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In the context of operator product expansion (OPE) and using the large-f, approximation, we propose a
method to define Wilson coefficients free from uncertainties due to IR renormalons. We first introduce a

general observable X(Q?) with an explicit IR cutoff, and then we extract a genuine UV contribution Xy as
a cutoff-independent part. Xyy includes power corrections ~(A6CD /0*)" which are independent of

renormalons. Using the integration-by-regions method, we observe that Xyy coincides with the leading
Wilson coefficient in OPE and also clarify that the power corrections originate from UV region. We
examine scheme dependence of Xy and single out a specific scheme favorable in terms of analytical
properties. Our method would be optimal with respect to systematicity, analyticity and stability. We test our
formulation with the examples of the Adler function, QCD force between QQ, and R-ratio in e*e™

collision.
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I. INTRODUCTION

In perturbative quantum field theory, perturbative series
are considered to be asymptotic and divergent. It suggests
that we have to truncate the series at finite order, and thus
perturbative calculation cannot reach arbitrary precision.
The idea of renormalon is a powerful tool to discuss an
inevitable uncertainty of perturbative calculation [1]. It is
related to divergent behaviors of perturbative series, and it
provides an estimate of the size of uncertainty in an optimal
prediction. In perturbative QCD, infrared (IR) renormalons
give essential uncertainties of order (Agcp/Q)" in the
prediction, where Q is a typical energy scale of an
observable X. IR renormalons stem from a low-energy
region of loop momenta in Feynman integrals. Such
uncertainties cannot be removed even by a resummation
or Borel summation. This indicates that another framework
is needed to overcome perturbative uncertainties induced
by IR renormalons.

Operator product expansion (OPE) is a framework, in
which the perturbative uncertainties can be eliminated
systematically. An OPE of an observable X(Q?) consists
of two components: Wilson coefficients and nonperturba-
tive matrix elements. In the Wilsonian picture, Wilson
coefficients are calculated from ultraviolet (UV) modes,
which are higher than a factorization scale uy, whereas
nonperturbative matrix elements are described by a
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low-energy effective theory valid below the scale py.
As a result, Wilson coefficients are free from uncertain-
ties induced by IR renormalons and can be calculated
unambiguously in perturbation theory (in principle).
Nonperturbative matrix elements are determined from IR
dynamics and show the same power dependence on
Aqcp/Q as the uncertainties due to IR renormalons in
the original perturbative series of X. Note, however, that
each nonperturbative matrix element is no longer an
uncertainty but a definite quantity, at least conceptually.
Therefore, one can go beyond perturbation theory in the
OPE framework.

In OPE an observable X(Q?) is evaluated by expansion
in 1/Q?. To realize the concept of the Wilsonian picture, it
is natural to introduce a hard cutoff (x;) in momentum
space for factorizing UV and IR dynamics.' Then the IR
renormalons are clearly eliminated from perturbative cal-
culation of Wilson coefficients, and the 1/Q?-expansion
(derivative expansion) in the low-energy effective theory is
well justified since the active modes satisfy k/Q <
ur/Q < 1. It is, however, disadvantageous in practical
computations to introduce a hard cutoff due to the follow-
ing reasons: (1) One should include an additional scale y
in computations, which complicates the computations

'In conventional analyses of renormalons, a UV scale is
assumed to be much larger than any scale involved in the
calculation. In this paper, however, we use the terminology
“UV” for scales above the factorization scale y in the context of
OPE. In particular Q is regarded as a UV scale.

© 2017 American Physical Society
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considerably. (2) Generally it generates apparent powerlike
strong dependences on y; of Wilson coefficients. Although
they should eventually cancel in physical predictions,
they can be sources of strong instability of the predictions
in practice [2]. (3) If we adopt a too naive cutoff
regularization scheme, it may violate gauge invariance.
For these reasons today it is customary to compute
perturbative series of Wilson coefficients in dimensional
regularization. This regularization circumvents the above
difficulties. Nevertheless, as a trade-off, the perturbative
series contain IR renormalon uncertainties since each
integral region extends from k~ 0O to infinity. Hence,
several ways to subtract the contributions of IR renorma-
lons have been explored [3-8].

In this paper we investigate the Wilson coefficient of the
leading operator in OPE (equals to the identity operator in
our explicit examples) and aim at removing a factorization
scale dependent part, which destabilizes the prediction. Our
basic tool is perturbation theory in the so-called large-f,
approximation [9-11]. We proceed in the following steps:
(i) We consider an observable X(Q?) with an IR cutoff 4.
(i) We extract a p,-independent part Xyy systematically,
which can be regarded as a genuine UV contribution.
(iii) We examine the scheme dependence of Xyy. (iv) We
single out a favorable scheme in terms of analyticity
of XUV‘

It turns out that Xy includes power corrections
~(Agep/ Q)" which stem from UV physics and are totally
different from renormalon ambiguities. We will see that
(1) the power corrections are consistent with the framework
of OPE, and (2) the power corrections are crucial for
understanding the short-distance behavior of X (Q?). This is
one of the main focuses of our discussion. Our method
would also be useful in extracting nonperturbative matrix
elements numerically, since the leading Wilson coefficient
which we construct does not contain intrinsic uncertainties
of the order of the matrix elements.

An analytical evaluation of a resummed perturbative
series in the large-f, approximation was first performed in
Ref. [12]. In fact many building blocks in our method are
taken from their analysis. Their analysis starts from a
regularized Borel integral, which removes IR renormalons
by contour deformation. In their method a physical quantity
can be separated into the real part and imaginary part. The
real part is predicted reliably within perturbation theory,
whereas the imaginary part is regarded as a perturbative
uncertainty. The real part in their method and the cutoff
independent part in our method have the same expanded
form in 1/Q. We also use an idea in their analysis related
with the pseudo gluon mass to extract a cutoff independent
part in our method.

Characteristic features of our method can be stated as
follows. By starting from a well-defined integral with an
explicit cutoff, we give a solid basis to our method, thereby
the relation to OPE in the Wilsonian picture is made clear.
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We also reinforce our argument using the integration-by-
regions (expansion-by-regions) method or comparison with
the perturbative series up to large orders. Furthermore, we
compare the perturbative series in the large-f, approxima-
tion with the known exact perturbative series and confirm
consistency or validity of the approximation we use. These
analyses utilize theoretical developments which took place
after the analysis [12], and it is worthwhile to examine their
impact.

Related subjects have also been studied in
Refs. [9,10,13] (see also Refs. [14,15]). In particular,
existence of power corrections in the UV contribution to
observables has been discussed, e.g., using a resummation
of the perturbative series [12], and in certain model
calculations [14,15]. Our work can be regarded as an
extension of the analyses in Refs. [9,10,12] and more
directly of the formulation used in the analysis of the static
QCD potential [5,16—18]. Part of the analysis presented in
this paper, in particular its application to the Adler function,
have been reported in the letter article [19].

The important and new points provided in this paper
can be summarized as follows. First, we propose a
systematic method to construct a Wilson coefficient
(Xyv) which is free from both renormalon ambiguities
and cutoff dependence. Such a quantity is important for
precise predictions as it gives a foundation for order-
by-order predictions in the OPE framework, and in
connection with this, it enables us to determine non-
perturbative matrix elements numerically. Secondly, we
support existence of power corrections ~(Agcp/Q%)" in
Xyv which are independent of renormalons. Although
such a term is found in the literature, the existence was
vague since it (in particular, the coefficient of such a
term) is generally dependent on a resummation prescrip-
tion. Nevertheless, we clarify that a specific prescription
is uniquely favored from the viewpoint of analyticity in
our framework. Hence, a natural coefficient is specified
and it supports, for instance, the existence of a
A§ep/ Q*-term in the Adler function.

The outline of this paper is as follows. In Sec. II, we
explain our method to extract a cutoff independent part
from a general observable defined with an IR cutoff. We
also test our method with the Adler function and the force
between QQ. In Sec. III, we investigate the relation
between our method and OPE using the method of
integration by regions and also clarify which region gives
each power correction. In Sec. IV, we show that the power
corrections in Xy is included in the large-order perturba-
tive series. We also compare our results with known exact
perturbative series. Through Secs. I1I-1V only Euclidean
quantities are examined. In Sec. V, we study the R-ratio in
ete™ collision as an example of a timelike quantity, and
how our method can be applied. Conclusions and dis-
cussion are given in Sec. VI. Details of our analyses are
collected in Appendixes.
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II. EXTRACTION OF CUTOFF-INDEPENDENT
PART FROM UV CONTRIBUTIONS

In this section we present a method to extract a cutoff-
independent part from UV contributions to physical quan-
tities. In Sec. II A, basic notions are reviewed. In Sec. II B,
the method to extract a cutoff-independent part is explained.
As examples, we investigate the Adler function in Sec. II C
and the force between static quark and antiquark in Sec. II D.
In Sec. I E, we examine a scheme dependence inherent in
our method. In Sec. I F, we show that a specific scheme is
favored from analytical properties of the extracted UV part.
In Sec. II G, some detailed features of this specific scheme
are analyzed.

A. Definitions and basics (review)

We consider a dimensionless spacelike observable
X(Q?) whose leading order contribution is given by
one-gluon-exchange diagrams, such as the ones shown
in Fig. 1. For simplicity we focus on a quantity which
depends on a single scale Q%> > 0 in perturbative QCD. All
the external and loop momenta are taken to be in the
Euclidean region, and we use the Euclidean metric
through Secs. II-1V, except where stated otherwise.
Explicitly we consider the case where the leading order
(LO) contribution to X(Q?) in perturbation theory can be

written in the form
o dr T
— — . 1
2nt Wx (Q2> (1)

7 represents the modulus-squared of the Euclidean gluon
momentum p (7 = p?), and integrations over all the other
loop momentum variables are included in wy. We call wy
as “weight function,” or simply “weight.” In this form wy
reduces to a function of the single variable 7/Q>. We
assume that the integral is finite both in IR (z — 0) and
UV (z - o) regions. The strong coupling constant o ()
is factored out, where y is the renormalization scale. We
adopt the modified minimal-subtraction (MS) renormal-
ization scheme, in which a,(u) at the one-loop level is
given by

X10(0?) = ay (1) /

+2x
N

FIG. 1. Leading-order diagrams which contribute to the re-
duced Adler function. The spiral line represents a gluon (with
momentum p), and the solid line represents a massless quark. The
external wavy line represents an insertion of the electromagnetic
current.

PHYSICAL REVIEW D 95, 114016 (2017)

4 1
a(u) = Bolog (12/Nyep) @)

Po = 11 —2n;/3 denotes the leading-order coefficient of
the beta function for n; active quark flavors.

We evaluate X(Q?) in the large-3, approximation, which
can be obtained as follows. We consider insertions of a
chain of fermion bubbles into the gluon propagator of Xi .
Each bubble diagram produces a factor proportional to
ay(u)nslog(u?eC/p?), where C is a scheme dependent
constant and C = —5/3 in the MS scheme. Taking the
infinite sum of the chains and replacing ny — ny —33/2 =
—3p,/2, we obtain the all-order perturbative series in the
large-f3, approximation [9,10,20]

2 ()
x [ﬁoj;(”)log<” 6:/3)] . (3)

After resummation of the infinite series in Eq. (3), the
expression reduces to the same form as Eq. (1) with the
strong coupling replaced by an effective coupling ay (7),

()o@ @

Xﬂo (Q2

X;}%qum ( QZ) — /
0
where

dr 1

05/}0( = ﬁo log(ze~ 5/3/ AQCD)‘

(5)

The effective coupling ay, () has a pole at 7 = ¢33 A,
and the existence of this pole on the integral path makes the
integral ill-defined. The uncertainty which arises from this
pole in this approach is attributed to IR renormalons.

We can make use of the Borel transformation to under-
stand properties of the series in Eq. (3). The Borel trans-
form of X (Q?) is defined as

=3 [ s () e (-
n! 2m’ T
o dr T u 65/ 3\ “
= — — . 6
A 272" ¥ <Q2>( T (6)
BX(u) plays the role of a generating function for the

coefficients of the original series d, after accelerating
convergence by 1/n!,

Be() = L, ™)
n=0
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S o

n=

X/}U Q2

In general, singularities of By(u) characterize diverging
behaviors of the original series. Singularities of By(u)
located on the positive real axis are called IR renormalons,
and those on the negative real axis are called UV renor-
malons. Due to assumed finiteness of the integral Eq. (1),
By (u) is regular at u = 0 [since Eq. (6) reduces to Eq. (1)].
The first IR renormalon at u = u > 0, closest to the
origin, is known to give an inevitable uncertainty of
O((Agep/ Q%)"®) in perturbative prediction. A

Since the renormalization scale dependence of By (u) is
factorized in Eq. (6), we further define

B = (257) Batw. o)

The weight wy(x) and the Borel transform By(u) are
related by [10]

o dx
By (u) :/ 2—wx(x)x‘”_1, (10)
0 T
1 uy+ioco
wx() =7 [ duse(a, (11)
l Ug—ico

where u is located between the first IR renormalon and
the first UV renormalon. In particular, the small-x behavior
of the weight wy(x) is detected from the singularities
of By(u) explicitly as’

= Y b =21 Y Res,,[Bx(u)x],  (12)

nelUpr nelU

where U denotes the set of IR renormalons

(Ur = {ur, ---}).

As mentioned below Eq. (5), the expression Eq. (4) has
an ambiguity because of the pole of ay (7). In order to
avoid this ambiguity we introduce an IR cutoff scale y; to
the gluon momentum and eliminate contributions whose
momentum scales are smaller than u, [10],

© d
X @) = [ S CATNCRNE
f

The factorization scale is chosen to satisfy e”/?Agqp, <
p; < Q*. Now that the integral path does not contain the

’In the case that By(u) has a multiple pole in u, the
corresponding residue includes a polynomial of logx. For
simplicity we explain in the case where wy is expanded as a
Taylor series in x.
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pole, the integral is well defined. We choose this well-
defined quantity as the starting point of our discussion. We
will see in explicit examples that X4 (Q%; ;) corresponds
to the Wilson coefficient of the leading operator in OPE
(see Sec. III).

The subtraction of IR contributions also removes the IR
renormalons of X, (Q?) since they stem from the diver-
gence of the integral (10) around x = 0 for some positive u.
One can verify this by restarting from Eq. (3) with the IR
cutoff u, and tracing the above discussion.

B. Extraction of cutoff-independent part: General case

The IR-subtracted quantity (13) is free from the ambi-
guity caused by IR renormalons. However, it has a cutoff
dependence. This dependence makes the prediction of
Eq. (13) unstable under the change of the artificial cutoff
scale u; (which should eventually be canceled in a physical
prediction). In this subsection we explain a method to
extract a cutoff-independent part from this quantity.

Our method consists of two steps: (i) Rewrite the weight
wx(x) by a new function Wy(z) which is analytic in the
upper half-plane and is related to wy(x) by

2ImWy(x) =wx(x) (x€Rand x >0). (14)
We call Wy as “preweight.”” (We will shortly present a
construction of Wy.) (ii) Deform the integral path in the
complex z-plane. The original integral path is decomposed
as follows:

e | |

Then Eq. (13) is rewritten as

o dr T
K @sn) = [ (G e (13
d
= Im /Ca]z:WX <£2>aﬁo(r)
d
~Im CI’H—ZWX (é) ag, (7). (16)

The first term of Eq. (16) (integral along C,) is clearly
independent of u;. Although the second term (integral
along C}) is apparently u-dependent, we can show that it
also includes a p¢-independent part.

Since u7 < Q* it would be justified to expand
Wy (r/Q?) about 7 = 0 along C,. In this way the second
term of Eq. (16) is expressed in the large-Q? expansion,
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d
(- (5

(17)
with?
Wy(z) = chZ”- (18)
n>0

The u;-dependence of the integral of each term of Eq. (17)
can be classified into two cases.

Case (I): If the coefficient ¢, is real, the complex
conjugate of the integral along C, becomes the integral
along C; since the integrand satisfies the relation
{f(2)}* = f(z*). Hence, we obtain

d n
Im Cbn_—zcn (é) ag (7)
_1 dr T \"
VR SECOR

dr T \" (7)
— —c,| =] «a
2m Crgen T m\g?) P !

4 e 5/3 A2 n
__4xc, ( 2QCD) ’ (19)
Po Q
where the integration contours € and Cy ., are defined as

below.

P

| AN

Here we use the fact that C;, — C}, becomes a closed contour
surrounding the pole at €3 A}, Therefore the result is
us-independent and can be calculated analytically by the
Cauchy theorem. We see that positive powers of Agcp
appear.

Case (I1): If the coefficient c¢,, has a nonzero imaginary
part, the above argument does not hold since the integrand
does not satisfy the relation {f(z)}* = f(z*). In this case
ur-dependence remains in the result,

[ %6, (5) a0 = 00/, (0

C, JZ'T

*We assume that the small-z expansion of Wy(z) exists, where
the expansion can include half-integer powers of z or powers of
log z. For simplicity we explain in the case where Wy is expanded
as a Taylor series in z. In other cases, it only matters whether the
integrand satisfies the relation {f(z)}* = f(z*) or not in classi-
fying the cases (I) and (IT) in the following discussion.
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Thus, y-independent part appears not only from the integral
along C, but also from the integral along C;, depending on
whether the expansion coefficient ¢, is real or complex.

We can find whether the coefficient ¢, in Eq. (18) is
real or complex without knowing the concrete form of
Wyx. The insight is obtained using the expansions of wy
[Eq. (12)] and Wy [Eq. (18)] and the relation between
them [Eq. (14)]. Schematically the relation can be
understood as follows:

n¢Ur <> 2Ime, = b, = 0 < ¢, € R < case (I)
n € Ugr < 2Ime, = b, # 0 < ¢,€R < case (II).
(21)

Namely, the knowledge on the IR renormalons of
Xy, (0Q%) is sufficient to judge the us-independence of
each term of Eq. (17).

From the above discussion, by taking the terms for
0 <n < ug of Eq. (17) and the first term of Eq. (16), we
obtain the general result for X/;O(QZ; ﬂf), where the

us-independent part is separated:

X5, (0% pp) = Xuv(Q?) + O((u7/Q)=).  (22)

We have extracted the us-independent part Xyy
given by

XUV(Q2 Im/ —WX<QTz>0‘/30(T)
4 . 5/3A2 n
+ ;s (76 QZQCD) .23

0<n<up

This is one of the main results in this paper. Xyy(Q?) is
insensitive to IR physics and can be regarded as a genuine
UV contribution.

We rewrite Xyy as

Xuv(Q?) = Xo(0%) +

5/3
Z %'<6QA2QCD> . (24)

O<n<ug ﬁ()

with

d 4
XO(QZ):Im/C ﬂ—zwx(é>aﬁo(r)+ ;so (25)

The asymptotic form of X, as Q> — co is given by

471'd() 1
Po log(Qz/AQCD) ‘

XO(QZ) — dya,(Q) = (26)

This is the leading term of the asymptotic expansion
of X, that will be derived in Eq. (73) below; it is also
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a consequence of the renormalization-group (RG)
equation.4 This gives a more dominant contribution than
power behaviors for large Q. Therefore Xyy(Q?) indeed
gives a leading behavior of Xy (0% u,) for large Q%. In
explicit examples in Secs. II C and 11D, we will see that
Eq. (24) represents a separation of Xyy(Q?) into a
logarithmic term’ (a nonpower correction term) X, and
power correction terms ~(Agcp/Q%)".

Up to this point we have considered a general
preweight Wy(z), which is analytic in the upper half-
plane and satisfies the relation (14). A preweight
which satisfies these conditions can be constructed
systematically as

Wi = [ o dx _wil) @7)

2rx—z7—1i0"

due to the relation Im{(x —z—i0)"'} = z6(x — z) for
z € R. The integral in Eq. (27) always converges
according to our assumption on the convergence of
Xi0- Note that there are potentially an infinite number
of candidates for the preweight Wy since Eq. (14) does
not restrict its real part on the positive real axis. Thus,
Wy defined by Eq. (27) represents just one possibility,
and we refer to the choice Eq. (27) as “massive gluon
scheme.” This is because this construction is equivalent
to replacing the gluon propagator to that with a
tachyonic mass m? = —r in the leading order contribu-
tion Eq. (1),°

/°° d(p*) wx(p*/ Q%) N /°° d(p*) wx(p*/ Q%)
0o 2 p? o 21 p*—1—i0

=Wy (z/ %), (28)

where Wﬁ;") denotes the preweight in the massive gluon
scheme.

We note that one does not have to start from wy to obtain
Wy in the massive gluon scheme. It is sufficient to use the
gluon propagator with a tachyonic mass in the usual loop
calculation, i.e., starting from the expression retaining all

“Since the leading logarithmic terms are proportional to
as(u)[foas () log(Q/p)]", they are incorporated correctly by
the large-f, approximation. The modification of the perturbative
series by the IR cutoff is power-suppressed ~(u§»/ 0°)%; hence,

the leading large-Q? behavior is determined by the one-loop RG
equation.

5By a “logarithmic term” we mean a term which is closest to
(Qz/AéCD)‘D with P=0 in the entire range 0< Q? < oo, if it is
compared with a single power dependence on Q2 (for an integer P);
see Figs. 2, 3 and Sec. IIG.

There exist many studies on low-energy QCD phenomena
(especially chiral symmetry breaking and confinement) in terms
of massive gluons [21-23]. We stress, however, that we study
perturbative (UV) contributions using Wy.
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the loop momentum integrals, since it coincides with the
right-hand side of Eq. (28). If we take this route, we rather
obtain the weight wy via the relation (14) after calculating
the preweight Wy.

For later convenience, we introduce Wy, from the
preweight in the massive gluon scheme as

©dx  wy(x)

— = (29
2rx +z—10 (29)

() y — g\
W () = Wi () /

This function is real for z >0 since wy(x) is real
and x+z> 0. Using this function, Eq. (25) can be
expressed as’

odr ol T . drc
Xo(Q?) = A P Wg(Jr) (@> Imay, (—7 +i0) + 0

A -
Po 10g2(T€_5/3/A(2)CD) + 7’

Imay, (—7 +i0) = (31)

in the case that it is justified to deform the integral path
C, to the straight line connecting 7 =0 to —oo. This
expression has a good analytical property as we will see
later (end of Secs. IIC and IIF). In calculating the
asymptotic form of X,(Q?) as Q* — oo or Q% — 0, the
following expression, obtained by partial integration, is
useful:

odx my, 4
Xo(0%) == [ 7w (0 imloglog (2/(¢¥ Ncp)

o dx (m)r 4
— — W x)—
e

T
x tan~! [ .
log (Q?/(e’3 Agcp)) +logx

(32)

C. Example 1: Adler function

As an application of the general framework presented in
the previous subsection, we examine large-Q? behavior of
the Adler function [19]. This observable is suited to test our
method, in particular since OPE can be performed. The first
IR renormalon is located at ur =2 [13], and thus the
renormalon uncertainty is fairly suppressed.

We study the reduced Adler function D(Q?) with one
massless quark, defined as

D(Q?) = 4n*Q° —Cﬂji(QQ;) -1, (33)

A quantity similar to Xy with this X, is derived in Ref. [12]
using a regularized Borel integral. Our derivation is different from
theirs in that our result does not contain renormalon uncertainties
since we subtract IR modes in Eq. (13).
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where T1(Q?%) is a correlator® of the quark current We define the reduced Adler function in the large-f,
JH(x) = g(x)r*q(x), approximation with an IR cutoff as
. ; © dr T
(qﬂql/ _ g}ll/qz)H(Qz) = —1 / d4xe—lq»X<()|TJ”(x)]D(x)|()>, DﬁO(QZ’ﬂf) = /2 2—MWD (@) aﬂ0<f). (35)
Ky
0> =—-¢*>0. (34)

The weight wp(x) is given by [10]
|

wp(a) = eCe
{ (7 — 4log x)x* + 4x(1 + x){Liy(—x) + log xlog (1 + x)} ix <1 (36)
X ki
3+ 2logx + 4x(1 +logx) + 4x(1 + x){Liy(=x~!) = logxlog (1 + x™ )} ;x> 1

where N = 3 is the number of colors and C = 4/3 is the Casimir operator of the fundamental representation. The first IR
renormalon is located at u;z = 2, as can be seen from the expansion of wj(x) and Eq. (12),

wp(x) = NeCpx? + - - -. (37)

The preweight Wg") and W(Dmﬁ in the massive gluon scheme, obtained via Eq. (27) or by calculating the two-loop integral,

are given by

. N-C
Wy (z) = 102; 3+ 162(z + 1)H(z) — 14z* log (—2)

+8z(z + 1){—log(—z)Liy(~z) + Li3(z) + Li3(-z)}
+4{222 + 2z + 1 —4z(z + 1) log (1 + 2)}Liy(z)
+2(72* =4z =3)log (1 - z) — 8Lrz(z + 1) log (1 + 2)
+4{z> = z(z + 1) log(1 + z) }log*(~z)

+2(48, = 783)2% +2(11 = 7¢3)7] (38)
and
Wil(z) = Wi'(-2). (39)

Here, we define H(z) = [! dxx™"'log (1 +x)log (1 —x): Li,(z) = >, Z—i denotes the polylogarithm; {; = {(k) denotes

the Riemann zeta function.” We present another expression of Wg") in Appendix B, which is lengthier but exhibits the

structure of the singularities more clearly. The first few terms of the small-z expansion of Wg”) are given by10

(m) 1 2(4-3¢) 10 —12¢3 —3logz + 3in ,
w =NcCr|— e 40
p (2) =NcCp|+——F "2+ . &+ (40)
Following the discussion in the general case, we can extract the ug-independent part Dyy,

Dy (0% uy) = Dyy(Q*) + O(u}/ Q%) (41)

with

¥Equation (34) uses the Minkowski metric, where ¢ denotes the four-momentum of the vacuum polarization. In our letter [19] the sign
of the corresponding equation [Eq. (2)] was incorrect and should be reversed.

°H (z) can be expressed using the harmonic polylogarithms.
OThis series expansion was obtained in Ref. [12].
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FIG. 2. (Left) Dyy [Eq. (42)], Dy [Eq. (43)] and the A,/ Q*-term [Eq. (42)] as functions of Agcp/Q?. (Right) Derivatives of Dyy;,

Dy and the AéCD /Q*-term with respect to Q72 = AéCD /0.

(4 - 353)35/3NCCF AéCD

Duv(02) = Dy(Q?) + 2

, (42
3ﬁ0 Q2 ( )
dT im _NcC
Do(Qz) :[) n’i WEH) (QTZ>Ima/)’o(_T+ZO)+ ZOF'
(43)

The Agcp/Q*-term arises from the z'-term of the pre-
weight Wp(z); see Eq. (40). The large-z behavior of Wp(z)
allows rotation of the integration contour, and we write Dy,
as in Eq. (30). The asymptotic behaviors of Dy(Q?) are
obtained as

NeCp 1 2
3 2 A2 as Q - &0
D (QZ) 5 Po log(Q*/Ngep) ’ (44)
0 NoC 2

Po

and these asymptotic forms are interpolated smoothly in the
intermediate region. Hence, qualitatively D, behaves as a
constant term with a logarithmic correction at large Q2.

In Fig. 2, Dyy, D and the /\éCD / Q*-term of Eq. (42) are
plotted as functions of Agcp/Q% The Agep/Q*-term
naturally explains the powerlike behavior of Dyy, which
looks linear in this figure. In fact, the derivative of Dyy is
given by the Adcp/Q°-term dominantly in the range
A(22CD /0% 2 0.01. In Sec. IV we will compare Dyy with
the large-order perturbative prediction in the large-f,
approximation as well as with the known exact perturbative
series, where we will find good agreement.

The u-dependence of the 1/ Q*-term in Eq. (41) shows a
sensitivity to IR dynamics and can be interpreted in the
context of OPE. In OPE, the reduced Adler function is
expressed in terms of vacuum expectation values (VEVs) of
operators which are invariant under Lorentz and gauge
symmetries,

(0|G" Gy, |0)
Q4

where C| and Cgg represent the Wilson coefficients of the
operators 1 and G**Gy,, respectively. The VEV of
GGy, known as the local gluon condensate, has
mass-dimension four, and hence it is accompanied by
the factor 1/Q* The gluon condensate is determined by
IR dynamics, and it would have a dependence on the UV
cutoff scale u; of the low energy effective theory. We can
interpret that the IR cutoff dependence of Dy (Q%; ;) at
the order 1/Q% in Eq. (41) is a counterpart of the UV cutoff
dependence of the gluon condensate. In other words, if we
include the gluon condensate as determined by IR dynam-
ics, the leading y,-dependence of Dy, (Q% us) would be
canceled, and the 1/Q*-term is expected to be reduced to
order Agep/Q*.

In the OPE framework, Dyy including the Agcp/Q*-
term is identified with C; in Eq. (45) as we will clarify in
Sec. III. In this sense, the y -independent Agcy,/Q?-term
does not conflict with the structure of OPE, and what we
have found in this subsection is a nontrivial behavior of the
Wilson coefficient C; of the reduced Adler function. Due to
this power correction, we conclude that the Adler function
has the leading power dependence as AéCD / Q7 rather than

D(Q?%) = C, + Cgq +o o (45)

Abep/ Q* atlarge O as long as the large- approximation
is valid. (We discuss subtle issues on the Agcp/Q*-term
further in Secs. IIE and I F.)

Finally we comment on the analytic structure of the
Adler function. It is known that the Adler function in
perturbative QCD is an analytic function in the complex
Q?-plane, with a cut along the negative axis from Q? = 0
corresponding to the threshold of massless partons, and
with the 1/(f,log Q?) singularity at Q> = co dictated by
the RG equation. One can see that the expression of Dyy of
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Eq. (42) with Eq. (43) indeed satisfies these requirements.

The cut arises from the property of Wg'jz that it has an
imaginary part when the argument becomes negative due to
the relation (14). However, if we represent D, as in
Eq. (29), it cannot be regarded as an analytic function of
Q7 since it is given by the imaginary part of a function. The
representation (25) is defined only for real positive Q2,
whereas the representation (30) is defined in the entire
complex Q? plane. They are equivalent only if we limit Q>
to a real positive parameter. Thus, from the viewpoint of
analyticity, the latter representation turns out to be superior
to the former.

D. Example 2: Force between static
quark-antiquark pair

As another application of the method presented in
Sec. II B, we consider the short-distance behavior of the
force between a static quark-antiquark pair, which is
obtained from the derivative of the static QCD potential.
The static QCD potential has been studied extensively to
understand the nature of the force between the quark and
antiquark. At short distances perturbative QCD prediction
is accurate, whereas at large distances lattice QCD pre-
dictions are accurate. There is a significant overlap region
at intermediate distances, where both predictions agree
well. Presently the exact perturbative series are known up to
next-to-next-to-next-to-leading order [24-26]. In addition,
the low energy effective theory “potential nonrelativistic
QCD (pNRQCD)” is known, in which OPE can be
performed, and there is a good theoretical understanding
of the connection between UV and IR contributions.
Therefore the QCD potential (or the force) is an optimal
observable to examine our formulation.

The potential energy between the static quark Q and
antiquark O (QCD potential) in the large-/3, approximation
and with an IR cutoff is given by

&Pp o

Vs (r; = - elrr

ﬁo( ”f) /(27[)3 P2
P>py

— _l/mﬁch sin(v/zr)ag, (7). (46)

r)pe 2rnt
7

Here, the typical (energy) scale is ™', the inverse of the
distance between QQ. Comparing Eq. (46) with Eq. (13),
the weight of the (dimensionless) QCD potential 7V, (r) is
given by

wy(x) = =2C sin(v/x). (47)

Comparing its expansion and Eq. (12) we find that the first
IR renormalon of the QCD potential is located at u = 1/2.
The preweight in the massive gluon scheme is obtained
using Eq. (27) as

PHYSICAL REVIEW D 95, 114016 (2017)

Wi (2) = —CrelV. (48)

This function is utilized throughout the analyses in
Refs. [5,17,18] and turns out to correspond to the massive
gluon scheme. By using this preweight, V5 is expressed as

1 odr
Vy(ribg) = m [ CW (e (). (49)

4

Continuing the discussion given in Sec. II B, one obtains
the result for the QCD potential in the large-f, approxi-
mation [5,17,18]. However, in order to circumvent the first
IR renormalon at u = 1/2, which is relatively close to the
origin, we analyze the force between QQ, Fj4 (r*) =
—avy, (r)/dr 271"

The force between QQ with an IR cutoff is obtained by
differentiating Eq. (46) and Eq. (49) with respect to r,

apg, (1/r%5puy)
Fp () = =Cp—r 220 (50)
CF © dT
= —7/”? 2—mwF(Tr2)aﬂ0(r) (51)
(o ©dr (m
=——gim [ W e)ay, (). (52)
M.

-

where the weight wg(x) and the preweight Wl(pm)(z) are

given by12
we(x) = 2(sin v/x — /x cos v/x) (53)

W (2) = eVE(1 - i), (54)

In the following we deal with the dimensionless force (or
the F-scheme coupling) ay 4, defined by Eq. (50). The
expansion of the weight reads

2 1
wi(x) :§x3/2—ﬁx5/z+'~; (55)

hence, the first IR renormalon of ay 4 is indeed shifted to
uir = 3/2. The expansion of the preweight is given by

"The first IR renormalon only gives an uncertainty to the
constant (r-independent) part of the potential.

"The convergence of wy in UV region is not always sufficient
to derive some of the relations discussed in this paper. In such a
case, generally convergence in UV region is better with wy,, and
we can differentiate by r after the z-integral. The same result can
be obtained with w directly, if we regularize the integral measure
first as dr — dr7™¢ and take the limit ¢ — O after the z-integral
(we do not encounter divergences).
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FIG. 3. (Left) ap yv [Eq. (58)], ap [Eq. (59)], and the AéCD r2-term [Eq. (58)] as functions of AéCD 2. The number of flavors is set to
ny = 1. (Right) Derivatives of ap yy, aro and the r* Agep-term with respect to p* = Agepr”.

WEl(e) = 1424227+ (56)

From the general discussion we can extract the -
independent part ay yy (1/r%) from ag 5 (1/r*;uy) as

ap g, (1/r%5pp) = apuy(1/r%) + O(uyr?) - (57)

with
2 2y L 2T 5/3,2
apuv(1/r?) = apo(1/r )+ﬁ_0AQCDe re, (58)
©dt _(m 4
apo(1/r?) = / —TW;Jr) (zr?)Imag, (—7 + i0) + —”,
0o 7T Po
(59)

where ngmj(z) = e V(1 4 /z). The A}cpr*-term arises
from the z'-term of the preweight ngm) (z) [Eq. (56)]. This
power behavior corresponds to a linear potential in the
QCD potential. The asymptotic behaviors of ap, are
obtained via Eq. (32) as

4z 1 2 0

Bo Tlog (P AZ as r- —
OCF,O(I/I”Z) N 40 [Tog ( QCD)l . (60)

% as r- —-> oo

In Fig. 3, aruy, ar, and the Agcpr?-term of Eq. (58)
are plotted as functions of Agcp7*. Qualitatively they show

similar behaviors to those of the reduced Adler function
(Fig. 2), and the derivative of ay yy is dominated by the

Agepr?-term especially in the range Adepr* Z 0.02.
Comparisons with the large-order predictions in the

large-f3, approximation and with the known exact pertur-
bative series will be presented in Sec. IV.

In Eq. (57), the us-dependent term starts from order
r3. Let us discuss this us-dependence in the context of
OPE. The relevant low-energy effective theory is known
as pNRQCD, in which the QCD potential is expressed
in expansion in 7 (multipole expansion) as [28]

2miag [ A= maja— 2a
Vaoep(r) = Vs(r) = NCA dte™ ™V (7. E* ()7 - E*(0))

+O(r). (61)

Here, V¢(r) represents the Wilson coefficient for the
(leading) identity operator and has the meaning of the
energy of the QQ singlet state; AV denotes the energy
difference between the octet and singlet states; E°
denotes the color electric field. If we compute V()
in the large-B, approximation and with an explicit
cutoff in the gluon momentum, it is identified
with V (r; ,uf).13 It has been confirmed that the s -
dependence of Vi (r;us) at order pjr?, originating from
the u =3/2 renormalon, is canceled against the u -
dependence of the nonperturbative matrix element in the
second term of Eq. (61) [18,28]. Differentiating with
respect to r, the leading uy-dependence of
app,(1/r%5py) at order pir’ is also canceled by that
of the nonperturbative matrix element. We expect that a
similar cancellation between Dy (Q% us) and the local
gluon condensate would hold for the Adler function,
although the relevant low energy effective theory is as
yet unknown.

BSee also the discussion at the end of Sec. III C.
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E. Scheme dependence by choice of preweight Wy

As we already pointed out, the preweight Wy introduced
in Sec. II B is not unique, and we clarify its effect in this
subsection. We first show that the dependences of X, and
the power corrections in Xy on the choice of Wy almost
cancel in the sum (Xyy). We then discuss its relevance in
determination of a nonperturbative matrix element in OPE.
Finally we discuss why the power corrections in Xyy can
vary from the viewpoint of the asymptotic property of the
perturbative series and how it is related to variation of Wy.

The preweight Wy which satisfies Eq. (14) is not unique
since its real part on the positive real axis is not restricted.
Although the original u,-dependent integral (15) is inde-
pendent of the choice of Wy, the us-independent part Xy
generally depends on the choice of Wy. Namely, Xyy is a
functional of Wy. We can regard that Xy determined by a
different Wy corresponds to different scheme choices. We
first discuss the scheme dependence of XUV

Consider two different preweights Wg( (i =1, 2) both
satisfying the relation (14). Correspondingly we obtain
Xyy in different schemes via Egs. (24) and (25),

(i)

5/3A2  \ n
Yy e (e SZQCD> (62)

Xy = X(0%) +

O<n<up ﬂO
with
10 —im [ LW () a0+ D (@)
= ay (1 ,
c,mr ¥ )" Po

where Wg)(z) = anocy)z”. The difference between X(()l)
and Xéz) is given by

2 1 dr 2 T 1 T
Wi | () - (G et

2 _ ()
4 _
pArle —6) (64)
Po
In the integral along C, we assumed that it is justified to
expand Wy(z) for sufficiently small |z|. Accordingly, we

assume that 6W(z) = Wﬁ?) (z) - Wg(n(z) is regular at any
point z € R and 0 < zy < € for Je > 0 (sufficiently close
to the origin).'* Namely, 5W(z) can be expanded in a Taylor
series about z = z; with a nonzero radius of convergence,

“The reason to exclude 7o = 0 is to cope with the possible
existence of log z or 1/z. (See footnote 3.) Note that even if the
small-z expansion of Wy(z) includes log z or 1/z we expect that
the expansion has a domain of convergence close to the origin;
see the examples in Secs. II C and IID.
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2) :ZA,,(ZO)(Z -70)", zp€R and 0<zy<e.

n>0

(65)

Since IméW = 0 on the positive real axis, (i) the integral
along C, in Eq. (64) is equal to that along C,, and
(i) A,(zo) € R, hence {6W(z)}* =6W(z*) is satisfied
along the path C, if Q> u7. Then, by exploiting the
same procedure as in Eq. (19), the first term of Eq. (64) can

be reduced to
(Qz) % ()

)

=Im f&w(y) a, (7)

c, T
— _47.[5w<e 3 AQCD)
Po 0
= _4_7[ ( () _ (1>) eS/3AQCD (66)
ﬂ() >0 ! " Q2

It means that the difference of X (Qz) is given by"

2 1
X5(0%) - %, (0%
4r )y (€ Aaen "
= (i’ —cn )| —=—) . (67)
" o
Furthermore, according to Eq. (62) we obtain the difference
of XS)V as
2 1
X{(QY) = X (0Y)
_ 475((:,(12) - c,(f)) <65/3A2QCD>”
n>uR ﬁ() Q2
= O((Agcp/Q)™). (68)

Thus, the differences of the power corrections (1/Q?)"
with 0 <n <upr in Eq. (62) are canceled by the
change of X((Q?). As a result, the difference of Xy in
different schemes is smaller than the last included term
of the (Agcp/ Q%) -terms in Xyy(Q?). Namely, the y-
independent part Xyy has a minor dependence on the
scheme, which is the same order as an uncertainty induced
by the first IR renormalon, and we confirm validity of our
result of Xyy taking into account the scheme dependence.

It is worth emphasizing that the scheme dependence
discussed above is not a renormalon uncertainty. In fact the

Note that the right-hand side of Eq (67)is O(AéCD /0?), and
the asymptotic form of X,(Q?) at Q> — oo shown in Eq. (26) is
not modified.
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scheme dependence can be removed by including higher
orders of the 1/Q? expansion. Let us clarify this point.
Suppose we consider X, (0% us) up to 1/(Q*)" in differ-

ent schemes,
i k
0)-Ym [ (5
I P 0

X ag (7).(i=1,2) (69)

X(Q% ) jry = X,

2 1 .

We show that X;U) —X;U)h/(gz)n is order (Agcp/Q%)" .

(The previous argument already proves this for the
case n = upg — 1.)

Note that since Imc,(c) is fixed by Eq. (14), there is no

scheme dependence, hence c,(c2> - ,(() € R. This enables

reducing the difference of the second term of Eq. (69) as

k
4 B N2
:ﬁ_,o, <ch>_cgl>><_Q2QCD). (70)
k=1

Combining with Eq. (67), we see that X/gzo) - X/g:)) Ly =
O((Agcp/©Q%)"*"). Such a property follows from the fact
that the original u,-dependent integral (15) is independent
of the choice of Wy. Therefore the scheme dependence is
gradually eliminated by including higher order terms
in 1/0%.

In the case of the Adler function, this fact is important if
we want to determine the local gluon condensate using
our formulation, for instance, by comparing with an
evaluation of D(Q?) by a lattice calculation. The OPE
up to the O(1/Q*) terms (in the large-f, approximation) is
written as

() GaﬂuG 0
= Dy, (0% 1)1 00 + Cocuy) (o] Q4 210) (k)

+ O(Aben/Q°)- (71)

D(Q%)

We expect that u,-dependences up to 1/ Q*-terms are
canceled. According to the above discussion, the variation
due to the scheme difference (choice of Wy) satisfies

(01G™ Gy, |0) (uy)
Q4

) — O(Aep/ 0.
(12)

Ascheme <CGG (/’tf)

Thus, the error becomes higher order than the term which
we want to determine. [Note that C;; would also include
power corrections ~(Agcp/0%)".]

PHYSICAL REVIEW D 95, 114016 (2017)

Although we have shown that 6W changes Xy only at
subleading order, it alters X, and the power corrections
(Adep/ Q)" with n < ug individually; see Egs. (62) and
(67). In the rest of this subsection, we discuss the reason
why the coefficients of the (Agcp/Q%)"-terms can be
altered.

We can show that X,(Q?) has the same asymptotic
expansion in a; as the perturbative series of X (Q?),

x0(@) - X aitn = 0)((2) () = Ot

(73)

as a,(Q) = 0. (We sketch the proof in Appendix C.)
This shows that, although X,(Q?) is expansible with
respect to a,(Q), it is not expansible with respect to
A2QCD/Q2 since a,(Q )~1/10g(Q2/AQCD) Reflecting this
fact, X;,(Q%py), which is related to X((Q?) by Eqgs. (22)
and (24), is also not expansible with respect to 1/Q?. This
is a short answer to the question why the (Agcp/Q%)"-
terms in X4, (Q% uys) is not uniquely determined.

Note that X (0% us) — Xo(Q?) is expansible in 1/Q?
and the (Agcp/Q?)"-terms are regarded as a part of this
series expansion. In this respect Eq. (73) is essential since it
ensures that the singularities of X4 (Q%us) caused by
a,(Q)* cancel with those of —X,(Q?). Considering the fact
that X4 (Q%puys) is a uniquely defined quantity, it is
deduced that the nonuniqueness of the (Agcp/Q?)"-terms
in Xj (0% uy) — Xo(Q?) is caused by the nonuniqueness of
Xo(Q?). In fact there are potentially many candidates of
X, (Q?) satisfying the property (73). A new X, constructed
by adding (Agcp/Q%)" to the old one also satisfies

Eq. (73), since all the series coefficients of Agcp/Q* =

e~/ (Poas(Q%) in o (Q?) are zero.

The nonuniqueness of X, stems from the nonuniqueness
of Wy in our method. The variation of Wy indeed changes
X, by powers of Ajcp/Q* as shown in Eq. (67) while
keeping the asymptotic expansion (73). This change of X,
is compensated by the change of the (Acp/Q?)"-terms as
shown below Eq. (70). Thus, the nonuniqueness of the
power corrections is also attributed to the nonuniqueness
of Wx.

At this stage, it suggests that it would be meaningless to
focus on the power corrections (AéCD /Q*)" alone in Xy
since it becomes definite only after we specify X, and only
the sum of them (Xyy) is a meaningful quantity.
Nevertheless, it turns out that if we limit schemes to a
reasonable class, the separation of Xyy into X, and
(Adcp/©Q?)"-terms becomes unique by a uniqueness of
Wy. We will elaborate on this point in the next subsection.
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F. Massive gluon scheme as the optimal scheme

We discuss which scheme is favored from the analytical
properties of Xyy(Q?) when we extend it to a function of
the complex variable AéCD / Q2. Since the power-correction
terms in Xyy are obviously analytic in the whole A&/ Q*-
plane, we mainly focus on the analytic structure of X,(Q?).

X, (Q?) in the massive gluon scheme can be expressed as
an analytic function of Agcp/Q? by Eq. (30), provided that
the integral path can be rotated. Using this expression we
can show that X, has a cut along the negative real axis
starting from the origin and is regular everywhere else in

the Agcp/Q*-plane. It follows from the fact that Wg( +)( ) in
this scheme can have cuts along the negative real axis
starting only from z=0 and z= -1 and is regular
everywhere else.'® Thus, Xo(Q?) in this scheme [hence,
Xuv(Q?)] satisfies the required analyticity in the complex
plane in terms of perturbative QCD, where the form of the
singularity at AéCD/ Q? =0 is dictated by the renormal-
ization-group equation. We have already seen this favorable
feature of the massive gluon scheme for the Adler function
in Sec. II C.

In a general scheme, i.e., for a general preweight, X (Q?)
can be expressed as an analytic function in the following
manner. We rewrite the preweight as the sum of Wg")(z),
which is the preweight in the massive gluon scheme, and
the rest as Wy(z) = Wﬁ(’”) (z) + 6Wx(z). We can follow the
same steps which led to Eq. (66) in the previous section,
assuming regularity of 6Wx(z) close to the origin, and
obtain, for sufficiently small [Agcp/Q7],

2 2y 47 S/QAZQCD
Xo(Q%) = (Q )+ |0Wx(0) =Wy | ——5— ] |
Po 0
(74)
where X (Q2) represents X in the massive gluon scheme.

Then we can enlarge the domain of this function by analytic
continuation to the entire AéCD / Q*-plane, except at singular
points of 6Wy(e>*Ad,/Q*) and the origin.

In this construction we can regard that the essential part
is determined by W§§”> (z), which already gives the required
analyticity of X,(Q?). 6W(z) is subsidiary in the sense
that it is not necessary in an essential way and should not
have additional singularities (except at Agcp/Q* = o) in
order not to violate the required analyticity of Xy(Q?) or

1This can be shown using the property that W\ () can have

singularities only at z = 0, 1, oo, where z = 7/Q% = (—1)/¢* =
1 corresponds to the threshold of the massive gluon plus massless
partons. In passing, since ZIngzn)(x) = wy(x) holds for x > 0,

wy(x) can have singularities only at x =0, 1, co along the
integral path of Eq. (29); c.f., Egs. (36) and (53).
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Xuv(Q?). Thus, we may say that the massive gluon scheme
is an optimal (or minimal) scheme in terms of the
analyticity, according to this construction of X,(Q?).

We would like to know how many preweights are
allowed as a reference scheme in the above construction
of Xo(Q?), or in other words, how many minimal schemes
exist. The integral expression (30) is used to define the
reference scheme, and this expression is realized naturally
by the following conditions on the preweight'”:

(0) Wx(z) is analytic in the upper half-plane , and
2ImWy (x) = wx(x) for x > 0. (75)

(1) ImWy(x) =0 forx<0. (76)

dz
(2) / — Wx(z) is absolutely convergentto O as R — oo,
cp 12

where Cr = {Re?|0 < 6 < r}. (77)
The preweight in the massive gluon scheme W (z)
satisfies the conditions (0) and (1). If it also satisfies the
condition (2),"® we can rotate the integration path to the
negative axis, and the expression (30) is obtained, namely,
Xyy satisfies the required analyticity.

We now prove that the above conditions (0)—(2) are
sufficient to determine the preweight uniquely. Let us
examine the difference of the preweights satisfying the
above conditions,

2 1
Wx(2) = Wy (2) = Wy (2). (78)
We can translate the conditions (0)—(2) into conditions for
oWy as

IméWy(x) =0 for x € R, (79)

d
/ —Z§WX( ) is absolutely convergentto 0 as R — oo.
Cp 72

(80)
Using Eq. (80), we can show
o dx 6W
Pr./ dOWx0) _ s (), (81)
o T X—X

where Pr. denotes the principal value integral and x’ is
assumed to be a real parameter. Taking the imaginary part
of this equation and using Eq. (79), we obtain

"The condition (0) is already included in the definition of a
general Wy(z). Note also that wy(0) = 0 due to our assumption
that X;o is IR finite [see Eq. (1)]; hence, the conditions (0)
and (l) are mutually conmstgrgt at x =

Bwe can show that Wy satlsﬁes the condition (2)
[wx(z)| = O(|z|*) for Ja < "0 for sufficiently large |z| in the
lower half-plane.
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ResWyx(x) =0 for x € R. (82)

One can see from Eq. (79) and Eq. (82) that 6Wy is
identically zero in the upper half-plane including the real
axis (by the identity theorem). Since we do not expect any
physical singularity to disturb enlargement of this analy-
ticity domain,'” we can conclude that Wy = 0 in the entire
complex plane,

6Wx(z) =0 forzeC. (83)

Hence, if W§;”> (z) in the massive gluon scheme satisfies the
condition (2), the allowed scheme is uniquely determined
to this one. This is the case in the Adler function and the
QCD potential, which are considered as explicit examples
in Secs. II C and II D.

This argument shows that through the above conditions
(0)—(2) we can realize the correct analytic structure of Xy
minimally and single out the preweight uniquely simulta-
neously. Therefore, due to the uniqueness of the preweight,
the separation of Xyy into X, and power corrections
~(Adcp/Q?)" is fixed,” and in particular the coefficient
of the (Acp/Q*)"-term is no longer changeable within the

minimal schemes. It should be regarded as a natural one
among all possibilities.

G. Behaviors of Xyy in massive gluon scheme

In the previous subsection, we pointed out that the
massive gluon scheme can be regarded as special among
all the schemes. We examine some details of the behaviors
of X,(Q?) and the power corrections in Xy, respectively,
in this scheme.

PNote that a singularity in 6Wy(z) except for a cut along the
negative real axis generates an additional singularity in X, 82)(Q2)

comopared with X(()l)(QZ) as one can see from Eq. (74).

“In the case of the force between 00, WFm does not satisfy
the condition (2), although the integral path C, can be rotated
owing to ay, (7) in apyy. In fact, it would be more general to
adopt the condition (2) instead of the condition (2) to define the
minimal schemes,

(2)' The integral of |Wy(z)/z|along Cgisbounded, i.e.,

/ dO|Wy(Re'®)| < AM for asufficiently large R,  (84)
Jo

since the rotation of the path C, is assured even in this case. For
simplicity we discussed with a stronger condition [(2)] above. If
we adopt the conditions (0), (1) and (2)’, SWx = (real const)
follows by a similar discussion. The constant shift of a preweight,
however, does not change X, (and obviously power corrections in
Xyv) as seen from Eq. (67). Hence, the main result still holds that
the separation into X, and (A(ZQCD /Q?)"-terms is unique under
these relaxed conditions.

In this subsection, we assume that Wﬂ}’” (z) has a good
convergence for large |z| in the upper half-plane including the real
axis.

PHYSICAL REVIEW D 95, 114016 (2017)

1. Behavior of X,(Q?)

As discussed below Eq. (73), the behavior of X,(Q?)
close to 1/Q? = 0 is determined by the fact that X,(Q?)
has the same asymptotic expansion as the perturbative
series of X(Q?); see Eq. (26). Namely the behavior of
Xo(Q?) at large Q? is almost insensitive to the scheme of

W;"). In contrast, the global behavior of X,(Q?) generally
depends on the scheme of Wy.

Let us examine some details about the massive gluon
scheme. The limit of X, in this scheme at 1/Q” — oo is
calculated from Eq. (32) as

Az 4
Xo(02) — ﬂ—Zvvg(j (0) = ﬁ—ZdO. (85)

Namely X,(Q?) approaches a constant for sufficiently
large 1/Q>.

In addition, if we regard X,(Q?) as a function of
072 = AéCD/ Q?, we can see that X, and its derivatives
have definite signs at least for the two examples which we
studied,

dx, &X,
020, ————<0 forX=D. ap.
d(Q™)

XOZO;

Py A

d(07?)
(86)

This property follows from W, (x) <0, W, (x) > 0 for
x >0, and

4

x:é :BO

d"X, _/wﬂ( T )ndﬂW;"ﬁ(x)
A7) Jo wt \Ajep dx"
-
*Tog2(re33 A2 2"
og*(te™ Agep) + 7

(87)

As a result, combined with the asymptotic forms at
1/Q? =0, 0, the behavior of each X, is determined
globally, and the form is simple (and similar), as seen
from Figs. 2 or 3.

2. Power corrections in Xyy

We show that the power corrections in Xyy can be
detected generally from the Borel transformation. Consider
an integral

_[®dz o m) e
Cx(v) = / W @, (8)

The expansion of W\ (z) for small-z is determined by the

singularities of Cx(v) as [c.f.,, Egs. (10) and (12)] (see
footnote 2)
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Wi (z) = =22 Res,_,[Cx(v

neVig

=> e, (89)

where Viz denotes a set of non-negative poles of Cy(v).
Using Eq. (27), Cx(v) is explicitly calculated in the
massive gluon scheme as

o dx o dz 77Vl
Cx(v) = /0 &) /0 =

1 e v /00 dx ()
=——— [ —wx(x)x
2sin(zv) Jo 27 X
1 emimv 1 cos(nv)
2sin (7v) x(v) 2sin (7v) x()
+3Bx(v), (90)

where we used Eq. (10). (The same equation was derived in
Ref. [12] in a different context.) By taking the imaginary
part of Cy(v), we can check that the usual Borel trans-
formation is obtained consistently with Eq. (14). The factor
{sin (zv)}~! in the real part of Eq. (90) generates additional
integer poles, that is, Ujg C Vir. In particular, the first few
terms of the expansion of ng") (z) stem from this factor and
reduce to real coefficients,

W) = 3 By(mz 4, (91)

0<n<up

where we use Eq. (89). Therefore, from Egs. (18), (23)
and (91), the coefficient of the (&’ I Agep/ Q%) -term of

Xyy is revealed to be 4zBx(n)/p,.
Incidentally, we have a similar relation for W§(’"+) in the
massive gluon scheme as

CX+(”)EA by
< [T [TE
o 27rWX o 2xx+z—i0

- - n(lzm)/ dxwX(x)x_u_l

:1 L (). (92)

2 sin (7u)

WY (2)z!

where we used Egs. (29) and (10).

Note that Eq. (91) does not mean that the power
corrections included in Xyy are related to perturbative
ambiguity, but it is purely a mathematical relation. We

explore the origin of the expansion of Wg(m)(z) and clarify

the meaning in terms of the method of expansion by regions
in the next section.
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III. POWER CORRECTIONS AND OPE IN LIGHT
OF EXPANSION BY REGIONS

In this section we investigate (i) the origin of the power
corrections in Xyy, and (ii) the relation of Xyy to Wilson
coefficients in OPE, by means of the method of expansion
by regions, or asymptotic expansion in limits of large
momentum [29-31]. With this method, we can identify
which momentum region contributes to each power cor-
rection. We show that the power corrections in Xy for the
Adler function Eq. (42) and the interquark force Eq. (58),
respectively, are genuine UV contributions. We also pro-
vide an effective field theoretical point of view of our
framework presented in the previous section.

We first discuss some general aspects (Sec. III A) and
subsequently clarify detailed features in the examples of the
Adler function (Sec. III B) and the interquark force or QCD
potential (Sec. III C). We also give a supplementary argu-
ment using an explicit cutoff (Sec. III D).

A. General aspects

We discuss two issues using the method of expansion by
regions. First we answer the question: “Which kinematical
regions do the power corrections (Ajcp/Q%)" in Xyy
originate from?” This question can be addressed accurately
in the massive gluon scheme. The motivation to ask this
question is as follows. Since the power corrections stem
from the contour C, in Eq. (16) close to the IR pole at
7 = 33 A}cp. one may suspect that the power corrections

originate from IR contributions, although we claim that
Xyv consists of UV contributions. (See Figs. 4.)

We can use the method of expansion by regions in the
following manner. The 1/Q? expansion of Xy (0% ) is
determined by the small-z expansion of W{"(z) in the
integral along C,, [Eq. (17)], and the (Agcp,/Q?)"-terms are
included as a part of it. Since the preweight in the massive

gluon scheme ngm) (7/Q?) is expressed as a usual Feynman

C, Cy
uv UV+IR? IR?
Uv Uv uv

FIG. 4. Deformed integral path introduced in Sec. II B and
different interpretations on relevant kinematical regions. [Upper
figure] The pole contribution is interpreted to be an IR effect.
[Bottom figure] The pole contribution is interpreted to be a UV
effect, which is shown to be legitimate for the Adler function and
the force between QQ.
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integral with a massive gluon propagator [Eq. (28)], we can
use the expansion-by-regions technique to decompose the

small-(z/Q?) expansion of Wg;”) (z/Q?) into contributions
from different kinematical regions.

In this analysis, we interpret the integral variable p €
(0,0) in Eq. (28) as the gluon loop momentum, even
though it was originally restricted to be higher than the
factorization scale uy. The reason is stated as follows.

Xy, (Q% py) can be written as

2
X5, (0% 1y) Z/ v’

2
P> 27p

wx(p?/Q)ay, (p?).  (93)

where p denotes the gluon loop momentum. We can rewrite
this integral as

o d
X, (0% ) = / ’

o 2 )
I

x / ® d(p )y (p2/ NS — )

) 00 2 2 2
= Im ﬂao(r)/ d(p )W)Z((P /Q)
w2 T o 2 p —1—1i0

—tm( [ = [ ) S0 o).

(94)
Hence, the integral variable p of W&M can be regarded as
the gluon loop momentum, whereas = can be regarded as an
auxiliary parameter. Since we discuss the expansion of
W\ (z/0?) along 7 € C, where |7| < #; < 0%, 7 plays
the role of a soft scale, whereas Q plays the role of a hard
scale in the analysis by expansion by regions.

If the first few terms of the power corrections are found
to originate from UV region, we can further deduce that the
integral along C, [= X,(Q?) —4zrcy/By] also originates
(dominantly) from UV region for large Q. This is because,
Xy, (0% uy) consists of UV contributions (given by an
integral over 7 > y%), and the C,-integral is given by the
difference of X and the C,-integral. (We discuss this issue
further in Sec. IIID.)

Secondly the correspondence between X4 (0% us) in
our formulation and OPE in a low-energy effective field
theory can be examined using expansion by regions of
Feynman diagrams [29].* Since an early stage of the
development of the expansion-by-regions method, its
relation to effective field theory and OPE has been explored

“This part of the analysis deals with X at each order of
perturbation and has only a minor connection with the separation
of X, into X, and power corrections or with the scheme
dependence.

PHYSICAL REVIEW D 95, 114016 (2017)

[29-31]. The hard contributions in the context of expansion
by regions are interpreted as Wilson coefficients in the
effective field theory, and the soft contributions are inter-
preted as perturbative quantum corrections due to low-
energy degrees of freedom. In other words, the low-energy
effective Lagrangian is constructed by including hard
contributions in terms of effective vertices whereas the
soft contributions are left to be evaluated. This procedure is
what is usually called “integrating out hard modes.” In
OPE, the correspondence between hard contributions and
Wilson coefficients are unchanged, while quantum correc-
tions due to low-energy degrees of freedom are evaluated as
nonperturbative matrix elements.

X/;O(Qz; py) introduced in Eq. (13) can also be inter-
preted as a Wilson coefficient in OPE, as we will see in
explicit examples below. However, the way to separate UV
and IR effects is different from that of expansion by regions
in the following sense: (i) The Wilson coefficient of our
method is regularized by a cutoff, whereas the one in the
expansion-by-regions method is formulated in dimensional
regularization. (ii) We separate the UV contribution from
the IR contribution by only one measure, i.e., scale of the
gluon momentum. On the other hand, the method of
expansion by regions distinguishes momentum regions
with a finer resolution in general.

In the case that the relevant low-energy effective field
theory is known, the expansion-by-regions technique is a
standard tool to systematically compute Wilson coefficients
to high orders. Detailed connection between the full theory
and the effective field theory can be made, including
correspondence of relevant kinematical regions. Since
X5, (0% py) in our formulation is well-defined in the full
theory, using this information it is possible to establish a
firm connection between X (0% /) and Wilson coeffi-
cients, as we have briefly reviewed in Sec. I D.

On the other hand, in the case that the relevant effective
field theory is unknown, we can still infer its structure using
the expansion by regions, as well as factorize UV and IR
contributions to the Wilson coefficients and nonperturba-
tive matrix elements, respectively, in dimensional regulari-
zation. Changing to a cutoff regularization would be less
founded, since consistent treatment is not guaranteed by an
effective field theory framework. Furthermore, since the
analysis necessarily becomes diagram-based, correspon-
dence with operators, gauge symmetry, or the equation of
motion is not transparent.

We can clarify these two issues in explicit computations
for the observables which we studied already, the Adler
function and the QCD force (or the QCD potential).

B. Example 1: Adler function

Using the expansion-by-region method we first compute
the small-z expansion of the preweight W™ (z) for the
Adler function in the massive gluon scheme. In this way we
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WéH’H)A @ W a @V W 6" @‘l
WéH’H)B ’\@/ W(S . @‘l W(s S)B ’@‘l
WéS’S)C @

FIG. 5. Different kinematical regions contributing to the Adler
function in light of expansion by regions. A blue (red) line
represents that a hard (soft) momentum ~Q(~/7) is flowing
through the line.

can identify which kinematical region the power correction
in Eq. (42) originate from.

The kinematical regions contributing to the expansion of
ng (z) are shown in Fig. 5, in which blue (red) lines carry
hard (soft) momenta. Note that, since the external momen-
tum is hard, a hard momentum should flow through
between the two external vertices. There is no contribution
from the kinematical region, in which the gluon is hard and
some of the quark lines are soft.” Hence, we divide the
kinematical regions into three regions, (H, H), (S, H) and
(S, S), as shown in the figure,

Wy (2) = Wi @) + w2 + wi¥z),  (95)

where WE) H = WE) HA —I—WE) B etc.
For instance, the *“all-hard” contribution W;D AT

computed as follows. Recall that W§)>

gluon scheme is given as [c.f., Eq. (28)]

Wi (z/ Q%) = A B

Wg{’H) is obtained by expanding the gluon propagator in z as

M (2/0?) = /

where it is understood that wy, is regularized by dimensional
regularization.24 Apart from the gluon propagator, the
integrand does not receive any modification since the
soft-scale parameter 7z is contained only in the factor
1/(p* — 7). The result of the computation reads

in the massive

d(p?) 1
2 p*-<

wp(p?/Q%).  (96)

wp(p?/0%). (97)

“This is because in such a region the soft scale integral
becomes scaleless, since the soft scale 7 is included only in the
gluon propagator, and if gluon is hard, after expansion in 7 no soft
scale remains in the denominator.

It means that one should not use Eq. (36) for wp. One
expands the integrand before performing any momentum integral
while keeping ¢ # 0.

PHYSICAL REVIEW D 95, 114016 (2017)

W (z)
1 8-6¢; €] 4-1283)
=N 42708 _le J FTRses
CCF|:47T+ 3z Z+< 27 N 6m ¢
[€?] 5[e7'] 265
+< 6r | 127 +216n+36 2+0()]. (%)

Divergent terms are denoted as

€_1:1— 0 % €
e mlg(ﬂ )+o<>, (99)

~ai e ()]

+2 {yE —log (4’;?2)]2 +O(e),  (100)

where the space-time dimension is denoted as d = 4 — 2¢;
yg = 0.57721... is the Euler constant and y is the renorm-
alization scale. If we neglect log(Q?/u?), these terms
correspond to those which are subtracted in the usual MS
renormalization.

The results of the other two contributions are
given by

1] 6 -31 3i
WE)S B = N.C; [( ogz+ m) 2
(%4
] l+log(=2),
* ( 3r 3z e
log*(~z)  log(-z) 91
)
* 61 * 3r 54z o),
(101)
-2
(S.8) ] 4log(-z)—1 _,
w =NcC -
o (z) c F[( 61 127 7]
log?(~z) +log(— z) 35
3n or 12 " 2161)"
o). (102)
where we use a short-hand notation log(—z) = logz — iz.

Although Wg{m, WS'H) and WS’S) individually contain
the divergent terms (99), (100), which are u-dependent,
these terms cancel altogether in the sum (95).25

“Cancellation of divergent terms is a common feature in the
method of expansion by regions and signifies that the result is
independent of the factorization scale separating the soft and hard
regions.
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The first two terms of the all-hard contribution [Eq. (98)]
are exactly equal to the first two terms (cy and c;) of the

expansion of W\"")(z) [Eq. (40)], while the order z° and z!

terms are absent in WS”“) (z) and Wg,s) (z). Therefore we

conclude that the pu-independent Agcp/Q*-term of

Dyvy(Q?) belongs to the hard contribution. Consequently
the dominant part of D (Q?) is also UV origin, according to
the argument in the previous subsection. Thus, the lower
figure of Figs. 4 corresponds to the proper interpretation up
to order 1/Q>

In Sec. IIB we found that the imaginary part of the
expansion coefficients of Wg(m)(z) results in u,-dependent
terms, and the yu,-dependent terms are related to IR con-
tributions. The expansion-by-regions analysis shows that
the imaginary part of the expansion coefficients stems only
from the region where the gluon has a soft-scale momen-
tum. This is because the only source of the imaginary part is

the integral of 1/(p? — 7). Indeed W(DS’H)(Z) and W<DS’S)(Z)

include an imaginary part. Oppositely, the all-hard con-

tribution WgI’H) (z) in Eq. (98) is explicitly real. In fact,
(HH)

Eq. (97) shows that W,
orders in 1/Q? expansion.

In Ref. [12], using the method of a massive gluon, terms
which are nonanalytic in the gluon mass 4 are identified as
IR contributions, while terms which are powerlike in 1 as
UV contributions. Written in the form of Eq. (97), the
source of the imaginary part can be attributed to the same
origin. For example, a nonanalytic term log A*> generates an
imaginary part when we substitute 4> = —z with 7 > 0.

In Table I we summarize the contribution from each
momentum region to the expansion coefficients of Wg") (z)
up to 0(13) [Egs. (98), (101), (102)]. The first two

coefficients of W (z) originate only from the all-hard
region [(H,H) region], and there is no divergence up to this
order. From the order z2, the contribution from each region
diverges and only the sum is finite. In the case that each
contribution is divergent, it is u-dependent, and the sep-
aration between different regions becomes somewhat
vague. The contribution from the soft-gluon and hard-
quark region [(S,H) region] starts at order z2, and the region
where the gluon is soft and some of the quarks are soft [(S,
S) region] contributes from order z>. As already mentioned
above, (S,H) and (S,S) contributions have a nonzero
imaginary part. Notably these regions also contribute to
the real part, although the values are divergent and become
definite only after they are added to the (H,H) contribu-
tions. Namely, from the order 72, the real part of the
expansion coefficients receive mixed contributions from
the hard and soft momentum regions of the gluon. This is in
contrast to the imaginary part, to which only the soft-gluon-
momentum regions can contribute.

It is worth emphasizing that the soft contributions are not
always pure imaginary, i.e., not all of the real part of the

(z) is Euclidean and real to all

PHYSICAL REVIEW D 95, 114016 (2017)

TABLE I. Expansion coefficients c, of the contribution from
(m)

each kinematical region to W)"(z) up to order z* [Egs. (98),
(101), (102)]. The symbol “R” stands for a nonzero real value,
while “C” represents a complex value with a nonzero imaginary
part. A blank represents that the coefficient is zero.

Co ¢ 2 C3
H.H
W(D )(Z) R R R R
S.H
W (2) ¢ c
S.S
Wi (2) c

expansion coefficients originate from the hard-gluon
region.”® Thus, the method of expansion by regions has
a finer resolution than our analysis given in Sec. [ B and
detects soft contributions even in the real part of ¢, for
n > ug. From this detailed examination, we confirm
consistency27 of our treatment of Xyy in Sec. I B, where
we classify as the genuine UV contribution the
(Adep/ Q*)'-terms for 0 < n < up.

Let us turn to examine OPE of the Adler function using
the method of expansion by regions. The relevant low-
energy effective field theory is not known. Applying the
expansion-by-regions method to the diagrams for the
reduced Adler function, they are decomposed into con-
tributions from different kinematical regions as shown in
Fig. 6. For instance, the all-hard region can be identified
with the Wilson coefficient for the identity operator, as
illustrated in the figure. Similarly, a contribution involving
soft gluons/quarks can be identified with the matrix
element of a higher-dimensional local operator times its
Wilson coefficient. This includes the local gluon conden-
sate at order 1/Q*

Using this correspondence, we argue that Dyy(Q?) is
almost identified with the Wilson coefficient of the
identity operator C;(Q% uy). Recall that Dyy(Q?) is a
yts-independent part of Dy (Q%; u), which is diagrammati-
cally given by Fig. 1 with an effective coupling ay (7) and
an IR cutoff y/ of the gluon momentum. As inferred from
the above correspondence, in general the all-hard region of
a diagram, where all the momenta are larger than the cutoff
scale yy, contributes to Cl(Qz;yf), since the entire loop
integral shrinks to a local vertex. In contrast a contribution
which includes soft modes becomes a nonperturbative
matrix element times its Wilson coefficient.

Dy (0% uy) is slightly different from C; in that it
includes both hard and soft quarks. The leading

*In particular, the soft contribution may give analytic terms
(i.e. terms without logarithms). This point was not correctly
addressed in Ref. [12], Sec. II. 4.

There may occur a contradiction to the result of Sec. II B in
exceptional cases where the leading soft-gluon contribution
happens to be pure real. This may happen if the leading IR
renormalon vanishes accidentally.
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FIG. 6. Relations between contributions to the Adler function
evaluated with the expansion-by-regions method (colored graphs;
c.f. Fig. 5) and those with a (would-be) low-energy effective field
theory (black graphs). The corresponding terms in OPE are also
shown.

contribution involving soft quarks reduces to the matrix
element of the dimension six operator (gy"*q)(gy,q) made
only of the quark field.® (Note that the dimension-three
operator gq is absent since it appears together with the
quark mass.) Thus, we obtain

Dy (0% uy) = C1(Q% ) + O(uG/Q°).  (103)

As aresult, the us-independent part Dyy is identified with
C1(Q% py) up to O(u;/Q*) via Eq. (41),

C (Q2§Hf) - DUV(QZ) = O(M?@/Q“)- (104)

In particular, the power correction Agcp/Q* in Dyy is a

part of the Wilson coefficient C.

We note that the matrix element of the dimension-four
operator gPq vanishes by the equation of motion Hg = 0
Essentially the same effect is observed in the computation

of the expansion coefficient of Wg") in the first part of this

subsection. WE)S‘S) represents contributions in which the

gluon and some of the quarks have soft momenta (see
Fig. 5). By explicit computation we confirm that each of

¥ Although one may be worried that the cutoff regularization
would break gauge invariance and generate gauge noninvariant
operators, in fact our regularization method preserves gauge
invariance.

*Contributions from the soft region of the fermion bubble
subgraphs are also suppressed.

PHYSICAL REVIEW D 95, 114016 (2017)

Wg’S)A and W% is nonzero at 0(z2).*° while they
cancel in the sum, resulting in the z? term as the leading
term in their sum.”’ This property is considered to be a
consequence of gauge invariance and the equation of
motion. Since each diagram does not respect gauge
invariance, the soft contribution from each diagram at
order 1/Q* is nonvanishing, but the sum of all the diagrams
should vanish at this order. The first gauge invariant
operator involving soft quarks is dimension six, as already
noted.

C. Example 2: QCD potential

The UV contribution to the force between the static
quark and antiquark ay gy (1/7%) and its power behavior
are analyzed in Sec. II D, where it is shown that the yu -
independent r2-term exists in apyy(1/r?). This result is
obtained from the one-dimensional integral representation
of the QCD potential (46), and we investigate the QCD
potential in this subsection.

The preweight Wg,m)(z) of the QCD potential in the
massive gluon scheme is given in Eq. (48) and computed
from the integration

m 2Cp [ si
W&/ )(Z) — _ F[) Sln(pr)p dp, (105)

n p*—1—i0

where z = 7r?. We investigate the kinematical regions

which contribute to the small-z expansion of WE, '(2).
To apply the method of expansion by regions, we introduce
a variant of the dimensional regularization by replacing
dp — p~*dp in Eq. (105). While in the conventional
expansion-by-regions method [31] only Feynman integrals
in momentum space are considered, Eq. (105) contains
both coordinate-space variable () and momentum-space
variable (p). To our knowledge, there is no systematic
argument concerning validity of the expansion-by-regions
method in such cases. Nevertheless in the current specific
example, we can show validity of the method using the
argument in Ref. [32].

Similarly to Eq. (97), the contribution from the hard
region p ~ 1/r is given as

2C X
Wi () = - 20y / Caersin(pr)pdp (106)

zl(=2n — 2¢)

2Cy ,,
z ;Z I'n+e+ 1)I(—n—c¢)

(107)

**Note that W<s SIE— by massless quark loop, see Fig. 6.

The same cancellatlon mechanism cannot be seen explicitly
in the computation of the massless diagrams in Fig. 6, since the
soft-scale integrals are scaleless and vanish for all the diagrams.
On the other hand, in Fig. 5 the gluon mass 7 acts as the soft scale.
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= —Crcos(y/z) + Ole), (108)

while the contribution from the soft region p ~ /7 is
given as

() 2CF o] (_1);1 /oo <pr)2n+l .
Wi (z) = - d
v (@) z ;(2n+1)! 0 pz—r—iop P

(109)
LS8 N V9 RSy (S | PV N Wy
o ;(2n+1)! F( 2>F(2 )

(110)
= —iCpsin(y/z) + O(e). (111)

Both hard and soft contributions are finite as € — 0 to all
orders in the small-z expansion.

The hard and soft contributions separate into the real and
imaginary part, respectively. There is no mixed contribution
from both regions to each expansion coefficient, so that the
correspondence is simpler than the Adler function. Namely,
each coefficient is either real or pure imaginary, where the
former originates from the hard region and the latter from
the soft region. The real and imaginary coefficients appear
alternately. The order z' term of cos(,/z) gives the Agcp
term of ayyy [linear potential in Vcp(r)], which indeed
stems from the hard region.

As already explained in Sec. II D, the effective field
theory for the QCD potential is known as pPNRQCD, and its
construction can be understood using the integration-by-
regions method. According to this understanding,
pPNRQCD for the static QCD potential is constructed by
integrating out the so-called “hard” and “soft” scales. The
remaining active dynamical degrees of freedom are those in
the “ultrasoft” scale and the Agcp scale.*

Computations in the framework of pNRQCD is system-
atically organized using the multipole expansion, which
gives an OPE in this effective field theory. A number of
Wilson coefficients in pNRQCD have been computed using
the method of expansion by regions. Wilson coefficients
are usually regularized by dimensional regularization, and
they contain divergences in general. It is possible to change
to another regularization scheme within pNRQCD frame-
work, and the physical predictions should not depend on
the regularization scheme. Hence, through such a route,
computation of the QCD potential in our framework can be
related to that of pNRQCD or full QCD without any
ambiguity.

*There is no contribution from the “potential region” in the
computation of the static QCD potential due to the fact that the
static propagator originating from the Wilson line does not
include the kinetic energy term ~p2/(2m).
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In dimensional regularization and in strict expansion in
a,, the leading Wilson coefficient V¢(r) in Eq. (61)
coincides with Vcp(r) to all orders in a;, since contri-
butions from the ultrasoft and Agcp scales (e.g., the second
term) evaluate to scaleless integrals at each order of «, in
the expansion-by-regions method. In OPE the ultrasoft and
Aqcp contributions turn into nonperturbative matrix ele-
ments. If we adopt the large-f, approximation and the
cutoff in the gluon momentum, V(r) coincides with
Vs, (r; i) in our formulation. At the same time, the leading
nonperturbative matrix element is estimated as order y}rz

in this regularization scheme. By examining the matching
between full QCD and pNRQCD in detail, we can check
that with this regularization Eq. (61) also achieves a
consistent separation of the UV (hard + soft) and IR
(ultrasoft + Agcp) contributions to the whole static QCD
potential Voep(r). Details of the computation can be
found, e.g., in Ref. [18].

D. Relevant kinematical region for Xyy:
Reconsideration with explicit cutoff

We revisit the issue: “Which kinematical regions does
Xyy originate from?” In this subsection, we address this
point by introducing an explicit cutoff scale to separate the
kinematical regions, instead of the method of expansion by
regions. The use of the explicit cutoff enables us to
understand more directly that the contribution from the
integral along C, originates from UV regions. In the
following, X is assumed to be the reduced Adler function
or the (dimensionless) QCD potential.

We divide Wg}" in Eq. (28) into two parts as follows:

WY (2) = W3/ Q%) + Wiz 3/0%)  (112)
with
. 2 2702
Wa(e/ @0 = [TEITE) g
Hy
2 2 2 2
W(z/ Q% uj/ Q%) z/oﬂ" d(zi)wxlg_/TQ L

which consist of UV and IR modes, respectively.
We first show that the contribution from the integral
along C,,

dv m)( 7
Im/CaEWX <@>(X/}0(7)

® dr m)y[ T .
= A E X+ <Q2> Ima/}o(—T + 10)
dr 47Z'd0 1

o By Tog (07 N3e)

~ —

as 0% > Ajep.

(115)
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originates dominantly from WY [see Eq. (26) for its
asymptotic form]. For this purpose it is sufficient to show
that the part given through W5 gives subdominant con-
tribution. Then we investigate

dr T
/0 e Ve (Q2 Q?

where W3, (z;47/0%) = Wx(~=z;47/Q%). In the compu-
tation of W, , there exists some constant ¢ > 0 such that

)Imaﬂo(—r +1i0), (116)

wx(p?/ Q)] < &(p?/ Q%) (117)

for sufficiently large Q%. Using Eq. (117), we obtain
s (T4 4 d(p?) wx(p*/ @)
Wil 5232 )| = 2
0 0* o 2t p*+r
C ﬂf

pt 2 ,Ll]zc UR
Hy 7T o

where we use the fact that the integrand becomes a
monotonically increasing function of p for wup > 1/2.
Therefore, it is shown that Eq. (116) is suppressed by

(1/0%)"=,

(118)

o0 (' qu .
/0 ﬂ—iW?@ <é’Q_];> Imaﬁo(—r +i0) = (9((1/Q2)"m),

(119)

which is subdominant compared with the asymptotic
behavior shown in Eq. (115). Thus, we conclude that
the contribution from the integral along C, originates from
UV (large p) regions for large Q.

We also show that the first few terms of the expansion of
W&m)(z) is dominantly reproduced by that of Wi. In this
case, we use the relation |7| < ,uj% which is satisfied along

C,. The expansion of WY is obtained by expanding the
gluon propagator in Eq (113),

0

Wi (z:u3/0%) =) cllzr, (120)
n=0
where c}! is given as a function of y7/0?,
o
cH :/ —xwx(x)x_”_l. (121)
i/ Q? 2r

In the following, we focus on the case n < u, which
gives the power correction ~(A{cp/Q%)" in Xyy. We
rewrite ci as
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H_ . w3/ Q dx
C}’l - Cn 2
0 T

Here we use ¢, = [ (dx/2x)wy(x)x™"! as shown in
Egs. (91) and (10). Then a similar evaluation as Eq. (118)

wy (x)x~"= 1 (122)

leads that the difference between c, and c!! satisfies
H| < ¢ 2 2\ur—n 123
|Cn Cn| — Zﬂ(uIR _ I’l) (:uf/Q ) ’ ( )

thereby, ¢!l ~ ¢, for n < uk for large Q. Namely, we have
confirmed that the power corrections in Xy;y originate from
UV (large p) regions.

From the above discussion we conclude that each term in
Xyv (the integral along C, and the first few terms of the
integral along C,) originates from UV regions.

We finally note that the method presented in this
subsection has a drawback that it is difficult to discuss
cfl for n > uk systematically in contrast to the method of
expansion by regions. The difference of these two methods
is clear in the case of the QCD potential. In the method of
expansion by regions, the hard (soft) contributions are
identified with the real (imaginary) part of the preweight to
all orders in z [Egs. (108) and (111)]. However, it is difficult
to reach the same result within the method with the explicit
cutoff. The method presented here has an advantage to
examine the contribution from the integral along C,,.

IV. RELATION BETWEEN Xyy AND
PERTURBATIVE SERIES AT LARGE ORDERS

In this section we show that Xy (Q?) derived in Sec. II B
is reproduced from the perturbative series in the large-f,
approximation at large orders. Based on this observation
we confirm that our result Xyy is consistent with the
renormalon uncertainty and the OPE framework.

The smallest term of the perturbative series of Eq. (3) is
given at around n, = 4zu/(foay); hence, it is natural to
regard the truncated series at this order X, (Q?) as an
optimal prediction within perturbation theory. The uncer-
tainty of the prediction X, (Q%) is of the order of
(Adep/Q%)“®. By taking a small a,(u), we can examine
the large order perturbative series keeping the perturbative
series finite, since n, becomes large in this case. The
truncated series X, is written as

n*—l
/ 2" < )a‘y(ﬂ)
n=0
5/3
" [ oisﬂ(//l)log<ﬂ f; ﬂ
B o dt T 1—-L™
—A Z_MWX @ a,(u) 1—L

X, (0 =

(124)
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a?(u)) in the large-f, approximation and Xyy, for the reduced Adler function X = D

(left) and the F-scheme coupling X = af (right). We choose a, (1) = 0.0243 corresponding to n, = 24 (n, = 18) for X = D (X = ay)

and ug = 2 (ug = 3/2). Optimal perturbative prediction X

o dt T 1—-L"
=1 — — o, 12
m (" (et T 029
where we define
2.5/3
L :ﬂoas(/’t) 10g<:u € ) (126)
4z T

Since the integrand of Eq. (125) is regular along the
integral path (positive real axis), we can deform the path

into Cy,
T 1-L"™

X,,*(Qz):lm/ Ty
T
1

=t [ ()t 2

dr T —L"
I — Wyl —  —— 127
wim [ S (et 75 (27)
The first term is a part of X,(Q?) since
1
as(/")ﬁ:aﬁo(f)' (128)

In the second term of Eq. (127), the integrand has a pole at
7 = 93 Agcp. We decompose the integral into the princi-
ple value part and the delta function part, after taking the
integral path again on the positive axis,

(129)

¥ S
ag, () = Pr.ag (1) — ﬁ—ﬂ’l’l5(7 — &P N]yep).

0

Thus, we obtain

n, lies close to Xyy in each figure. We set ny = 1.

d
X, (0%) =1Im A a ;TZ Wy <Q12> ay, ()

A 5/3[\2
+——ReWy ( QQCD>
Po o

+Pr. /0 ;TTWX<QTZ>aﬁO(T)(-Lm), (130)

where we used Eq. (14) for the third term. By expanding
ReWy in Adcp/Q% we can see that X, (Q*) indeed
includes Xyy(Q?); see Egs. (21) and (23).

In Fig. 7, we show Xyy and perturbative series
truncated at various orders for X =D and ap. (The
truncated order is denoted as n.) One can see that
the truncated perturbative series gradually approaches
to Xyy for n <n, as we raise n. For n 2 n, it starts
to deviate from Xyy.

The difference between X, and Xyy is given by

5/3 A2
X,,(0%) = Xyy(Q?) —;—Z {ReWX (ﬂ)

65/3A(2)CD n
-2 al—pm
0<n<u

+Pr. /0 wzd—;wx (é) ay, (1) (=L").
(131)

For large n,, this difference has a power behavior AéCD /0?
whose order is the same as the renormalon uncertainty,

3The difference Eq. (131) can contain a polynomial of
log (Q*/Adcp)» loglog (Q*/Agcp). -, as a factor in front of
the (Ajcp/Q*)“r-term. Therefore, strictly speaking, the differ-
ence is 0(Ajep/Q%)“* ™ with 0 <V 5 < 1.
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FIG. 8. Difference between truncated perturbative series X,

and Xyy for the reduced Adler function (left) and ay (right). The
red (blue) lines correspond to the input a, (1) = 0.1013(0.0243).
The truncation orders n, are shown in the plots. We set ny = 1.

X, (0%) = Xyy(Q*) ~ O((AéCD/QZ)WR)- (132)

More precisely, we can detect the n,-dependence of
Eq. (131) analytically as

b, [eA2 .
X,.(Q%) - Xuy(Q%) ~ logn, x —L (—F) :
Po 0
(133)
where b, is an expansion coefficient of wy; c.f., Eq. (12).

(We give a derivation in Appendix D.) In Fig. 8 we check
Egs. (132) and (133) numerically for X = D and ap. We
confirm the predicted behavior, although n, = 18 for ay is
not large enough to reach the asymptotic forms.

We can draw some conclusions from Eq. (132). First, it
shows that the power behaviors in Xyy are not a new
contribution which should be added to the perturbative
prediction, rather they are already contained in the pertur-
bative series. Secondly, using Eq. (132) and the assumption
of the renormalon uncertainty, we can extract the following
relation between Xy and the true value X(Q?):

X(Q%) [X(Q%) - X,,.(Q%)]

+ [Xn*(Qz) - XUV(Qz)]
~ O((Abep/Q%)"™).

_XUV(Qz) =

(134)

This result is consistent with the interpretation that
Xuv(Q?) is the leading order contribution to X(Q?) in
the OPE framework and the deviation from X(Q?) starts
from the next-to-leading order in OPE and has the same
order of magnitude as the nonperturbative matrix element
of the order of (Agcp/Q%)"®.

We end this section with comparisons between the
known exact perturbative series and those obtained under
the large-f, approximation to make sure how far we can
trust the result based on the large-f, approximation.
Figures 9 and 10 show that the large-f, approximation
reproduces qualitatively the same behavior of the exact
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series of D(Q?) [33,34] and ay(1/r2) [24-26].%" Therefore
we expect that the results in this paper (especially Fig. 7)
grasp an essential feature of QCD.

V. EXAMPLE OF TIMELIKE QUANTITY:
R-RATIO IN e*e~ COLLISION

So far we have considered Euclidean quantities. In this
section we investigate how our method can be extended to
the case of the R-ratio in e*e™ collision as an example of a
timelike quantity. We obtain a result which can be regarded
as an extension of the massive gluon scheme.

In calculating the R-ratio, we set Q> < 0 (i.e. ¢g*> > 0)
and take the imaginary part of T1(Q?) according to the
optical theorem. The difference from Euclidean quantities
is that we do not have a one-dimensional integral repre-
sentation of the R-ratio in the form of Eq. (4). Thus, we
cannot directly apply the method developed for Euclidean
quantities in Sec. II, and a reconsideration is needed. Our
strategy is to start from a Euclidean quantity and to use the
analytic continuation to derive the result for the R-ratio.

We consider the reduced vacuum polarization and
reduced R-ratio, in which a,-independent terms are sub-
tracted. Let us start from the reduced vacuum polarization™
in the Buclid region Q% > 0 with an IR cutoff scale,

M (@5k) = [ 5] wn(g)enter 0139

where we denote by [dz/(2z7)], a regularized integral
measure which makes the integral UV finite. We do not
need to specify a way of regularization since the R-ratio,
which we are interested in, is finite, and thus the final result
should be independent of the regularization method. The
weight is given as [10]

W) = (001 = x) + wa(0(x = 1) (136)

with

wi(x) =A[2(1 =logx)x+ (5—3logx)x?
+2(1+x)*{Liy(—x) +logxlog(1 +x)}],  (137)

*There is an IR divergence in the exact series of a from the
three-loop order, and the divergence cancels with contributions
from the ultrasoft scale. We do not include the contribution of the
ultrasoft scale because this contribution cannot be regarded as a
part of the Wilson coefficient. Instead, we simply subtract the
term proportional to (1/e 4 4(2log(u/p) + log(4x) — yg)) in
momentum space in dimensional regularization.

*Note that we define the reduced vacuum polarization (135)
such that its perturbative expansion does not contain the
ad-part 12 ¢ (log (Q?/u?) + C), which is included in the renor-
malized I1(Q?) of Eq. (34) Correspondingly, the reduced
R-ratio is different by Nce for each quark flavor compared
with the R-ratio.
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FIG. 9. Perturbative series of D(Q?): exact result for the nonsinglet component (left) and large-f, approximation (right). N¥LO line
represents the sum of the series up to O(at™). The input is taken as a,(u) = 0.2, and we set n; = 1.
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FIG. 10. Perturbative series of az(1/r?). The parameters are the same as those of Fig. 9.

wo(x) = A[5 4+ 3logx + 2(1 + log x)x
+2(1 4 x)*{Lip(=x~") = log xlog(1 + x~1)}],
(138)

where A = —N-Cr/(127%). The small-x and large-x
behaviors of wy(x) are given, respectively, by

(3 11-61
wi(x) =A Exz—%x*g—ki (x< 1),
(139)
3 11+ 6logxl
wn<x>:A§—%— ] (x> 1).  (140)
X

We can see that the first IR renormalon is located at
u = 2 for the reduced vacuum polarization. The constant

o = 3A/2 in Eq. (140) stems from the UV renormalon at
u = 0, which is the source of the UV divergence of the
integral (135). As shown in Eqgs. (137) and (138), wy has
different analytic forms for x < 1 and x > 1; hence, we
separate the integral path at 7 = Q7 in order to represent
Eq. (135) as an analytic function of Q2,

Q* dr

I, (Q% py) _/;42 e (é)a/io(f)
G
o dr T
()
o |
—i—/Q2 {2—;] cwaﬁo(r).

We also separate the divergent part which needs a
regularization.

(141)
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Now we replace Q% — |Q?|e'” in Eq. (141) and derive an
expression for the timelike region. The integral path of the
first term in Eq. (141) can be deformed after replacing
0% — |Q2|e’ as

0’ dr T ( -0’ dr T )
ot -~ N “r .
p ZﬂTWI 0 ag, (1) | 27TTW1 |Q2\€ ag,(t

dr T
—/C %Wl <|Q2|€ ’”)aﬁo(r).
(142)

@21en
|
|

[T
X _ C
W T Qe ‘ Lv\
— /- .

) \
PN

The second term in Eq. (141) changes as

Jo e (@) et

- dt T i)
q/_922_’”[%(@6 ) Cm}aﬂ(’(f)’ (143)

4
1

where the end point of the integral path is changed from
oo to —oo using the fact that the contribution from Cp
[defined in Eq. (77)] vanishes as R — oo. The third term
becomes

/Q:o [ﬁ ooty () = = /0 e { % ] )
+/ca {261_;] Cotp () (144)

Collecting these terms, we obtain an expression for the
reduced vacuum polarization in the timelike region,
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. o
1 (0% ) = [ o () = e (= + )

2mt q

o |2ne rcooaﬂo T

dr T .
— — —e . 145
[ s (Ge)anto. a9

By taking the imaginary part, we obtain the reduced
R-ratio,

Ry, (g% pyp) = 127:(2%)ImHﬂO(|Q2|ei”;yf). (146)
q

Setting 3 ez = 1 for simplicity, we have

o dr
Ry (g% 1y) :A —

T

T
WR+ <?> Imaﬁo (—T + lO)

Ty, <i2> ay, (7).

c, Tt q

—Im (147)

We regard Wy and Wy, as preweights (although we do not
have a weight), which are defined as
Wr(z) = 6a{w;(z¢™") — co}

(lz] < 1), (148)

Wry(2) = 67{wn(z) — ¢} (149)
In taking the imaginary part of the second term of Eq. (145)
to obtain Eq. (147), we used

dr dr
2Im /C,, {2—7”'] rcwaﬁo (z) =Im . 2 G, (7).

since the imaginary part of the integrand is zero on the
positive real axis. The way to evaluate the second term of
Eq. (147), i.e., the integral along C,, is no longer different
from the case of Euclidean quantities (see the discussion in
Sec. II B). The expansion of Wg(z) in z reads

(150)

3 3 11 —-6logz+ 6in
WR(Z):NCcF E—EZZ—F 187 Z3+"'

(151)

As aresult, we can separate the y-dependence of Eq. (147)
and obtain a y -independent part Ryy as

Ry, (q%: 1) = Ruv(q®) + O(uG/q%),  (152)

where
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FIG. 1. Ryy [Eq. (153)], Ry [Eq. (154)] and the Ad,cp/q*-term
[Eq. (153)] as functions of Agcp/q”.

3NCpe'BAE
Rov(q?) = Rol@?) = —=F— 7= (153)
©dr T . 3NCr
Ro(q) :A 2 R+ <?>Imaﬂo(_f+lo)+T.
(154)

The p¢-dependence appears first at order 1/ ¢°. In fact, the
first IR renormalon of the reduced R-ratio is known to be
located at ujg = 3. Therefore the result is consistent with
Eq. (22). However, note that the absence of u = 2 renor-
malon is considered to be an artifact of the large-f,
approximation, and there is a possibility that the result
[Egs. (152)—(154)] is not based on a good approximation of
the exact perturbative series. Hence, we are cautious in
applying our formulation to serious studies of the R-ratio at
the current stage. Even in such a case, nevertheless, we can
still learn some lessons from the above result.

First, the 1/g*-term is absent in Eq. (153) due to the
vanishing z'-term in Eq. (151).% As a result, we obtain a
very different behavior of the reduced R-ratio from those
of the reduced Adler function and af, as seen in Figs. 2, 3
and 11. This fact serves as an evidence that the power
corrections indeed play an important role in the determi-
nation of the behavior of a physical quantity and under-
standing of it.

Secondly, our formulation in this section has common
features to those of the Euclidean observables in the
massive gluon scheme. Let us clarify this point. Ryy
and R, [Eq. (153) and (154)] have the same expressions
as those of a Euclidean observable obtained in the massive
gluon scheme [Egs. (24) and (30)]. In addition, Wg,

% As discussed below Eq. (156), the absence of z'-term is
caused by Bg(1) = 0, and it further stems from the absence of a
u = 1 renormalon in the reduced Adler function. The absence of
the 1/g*-term is also understood easily by reversing the sign of
0% in Eq. (42).
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defined in Eq. (149) can be regarded to be “constructed
by massive gluon scheme.” To justify this statement, we can
use Eq. (92), which is satisfied by Wy, in the massive
gluon scheme. We regard it as an abstract property of the
massive gluon scheme, since this relation can be checked as
long as the observable has a Borel transformation. The
Borel transformation of the (reduced) R-ratio is known and
given in Appendix A. We can show that Wy, satisfies the
same relation as Eq. (92),

oodz e OOdZ e
|7 S we @z = on [T 5 ) - e

= 67TBH(”)|Q2>0

1
WBImH<u)|q2>O

= —;BR(”%

2sin(zu)

= —6rx
(155)

where®” we use the relation between the Borel trans-
formations with opposite signs of Q2 (or ¢?) [1,35] and
Eq. (146). Similarly, we confirm that Wy defined in
Eq. (148) is consistent with the massive gluon scheme,
since the expansion of Wy, is correctly reproduced from the
relation

—inv
e

Cr(v) = By (v) (156)

~ 2sin (zv)

and the inverted formula (91), which are also obtained in
the case of the massive gluon scheme.*® Namely, our
formulation used here can be regarded as a natural
extension of the massive gluon scheme developed in
Sec. II to the timelike quantity.

Thus, our formulation for the R-ratio derived by
analytic continuation is an extension of the massive
gluon scheme. This is natural if one recalls the dis-
cussion in Sec. II'F that the massive gluon scheme is
unique with respect to the analyticity of an observable.
Namely, if we adopt a formulation which has a good
property in terms of analyticity, the same result is likely
to be obtained.

VI. CONCLUSIONS AND DISCUSSION

In this paper we proposed a method to extract a
cutoff-independent UV contribution Xyy from a general

The integral of (wy;(z) — o)z “"! has the same form as that
of wr(z)z7*! as a function of u by analytic continuation.

*In Ref. [12], the functions Wg and Wy, were obtained by the
massive gluon method directly. Our method can be used to
circumvent complicated calculations.
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observable X(Q?) with an explicit IR cutoff, which is
free from IR renormalon ambiguities. Our method can
be applied in the deep Euclidean region (Q” > AéCD)
and in the large-f; approximation of perturbative
series to all orders. The UV contribution Xy consists
of the nonpowerlike (logarithmic) term X, and the
power correction terms ~(Agcp/Q?)" independent of
renormalons.

In our method we introduce an analytic function Wy,
which we call “preweight,” for the systematic treatment of
various observables. General properties of the preweight,
such as its scheme dependence, were investigated.
Separation of Xyy into X, and the power corrections (in
particular the coefficients of the power corrections)
depends on the scheme choice. Among various schemes,
the “massive gluon scheme,” in which Wy is given by a
dispersive integral, has particularly good analytical proper-
ties: (1) The analyticity of Xyy satisfies physical require-
ments within perturbative QCD; (2) Origins of the power
corrections can be analyzed accurately using the integra-
tion-by-regions method. We showed that the feature (1) is
satisfied optimally in the massive gluon scheme. We also
find that the analyticity of Xy and a unique scheme choice
follow simultaneously if the preweight satisfies certain
good analytical properties in the upper half-plane. This
discussion establishes natural coefficients of the power
corrections.

We can use the integration-by-regions method to
elucidate the relation between our formulation and
OPE. Using this relation we showed that Xy coincides
with the leading Wilson coefficient in the explicit
examples considered. Thus, we can systematically sub-
tract IR renormalons from the leading Wilson coefficient
in a cutoff-independent way. Furthermore, we used the
integration-by-regions method to clarify that the leading
power corrections in Xyy indeed originate from UV
regions.

As applications of our method, we investigated the
Adler function and the force between a static quark-
antiquark pair. For each observable, there is a nontrivial
power correction in Xyy, which originates from UV
region. In the context of OPE, this power correction is a
part of the Wilson coefficient of the leading identity
operator, and it is consistent with the structure of OPE.
Comparison with the exact perturbative series indicates
that the large-f3, approximation is fairly good; hence, it is
natural to regard that the power correction (in the massive
gluon scheme) is inherent in the perturbative series or the
UV contribution.

By now there exist ample numerical evidences for
validity of the large-f, approximation and IR renormalon
dominance hypothesis. Apart from these assumptions, we
tried to avoid including ad hoc assumptions into our
method. Thus, we believe that we provide a firm connection
between the OPE framework and our method for
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subtracting IR renormalons from Wilson coefficients.
Moreover, we consider that our method (in particular in
the massive gluon scheme) would be an optimal one within
the OPE framework, with respect to systematicity, analy-
ticity, and insensitivity to the factorization scale (IR cut-
off scale).

There remain two directions toward generalization of our
method: one is to extend it to timelike quantities, and the
other is to go beyond the large-f, approximation. For the
former, we presented an example (R-ratio) but the gener-
alization is left to be done. We do not have a clear guide to
the latter, since the improvement of the large-f, approxi-
mation in the ordinary perturbation theory is still incom-
plete, and we need a control up to any order in a,. We
speculate that the method of integration by regions may
play a key role to achieve the generalization since the
method enables more complicated scale separation than the
single scale separation which we adopted in this paper. In
addition, we note that a systematic improvement beyond
the large-f3, approximation has been achieved for the static
QCD potential and better consistency with OPE has been
observed [5,16], using the fact that the preweight takes a
simple form to all orders in «.
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APPENDIX A: BOREL TRANSFORMATIONS

We list formulas for the Borel transformations in
the large-f, approximation of the dimensionless observ-
ables analyzed in this paper (reduced Adler function,
F-scheme coupling defined from the static QCD force,
and R-ratio).

(=D&

B,, (1) = Sin}f:”) T2 - 2u), (A2)
Be(w) = 2 gy Ay

APPENDIX B: PREWEIGHT OF
ADLER FUNCTION

Another expression of the preweight of the reduced
Adler function in the massive gluon scheme is given by
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Wi (2) = Wi (=2)

T 36a(z+ 1)

NeCp

—4873Li, (1 — z) + 482°Liy (—z) + 247°Li, (
Z

1 1
—2473Liy (1 - -
) -2 (1-)

1> +2473Liy (1 — z) log(z)

1
— 7273Lis(1 — z) + 247°Lis(—z) — 482°Lis ( n
4

1 1
—4873Liy (1 — z) log(z + 1) — 127%Li, (1 - —) +367°Liy (1 — z) — 4812Li2( n l)
Z Z

—247%Lis (1 — 2%) — 24zLi5(1 — 2%) + 242°Liy (1 — 2%) + 242°Lis (1 — 22)

1 1
— 367Lis(—2) + 24zLi2( - ]> + 247Li; <1 - —> +72zLi5(1 = z) — 24zLi5(—2)
< Z

1 1
+ 487Li, ( - 1) + 12Li, (1 - —) + 12Lis(1 — z) + 12Lis(—z) — 24zLiy(1 — 2) log(z)
Z Z

+48zLiy(1 — z) log(z + 1) + 247°¢(3) + 47°2> + 47°10g*(z) + 82°log?(z + 1)
+122%10g%(2) + 122°log?(z + 1) — 4223 log(z) + 247 log(z) log(z + 1) — 47%z> log(z + 1)
+ 4273 log(z + 1) + 87272 — 662% + 67%10g?(z) — 247°log?(z + 1) — 4272 log(z)

+ 6627 log(z + 1) — 24z¢(3) — 4%z — 577 — 4zlog?(z) — 8zlog®(z + 1) + 12zlog?(z + 1)

+ 6log?(z) — 24zlog(z) log(z + 1) + 4n*zlog(z + 1) + 6zlog(z + 1) — 181log(z + 1) + 9.
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(B1)

This expression is suited for verifying its analytical proper-
ties, such as, that Wg)'m(z) has a branch cut along the
positive real axis from z = 0, and that Wg"ﬁ(z) takes a real
value for z > 0. [Note that the polylogarithm Li,(z) for
n > 2 has a branch cut along the positive real axis from
z = 1. In the above expression the arguments of Li,, are less
than or equal to one for z > 0.]

APPENDIX C: ASYMPTOTIC EXPANSION
OF X,(Q?)

We sketch how to derive the relation (73). Similarly to
Egs. (125)-(130), we can rewrite the truncated series X, as
follows:

|
where a, = a,(u), and

_h /
= 4ﬂlog (e3*u? /7). (C2)

In the first term of Eq. (Cl), we can rewrite
a,/(1 — a,f) = ag (7). In the second term, we can deform
the integral path back to the positive real axis and rewrite

n+1 on
al™e

—
1—a/

atlen Az
P " %M(S(T = ¢ Agen):

(C3)

where Pr. denotes the principal value.
Therefore, the difference between X,(Q?), given by
Eq. (25), and X,,(Q?) can be written as

5/3 A2
Xo(0Y) = X,(0%) = F {Co — ReWy (@)]
Po 0

pr /00 dr 7\ ot
) —wy|—5 )
o 2t “\Q*)1-af

(C4)

The first term is O(Aep/Q). This follows from
Wy(z) = >, c,2" and Imcy = wx(0) = 0. Hence, the first
term is smaller than O(a,(u)*) for an arbitrary positive
integer k [or it is zero in expansion in a,(p)]. It remains to
show that
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0 n+1 pn
pr. [ (é) = Olau). ()
It can be shown that the left-hand side is O(a,(1)"*!) in the
case that ["“wy(x) x [polynomial of log x] is absolutely
convergent as ¢t — oo and that the first IR renormalon is a
single pole. [Although the QCD potential/force does not
satisfy the first condition, we can show Eq. (C5) in another

way.] It is valid for general u, and in particular if we set
1 = Q, we obtain the relation (73).

APPENDIX D: EVALUATION OF
X, (Q%) - Xyv(Q?)

We examine the principal value integral appearing in

X, (0*) — Xyv(Q?) [the second term of Eq. (131)] for
large-n,.
dr T "
PI'.A 2_71'1'WX<Q2>aﬂO(T)L * (Dl)
Write L of Eq. (126) as a function of n,
A ﬂ s
L(AZ/ )= od (10g( 2/AQCD) +log(e5/3AéCD/1))
=1+ ﬁlog(z\z /7). (D2)
where A% = &5/ 3/\(2)0), then we get
B A2\ “r
L(A*/7)" — (—) as n, - . (D3)
T

If we use this form, the integral (D1) does not converge
around the region 7 ~0 due to the behavior wy(z/Q?) =
by, (t/ Q?)"® 4 ..., Therefore we should calculate keeping

n, finite for this part. It is useful to factorize the integral as
follows:

o B
Pr.A Z—;WX <Q12)aﬁo(7)l‘(/\2/7)"*

dx A? A%\ “®
= Pr./) - {wx <Q2 x> — by, <Q2x) o(1 —x)]

dr 1
— L(1/x)™

o dx A%\ Ur 4dr 1
Pr. —b — (1 —x ——L
e A 2mx (Q2x> (=) foe

(D4)

(1/x)™.
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The second term of Eq. (D4) is separated as

o dx A7\ 4z 1
PI'.A 2—71'xbuIR (—x) H(I—X)——{L(l/x)"*—l}

0? Pologx
© dx A2\ r 4z 1
Pr. —b — Ol —x)———
* rA 2mx (Q”) =25 fogx
47 A% U
= ﬂ_obuIR (@) F(”l*)

w dx AZ O\ U 4z 1
Pr. [ —b, (= O(1 —x)———. D5
* rA 27x ”'R<Q2x> 0= oge (DY)

Substituting this into Eq. (D4), we obtain

© dr T "
PI'.A 2—MW‘)(<@>(Z[;0(T)L *

} A2 UR
= () Fo

p © dx A2
+ r./o 2—M{W)(<@x>
A e 4z 1 (1)
b (o) "0 -t - e (O

(Do)

where we used the limit (D3) for the second term.
One can show that the second term of Eq. (D6) is
o((Agep/ Q)" ==%) (see footnote 33) although it is fairly

complicated. F(n

I dx 1 UuR 1 1y
F(n) = | 2L xum 1 log(~] 4 =1
o= [ e {1 ()
00 —t n,
NN
0o 27t n,

1 1
—E(logn*+log2+7g)+(’)<\/ﬁ.), (D7)

.) behaves for large-n, as

which gives the result Eq. (133).
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