are the radial wave

functions for 3S1 and 3D1 channels, respectively. For the
matrices of the operators appearing in Eqs. (19)–(21),
we have

(i) Spin-singlet (S ¼ 0):

σ1 · σ2 ¼ −3; L · S ¼ 0; L · S1 ¼ 0;

L · S2 ¼ 0; S12ðr̂Þ ¼ 0; ð24Þ

(ii) Spin-triplet (S ¼ 1):

σ1 · σ2 ¼
�
1 0

0 1

�
; S12ðr̂Þ ¼

�
0

ffiffiffi
8

p
ffiffiffi
8

p
−2

�
;

L · S ¼
�
0 0

0 −3

�
; ð25Þ

L ·S1¼
�
0 0

0 −3
2

�
; L ·S2¼

�
0 0

0 −3
2

�
: ð26Þ

TABLE III. The isospin factors. R and I denote the group representation and isospin respectively. The left panel is for the BccBcc

system while the right panel is for the BccB̄cc system.

Systems=ðR; IÞ Cp
π Cp

η Cp
K Cv

ρ Cv
ω Cv

ϕ Cv
K� Cs

σ Systems=ðR; IÞ Cp
π Cp

η Cp
K Cv

ρ Cv
ω Cv

ϕ Cv
K� Cs

σ

(6, 1) 1
2

1
6

0 1
2

1
2

0 0 1 (8, 1) − 1
2

1
6

0 1
2

− 1
2

0 0 1

ð6; 1
2
Þ 0 − 1

3
1 0 0 0 1 1 ð8; 1

2
Þ 0 − 1

3
0 0 0 0 0 1

(6, 0) 0 2
3

0 0 0 1 0 1 ð8; 1
2
Þ 0 − 1

3
0 0 0 0 0 1

ð3̄; 1
2
Þ 0 − 1

3
−1 0 0 0 −1 1 (8, 0) 1

2
1
2

− 4
3

− 1
2

− 1
6

− 2
3

4
3

1

ð3̄; 0Þ − 3
2

1
6

0 − 3
2

1
2

0 0 1 (1, 0) 1 1
3

4
3

−1 − 1
3

− 1
3

− 4
3

1

FIG. 1. The interaction potentials for the systems of the 3̄-representation (S ¼ 1). V11, V12 and V22 denote the 3S1 ↔ 3S1, 3S1 ↔ 3D1

and 3D1 ↔ 3D1 transitions potentials, respectively. The upper panel is for ðR; IÞ ¼ ð3̄; 0Þ while the lower panel is for ðR; IÞ ¼ ð3̄; 1=2Þ.
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One may find the details in deriving these matrices in
Appendix B.

III. NUMERICAL RESULTS

We solve the Schrödinger equation with the potential
derived before and obtain the binding energy (B.E.) and the
radial wave function. With the wave functions we also
calculate the root-mean-square radius rrms. The root-mean-
square radius reads

r2rms ¼
Z

y�SðrÞySðrÞr4dr; ð27Þ

for the spin-singlet channels and

r2rms ¼
Z

½T�
SðrÞTSðrÞ þ T�

DðrÞTDðrÞ�r4dr; ð28Þ

for the spin-triplet channels. For the coupled channels, we
also calculate the individual probability for each channel,

TABLE IV. The binding solutions for the BccBcc systems. “Λ” is the cutoff parameter. “B.E.” means the binding
energy while rrms is the root-mean-square radius. PS is the probability (%) of the S wave.

With contact term Without contact term

Systems Λ (GeV) B.E (Mev) rrms (fm) PS (%) Λ (GeV) B.E (Mev) rrms (fm) PS (%)

ð3̄; 1
2
Þ 1.2 0.56 3.45 99.98 1.2 2.41 1.85 99.96

1.5 17.76 0.86 99.99 1.5 34.55 0.66 99.99
1.9 60.58 0.55 99.94 1.9 116.04 0.42 99.93

ð3̄; 0Þ 1.1 0.68 3.23 99.74 1.1 3.28 1.66 99.69
1.3 12.25 1.01 99.79 1.3 25.07 0.77 99.86
1.5 33.20 0.70 99.93 1.5 61.46 0.55 99.97

FIG. 2. The radial wave functions uðrÞ ¼ yðrÞr for the spin-triplet channels.

FIG. 3. The interaction potentials for the systems of the 6-representation.
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P3S1 ¼
Z

T�
SðrÞTSðrÞr2dr; ð29Þ

for the 3S1 channel and

P3D1
¼

Z
T�
DðrÞTDðrÞr2dr; ð30Þ

for the 3D1 channel.
In our calculation, we need the value of the cutoff.

The study of the deuteron with the OBEP model suggests a
reasonable range for the cutoff, 0.80–1.50 GeV. Since the
doubly charmed baryon is much heavier than the nucleon,
we take a slightly wider range 0.8–2.0 GeV for the cutoff
parameter.

A. BccBcc systems

For theBccBcc systems, the total wave functions should be
antisymmetric under exchange of the two baryons, required
by the Pauli principle. Given that the spacial wave functions
are symmetric (S orDwaves), the spin of the system is 1 and
0 for the 3̄-representation and 6-representation respectively.

1. 3̄-representation, S = 1

Since the spins of the systems belonging to the
3̄-representation are 1, the 3S1 and 3D1 channels couple
with each other. We plot the potentials for each exchanged
boson in Fig. 1. From the plots, one can see clearly that for
the ðR; IÞ ¼ ð3̄; 0Þ case, the π- and ω-exchanges provide
repulsive potential while the ρ- and σ-exchanges supply the
attractive force in the 3S1 channel. The contribution of the
η-exchange is almost negligible. The total potential is
attractive in the whole range. In the 3D1 channel, only
the σ-exchange provides considerably attractive force. As a
result, the total potential is repulsive in the short-range,
less than 0.4 fm, while weakly attractive in the range
0.4 < r < 1.5 fm. In the 3S1 ↔ 3D1 transition potential,
the contributions of the ρ- and π-exchanges cancel each
other significantly. As a result, the total potential is weakly
attractive. Although the exchanged bosons for the ðR; IÞ ¼
ð3̄; 1=2Þ case are different from those for the ðR; IÞ ¼ ð3̄; 0Þ
case, the total potentials for both of the two cases are very
similar, see Fig. 1.
The numerical results for systems ðR; IÞ ¼ ð3̄; 0Þ and

ð3̄; 1=2Þ are given in Table IV. Although the results depend
on the cutoff, one can see clearly that for both of the two
systems belonging to the 3̄-representation, there exist

TABLE V. The binding solutions for the systems of the
6-representation. “×”means that no binding solutions are obtained.

With contact term Without contact term

Systems
Λ

(GeV)
B.E

(MeV)
rrms
(fm)

Λ
(GeV)

B.E
(Mev)

rrms
(fm)

(6, 1) × × × 1.9 0.31 4.27
3.0 3.43 1.56
3.6 5.11 1.31

ð6; 1
2
Þ 5.4 0.14 5.25 1.6 4.69 1.40

6.6 1.29 2.45 1.9 12.38 0.95
7.5 2.65 1.80 2.5 31.10 0.65

(6,0) 3.8 0.10 5.55 1.5 5.50 1.31
4.5 1.27 2.48 1.7 14.80 0.89
5.0 2.74 1.80 2.0 34.16 0.64

FIG. 4. The interaction potentials of the spin-singlet BccB̄cc systems.

DEUTERON-LIKE STATES COMPOSED OF TWO DOUBLY … PHYSICAL REVIEW D 95, 114019 (2017)

114019-7



loosely bound states with binding energies around a few
MeV for a reasonable cutoff around 1.2 GeV. To inves-
tigate the effect of the short-range interaction in forming
the bound states, we also present the results without the
contact delta interaction. We find that the binding energy
almost doubles for the same cutoff once the delta
interaction is switched off since the contact interaction
is repulsive. But the qualitative features do not change
very much. We also notice that the probability of the D
wave is tiny, less than 0.4%. This is not surprising since
the potential for the transition 3S1 ↔ 3D1 is very weak.
The radial wave function uðrÞ ¼ yðrÞr for the individual
channel is shown in Fig. 2. We conclude that the systems
of the 3̄-representation are good candidates of the deu-
teron-like states.

2. 6-representation, S = 0

The systems of the 6-representation are simpler since
they are all spin-singlets. We show the potential for each
boson-exchange in Fig. 3. From the plots, one can see
clearly that the total potentials for all of the three systems
are repulsive in the range, less than 0.4 fm, for the cutoff
around 1.5 GeV. The numerical results are given in Table V.
For the system ðR; IÞ ¼ ð6; 1Þ, we fail to obtain any binding
solutions. For the systems ðR; IÞ ¼ ð6; 1=2Þ and (6, 0), we
could not obtain binding solutions until we increase the
cutoff to be 5.4 GeVand 3.8 GeV respectively. If we switch
off the contact delta interaction, a loosely bound state is
obtained for (6, 1) with Λ ¼ 1.9 GeV, for ð6; 1=2Þ with
Λ ¼ 1.6 GeV and for (6, 0) with Λ ¼ 1.5 GeV. However,
the contact delta interaction in the spin-0 systems with

FIG. 5. The interaction potentials of the spin-triplet BccB̄cc systems.
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6-representation is strongly repulsive. Moreover, the Pauli
principle may forbid the four charm quarks at the origin
simultaneously. Therefore, we conclude that there do
not exist the molecular states for the systems of the
6-representation.

B. BccB̄cc systems

For the baryon-antibaryon systems, there is no constraint
from Pauli principle. All the systems can be both spin-
singlet (S ¼ 0) and spin-triplet (S ¼ 1). We present the
results according to the spin of the system, i.e., spin-singlet

and spin-triplet. The S ¼ 0 and S ¼ 1 potentials are shown
in Fig. 4 and 5, respectively.

1. BccB̄cc, spin-singlet

For the system ðR; IÞ ¼ ð8; 1=2Þ, only η- and σ-exchanges
are allowed while all the η-, σ-, π-, ρ- and ω- exchanges
contribute to the system (8, 1). For the system (8, 0) and (1, 0),
additional K-, K�- and ϕ-exchanges are also allowed. We
give the numerical binding-solution results in Table VI.
Interestingly, we obtain a loosely bound state for the system
ðR; IÞ ¼ ð8; 1=2Þ for the cutoff in the range 1.5 < Λ <
2.0 GeV, both with and without the contact interaction.
For this bound state, both the η- and σ-exchanges supply
attractive force, see Fig. 4. From Fig. 6, one can also see that
the binding solutions dependweakly on the cutoff parameter,
which indicates the system ðR; IÞ ¼ ð8; 1=2Þ is a good
candidate of the molecular state.
There also exist loosely bound states for the systems

ðR; IÞ ¼ ð8; 1Þ and (8, 0), both with and without the contact
interaction for the cutoff in the range 1.5–2.0 GeV. The
binding energies are a few MeV and the root-mean-square
radii are both around 1 fm. For the system (8, 1), the
contributions of the ρ- and ω-exchanges cancel each other
significantly. Both of the σ- and π-exchanges provide
attractive force while the η-exchange supply the repulsive
force. For the system (8, 0), the potential from the K�-
exchange is strongly repulsive. The η- and π-exchanges
also provide repulsive force while the potentials from the
ρ-, ω-, σ-, ϕ-, and K- exchanges are attractive, see Fig. 4.
These two interesting states are also good candidates of the
molecular states.
Although we obtain binding solutions for the system

(1, 0), the results depend strongly on the cutoff parameter.

TABLE VI. The binding solutions of the spin-singlet BccB̄cc
systems.

With contact term Without contact term

Systems
Λ

(GeV)
B.E.
(MeV)

rrms
(fm)

Λ
(GeV)

B.E.
(MeV)

rrms
(fm)

(8, 1) 1.3 0.11 5.41 1.5 0.26 4.49
1.6 3.75 1.50 1.6 0.83 2.87
2.0 13.49 0.89 1.9 3.77 1.50
2.5 30.25 0.64 2.6 13.28 0.89

ð8; 1
2
Þ 1.4 0.18 4.93 1.5 0.05 5.96

1.6 2.00 1.96 1.8 1.70 2.11
2.0 9.54 1.02 2.0 3.53 1.54
2.5 23.55 0.70 2.5 9.10 1.04

(8, 0) 1.4 0.42 3.84 1.4 0.04 6.06
1.6 2.34 1.85 1.6 1.08 2.59
2.0 9.25 1.04 2.0 4.96 1.35
2.5 21.36 0.74 2.5 10.63 0.98

(1, 0) 1.05 1.71 2.17 1.1 0.08 5.71
1.1 11.68 0.99 1.2 1.00 2.74
1.2 74.73 0.48 1.3 2.58 1.83
1.3 216.46 0.32 1.6 9.40 1.09

FIG. 6. The binding energy versus the cutoff parameter. The contact interaction is included.
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After removing the contact interaction, a loosely bound
state is obtained for the cutoff around 1.1 < Λ < 1.6 GeV.
This system might be a molecule candidate.
From Table VI, one can see that the binding is larger

when the contact interaction is included. The contact
interactions of the π, ρ, and σ exchanges (the isospin factor
is set to 1) for the spin-singlet system are shown in Fig. 7.
One can see clearly that the contribution of the π and ρ
exchanges to the contact interaction are roughly equal,
and both are repulsive. The σ exchange contribution is
negligible. From Table III, the summation of the isospin
factors of the vector mesons for 8-representation systems
are 0. Thus, the vector meson exchange contribution to
the contact interaction almost cancels out. The attractive
contact interaction mainly arise from the pseudoscalar
exchanges. For the 1-representation system, the attractive
contact interaction is the result of the cancellation of the
vector meson exchanges with the pseudoscalar exchanges.

2. BccB̄cc, spin-triplet

For the spin-triplet case, we show the potentials in Fig. 5
and present the binding solutions in Table VII. Similar to
the spin-singlet case, we also obtain loosely bound states
for a reasonable cutoff in the spin-triplet sector. These states
are very interesting and are good candidates of the
molecular states. For example, we obtain a loosely bound
state for the system ðR; IÞ ¼ ð8; 1Þ which has binding
energy 0.05–3.47 MeV and root-mean-square radius
5.98–1.56 fm for the cutoff around 1.5–2.0 GeV. With
the same cutoff, a loosely bound state of the system
ð8; 1=2Þ with binding energy 0.27–4.65 MeV and root-
mean-square radius 4.45–1.39 fm is obtained. Similarly, for
the system (8,0), we obtain a loosely bound state with
binding energy 0.06–7.01 MeV for the cutoff around

1.3–2.0 GeV. All these three states ðR; IÞ ¼ ð8; 1Þ,
ð8; 1=2Þ, and (8, 0) are good candidates of the molecular
states. We also obtain binding solutions for the system
of the 1-representation (1, 0). Unfortunately, the results
depend strongly on the cutoff.
Very interestingly, we also find that for the spin-triplet

case the results change very little by removing the contact
interaction. This means that the contact interaction plays a
minor role in the formation of the bound states in the spin-
triplet sector. The contribution of theD-wave for the systems
belonging to the 8-representation is less than 0.4%, similar
to that in the baryon-baryon case. In contrast, the D-wave
plays a more important role in the 1-representation system
for Λ ¼ 1.1 GeV.
Compared with the spin-singlet systems, the spin-triplet

systems have a weaker dependence on the contact inter-
action. For the S wave, the contact interaction only arise
from the spin-spin interaction. And the matrix elements of
the spin-spin operator for S ¼ 1 is 1 while that for S ¼ 0 is
−3. Thus the results for the spin-triplet systems change less
by removing the contact interaction, compared with the
spin-singlet systems.

IV. DISCUSSIONS AND CONCLUSIONS

In this work, we have performed a systematic inves-
tigation of the possible deuteron-like states composed of a
pair of doubly charmed spin-1

2
baryons or one doubly

charmed baryon and one doubly charmed antibaryon.
In the spin-triplet sector we take into account mixing
between the 3S1 and 3D1 channels. The present formalism
can also be extended to the loosely bound systems
composed of one spin-1

2
and one spin-3

2
or two spin-3

2

baryons.

TABLE VII. The binding solutions of the spin-triplet BccB̄cc systems.

With contact term Without contact term

Systems Λ (GeV) B.E. (MeV) rrms (fm) PS (%) Λ (GeV) B.E. (MeV) rrms (fm) PS (%)

(8, 1) 1.5 0.05 5.98 99.97 1.5 0.25 4.56 99.95
1.6 0.40 3.91 99.94 1.6 0.80 2.95 99.92
2.0 3.47 1.56 99.85 1.9 3.65 1.53 99.86
2.5 8.95 1.06 99.76 2.3 8.96 1.05 99.79

ð8; 1
2
Þ 1.5 0.27 4.45 99.99 1.5 0.47 3.67 99.99

1.6 0.81 2.92 99.99 1.6 1.19 2.48 99.99
2.0 4.65 1.39 99.96 1.9 4.55 1.40 99.96
2.5 10.85 0.98 99.90 2.3 10.46 0.99 99.92

(8, 0) 1.3 0.06 5.84 99.99 1.3 0.12 5.39 99.99
1.6 2.13 1.94 99.99 1.6 2.51 1.81 99.99
2.0 7.01 1.18 99.99 2.0 8.19 1.11 99.99
2.5 14.00 0.90 99.95 2.5 16.62 0.83 99.95

(1, 0) 1.0 2.32 1.90 99.11 1.0 0.73 3.09 99.35
1.1 20.33 0.84 98.15 1.1 16.02 0.92 98.09
1.2 56.70 0.60 97.31 1.2 52.46 0.61 97.23
1.3 109.41 0.48 96.49 1.3 108.67 0.48 96.47

LU MENG, NING LI, and SHI-LIN ZHU PHYSICAL REVIEW D 95, 114019 (2017)

114019-10



For the spin-tripletBccBcc systems, we obtain two loosely
bound states for ðR; IÞ ¼ ð3̄; 1=2Þ and ð3̄; 0Þ. Their binding
energies are from a few MeV to tens of MeV and root-
mean-square radii from1 fm to a few fm for the cutoff around
1.2–1.5 GeV. They are good candidates of the molecular
states. In the spin-singlet sector, the potentials are not strong
enough to form bound states for ðR; IÞ ¼ ð6; 1Þ, ð6; 1=2Þ,
and (6, 0) with a reasonable cutoff value.
For the BccB̄cc systems, the spin-singlet and spin-triplet

cases are similar. Very interestingly, we obtain loosely
bound states for the spin-singlet and spin-triplet systems
with ðR; IÞ ¼ ð8; 1Þ, ð8; 1=2Þ, and (8, 0). They have bind-
ing energies around a few MeV and root-mean-square
radii around a few fm. They are also very good candidates
of the molecular states in the framework of the one-
boson-exchange-potential model. We also notice that the
contact interaction plays a minor role in the formation of
the bound states for the BccB̄cc systems. The D-wave
probability is tiny for most of the spin-triplet channels.
Theoretical explorations of the exotic states containing

multiple heavy quarks first appeared nearly three decades
ago [66]. Recently these charming states are gaining more
and more interest. In the past several years, many events
with four heavy quarks (QQQ̄ Q̄) have been reported
experimentally [40–44]. There are heated theoretical dis-
cussions of the exotic resonances containing four heavy
quarks recently [45–50]. The BccB̄cc molecular states may
be produced at the LHC in the near future. Once produced,
they may decay into very characteristic final states con-
taining one or two charmonia, including (1) two charmonia
plus one or more light mesons/photons; (2) one charmo-
nium and a Dð�ÞD̄ð�Þ pair; (3) one charmonium plus some
photons or light mesons, etc. They may also decay into
many light mesons or several hard photons. The BccB̄cc
molecular states lie close to the mass threshold of two
doubly charmed baryons, which provides a clue to identify
them unambiguously. For example, these molecular states
may appear around 7–7.5 GeV depending on the mass of
Ξbc. Similarly, we also expect BbcB̄bc and BbbB̄bb types of
molecular states. They may lie roughly around 14 GeVand
20 GeV respectively, if we take the mass values of Ξbc;bb in
Refs. [57,59–61].
Although very difficult to generate experimentally, the

bound states of ΞccΞcc might be stable once produced
because Ξcc decays via weak interaction most likely. There
might exist a strong decay mode: ΞccΞcc → Ωþþ

cccAc, where
Ac is a charmed baryon and Ωþþ

ccc is the triply charmed
baryon. The mass estimation of triply charmed baryon can
be found in Refs. [55,67]. Whether the above decay mode
exists or not depends on the masses of the Ξcc and Ωþþ

ccc .
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APPENDIX A: DEFINITIONS OF SOME
FUNCTIONS AND FOURIER TRANSFORM

FORMULAS

The definitions of the functions Hi are [30],

H0ðΛ; m; rÞ ¼ YðurÞ − λ

u
YðλrÞ − rβ2

2u
YðλrÞ;

H1ðΛ; m; rÞ ¼ YðurÞ − λ

u
YðλrÞ − rλ2β2

2u3
YðλrÞ;

H2ðΛ; m; rÞ ¼ Z1ðurÞ −
λ3

u3
Z1ðλrÞ −

λβ2

2u3
YðλrÞ;

H3ðΛ; m; rÞ ¼ ZðurÞ − λ3

u3
ZðλrÞ − λβ2

2u3
Z2ðλrÞ; ðA1Þ

where,

β2 ¼ Λ2 −m2; u2 ¼ m2 −Q2
0; λ2 ¼ Λ2 −Q2

0;

and

YðxÞ ¼ e−x

x
; ZðxÞ ¼

�
1þ 3

x
þ 3

x2

�
YðxÞ;

Z1ðxÞ ¼
�
1

x
þ 1

x2

�
YðxÞ; Z2ðxÞ ¼ ð1þ xÞYðxÞ:

In our case all heavy hadrons have the same masses,
we have

Q2
0 ¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

f þ p2f

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ p2i

q �2
≈
ðpiþ pfÞ2Q2

4m2
Ξcc

: ðA2Þ

Thus Q2
0 is a high-order term and can be directly

dropped out.
Without the form factor, one makes Fourier transforma-

tion and obtains

1

u2 þ Q2
→

e−ur

4πr
¼ u

4π
YðurÞ; ðA3Þ

Q
u2 þ Q2

→ −i∇
�
u
4π

YðurÞ
�

¼ i
u3

4π
Z1ðurÞr; ðA4Þ

Q2

u2 þ Q2
→ −

u3

4π
YðurÞ þ δð3ÞðrÞ; ðA5Þ
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QiQj

u2 þ Q2
→ −

u3

12π
½ZðurÞkij þ YðurÞδij� þ

1

3
δð3ÞðrÞδij;

ðA6Þ

where kij ¼ 3
rirj
r2 − δij. Clearly, there exist terms with a

delta function δð3ÞðrÞ in Eqs. (A5)–(A6). In the current
work, we call these terms the contact interaction or delta
interaction. The very short-range interactions accounted by
the heavier-meson exchange are not taken into account in
the current analysis. In Ref. [68], the short-range annihi-
lation force is introduced by fitting the data for the nucleon-
antinucleon system. However, introducing such short-range
interaction is not feasible for the ΞccΞ̄cc systems due to the
lack of the experimental data. Luckily, the ΞccΞ̄cc annihi-
lation force is of extremely short range around 0.02 fm.
We are mainly interested in the loosely bound molecular
states which should not depend sensitively on the short-
range dynamics.
After introducing the form factor, the Fourier trans-

formation formulas read

1

u2 þ Q2
F 2ðQÞ → u

4π
H0ðΛ; m; rÞ;

Q2

u2 þ Q2
F 2ðQÞ → −

u3

4π
H1ðΛ; m; rÞ;

Q
u2 þ Q2

F 2ðQÞ → iu3

4π
rH2ðΛ; m; rÞ;

QiQj

u2 þ Q2
F 2ðQÞ → −

u3

12π
½H3ðΛ; m; rÞkijþH1ðΛ; m; rÞδij�:

ðA7Þ

One can also get the results without the contact interaction
term by a simple replacement in the above equations,

H1ðΛ; m; rÞ → H0ðΛ; m; rÞ: ðA8Þ

We show the interaction potentials both with and without
the contact interaction in Figs. (7–8). We take the π, ρ and σ
exchange forces an example. The isospin factors are set
to 1. From the plots, one can see clearly that the contact

interaction plays a minor role for the σ exchange while its
contribution is important in the range r < 0.4 fm for the π
and ρ exchanges.

APPENDIX B: MATRIX ELEMENTS
OF THE OPERATORS

In the present work, we encounter the following
operators,

(i) Spin-spin operator:

σ1 · σ2; ðB1Þ

(ii) Spin-orbit operator:

L · S; L · S1; L · S2; ðB2Þ

(iii) Tensor operator:

S12ðr̂Þ ¼ 3ðσ1 · r̂Þðσ2 · r̂Þ − σ1 · σ2: ðB3Þ

For the spin-spin operator, one has

σ1 · σ2 ¼ 2ðS2 − S21 − S22Þ

¼ 2

�
SðSþ 1Þ − 3

2

�
: ðB4Þ

The results are independent with the orbit angular momen-
tum. For spin-singlet and spin-triplet, the matrix elements
of the spin-spin interaction are -3 and 1, respectively.
For the spin-orbit operator one has,

L · S ¼ 1

2
ðJ2 − L2 − S2Þ ðB5Þ

¼ 1

2
½JiðJi þ 1Þ − LiðLi þ 1Þ − SiðSi þ 1Þ�: ðB6Þ

The results for 1S0, 3S1, and 3D1 systems are 0, 0, and−3=2
respectively. As for the L · SAðBÞ type interaction, the spin-
orbit interaction vanishes for 1S0, 3S1 systems. For the 3D1

system, the spin wave function is symmetric. The matrix

FIG. 7. The potentials with/without the contact terms for the 1S0 channels. The isospin factors are set to 1.
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elements of L · SA and L · SB are the same, which are the
half of the matrix element of the operator L · S.
The tensor operator is the scalar product of two rank-2

operator Y2;mðr̂Þ and T2;m,

S12 ¼
X2
m¼−2

4

ffiffiffiffiffiffi
6π

5

r
T2;mY�

2;mðr̂Þ; ðB7Þ

where Y2;mðr̂Þ is the spherical harmonic function of degree
2, and T2;m is rank-2 tensor operator constructed from the
total spin operator S,

T2;�2 ¼
3

8π
ðSx � iSyÞ2;

T2;�1 ¼∓ 3

8π
½SzðSx � iSyÞ þ ðSx � iSyÞSz�;

T2;0 ¼
ffiffiffi
1

6

r
3

4π
ð3S2z − S2Þ: ðB8Þ

One can obtain the matrix elements of the tensor operator
using the Wigner-Echart theorem.
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