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Three-body decay of charmed baryons Λ�
cð2595Þ and Λ�

cð2625Þ into Λcππ are studied with effective
Lagrangians in which the coupling constants are extracted from the nonrelativistic quark model. We take
into account sequential processes going through Σcð2455Þ and Σ�

cð2520Þ in intermediate states. The total
decay widths are sensitive to the coupling of Λ�

c with Σcπ open channel and to Σ�
cπ closed channel. We find

that Λ�
cð2595Þ and Λ�

cð2625Þ with λ mode assignment can explain the experimental data nicely. We also
show invariant mass distributions of Λ�

cð2595Þ and Λ�
cð2625Þ decays, which are significantly different for

various quark configurations.

DOI: 10.1103/PhysRevD.95.114018

I. INTRODUCTION

One of the unique features of charmed baryons is that the
two internal modes, the so called λ and ρmodes, split. With
one charm quark, the λ mode corresponds to the motion of
the two light quarks (diquark) relative to the charm quark,
while the ρ mode is the relative motion between the two
light quarks with the charm quark regarded as a spectator
[1]. Generally, excitation energies of the λ mode appear
lower than those of the ρ mode due to larger inertial mass.
This splitting has been known for a long time as an isotope
shift whose physical origin differs from the spin-spin
hyperfine splitting. Relatively small excitation energies
of low-lying charmed baryons seem to indicate the λ mode
dominance in those states, yet the identification (or domi-
nance) of those modes should be confirmed by other means
in addition to the mass spectrum.
To detect their different natures, it is useful to study

various transition processes, in particular decays [2–9].
This is the issue that we would like to address in this
paper. Recently, two of the present authors [10] have
studied two-body decays of charmed baryons. They have
shown that the ratio of the Λ�

c → Σcð2455Þπ and Λ�
c →

Σ�
cð2520Þπ decays provides useful information on the

structures of higher exited Λ�
c baryons. An advantage of

the study of ratios is that the uncertainties in the absolute
values cancel.
For lower exited Λ�

cð2595Þ and Λ�
cð2625Þ states, the

decay into Σcð2455Þπ occurs as a real process because the
decaying channel is open, while the decay into Σ�

cð2520Þπ
is not allowed because the channel is closed as shown in
Fig. 1. However, in the experimentally observed process
where they measure Λcππ, the latter one may occur with
Σ�
cð2520Þ as a virtual intermediate state. According to

Particle Data Group (PDG) [11], the decay of Λ�
cð2625Þ is

dominated by the process quoted as a “Λcππ 3-body”

contribution. Here in this paper, we study the three-body
decays going through Σcð2455Þ and Σ�

cð2520Þ as an
intermediate state, which we call sequential processes.
We will discuss that a large part of Λcππ 3-body decay
is explained by the sequential process through the closed
Σ�
cð2520Þ channel for Λ�

cð2625Þ, while its contribution to
the decay of Λ�

cð2595Þ is small. In this way, we can also
extract the information on the closed channel. We also
show the Dalitz plots and invariant mass distributions
of Λ�

cð2595Þ and Λ�
cð2625Þ decays into Λcππ for various

quark configurations. This study is useful for further
investigations of the structures of the charmed baryons.
This paper is organized as follows. In Sec. II, we

formulate our method using the effective Lagrangians with
various coupling constants determined by the quark model.
In Sec. III, we discuss our numerical results compared to
the experimental data. Finally, a summary is given in
Sec. IV. We give detailed calculations for various ampli-
tudes in Appendix A.

II. FORMALISM

A. Effective Lagrangian

Let us discuss the two-pion emission decay amplitudes
in the sequential process shown in Fig. 2. For this purpose,
we introduce the effective Lagrangians describing the
vertices of the diagrams. Our calculations are performed
in the nonrelativistic approximation, which is considered to
be good for the decays of charmed (heavy) baryons.
For the case of Λ�

cð2595Þ → Λcπ
þπ−, the relevant

Lagrangians are

LA ¼ gaψ⃗
†
Σc
ψΛ�

c
· π⃗ þ h:c:; ð1Þ

LB ¼ gbψ
†
Λc
ðσ⃗ · ∇⃗Þψ⃗Σc

· π⃗ þ h:c:; ð2Þ
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LC ¼ gcψ⃗
†
Σ�
c

�
S⃗† · ∇⃗ σ⃗ ·∇⃗ −

1

3
S⃗† · σ⃗ ∇⃗2

�
ψΛ�

c
· π⃗ þ h:c:; ð3Þ

LD ¼ gdψ
†
Λc
ðS⃗ · ∇⃗Þψ⃗Σ�

c
· π⃗ þ h:c:; ð4Þ

where the derivatives act on the pion field, and the isovector
structure is indicated explicitly for the pion and Σc fields as
π⃗ and ψ⃗Σc

. The structure of the Lagrangian also depends on
the spin and parity of Λ�

c and, hence, also on the angular
momentum of the out-going pion. For instance, the vertex A
has s-wave structure, vertex B has p-wave structure, vertex
C has d-wave structure, and so forth. In Eqs. (3) and (4), the
spin transfer matrix Sμ [12] is defined by the Clebsh-
Gordan coefficients

h3=2αjSμj1=2βi ¼ ð3=2α1μj1=2βÞ; ð5Þ

where α and β are the spin states of a particle with spins 3=2
and 1=2, respectively.
For Λ�

cð2625Þ → Λcπ
þπ−, the Lagrangian for each

vertex is written as

LA ¼ faψ⃗
†
Σc

�
σ⃗ · ∇⃗ S⃗ ·∇⃗ −

1

3
σ⃗ · S⃗∇⃗2

�
ψΛ�

c
· π⃗ þ H:c:; ð6Þ

LB ¼ fbψ
†
Λc
ðσ⃗ · ∇⃗Þψ⃗Σc

· π⃗ þ H:c:; ð7Þ

Ls
C ¼ fcψ⃗

†
Σ�
c
ψΛ�

c
· π⃗ þ H:c:; ð8Þ

Ld
C ¼ f0cψ⃗

†
Σ�
c

�
Σ⃗ · ∇⃗ Σ⃗ ·∇⃗ −

1

3
Σ⃗ · Σ⃗∇⃗2

�
ψΛ�

c
· π⃗ þ H:c:; ð9Þ

LD ¼ fdψ
†
Λc
ðS⃗ · ∇⃗Þψ⃗Σ�

c
· π⃗ þ H:c:; ð10Þ

where Σμ are

h3=2 αjΣμj3=2 βi ¼ ð3=2 α 1 μj3=2 βÞ: ð11Þ

We note that there are two possible structures for the vertex
C; s-wave and d-wave. Later, we will notice that the s-wave
Lagrangian gives large contributions compared to d-wave.
The coupling constants g and f in the effective

Lagrangians are extracted from the quark model by
equating the amplitudes in the two models. In the quark
model, the amplitudes of Yi → Yfπ, which correspond to
the vertices in Fig. 2 are calculated by

− iT QMð2πÞ4δð4Þðpf − piÞ

¼
Z

d4xhYfðJf; s0ÞπjiLπqqðxÞjYiðJi; sÞi; ð12Þ

where YiðfÞ denote the initial (final) charmed baryons,
and the πqq interaction in the quark model is given in the
form of the pseudovector coupling. It contains a quark axial
coupling gqA for the coupling strength. The choice of this
parameter will be discussed later. The detailed calculation
can be found in Ref. [10]. Likewise, the matrix elements
derived from effective Lagrangians are

− iT ELð2πÞ4

δð4Þðpf − piÞ ¼
Z
d4xhYfðJf; s0ÞπjiLαðxÞjYiðJi; sÞi; ð13Þ

where the symbol α stands for A, B, C or D.

B. Coupling constants for Λ�
cð2595Þ

The coupling constants in the effective Lagrangians
(1)–(10) extracted from the nonrelativistic quark model
for Λ�

cð2595Þ with λ mode are given by

ga ¼ G

��
−1ffiffiffi
2

p
�
C1aλ þ

�
q

3
ffiffiffi
2

p
�
C2

qλ
aλ

�
; ð14Þ

gb ¼
�

1ffiffiffi
3

p
�
iGC2; ð15Þ

FIG. 2. All possible Feynman diagrams describing sequential
decay of Λ�

c → Λcπ
þπ−. Λ�

c is either Λ�
cð2595Þ or Λ�

cð2625Þ. The
diagrams consist of the process going through Σ�

cð2520Þ and
Σcð2455Þ and their different charged states.

FIG. 1. The level structure of low lying charmed baryons and
their strong decays through pion emission. Black arrows indicate
kinematically allowed decays, while red arrows are for kinemat-
ically forbidden ones to the closed channel.
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gc ¼
�
−1ffiffiffi
6

p
�
GC2

aλ

�
M

2mþM

�
; ð16Þ

gd ¼ −iGC2; ð17Þ

where M and m are the masses of the heavy and light
quarks, and aλ is the range of the Gaussian wave function of
the λ coordinate. We define the constants G as

G ¼ gqA
2fπ

; ð18Þ

where gqA is the quark axial vector coupling constant and
fπ ¼ 93 MeV is the pion decay constant. For simplicity,
we also define C1 and C2

C1ðωπ; qÞ ¼
ωπ

m
FðqÞ; ð19Þ

C2ðωπ; qÞ ¼
�
2þ ωπ

2m

�
1 −

M
2mþM

��
FðqÞ; ð20Þ

where FðqÞ is a Gaussian form factor

FðqÞ ¼ e−q
2
λ=4a

2
λe−q

2
ρ=4a2ρ : ð21Þ

Furthermore, ωπ and q are energy and momentum of
emitting pion at corresponding vertices. The momentum
transfer for the λ and ρ mode are given by

qλ ¼ q
�

M
2mþM

�
; ð22Þ

qρ ¼
q
2
: ð23Þ

For the ρ mode assignment with j ¼ 1, the coupling
constants become

ga ¼ G

�
2C1aρ þ

�
−q
3

�
C2

qρ
aρ

�
; ð24Þ

gc ¼
�

−1
2

ffiffiffi
3

p
�
GC2

2aρ
; ð25Þ

where gb and gd remain the same because they are not
dependent on the initial state mode. Here, j is the total spin
of the two light quarks including their orbital angular
momentum (Brown-Muck spin). There is also another
possibility being ρ mode (j ¼ 0), however, this mode is
forbidden by spin conservation of Brown-Muck.

C. Coupling constants for Λ�
cð2625Þ

In the case of Λ�
cð2625Þ with λ mode, the coupling

constants are given by

fa ¼
�
−1ffiffiffi
6

p
�
GC2

aλ

�
M

2mþM

�
; ð26Þ

fc ¼ G

��
−1ffiffiffi
2

p
�
C1aλ þ

�
q

3
ffiffiffi
2

p
�
C2

qλ
aλ

�
; ð27Þ

f0c ¼ −
1

8

� ffiffiffi
2

p

3

�
GC2

aλ

�
M

2mþM

�
; ð28Þ

where fc and f0c belong to the coupling constant at vertex C
with an s-wave and d-wave structure, respectively.
For the assignment with ρ mode (j ¼ 1), the coupling

constants are expressed by

fa ¼
�

−1
2

ffiffiffi
3

p
�
GC2

2aρ
; ð29Þ

fc ¼ G

�
2C1aρ þ

�
−q
3

�
C2

qρ
aρ

�
; ð30Þ

f0c ¼ −
1

8

�
1

3

�
GC2

2aρ
: ð31Þ

For ρ-mode (j ¼ 2), the coupling constants are given by

fa ¼
� ffiffiffi

3
p

2
ffiffiffi
5

p
�
GC2

2aρ
; ð32Þ

fc ¼ 0; ð33Þ

f0c ¼ −
1

8

�
1ffiffiffi
5

p
�
GC2

2aρ
: ð34Þ

D. Model Parameters

In the quark model of the harmonic oscillator, there are
three model parameters;m the light quark mass,M the heavy
quark mass, and k the spring constant [10]. The quark
masses are fixed to be

m ¼ 350 MeV; M ¼ 1500 MeV: ð35Þ

We also adjust the spring constant k such that the range
parameters of the Gaussian wave functions are fixed to be

aλ ¼ 400 MeV; aρ ¼ 290 MeV; ð36Þ

which reproduce the quark distribution about 0.5 fm as
corresponding to the nucleon core size.
These parameters correspond to the central values of

the parameter range that has been discussed in Ref. [10].
By varying the parameters within that range, the resulting
coupling constants change by about �20% from the
values obtained by using the parameters in Eq. (35)
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and (36). The other source of uncertainties is related to the
quark axial coupling constant. In the present study, gqA is
taken to be unity for the first vertex of sequential decays.
In contrast, in the second vertex, we employ gqA ¼ 0.7 in
order to reproduce the experimental decay width of Σc
and Σ�

c as discussed in Ref. [10]. These two uncertainties
from the quark model parameters and quark axial coupling
constant give an overall uncertainty for the theoretical
calculation. The uncertainty of the parameters mostly
affects the absolute values of decay widths, but little do
ratios and shapes of invariant mass distributions.

E. Amplitudes

Let us first calculate the amplitude of Λ�
cð2595Þ →

Λcπ
þπ−. The process is described by the diagrams in

Fig. 2. The amplitude of the first diagram is expressed
schematically by

−iT ½Σ0
c� ¼ −i

T Σ0
c→Λcπ

−T Λ�
c→Σ0

cπ
þ

m23 −mΣ0
c
þ i

2
ΓΣ0

c

; ð37Þ

while the other charged state process in the second diagram
is written by

−iT ½Σþþ
c � ¼ −i

T Σþþ
c →Λcπ

þT Λ�
c→Σþþ

c π−

m13 −mΣþþ
c

þ i
2
ΓΣþþ

c

: ð38Þ

In Eqs. (37) and (38), m23 and m13 are the invariant masses
of the subsystem of particle (2, 3) and (1, 3), respectively.
They are

m2
23 ¼ ðP − p1Þ2 ¼ ðp2 þ p3Þ2; ð39Þ

m2
13 ¼ ðP − p2Þ2 ¼ ðp1 þ p3Þ2; ð40Þ

m2
12 ¼ ðP − p3Þ2 ¼ ðp1 þ p2Þ2; ð41Þ

where P is the energy-momentum of the initial baryon,
and we have also shownm12 for completeness. The particle
numbers 1, 2, 3 are for πþ, π−, and Λc. The third and forth
diagrams are calculated similarly. Then, the total amplitude
is expressed by

−iT ¼ −iT ½Σ0
c� − iT ½Σþþ

c � − iT ½Σ�0
c �

− iT ½Σ�þþ
c �: ð42Þ

We give detailed calculations of each of the amplitudes in
Appendix A.
In deriving the squared amplitudes, there are some

angular dependences in the total amplitudes for which
we have used the angle average approximation

ðp⃗1 · p⃗2Þ2 →
1

3
jp⃗1j2jp⃗2j2: ð43Þ

This angular dependance cos2 θ (θ is the angle between the
two pion momenta, p⃗1 and p⃗2) comes from the d-wave
nature of the coupling to the Σ�

cð2520Þ. This may be used to
confirm the contribution from Σ�

cð2520Þ in the sequential
process. Detailed study of angular correlations will be done
elsewhere. After some calculations, the spin summed
(averaged for the initial state) amplitude becomes

1

ð2J þ 1Þ
X
s;s0

j − iT j2 ¼ jGΣ0
c
j2jp⃗2j2 þ

2

9
jGΣ�0

c
j2jp⃗1j4jp⃗2j2

þ jGΣþþ
c
j2jp⃗1j2

þ 2

9
jGΣ�þþ

c
j2jp⃗2j4jp⃗1j2; ð44Þ

where we have defined the quantity G, for instance,

GΣ0
c
¼ −igagb

ffiffiffiffiffiffiffiffiffiffiffiffi
2mΛ�þ

c

p ffiffiffiffiffiffiffiffiffiffiffi
2mΛþ

c

p
m23 −mΣ0

c
þ i

2
ΓΣ0

c

: ð45Þ

In Eq. (45), GΣ0
c
contains information about the coupling

constants and propagator for the corresponding diagram.
In fact, there is another possible decay channel

Λ�
cð2595Þ → Λcπ

0π0. Different from the charged state
process, the neutral pions assigned to be particle 1 and 2
are indistinguishable. Accordingly, we divide the ampli-
tudes by the symmetric factor after we take into account all
of the numbered diagrams. Then, the total amplitude for a
given decay channel can be written as

−iT ¼ −iT ½Σþ
c � − iT ½Σ�þ

c �; ð46Þ

and the resulting squared amplitude is

1

ð2J þ 1Þ
X
s;s0

j − iT j2 ¼ jGΣþ
c
j2jp⃗2j2 þ

2

9
jGΣ�þ

c
j2jp⃗1j4jp⃗2j2:

ð47Þ

Similarly, we can derive the amplitude of the Λ�
cð2625Þ

decay. In this case, we have to include both the s-wave and
d-wave nature of the Lagrangian in vertex C, Ls

C and Ld
C.

The squared amplitude of Λ�
cð2625Þ → Λcπ

þπ− is then
given by

1

ð2J þ 1Þ
X
s;s0

j − iT j2

¼ 2

3
jFΣ0

c
j2jp⃗1j4jp⃗2j2 þ

2

3
jFΣþþ

c
j2jp⃗2j4jp⃗1j2

þ 2

3
jFs

Σ�þþ
c

j2jp⃗1j2 þ
32

3
jFd

Σ�þþ
c

j2jp⃗2j4jp⃗1j2

þ 2

3
jFs

Σ�0
c
j2jp⃗2j2 þ

32

3
jFd

Σ�0
c
j2jp⃗1j4jp⃗2j2; ð48Þ
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where the quantity F is defined similarly toG. For instance,
FΣ0

c
is denoted by

FΣ0
c
¼ −ifafb

ffiffiffiffiffiffiffiffiffiffiffiffi
2mΛ�þ

c

p ffiffiffiffiffiffiffiffiffiffiffi
2mΛþ

c

p
m23 −mΣ0

c
þ i

2
ΓΣ0

c

: ð49Þ

For Λ�
cð2625Þ → Λcπ

0π0, the squared amplitude reads

1

ð2J þ 1Þ
X
s;s0

j − iT j2 ¼ 2

3
jFΣþ

c
j2jp⃗1j4jp⃗2j2 þ

2

3
jFs

Σ�þ
c
j2jp⃗2j2

þ 32

3
jFd

Σ�þ
c
j2jp⃗1j4jp⃗2j2: ð50Þ

F. Three-Body Kinematics

The three-body decays are studied in the Dalitz plot in
terms of the invariant masses m12 and m23 [11]. The actual
momentum variables are defined in the rest frame of the
initial Λ�

c as in Fig. 3, whereas various coupling constants
are calculated in the rest frame of the intermediate Σc’s as in
Fig. 4. The three-body decay widths are then given by

Γ ¼ ð2πÞ4
2mi

Z
1

ð2J þ 1Þ
X
s0;s

j − iT j2dΦ3ðP;p1; p2; p3Þ;

¼ 1

ð2πÞ3
1

32m3
i

Z
1

ð2J þ 1Þ
X
s0;s

j − iT j2dm2
13dm

2
23; ð51Þ

where the three-body phase space dΦ3 in the first line
depends on the initial energy square s ¼ m2

i , and the final

state momenta, and is expressed by dm12 and dm23 in the
second line.

III. RESULTS AND DISCUSSIONS

A. Decay of Λ�
cð2595Þ

The Λ�
cð2595Þ baryon is the first excited state with spin

and parity JP ¼ 1=2−, and its full width is 2.6� 0.6 MeV.
The Λ�

cð2595Þ → Λcð2286Þππ decay channel is the only
possible strong decay [11,13]. Due to different excitation
energies between the λ and ρ mode excitations, this state is
expected to be dominated by the λ mode [14]. Here, we
consider decays of both the λ and ρ modes to discuss the
structure of Λ�

cð2595Þ from the view point of the decay
property. Λ�

cð2595Þ can be constructed by the one λ mode
with j ¼ 1 and the two ρ mode configurations of j ¼ 0
and 1. The detailed explanation of the configurations that
we are using here can be found in our previous work [10].
The comparison between experimental data and calcu-

lated decay widths is presented in Table I where contribu-
tions from various intermediate states and with different
mode assignments are shown separately. The upper three
lines are the decays into Λcππ from the open channels,
while the lower three lines those from closed ones. If we
look at the total decay width in the bottom line, we find
that the λ mode assignment gives a consistent result with
the experimental data. For the ρ mode (j ¼ 1), the total
decay width turn out to be broader and overestimates the
data significantly. In contrast, ρmode (j ¼ 0) assignment is
forbidden due to the spin conservation of the Brown-Muck
as already pointed out in Ref. [9,10].
An isospin breaking effect can be seen clearly in both

open (Σcπ) and closed (Σ�
cπ) channels. In Table I, we can

notice that the Σþ
c π

0 channel contribution is larger than the
other two charged channels. This is because the Σþþ

c π− and
Σ0
cπ

þ channels are closed while the Σþ
c π

0 channel is open,
if we take the central values of the masses of Λ�

cð2595Þ
and Σcð2455Þ.

FIG. 3. Initial particle rest frame is considered in which the four
momentum of the initial particle is P ¼ ðmi; 0Þ. We define mass
of πþ, π−, and Λc as m1, m2, and m3 respectively.

FIG. 4. The resonance rest frame is defined as the rest frame of
the subsystem of particle 2 and 3.

TABLE I. Various contributions to the decay width of
Λ�
cð2595Þ → Λcππ in the sequential process with the λ and ρ

mode assignments with different intermediate states (in unit of
MeV). The right column shows partial decay widths into Σcπ and
those into Λcππ 3-body shown in PDG [11].

Intermediate
state

λ-mode ρ-mode

j ¼ 1 j ¼ 0 j ¼ 1 Exp.

Σþþ
c π− 0.237 - 1.001 0.624 (24%)

Σ0
cπ

þ 0.182 - 0.770 0.624 (24%)
Σþ
c π

0 1.629 - 6.896 -
3-body 0.468 (18%)

Σ�þþ
c π− 1 × 10−6 - 6 × 10−7 -

Σ�0
c πþ 1 × 10−6 - 7 × 10−7 -

Σ�þ
c π0 5 × 10−6 - 3 × 10−6 -

Γtotal 2.048 - 8.667 2.6� 0.6
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To help understand our sequential decay calculations
better, in Fig. 5 we show Dalitz plot and invariant mass
distributions for the squared amplitude for the charged pion
decay mode as function ofm2

13ð¼m2
πþΛc

Þ andm2
23ð¼m2

π−Λc
Þ.

There we see that the most events are concentrated in
the boundary region of the maximum m2

13 and m2
23. These

strengths come from the tail of the peak of Σcð2455Þ, which
is located slightly outside the kinematically allowed region,
as shown in Fig. 5. Similarly Fig. 6 is for the neutral pion
mode, where we see again the most events are near the
boundaries but with the peak of Σcð2455Þ is now inside the
allowed region. This is due to isospin breaking effect,
leading to the larger branching ratio for the neutral mode
than the charged mode as shown in Table I, and the effect
has also been discussed in Ref. [10].
Let us turn to the discussion on the Σ�

cπ contribution,
which is from the tail of the Σ�

c resonance. The small
contribution from the Σ�

c is expected not only from the fact
that it is closed but also from the d-wave nature of the
πΛð1=2−ÞΣ�ð3=2þÞ coupling.

B. Decay of Λ�
cð2625Þ

The Λ�
cð2625Þ baryon is the excited state having

JP ¼ 3=2−. Experimentally, only the upper limit is given
as Γexp < 0.97 MeV [11]. Different from the case of
Λ�
cð2595Þ, we cannot distinguish whether Λ�

cð2625Þ is λ
or ρ mode by only looking at the two-body process with
available experimental data. As shown previously [10], the
two-body contributions are too small as compared to the
experimental upper limit. This is due to the d-wave nature

of the two-body final state. Indeed, we show here that the
three-body processes give significant contributions. This
can be used to distinguish the λ and ρ modes.
We compare decay widths calculated from various

intermediates states with different mode assignments in
Table II. Firstly, our results are consistent with two-body
analysis in our previous work [10] by which we can not
disentangle which mode is dominant for Λ�

cð2625Þ. Now by
looking at the results of the closed channel contribution as
shown in the lower three lines, we can see that the decay
width is sensitive to the coupling of Σ�

c.
Concerning the total decay width, experimentally, only

the upper limit is known. Therefore, we can not exclude all

FIG. 5. Dalitz plot and invariant mass distribution of

Λ�
cð2595Þ → Λcπ

þπ− with Σð�Þ0
c πþ and Σð�Þþþ

c π− channels in
an intermediate state. Λ�

cð2595Þ is assumed to be λ mode.

FIG. 6. Dalitz plot and invariant mass distribution of

Λ�
cð2595Þ → Λcπ

0π0 with Σð�Þþ
c π0 channels in intermediate state.

Λ�
cð2595Þ is assumed to be λ mode.

TABLE II. Various contributions to the decay width of
Λ�
cð2625Þ in the sequential process with the λ and ρ mode

assignments with different intermediate states (in unit of MeV).
The right column shows partial decay widths into Σcπ and those
into Λcππ 3-body shown in PDG [11].

Intermediate
state

λ-mode ρ-mode

j ¼ 1 j ¼ 1 j ¼ 2 Exp. [11]

Σþþ
c π− 0.037 0.018 0.033 <0.05 (<5%)

Σ0
cπ

þ 0.031 0.016 0.030 <0.05 (<5%)
Σþ
c π

0 0.053 0.027 0.049 -
3-body (large)

Σ�þþ
c π− 0.044 0.190 0 -

Σ�0
c πþ 0.064 0.285 0 -

Σ�þ
c π0 0.071 0.306 0 -

Γtotal 0.300 0.842 0.112 <0.97
R 0.61 0.93 0
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of the possibilities, since they are below the upper limit.
However, we can analyze further by considering the ratio of
the decay width

R ¼ ΓðΛ�
c → Λcπ

þπ−ðnonresonantÞÞ
ΓðΛ�

c → Λcπ
þπ−ðtotalÞÞ ; ð52Þ

where the value is R ¼ 0.54� 0.14 [15]. This value seems
consistent with the λ mode assignment.
In Fig. 7–9, we show Dalitz plots and invariant mass

distributions for the decay of Λ�
cð2625Þ with different

assignments. Figure 7 is for the λ mode and shows that
the most contributions are concentrated around the reso-
nance Σcð2455Þ region, because the contribution of the
closed channel Σ�

cð2520Þ is not large.
Figures 8 and 9 are for the two ρ modes, which show

interesting features. The ρmode, with j ¼ 1 in Fig. 8, has a
large contribution from the closed Σ�

cð2520Þ channel,
showing a large background strength over the allowed
region with a less prominent peak structure from the open
Σcð2455Þ channel. Contrary, ρ with j ¼ 2 mode has zero
contribution from the closed channel and therefore, shows
only a peak structure around the open Σcð2455Þ channel.
These differences are clear, which will be useful to further
distinguish the nature of the Λ�

cð2625Þ resonance.

IV. SUMMARY

An effective Lagrangian method has been used for the
study of three-body decays of Λ�

cð2595Þ and Λ�
cð2625Þ in

which the coupling constants are extracted from the quark
model. We have considered the sequential decays through
Σcπ and Σ�

cπ in intermediate states. By comparing the
theoretical predictions with the experimental data, we have
extracted useful information about the excitation mode of
those states.
By using currently available experimental data, we have

argued that both Λ�
cð2595Þ and Λ�

cð2625Þ are most likely
dominated by the λ mode, and all other possibilities of ρ

FIG. 7. A Dalitz plot and invariant mass distribution of
Λ�
cð2625Þðλ −modeÞ → Λcπ

þπ−.

FIG. 8. A Dalitz plot and invariant mass distribution of
Λ�
cð2625Þ ðρ −mode; j ¼ 1Þ → Λcπ

þπ−.

FIG. 9. A Dalitz plot and invariant mass distribution of
Λ�
cð2625Þðρ −mode; j ¼ 2Þ → Λcπ

þπ−.
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modes are unlikely. For Λ�
cð2595Þ with λ mode, the two-

body decay width is consistent with the data. In contrast, ρ
mode assignments significantly overestimate the decay
width. In the case of Λ�

cð2625Þ, the ratio of the Λ�
c →

πþπ− (nonresonant) and Λ�
c → πþπ− (total) decays seems

consistent with the data, but further information on the
Dalitz plots and invariant mass distributions should be
useful to distinguish its structure.
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APPENDIX: DETAILED CALCULATION
OF AMPLITUDES

The decay of Λ�
cð2595Þ → Λcπ

þπ− is described in
Fig. 2. The amplitude for each diagram is given by

−iT ½Σ0
c� ¼ −i

T Σ0
c→Λcπ

−T Λ�
c→Σ0

cπ
þ

m23 −mΣ0
c
þ i

2
ΓΣ0

c

¼ GΣ0
c
χ†Λc

ðσ⃗ · p⃗2ÞχΛ�
c
; ðA1Þ

where

GΣ0
c
¼ −igagb

ffiffiffiffiffiffiffiffiffiffiffiffi
2mΛ�þ

c

p ffiffiffiffiffiffiffiffiffiffiffi
2mΛþ

c

p
m23 −mΣ0

c
þ i

2
ΓΣ0

c

: ðA2Þ

The amplitude of the second diagram is

−iT ½Σþþ
c � ¼ −i

T Σþþ
c →Λcπ

þT Λ�
c→Σþþ

c π−

m13 −mΣþþ
c

þ i
2
ΓΣþþ

c

¼ GΣþþ
c
χ†Λc

ðσ⃗ · p⃗1ÞχΛ�
c
; ðA3Þ

where

GΣþþ
c

¼ −igagb

ffiffiffiffiffiffiffiffiffiffiffiffi
2mΛ�þ

c

p ffiffiffiffiffiffiffiffiffiffiffi
2mΛþ

c

p
m13 −mΣþþ

c
þ i

2
ΓΣþþ

c

; ðA4Þ

and for the third diagram

−iT ½Σ�0
c � ¼ −i

T Σ�0
c →Λcπ

−T Λ�
c→Σ�0

c πþ

m23 −mΣ�0
c
þ i

2
ΓΣ�0

c

¼ GΣ�0
c
χ†Λc

ðS⃗ · p⃗2Þ

×

�
S⃗† · p⃗1σ⃗ · p⃗1 −

1

3
S⃗† · σ⃗jp⃗1j2

�
χΛ�

c

¼ GΣ�0
c
χ†Λc

�
p⃗1 · p⃗2σ⃗ · p⃗1 −

1

3
σ⃗ · p⃗2jp⃗1j2

�
χΛ�

c
;

ðA5Þ

where

GΣ�0
c
¼ −igcgd

ffiffiffiffiffiffiffiffiffiffiffiffi
2mΛ�þ

c

p ffiffiffiffiffiffiffiffiffiffiffi
2mΛþ

c

p
m23 −mΣ�0

c
þ i

2
ΓΣ�0

c

: ðA6Þ

In Eq. (A5), we have used the spin matrix products

SiS
†
j ¼ δij −

1

3
σiσj: ðA7Þ

The last amplitude reads

−i T ½Σ�þþ
c � ¼ −i

T Σ�þþ
c →Λcπ

þT Λ�
c→Σ�þþ

c π−

m13 −mΣ�þþ
c

þ i
2
ΓΣ�þþ

c

¼ GΣ�þþ
c

χ†Λc

�
p⃗2 · p⃗1σ⃗ · p⃗2 −

1

3
σ⃗ · p⃗1jp⃗2j2

�
χΛ�

c
;

ðA8Þ

where

GΣ�þþ
c

¼ −igcgd

ffiffiffiffiffiffiffiffiffiffiffiffi
2mΛ�þ

c

p ffiffiffiffiffiffiffiffiffiffiffi
2mΛþ

c

p
m13 −mΣ�þþ

c
þ i

2
ΓΣ�þþ

c

: ðA9Þ

The total amplitude of the process is given by adding all
the amplitudes coherently,

−iT ¼ −iT ½Σ0
c� − iT ½Σþþ

c � − iT ½Σ�0
c �

− iT ½Σ�þþ
c �: ðA10Þ

Therefore, the squared amplitudes consist of 16 terms
which can be categorized into 5 contributions; the con-
tribution from Σ0

c,

1

ð2J þ 1Þ
X
s;s0

j − iT j2½Σ0
c� ¼ jGΣ0

c
j2jp⃗2j2; ðA11Þ

the contribution from Σþþ
c ,

1

ð2J þ 1Þ
X
s;s0

j − iT j2½Σþþ
c � ¼ jGΣþþ

c
j2jp⃗1j2; ðA12Þ

the contribution from the Σ�0
c ,

1

ð2J þ 1Þ
X
s;s0

j − iT j2½Σ�0
c � ¼ 2

9
jGΣ�0

c
j2jp⃗1j4jp⃗2j2; ðA13Þ

the contribution from Σ�þþ
c ,

1

ð2J þ 1Þ
X
s;s0

j − iT j2½Σ�þþ
c � ¼ 2

9
jGΣ�þþ

c
j2jp⃗2j4jp⃗1j2:

ðA14Þ
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In addition, there are cross terms corresponding to the
interference effects. However, all of the them vanish
when we perform the angular integration for the total
decay width.
For another decay channel Λ�

cð2595Þ → Λcπ
0π0, there

are only two process involved and the respective ampli-
tudes are

−iT ½Σþ
c � ¼ −i

T Σþ
c →Λcπ

0T Λ�
c→Σþ

c π
0

m23 −mΣþ
c
þ i

2
ΓΣþ

c

¼ GΣþ
c
χ†Λc

ðσ⃗ · p⃗2ÞχΛ�
c

ðA15Þ

where

GΣþ
c
¼ −igagb

ffiffiffiffiffiffiffiffiffiffiffiffi
2mΛ�þ

c

p ffiffiffiffiffiffiffiffiffiffiffi
2mΛþ

c

p
m23 −mΣþ

c
þ i

2
ΓΣþ

c

; ðA16Þ

and

−iT ½Σ�þ
c � ¼ −i

T Σ�þ
c →Λcπ

0T Λ�
c→Σ�þ

c π0

m23 −mΣ�þ
c
þ i

2
ΓΣ�þ

c

¼ GΣ�þ
c
χ†Λc

�
p⃗1 · p⃗2σ⃗ · p⃗1 −

1

3
σ⃗ · p⃗2jp⃗1j2

�
χΛ�

c
;

ðA17Þ

where

GΣ�þ
c

¼ −igcgd

ffiffiffiffiffiffiffiffiffiffiffiffi
2mΛ�þ

c

p ffiffiffiffiffiffiffiffiffiffiffi
2mΛþ

c

p
m23 −mΣ�þ

c
þ i

2
ΓΣ�þ

c

: ðA18Þ

The total amplitude is

−iT ¼ −iT ½Σþ
c � − iT ½Σ�þ

c �: ðA19Þ

The squared amplitudes now consist of four terms, but the
cross terms vanish again when we perform the angular
integration. Therefore, only two terms contribute in the
process. The first contribution from Σþ

c is

1

ð2J þ 1Þ
X
s;s0

j − iT j2½Σþ
c � ¼ jGΣþ

c
j2jp⃗2j2; ðA20Þ

and the second contribution from Σ�þ
c is

1

ð2J þ 1Þ
X
s;s0

j − iT j2½Σ�þ
c � ¼ 2

9
jGΣ�þ

c
j2jp⃗1j4jp⃗2j2: ðA21Þ

For the higher state, Λ�
cð2625Þ, we calculate the decay

amplitudes with a similar manner but with different spin
structures, which are derived from the Lagrangian in
Eqs. (6)–(10).
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