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In the context of operator product expansion (OPE) and using the large-β0 approximation, we propose a
method to define Wilson coefficients free from uncertainties due to IR renormalons. We first introduce a
general observable XðQ2Þwith an explicit IR cutoff, and then we extract a genuine UV contribution XUV as
a cutoff-independent part. XUV includes power corrections ∼ðΛ2

QCD=Q
2Þn which are independent of

renormalons. Using the integration-by-regions method, we observe that XUV coincides with the leading
Wilson coefficient in OPE and also clarify that the power corrections originate from UV region. We
examine scheme dependence of XUV and single out a specific scheme favorable in terms of analytical
properties. Our method would be optimal with respect to systematicity, analyticity and stability. We test our
formulation with the examples of the Adler function, QCD force between QQ̄, and R-ratio in eþe−

collision.
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I. INTRODUCTION

In perturbative quantum field theory, perturbative series
are considered to be asymptotic and divergent. It suggests
that we have to truncate the series at finite order, and thus
perturbative calculation cannot reach arbitrary precision.
The idea of renormalon is a powerful tool to discuss an
inevitable uncertainty of perturbative calculation [1]. It is
related to divergent behaviors of perturbative series, and it
provides an estimate of the size of uncertainty in an optimal
prediction. In perturbative QCD, infrared (IR) renormalons
give essential uncertainties of order ðΛQCD=QÞn in the
prediction, where Q is a typical energy scale of an
observable X. IR renormalons stem from a low-energy
region of loop momenta in Feynman integrals. Such
uncertainties cannot be removed even by a resummation
or Borel summation. This indicates that another framework
is needed to overcome perturbative uncertainties induced
by IR renormalons.
Operator product expansion (OPE) is a framework, in

which the perturbative uncertainties can be eliminated
systematically. An OPE of an observable XðQ2Þ consists
of two components: Wilson coefficients and nonperturba-
tive matrix elements. In the Wilsonian picture, Wilson
coefficients are calculated from ultraviolet (UV) modes,
which are higher than a factorization scale μf, whereas
nonperturbative matrix elements are described by a

low-energy effective theory valid below the scale μf.
As a result, Wilson coefficients are free from uncertain-
ties induced by IR renormalons and can be calculated
unambiguously in perturbation theory (in principle).
Nonperturbative matrix elements are determined from IR
dynamics and show the same power dependence on
ΛQCD=Q as the uncertainties due to IR renormalons in
the original perturbative series of X. Note, however, that
each nonperturbative matrix element is no longer an
uncertainty but a definite quantity, at least conceptually.
Therefore, one can go beyond perturbation theory in the
OPE framework.
In OPE an observable XðQ2Þ is evaluated by expansion

in 1=Q2. To realize the concept of the Wilsonian picture, it
is natural to introduce a hard cutoff (μf) in momentum
space for factorizing UV and IR dynamics.1 Then the IR
renormalons are clearly eliminated from perturbative cal-
culation of Wilson coefficients, and the 1=Q2-expansion
(derivative expansion) in the low-energy effective theory is
well justified since the active modes satisfy k=Q ≤
μf=Q ≪ 1. It is, however, disadvantageous in practical
computations to introduce a hard cutoff due to the follow-
ing reasons: (1) One should include an additional scale μf
in computations, which complicates the computations
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1In conventional analyses of renormalons, a UV scale is
assumed to be much larger than any scale involved in the
calculation. In this paper, however, we use the terminology
“UV” for scales above the factorization scale μf in the context of
OPE. In particular Q is regarded as a UV scale.
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considerably. (2) Generally it generates apparent powerlike
strong dependences on μf of Wilson coefficients. Although
they should eventually cancel in physical predictions,
they can be sources of strong instability of the predictions
in practice [2]. (3) If we adopt a too naive cutoff
regularization scheme, it may violate gauge invariance.
For these reasons today it is customary to compute
perturbative series of Wilson coefficients in dimensional
regularization. This regularization circumvents the above
difficulties. Nevertheless, as a trade-off, the perturbative
series contain IR renormalon uncertainties since each
integral region extends from k ∼ 0 to infinity. Hence,
several ways to subtract the contributions of IR renorma-
lons have been explored [3–8].
In this paper we investigate the Wilson coefficient of the

leading operator in OPE (equals to the identity operator in
our explicit examples) and aim at removing a factorization
scale dependent part, which destabilizes the prediction. Our
basic tool is perturbation theory in the so-called large-β0
approximation [9–11]. We proceed in the following steps:
(i) We consider an observable XðQ2Þ with an IR cutoff μf.
(ii) We extract a μf-independent part XUV systematically,
which can be regarded as a genuine UV contribution.
(iii) We examine the scheme dependence of XUV. (iv) We
single out a favorable scheme in terms of analyticity
of XUV.
It turns out that XUV includes power corrections

∼ðΛ2
QCD=Q

2Þn which stem from UV physics and are totally
different from renormalon ambiguities. We will see that
(1) the power corrections are consistent with the framework
of OPE, and (2) the power corrections are crucial for
understanding the short-distance behavior of XðQ2Þ. This is
one of the main focuses of our discussion. Our method
would also be useful in extracting nonperturbative matrix
elements numerically, since the leading Wilson coefficient
which we construct does not contain intrinsic uncertainties
of the order of the matrix elements.
An analytical evaluation of a resummed perturbative

series in the large-β0 approximation was first performed in
Ref. [12]. In fact many building blocks in our method are
taken from their analysis. Their analysis starts from a
regularized Borel integral, which removes IR renormalons
by contour deformation. In their method a physical quantity
can be separated into the real part and imaginary part. The
real part is predicted reliably within perturbation theory,
whereas the imaginary part is regarded as a perturbative
uncertainty. The real part in their method and the cutoff
independent part in our method have the same expanded
form in 1=Q. We also use an idea in their analysis related
with the pseudo gluon mass to extract a cutoff independent
part in our method.
Characteristic features of our method can be stated as

follows. By starting from a well-defined integral with an
explicit cutoff, we give a solid basis to our method, thereby
the relation to OPE in the Wilsonian picture is made clear.

We also reinforce our argument using the integration-by-
regions (expansion-by-regions) method or comparison with
the perturbative series up to large orders. Furthermore, we
compare the perturbative series in the large-β0 approxima-
tion with the known exact perturbative series and confirm
consistency or validity of the approximation we use. These
analyses utilize theoretical developments which took place
after the analysis [12], and it is worthwhile to examine their
impact.
Related subjects have also been studied in

Refs. [9,10,13] (see also Refs. [14,15]). In particular,
existence of power corrections in the UV contribution to
observables has been discussed, e.g., using a resummation
of the perturbative series [12], and in certain model
calculations [14,15]. Our work can be regarded as an
extension of the analyses in Refs. [9,10,12] and more
directly of the formulation used in the analysis of the static
QCD potential [5,16–18]. Part of the analysis presented in
this paper, in particular its application to the Adler function,
have been reported in the letter article [19].
The important and new points provided in this paper

can be summarized as follows. First, we propose a
systematic method to construct a Wilson coefficient
(XUV) which is free from both renormalon ambiguities
and cutoff dependence. Such a quantity is important for
precise predictions as it gives a foundation for order-
by-order predictions in the OPE framework, and in
connection with this, it enables us to determine non-
perturbative matrix elements numerically. Secondly, we
support existence of power corrections ∼ðΛ2

QCD=Q
2Þn in

XUV which are independent of renormalons. Although
such a term is found in the literature, the existence was
vague since it (in particular, the coefficient of such a
term) is generally dependent on a resummation prescrip-
tion. Nevertheless, we clarify that a specific prescription
is uniquely favored from the viewpoint of analyticity in
our framework. Hence, a natural coefficient is specified
and it supports, for instance, the existence of a
Λ2
QCD=Q

2-term in the Adler function.
The outline of this paper is as follows. In Sec. II, we

explain our method to extract a cutoff independent part
from a general observable defined with an IR cutoff. We
also test our method with the Adler function and the force
between QQ̄. In Sec. III, we investigate the relation
between our method and OPE using the method of
integration by regions and also clarify which region gives
each power correction. In Sec. IV, we show that the power
corrections in XUV is included in the large-order perturba-
tive series. We also compare our results with known exact
perturbative series. Through Secs. II–IV only Euclidean
quantities are examined. In Sec. V, we study the R-ratio in
eþe− collision as an example of a timelike quantity, and
how our method can be applied. Conclusions and dis-
cussion are given in Sec. VI. Details of our analyses are
collected in Appendixes.
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II. EXTRACTION OF CUTOFF-INDEPENDENT
PART FROM UV CONTRIBUTIONS

In this section we present a method to extract a cutoff-
independent part from UV contributions to physical quan-
tities. In Sec. II A, basic notions are reviewed. In Sec. II B,
the method to extract a cutoff-independent part is explained.
As examples, we investigate the Adler function in Sec. II C
and the force between static quark and antiquark in Sec. II D.
In Sec. II E, we examine a scheme dependence inherent in
our method. In Sec. II F, we show that a specific scheme is
favored from analytical properties of the extracted UV part.
In Sec. II G, some detailed features of this specific scheme
are analyzed.

A. Definitions and basics (review)

We consider a dimensionless spacelike observable
XðQ2Þ whose leading order contribution is given by
one-gluon-exchange diagrams, such as the ones shown
in Fig. 1. For simplicity we focus on a quantity which
depends on a single scaleQ2 > 0 in perturbative QCD. All
the external and loop momenta are taken to be in the
Euclidean region, and we use the Euclidean metric
through Secs. II–IV, except where stated otherwise.
Explicitly we consider the case where the leading order
(LO) contribution to XðQ2Þ in perturbation theory can be
written in the form

XLOðQ2Þ ¼ αsðμÞ
Z

∞

0

dτ
2πτ

wX

�
τ

Q2

�
: ð1Þ

τ represents the modulus-squared of the Euclidean gluon
momentum p ðτ ¼ p2Þ, and integrations over all the other
loop momentum variables are included in wX. We call wX
as “weight function,” or simply “weight.” In this form wX

reduces to a function of the single variable τ=Q2. We
assume that the integral is finite both in IR (τ → 0) and
UV (τ → ∞) regions. The strong coupling constant αsðμÞ
is factored out, where μ is the renormalization scale. We
adopt the modified minimal-subtraction (MS) renormal-
ization scheme, in which αsðμÞ at the one-loop level is
given by

αsðμÞ ¼
4π

β0

1

log ðμ2=Λ2
QCDÞ

: ð2Þ

β0 ¼ 11 − 2nf=3 denotes the leading-order coefficient of
the beta function for nf active quark flavors.
We evaluate XðQ2Þ in the large-β0 approximation, which

can be obtained as follows. We consider insertions of a
chain of fermion bubbles into the gluon propagator of XLO.
Each bubble diagram produces a factor proportional to
αsðμÞnf logðμ2e−C=p2Þ, where C is a scheme dependent
constant and C ¼ −5=3 in the MS scheme. Taking the
infinite sum of the chains and replacing nf → nf − 33=2 ¼
−3β0=2, we obtain the all-order perturbative series in the
large-β0 approximation [9,10,20]

Xβ0ðQ2Þ ¼ αsðμÞ
X∞
n¼0

Z
∞

0

dτ
2πτ

wX

�
τ

Q2

�

×

�
β0αsðμÞ

4π
log

�
μ2e5=3

τ

��n
: ð3Þ

After resummation of the infinite series in Eq. (3), the
expression reduces to the same form as Eq. (1) with the
strong coupling replaced by an effective coupling αβ0ðτÞ,

Xresum
β0

ðQ2Þ ¼
Z

∞

0

dτ
2πτ

wX

�
τ

Q2

�
αβ0ðτÞ; ð4Þ

where

αβ0ðτÞ ¼
4π

β0

1

logðτe−5=3=Λ2
QCDÞ

: ð5Þ

The effective coupling αβ0ðτÞ has a pole at τ ¼ e5=3Λ2
QCD,

and the existence of this pole on the integral path makes the
integral ill-defined. The uncertainty which arises from this
pole in this approach is attributed to IR renormalons.
We can make use of the Borel transformation to under-

stand properties of the series in Eq. (3). The Borel trans-
form of Xβ0ðQ2Þ is defined as

B̂XðuÞ≡
X∞
n¼0

un

n!

Z
∞

0

dτ
2πτ

wX

�
τ

Q2

��
log

�
μ2e5=3

τ

��n

¼
Z

∞

0

dτ
2πτ

wX

�
τ

Q2

��
μ2e5=3

τ

�u

: ð6Þ

B̂XðuÞ plays the role of a generating function for the
coefficients of the original series dn after accelerating
convergence by 1=n!,

B̂XðuÞ ¼
X∞
n¼0

dn
n!

un; ð7Þ

FIG. 1. Leading-order diagrams which contribute to the re-
duced Adler function. The spiral line represents a gluon (with
momentum p), and the solid line represents a massless quark. The
external wavy line represents an insertion of the electromagnetic
current.
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Xβ0ðQ2Þ ¼ αsðμÞ
X∞
n¼0

dn

�
β0αsðμÞ

4π

�
n
: ð8Þ

In general, singularities of B̂XðuÞ characterize diverging
behaviors of the original series. Singularities of B̂XðuÞ
located on the positive real axis are called IR renormalons,
and those on the negative real axis are called UV renor-
malons. Due to assumed finiteness of the integral Eq. (1),
B̂XðuÞ is regular at u ¼ 0 [since Eq. (6) reduces to Eq. (1)].
The first IR renormalon at u ¼ uIR > 0, closest to the
origin, is known to give an inevitable uncertainty of
OððΛ2

QCD=Q
2ÞuIRÞ in perturbative prediction.

Since the renormalization scale dependence of B̂XðuÞ is
factorized in Eq. (6), we further define

BXðuÞ≡
�
Q2e−5=3

μ2

�u

B̂XðuÞ: ð9Þ

The weight wXðxÞ and the Borel transform BXðuÞ are
related by [10]

BXðuÞ ¼
Z

∞

0

dx
2π

wXðxÞx−u−1; ð10Þ

wXðxÞ ¼
1

i

Z
u0þi∞

u0−i∞
duBXðuÞxu; ð11Þ

where u0 is located between the first IR renormalon and
the first UV renormalon. In particular, the small-x behavior
of the weight wXðxÞ is detected from the singularities
of BXðuÞ explicitly as2

wXðxÞ ¼
X
n∈UIR

bnxn ¼ −2π
X
n∈UIR

Resu¼n½BXðuÞxu�; ð12Þ

where UIR denotes the set of IR renormalons
(UIR ¼ fuIR;…g).
As mentioned below Eq. (5), the expression Eq. (4) has

an ambiguity because of the pole of αβ0ðτÞ. In order to
avoid this ambiguity we introduce an IR cutoff scale μf to
the gluon momentum and eliminate contributions whose
momentum scales are smaller than μf [10],

Xβ0ðQ2; μfÞ≡
Z

∞

μ2f

dτ
2πτ

wX

�
τ

Q2

�
αβ0ðτÞ: ð13Þ

The factorization scale is chosen to satisfy e5=3Λ2
QCD ≪

μ2f ≪ Q2. Now that the integral path does not contain the

pole, the integral is well defined. We choose this well-
defined quantity as the starting point of our discussion. We
will see in explicit examples that Xβ0ðQ2; μfÞ corresponds
to the Wilson coefficient of the leading operator in OPE
(see Sec. III).
The subtraction of IR contributions also removes the IR

renormalons of Xβ0ðQ2Þ since they stem from the diver-
gence of the integral (10) around x ¼ 0 for some positive u.
One can verify this by restarting from Eq. (3) with the IR
cutoff μf and tracing the above discussion.

B. Extraction of cutoff-independent part: General case

The IR-subtracted quantity (13) is free from the ambi-
guity caused by IR renormalons. However, it has a cutoff
dependence. This dependence makes the prediction of
Eq. (13) unstable under the change of the artificial cutoff
scale μf (which should eventually be canceled in a physical
prediction). In this subsection we explain a method to
extract a cutoff-independent part from this quantity.
Our method consists of two steps: (i) Rewrite the weight

wXðxÞ by a new function WXðzÞ which is analytic in the
upper half-plane and is related to wXðxÞ by

2ImWXðxÞ ¼ wXðxÞ ðx ∈ R and x > 0Þ: ð14Þ

We call WX as “preweight.” (We will shortly present a
construction of WX.) (ii) Deform the integral path in the
complex τ-plane. The original integral path is decomposed
as follows:

Then Eq. (13) is rewritten as

Xβ0ðQ2; μfÞ ¼ Im
Z

∞

μ2f

dτ
πτ

WX

�
τ

Q2

�
αβ0ðτÞ ð15Þ

¼ Im
Z
Ca

dτ
πτ

WX

�
τ

Q2

�
αβ0ðτÞ

− Im
Z
Cb

dτ
πτ

WX

�
τ

Q2

�
αβ0ðτÞ: ð16Þ

The first term of Eq. (16) (integral along Ca) is clearly
independent of μf. Although the second term (integral
along Cb) is apparently μf-dependent, we can show that it
also includes a μf-independent part.
Since μ2f ≪ Q2 it would be justified to expand

WXðτ=Q2Þ about τ ¼ 0 along Cb. In this way the second
term of Eq. (16) is expressed in the large-Q2 expansion,

2In the case that BXðuÞ has a multiple pole in u, the
corresponding residue includes a polynomial of log x. For
simplicity we explain in the case where wX is expanded as a
Taylor series in x.
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Im
Z
Cb

dτ
πτ

WX

�
τ

Q2

�
αβ0ðτÞ ¼ Im

X
n≥0

cn

Z
Cb

dτ
πτ

�
τ

Q2

�
n
αβ0ðτÞ;

ð17Þ

with3

WXðzÞ ¼
X
n≥0

cnzn: ð18Þ

The μf-dependence of the integral of each term of Eq. (17)
can be classified into two cases.
Case (I): If the coefficient cn is real, the complex

conjugate of the integral along Cb becomes the integral
along C�

b since the integrand satisfies the relation
ffðzÞg� ¼ fðz�Þ. Hence, we obtain

Im
Z
Cb

dτ
πτ

cn

�
τ

Q2

�
n
αβ0ðτÞ

¼ 1

2i

�Z
Cb

−
Z
C�
b

�
dτ
πτ

cn

�
τ

Q2

�
n
αβ0ðτÞ

¼ 1

2πi

Z
CΛQCD

dτ
τ
cn

�
τ

Q2

�
n
αβ0ðτÞ

¼ −
4πcn
β0

�
e5=3Λ2

QCD

Q2

�n

; ð19Þ

where the integration contours C�
b and CΛQCD

are defined as
below.

Here we use the fact thatCb − C�
b becomes a closed contour

surrounding the pole at e5=3Λ2
QCD. Therefore the result is

μf-independent and can be calculated analytically by the
Cauchy theorem. We see that positive powers of ΛQCD

appear.
Case (II): If the coefficient cn has a nonzero imaginary

part, the above argument does not hold since the integrand
does not satisfy the relation ffðzÞg� ¼ fðz�Þ. In this case
μf-dependence remains in the result,

Im
Z
Cb

dτ
πτ

cn

�
τ

Q2

�
n
αβ0ðτÞ ¼ Oððμ2f=Q2ÞnÞ: ð20Þ

Thus, μf-independent part appears not only from the integral
along Ca but also from the integral along Cb depending on
whether the expansion coefficient cn is real or complex.
We can find whether the coefficient cn in Eq. (18) is

real or complex without knowing the concrete form of
WX. The insight is obtained using the expansions of wX
[Eq. (12)] and WX [Eq. (18)] and the relation between
them [Eq. (14)]. Schematically the relation can be
understood as follows:

n∉UIR ↔ 2Imcn ¼ bn ¼ 0 ↔ cn ∈ R ↔ case ðIÞ
n ∈ UIR ↔ 2Imcn ¼ bn ≠ 0 ↔ cn∉R ↔ case ðIIÞ:

ð21Þ

Namely, the knowledge on the IR renormalons of
Xβ0ðQ2Þ is sufficient to judge the μf-independence of
each term of Eq. (17).
From the above discussion, by taking the terms for

0 ≤ n < uIR of Eq. (17) and the first term of Eq. (16), we
obtain the general result for Xβ0ðQ2; μfÞ, where the
μf-independent part is separated:

Xβ0ðQ2; μfÞ ¼ XUVðQ2Þ þOððμ2f=Q2ÞuIRÞ: ð22Þ

We have extracted the μf-independent part XUV

given by

XUVðQ2Þ ¼ Im
Z
Ca

dτ
πτ

WX

�
τ

Q2

�
αβ0ðτÞ

þ
X

0≤n<uIR

4πcn
β0

�
e5=3Λ2

QCD

Q2

�n

: ð23Þ

This is one of the main results in this paper. XUVðQ2Þ is
insensitive to IR physics and can be regarded as a genuine
UV contribution.
We rewrite XUV as

XUVðQ2Þ ¼ X0ðQ2Þ þ
X

0<n<uIR

4πcn
β0

�
e5=3Λ2

QCD

Q2

�n

; ð24Þ

with

X0ðQ2Þ ¼ Im
Z
Ca

dτ
πτ

WX

�
τ

Q2

�
αβ0ðτÞ þ

4πc0
β0

: ð25Þ

The asymptotic form of X0 as Q2 → ∞ is given by

X0ðQ2Þ → d0αsðQÞ ¼ 4πd0
β0

1

logðQ2=Λ2
QCDÞ

: ð26Þ

This is the leading term of the asymptotic expansion
of X0 that will be derived in Eq. (73) below; it is also

3We assume that the small-z expansion ofWXðzÞ exists, where
the expansion can include half-integer powers of z or powers of
log z. For simplicity we explain in the case whereWX is expanded
as a Taylor series in z. In other cases, it only matters whether the
integrand satisfies the relation ffðzÞg� ¼ fðz�Þ or not in classi-
fying the cases (I) and (II) in the following discussion.
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a consequence of the renormalization-group (RG)
equation.4 This gives a more dominant contribution than
power behaviors for large Q2. Therefore XUVðQ2Þ indeed
gives a leading behavior of Xβ0ðQ2; μfÞ for large Q2. In
explicit examples in Secs. II C and II D, we will see that
Eq. (24) represents a separation of XUVðQ2Þ into a
logarithmic term5 (a nonpower correction term) X0 and
power correction terms ∼ðΛ2

QCD=Q
2Þn.

Up to this point we have considered a general
preweight WXðzÞ, which is analytic in the upper half-
plane and satisfies the relation (14). A preweight
which satisfies these conditions can be constructed
systematically as

WXðzÞ ¼
Z

∞

0

dx
2π

wXðxÞ
x − z − i0

; ð27Þ

due to the relation Imfðx − z − i0Þ−1g ¼ πδðx − zÞ for
z ∈ R. The integral in Eq. (27) always converges
according to our assumption on the convergence of
XLO. Note that there are potentially an infinite number
of candidates for the preweight WX since Eq. (14) does
not restrict its real part on the positive real axis. Thus,
WX defined by Eq. (27) represents just one possibility,
and we refer to the choice Eq. (27) as “massive gluon
scheme.” This is because this construction is equivalent
to replacing the gluon propagator to that with a
tachyonic mass m2 ¼ −τ in the leading order contribu-
tion Eq. (1),6

Z
∞

0

dðp2Þ
2π

wXðp2=Q2Þ
p2

→
Z

∞

0

dðp2Þ
2π

wXðp2=Q2Þ
p2 − τ − i0

¼ WðmÞ
X ðτ=Q2Þ; ð28Þ

where WðmÞ
X denotes the preweight in the massive gluon

scheme.
We note that one does not have to start from wX to obtain

WX in the massive gluon scheme. It is sufficient to use the
gluon propagator with a tachyonic mass in the usual loop
calculation, i.e., starting from the expression retaining all

the loop momentum integrals, since it coincides with the
right-hand side of Eq. (28). If we take this route, we rather
obtain the weight wX via the relation (14) after calculating
the preweight WX.
For later convenience, we introduce WXþ from the

preweight in the massive gluon scheme as

WðmÞ
XþðzÞ≡WðmÞ

X ð−zÞ ¼
Z

∞

0

dx
2π

wXðxÞ
xþ z − i0

: ð29Þ

This function is real for z > 0 since wXðxÞ is real
and xþ z > 0. Using this function, Eq. (25) can be
expressed as7

X0ðQ2Þ ¼
Z

∞

0

dτ
πτ

WðmÞ
Xþ

�
τ

Q2

�
Imαβ0ð−τ þ i0Þ þ 4πc0

β0
;

ð30Þ

Imαβ0ð−τ þ i0Þ ¼ 4π

β0

−π
log2ðτe−5=3=Λ2

QCDÞ þ π2
; ð31Þ

in the case that it is justified to deform the integral path
Ca to the straight line connecting τ ¼ 0 to −∞. This
expression has a good analytical property as we will see
later (end of Secs. II C and II F). In calculating the
asymptotic form of X0ðQ2Þ as Q2 → ∞ or Q2 → 0, the
following expression, obtained by partial integration, is
useful:

X0ðQ2Þ¼−
Z

∞

0

dx
π
WðmÞ0

Xþ ðxÞ4π
β0

ImloglogðQ2=ðe5=3Λ2
QCDÞÞ

−
Z

∞

0

dx
π
WðmÞ0

Xþ ðxÞ4π
β0

×tan−1
�

π

logðQ2=ðe5=3Λ2
QCDÞÞþ logx

�
: ð32Þ

C. Example 1: Adler function

As an application of the general framework presented in
the previous subsection, we examine large-Q2 behavior of
the Adler function [19]. This observable is suited to test our
method, in particular since OPE can be performed. The first
IR renormalon is located at uIR ¼ 2 [13], and thus the
renormalon uncertainty is fairly suppressed.
We study the reduced Adler function DðQ2Þ with one

massless quark, defined as

DðQ2Þ ¼ 4π2Q2
dΠðQ2Þ
dQ2

− 1; ð33Þ

4Since the leading logarithmic terms are proportional to
αsðμÞ½β0αsðμÞ logðQ=μÞ�n, they are incorporated correctly by
the large-β0 approximation. The modification of the perturbative
series by the IR cutoff is power-suppressed ∼ðμ2f=Q2Þk; hence,
the leading large-Q2 behavior is determined by the one-loop RG
equation.

5By a “logarithmic term” we mean a term which is closest to
ðQ2=Λ2

QCDÞP with P¼0 in the entire range 0<Q2<∞, if it is
comparedwith a single power dependence onQ2 (for an integerP);
see Figs. 2, 3 and Sec. II G.

6There exist many studies on low-energy QCD phenomena
(especially chiral symmetry breaking and confinement) in terms
of massive gluons [21–23]. We stress, however, that we study
perturbative (UV) contributions using WX.

7A quantity similar to XUV with this X0 is derived in Ref. [12]
using a regularized Borel integral. Our derivation is different from
theirs in that our result does not contain renormalon uncertainties
since we subtract IR modes in Eq. (13).
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where ΠðQ2Þ is a correlator8 of the quark current
JμðxÞ ¼ q̄ðxÞγμqðxÞ,

ðqμqν − gμνq2ÞΠðQ2Þ ¼ −i
Z

d4xe−iq·xh0jTJμðxÞJνðxÞj0i;

Q2 ¼ −q2 > 0: ð34Þ

We define the reduced Adler function in the large-β0
approximation with an IR cutoff as

Dβ0ðQ2; μfÞ ¼
Z

∞

μ2f

dτ
2πτ

wD

�
τ

Q2

�
αβ0ðτÞ: ð35Þ

The weight wDðxÞ is given by [10]

wDðxÞ ¼
NCCF

3

×

� ð7 − 4 log xÞx2 þ 4xð1þ xÞfLi2ð−xÞ þ log x log ð1þ xÞg ; x < 1

3þ 2 log xþ 4xð1þ log xÞ þ 4xð1þ xÞfLi2ð−x−1Þ − log x log ð1þ x−1Þg ; x > 1
; ð36Þ

where NC ¼ 3 is the number of colors and CF ¼ 4=3 is the Casimir operator of the fundamental representation. The first IR
renormalon is located at uIR ¼ 2, as can be seen from the expansion of wDðxÞ and Eq. (12),

wDðxÞ ¼ NCCFx2 þ � � � : ð37Þ

The preweight WðmÞ
D and WðmÞ

Dþ in the massive gluon scheme, obtained via Eq. (27) or by calculating the two-loop integral,
are given by

WðmÞ
D ðzÞ ¼ NCCF

12π
½3þ 16zðzþ 1ÞHðzÞ − 14z2 log ð−zÞ

þ 8zðzþ 1Þf− logð−zÞLi2ð−zÞ þ Li3ðzÞ þ Li3ð−zÞg
þ 4f2z2 þ 2zþ 1 − 4zðzþ 1Þ log ð1þ zÞgLi2ðzÞ
þ 2ð7z2 − 4z − 3Þ log ð1 − zÞ − 8ζ2zðzþ 1Þ log ð1þ zÞ
þ 4fz2 − zðzþ 1Þ logð1þ zÞglog2ð−zÞ
þ 2ð4ζ2 − 7ζ3Þz2 þ 2ð11 − 7ζ3Þz� ð38Þ

and

WðmÞ
DþðzÞ≡WðmÞ

D ð−zÞ: ð39Þ

Here, we define HðzÞ ¼ R
1
z dxx−1 log ð1þ xÞ log ð1 − xÞ; LinðzÞ ¼

P∞
k¼1

zk
kn denotes the polylogarithm; ζk ¼ ζðkÞ denotes

the Riemann zeta function.9 We present another expression of WðmÞ
D in Appendix B, which is lengthier but exhibits the

structure of the singularities more clearly. The first few terms of the small-z expansion of WðmÞ
D are given by10

WðmÞ
D ðzÞ ¼ NCCF

�
1

4π
þ 2ð4 − 3ζ3Þ

3π
zþ 10 − 12ζ3 − 3 log zþ 3iπ

6π
z2 þ � � �

�
: ð40Þ

Following the discussion in the general case, we can extract the μf-independent part DUV,

Dβ0ðQ2; μfÞ ¼ DUVðQ2Þ þOðμ4f=Q4Þ ð41Þ

with

10This series expansion was obtained in Ref. [12].

8Equation (34) uses the Minkowski metric, where q denotes the four-momentum of the vacuum polarization. In our letter [19] the sign
of the corresponding equation [Eq. (2)] was incorrect and should be reversed.

9HðzÞ can be expressed using the harmonic polylogarithms.
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DUVðQ2Þ ¼ D0ðQ2Þ þ 8ð4 − 3ζ3Þe5=3NCCF

3β0

Λ2
QCD

Q2
; ð42Þ

D0ðQ2Þ ¼
Z

∞

0

dτ
πτ

WðmÞ
Dþ

�
τ

Q2

�
Imαβ0ð−τ þ i0Þ þ NCCF

β0
:

ð43Þ

The Λ2
QCD=Q

2-term arises from the z1-term of the pre-
weightWDðzÞ; see Eq. (40). The large-z behavior ofWDðzÞ
allows rotation of the integration contour, and we write D0

as in Eq. (30). The asymptotic behaviors of D0ðQ2Þ are
obtained as

D0ðQ2Þ →
8<
:

NCCF
β0

1
log ðQ2=Λ2

QCDÞ
as Q2 → ∞

NCCF
β0

as Q2 → 0
; ð44Þ

and these asymptotic forms are interpolated smoothly in the
intermediate region. Hence, qualitatively D0 behaves as a
constant term with a logarithmic correction at large Q2.
In Fig. 2,DUV,D0 and theΛ2

QCD=Q
2-term of Eq. (42) are

plotted as functions of Λ2
QCD=Q

2. The Λ2
QCD=Q

2-term
naturally explains the powerlike behavior of DUV, which
looks linear in this figure. In fact, the derivative of DUV is
given by the Λ2

QCD=Q
2-term dominantly in the range

Λ2
QCD=Q

2 ≳ 0.01. In Sec. IV we will compare DUV with
the large-order perturbative prediction in the large-β0
approximation as well as with the known exact perturbative
series, where we will find good agreement.
The μf-dependence of the 1=Q4-term in Eq. (41) shows a

sensitivity to IR dynamics and can be interpreted in the
context of OPE. In OPE, the reduced Adler function is
expressed in terms of vacuum expectation values (VEVs) of
operators which are invariant under Lorentz and gauge
symmetries,

DðQ2Þ ¼ C1 þ CGG
h0jGaμνGa

μνj0i
Q4

þ � � � ; ð45Þ

where C1 and CGG represent the Wilson coefficients of the
operators 1 and GaμνGa

μν, respectively. The VEV of
GaμνGa

μν, known as the local gluon condensate, has
mass-dimension four, and hence it is accompanied by
the factor 1=Q4. The gluon condensate is determined by
IR dynamics, and it would have a dependence on the UV
cutoff scale μf of the low energy effective theory. We can
interpret that the IR cutoff dependence of Dβ0ðQ2; μfÞ at
the order 1=Q4 in Eq. (41) is a counterpart of the UV cutoff
dependence of the gluon condensate. In other words, if we
include the gluon condensate as determined by IR dynam-
ics, the leading μf-dependence of Dβ0ðQ2; μfÞ would be
canceled, and the 1=Q4-term is expected to be reduced to
order Λ4

QCD=Q
4.

In the OPE framework, DUV including the Λ2
QCD=Q

2-
term is identified with C1 in Eq. (45) as we will clarify in
Sec. III. In this sense, the μf-independent Λ2

QCD=Q
2-term

does not conflict with the structure of OPE, and what we
have found in this subsection is a nontrivial behavior of the
Wilson coefficient C1 of the reduced Adler function. Due to
this power correction, we conclude that the Adler function
has the leading power dependence as Λ2

QCD=Q
2 rather than

Λ4
QCD=Q

4 at large Q2 as long as the large-β0 approximation
is valid. (We discuss subtle issues on the Λ2

QCD=Q
2-term

further in Secs. II E and II F.)
Finally we comment on the analytic structure of the

Adler function. It is known that the Adler function in
perturbative QCD is an analytic function in the complex
Q2-plane, with a cut along the negative axis from Q2 ¼ 0
corresponding to the threshold of massless partons, and
with the 1=ðβ0 logQ2Þ singularity at Q2 ¼ ∞ dictated by
the RG equation. One can see that the expression ofDUV of

FIG. 2. (Left) DUV [Eq. (42)], D0 [Eq. (43)] and the Λ2
QCD=Q

2-term [Eq. (42)] as functions of Λ2
QCD=Q

2. (Right) Derivatives of DUV,
D0 and the Λ2

QCD=Q
2-term with respect to Q̂−2 ≡ Λ2

QCD=Q
2.
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Eq. (42) with Eq. (43) indeed satisfies these requirements.

The cut arises from the property of WðmÞ
Dþ that it has an

imaginary part when the argument becomes negative due to
the relation (14). However, if we represent D0 as in
Eq. (25), it cannot be regarded as an analytic function of
Q2 since it is given by the imaginary part of a function. The
representation (25) is defined only for real positive Q2,
whereas the representation (30) is defined in the entire
complex Q2 plane. They are equivalent only if we limit Q2

to a real positive parameter. Thus, from the viewpoint of
analyticity, the latter representation turns out to be superior
to the former.

D. Example 2: Force between static
quark-antiquark pair

As another application of the method presented in
Sec. II B, we consider the short-distance behavior of the
force between a static quark-antiquark pair, which is
obtained from the derivative of the static QCD potential.
The static QCD potential has been studied extensively to
understand the nature of the force between the quark and
antiquark. At short distances perturbative QCD prediction
is accurate, whereas at large distances lattice QCD pre-
dictions are accurate. There is a significant overlap region
at intermediate distances, where both predictions agree
well. Presently the exact perturbative series are known up to
next-to-next-to-next-to-leading order [24–26]. In addition,
the low energy effective theory “potential nonrelativistic
QCD (pNRQCD)” is known, in which OPE can be
performed, and there is a good theoretical understanding
of the connection between UV and IR contributions.
Therefore the QCD potential (or the force) is an optimal
observable to examine our formulation.
The potential energy between the static quark Q and

antiquark Q̄ (QCD potential) in the large-β0 approximation
and with an IR cutoff is given by

Vβ0ðr; μfÞ ¼ −
Z
p>μf

d3p⃗
ð2πÞ3 e

ip⃗·r⃗ 4πCF

p2
αβ0ðp2Þ

¼ −
1

r

Z
∞

μ2f

dτ
2πτ

2CF sinð
ffiffiffi
τ

p
rÞαβ0ðτÞ: ð46Þ

Here, the typical (energy) scale is r−1, the inverse of the
distance between QQ̄. Comparing Eq. (46) with Eq. (13),
the weight of the (dimensionless) QCD potential rVβ0ðrÞ is
given by

wVðxÞ ¼ −2CF sinð
ffiffiffi
x

p Þ: ð47Þ

Comparing its expansion and Eq. (12) we find that the first
IR renormalon of the QCD potential is located at u ¼ 1=2.
The preweight in the massive gluon scheme is obtained
using Eq. (27) as

WðmÞ
V ðzÞ ¼ −CFei

ffiffi
z

p
: ð48Þ

This function is utilized throughout the analyses in
Refs. [5,17,18] and turns out to correspond to the massive
gluon scheme. By using this preweight, Vβ0 is expressed as

Vβ0ðr; μfÞ ¼
1

r
Im

Z
∞

μ2f

dτ
πτ

WðmÞ
V ðτr2Þαβ0ðτÞ: ð49Þ

Continuing the discussion given in Sec. II B, one obtains
the result for the QCD potential in the large-β0 approxi-
mation [5,17,18]. However, in order to circumvent the first
IR renormalon at u ¼ 1=2, which is relatively close to the
origin, we analyze the force between QQ̄, Fβ0ðr2Þ ¼
−dVβ0ðrÞ=dr [27].11

The force between QQ̄ with an IR cutoff is obtained by
differentiating Eq. (46) and Eq. (49) with respect to r,

Fβ0ðr2; μfÞ≡ −CF
αF;β0ð1=r2; μfÞ

r2
ð50Þ

¼ −
CF

r2

Z
∞

μ2f

dτ
2πτ

wFðτr2Þαβ0ðτÞ ð51Þ

¼ −
CF

r2
Im

Z
∞

μ2f

dτ
πτ

WðmÞ
F ðτr2Þαβ0ðτÞ; ð52Þ

where the weight wFðxÞ and the preweight WðmÞ
F ðzÞ are

given by12

wFðxÞ ¼ 2ðsin ffiffiffi
x

p
−

ffiffiffi
x

p
cos

ffiffiffi
x

p Þ ð53Þ

WðmÞ
F ðzÞ ¼ ei

ffiffi
z

p ð1 − i
ffiffiffi
z

p Þ: ð54Þ

In the following we deal with the dimensionless force (or
the F-scheme coupling) αF;β0 , defined by Eq. (50). The
expansion of the weight reads

wFðxÞ ¼
2

3
x3=2 −

1

15
x5=2 þ � � � ; ð55Þ

hence, the first IR renormalon of αF;β0 is indeed shifted to
uIR ¼ 3=2. The expansion of the preweight is given by

11The first IR renormalon only gives an uncertainty to the
constant (r-independent) part of the potential.

12The convergence of wF in UV region is not always sufficient
to derive some of the relations discussed in this paper. In such a
case, generally convergence in UV region is better with wV , and
we can differentiate by r after the τ-integral. The same result can
be obtained with wF directly, if we regularize the integral measure
first as dτ → dττ−ϵ and take the limit ϵ → 0 after the τ-integral
(we do not encounter divergences).
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WðmÞ
F ðzÞ ¼ 1þ z

2
þ i
3
z3=2 þ � � � : ð56Þ

From the general discussion we can extract the μf-
independent part αF;UVð1=r2Þ from αF;β0ð1=r2; μfÞ as

αF;β0ð1=r2; μfÞ ¼ αF;UVð1=r2Þ þOðμ3fr3Þ ð57Þ

with

αF;UVð1=r2Þ ¼ αF;0ð1=r2Þ þ
2π

β0
Λ2
QCDe

5=3r2; ð58Þ

αF;0ð1=r2Þ ¼
Z

∞

0

dτ
πτ

WðmÞ
Fþðτr2ÞImαβ0ð−τ þ i0Þ þ 4π

β0
;

ð59Þ

where WðmÞ
FþðzÞ ¼ e−

ffiffi
z

p ð1þ ffiffiffi
z

p Þ. The Λ2
QCDr

2-term arises

from the z1-term of the preweight WðmÞ
F ðzÞ [Eq. (56)]. This

power behavior corresponds to a linear potential in the
QCD potential. The asymptotic behaviors of αF;0 are
obtained via Eq. (32) as

αF;0ð1=r2Þ →
8<
:

4π
β0

1
j log ðr2Λ2

QCDÞj
as r2 → 0

4π
β0

as r2 → ∞
: ð60Þ

In Fig. 3, αF;UV, αF;0, and the Λ2
QCDr

2-term of Eq. (58)
are plotted as functions of Λ2

QCDr
2. Qualitatively they show

similar behaviors to those of the reduced Adler function
(Fig. 2), and the derivative of αF;UV is dominated by the
Λ2
QCDr

2-term especially in the range Λ2
QCDr

2 ≳ 0.02.
Comparisons with the large-order predictions in the

large-β0 approximation and with the known exact pertur-
bative series will be presented in Sec. IV.
In Eq. (57), the μf-dependent term starts from order

r3. Let us discuss this μf-dependence in the context of
OPE. The relevant low-energy effective theory is known
as pNRQCD, in which the QCD potential is expressed
in expansion in r⃗ (multipole expansion) as [28]

VQCDðrÞ ≈ VSðrÞ −
2πiαs
NC

Z
∞

0

dte−itΔVðrÞhr⃗ · E⃗aðtÞr⃗ · E⃗að0Þi

þOðr3Þ: ð61Þ

Here, VSðrÞ represents the Wilson coefficient for the
(leading) identity operator and has the meaning of the
energy of the QQ̄ singlet state; ΔV denotes the energy
difference between the octet and singlet states; E⃗a

denotes the color electric field. If we compute VSðrÞ
in the large-β0 approximation and with an explicit
cutoff in the gluon momentum, it is identified
with Vβ0ðr; μfÞ.13 It has been confirmed that the μf-
dependence of Vβ0ðr; μfÞ at order μ3fr2, originating from
the u ¼ 3=2 renormalon, is canceled against the μf-
dependence of the nonperturbative matrix element in the
second term of Eq. (61) [18,28]. Differentiating with
respect to r, the leading μf-dependence of
αF;β0ð1=r2; μfÞ at order μ3fr

3 is also canceled by that
of the nonperturbative matrix element. We expect that a
similar cancellation between Dβ0ðQ2; μfÞ and the local
gluon condensate would hold for the Adler function,
although the relevant low energy effective theory is as
yet unknown.

FIG. 3. (Left) αF;UV [Eq. (58)], αF;0 [Eq. (59)], and the Λ2
QCDr

2-term [Eq. (58)] as functions of Λ2
QCDr

2. The number of flavors is set to
nf ¼ 1. (Right) Derivatives of αF;UV, αF;0 and the r2Λ2

QCD-term with respect to ρ2 ≡ Λ2
QCDr

2.

13See also the discussion at the end of Sec. III C.
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E. Scheme dependence by choice of preweight WX

As we already pointed out, the preweightWX introduced
in Sec. II B is not unique, and we clarify its effect in this
subsection. We first show that the dependences of X0 and
the power corrections in XUV on the choice of WX almost
cancel in the sum (XUV). We then discuss its relevance in
determination of a nonperturbative matrix element in OPE.
Finally we discuss why the power corrections in XUV can
vary from the viewpoint of the asymptotic property of the
perturbative series and how it is related to variation of WX.
The preweightWX which satisfies Eq. (14) is not unique

since its real part on the positive real axis is not restricted.
Although the original μf-dependent integral (15) is inde-
pendent of the choice of WX, the μf-independent part XUV

generally depends on the choice of WX. Namely, XUV is a
functional of WX. We can regard that XUV determined by a
different WX corresponds to different scheme choices. We
first discuss the scheme dependence of XUV.
Consider two different preweights WðiÞ

X (i ¼ 1, 2) both
satisfying the relation (14). Correspondingly we obtain
XUV in different schemes via Eqs. (24) and (25),

XðiÞ
UV ¼ XðiÞ

0 ðQ2Þ þ
X

0<n<uIR

4πcðiÞn
β0

�
e5=3Λ2

QCD

Q2

�n

ð62Þ

with

XðiÞ
0 ðQ2Þ ¼ Im

Z
Ca

dτ
πτ

WðiÞ
X

�
τ

Q2

�
αβ0ðτÞ þ

4πcðiÞ0
β0

; ð63Þ

where WðiÞ
X ðzÞ ¼ P

n≥0c
ðiÞ
n zn. The difference between Xð1Þ

0

and Xð2Þ
0 is given by

Xð2Þ
0 −Xð1Þ

0 ¼ Im
Z
Ca

dτ
πτ

�
Wð2Þ

X

�
τ

Q2

�
−Wð1Þ

X

�
τ

Q2

��
αβ0ðτÞ

þ 4πðcð2Þ0 − cð1Þ0 Þ
β0

: ð64Þ

In the integral along Cb we assumed that it is justified to
expand WXðzÞ for sufficiently small jzj. Accordingly, we
assume that δWðzÞ≡Wð2Þ

X ðzÞ −Wð1Þ
X ðzÞ is regular at any

point z0 ∈ R and 0 < z0 < ϵ for ∃ϵ > 0 (sufficiently close
to the origin).14 Namely, δWðzÞ can be expanded in a Taylor
series about z ¼ z0 with a nonzero radius of convergence,

δWðzÞ ¼
X
n≥0

Anðz0Þðz − z0Þn; z0 ∈ R and 0 < z0 < ϵ:

ð65Þ

Since ImδW ¼ 0 on the positive real axis, (i) the integral
along Ca in Eq. (64) is equal to that along Cb, and
(ii) Anðz0Þ ∈ R, hence fδWðzÞg� ¼ δWðz�Þ is satisfied
along the path Cb if Q2 ≫ μ2f. Then, by exploiting the
same procedure as in Eq. (19), the first term of Eq. (64) can
be reduced to

Im
Z
Ca

dτ
πτ

δW

�
τ

Q2

�
αβ0ðτÞ

¼ Im
Z
Cb

dτ
πτ

δW

�
τ

Q2

�
αβ0ðτÞ

¼ −
4π

β0
δW

�
e5=3Λ2

QCD

Q2

�

¼ −
4π

β0

X
n≥0

ðcð2Þn − cð1Þn Þ
�
e5=3Λ2

QCD

Q2

�n

: ð66Þ

It means that the difference of XðiÞ
0 ðQ2Þ is given by15

Xð2Þ
0 ðQ2Þ − Xð1Þ

0 ðQ2Þ

¼ −
4π

β0

X
n>0

ðcð2Þn − cð1Þn Þ
�
e5=3Λ2

QCD

Q2

�n

: ð67Þ

Furthermore, according to Eq. (62) we obtain the difference

of XðiÞ
UV as

Xð2Þ
UVðQ2Þ − Xð1Þ

UVðQ2Þ

¼ −
X
n≥uIR

4πðcð2Þn − cð1Þn Þ
β0

�
e5=3Λ2

QCD

Q2

�n

¼ OððΛ2
QCD=Q

2ÞuIRÞ: ð68Þ

Thus, the differences of the power corrections ð1=Q2Þn
with 0 < n < uIR in Eq. (62) are canceled by the
change of X0ðQ2Þ. As a result, the difference of XUV in
different schemes is smaller than the last included term
of the ðΛ2

QCD=Q
2Þn-terms in XUVðQ2Þ. Namely, the μf-

independent part XUV has a minor dependence on the
scheme, which is the same order as an uncertainty induced
by the first IR renormalon, and we confirm validity of our
result of XUV taking into account the scheme dependence.
It is worth emphasizing that the scheme dependence

discussed above is not a renormalon uncertainty. In fact the14The reason to exclude z0 ¼ 0 is to cope with the possible
existence of log z or

ffiffiffi
z

p
. (See footnote 3.) Note that even if the

small-z expansion of WXðzÞ includes log z or
ffiffiffi
z

p
we expect that

the expansion has a domain of convergence close to the origin;
see the examples in Secs. II C and II D.

15Note that the right-hand side of Eq. (67) isOðΛ2
QCD=Q

2Þ, and
the asymptotic form of X0ðQ2Þ at Q2 → ∞ shown in Eq. (26) is
not modified.
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scheme dependence can be removed by including higher
orders of the 1=Q2 expansion. Let us clarify this point.
Suppose we consider Xβ0ðQ2; μfÞ up to 1=ðQ2Þn in differ-
ent schemes,

XðiÞ
β0
ðQ2; μfÞj1=ðQ2Þn ¼ XðiÞ

0 ðQ2Þ −
Xn
k¼1

Im
Z
Cb

dτ
πτ

cðiÞk

�
τ

Q2

�
k

× αβ0ðτÞ:ði ¼ 1; 2Þ ð69Þ

We show that Xð2Þ
β0

− Xð1Þ
β0
j1=ðQ2Þn is order ðΛ2

QCD=Q
2Þnþ1.

(The previous argument already proves this for the
case n ¼ uIR − 1.)
Note that since ImcðiÞk is fixed by Eq. (14), there is no

scheme dependence, hence cð2Þk − cð1Þk ∈ R. This enables
reducing the difference of the second term of Eq. (69) as

Xn
k¼1

Im
Z
Cb

dτ
πτ

ðcð2Þk − cð1Þk Þ
�

τ

Q2

�
k
αβ0ðτÞ

¼ 4π

β0

Xn
k¼1

ðcð2Þk − cð1Þk Þ
�
e5=3Λ2

QCD

Q2

�k

: ð70Þ

Combining with Eq. (67), we see that Xð2Þ
β0

− Xð1Þ
β0
j1=ðQ2Þn ¼

OððΛ2
QCD=Q

2Þnþ1Þ. Such a property follows from the fact
that the original μf-dependent integral (15) is independent
of the choice of WX. Therefore the scheme dependence is
gradually eliminated by including higher order terms
in 1=Q2.
In the case of the Adler function, this fact is important if

we want to determine the local gluon condensate using
our formulation, for instance, by comparing with an
evaluation of DðQ2Þ by a lattice calculation. The OPE
up to the Oð1=Q4Þ terms (in the large-β0 approximation) is
written as

DðQ2Þ ¼ Dβ0ðQ2; μfÞj1=Q4 þ CGGðμfÞ
h0jGaμνGa

μνj0iðμfÞ
Q4

þOðΛ6
QCD=Q

6Þ: ð71Þ

We expect that μf-dependences up to 1=Q4-terms are
canceled. According to the above discussion, the variation
due to the scheme difference (choice of WX) satisfies

Δscheme

�
CGGðμfÞ

h0jGaμνGa
μνj0iðμfÞ

Q4

�
¼ OðΛ6

QCD=Q
6Þ:

ð72Þ

Thus, the error becomes higher order than the term which
we want to determine. [Note that CGG would also include
power corrections ∼ðΛ2

QCD=Q
2Þn.]

Although we have shown that δW changes XUV only at
subleading order, it alters X0 and the power corrections
ðΛ2

QCD=Q
2Þn with n < uIR individually; see Eqs. (62) and

(67). In the rest of this subsection, we discuss the reason
why the coefficients of the ðΛ2

QCD=Q
2Þn-terms can be

altered.
We can show that X0ðQ2Þ has the same asymptotic

expansion in αs as the perturbative series of Xβ0ðQ2Þ,

X0ðQ2Þ −
Xn−1
k¼0

dkðμ ¼ QÞ
�
β0
4π

�
k
αkþ1
s ðQÞ ¼ OðαsðQÞnþ1Þ;

ð73Þ

as αsðQÞ → 0. (We sketch the proof in Appendix C.)
This shows that, although X0ðQ2Þ is expansible with
respect to αsðQÞ, it is not expansible with respect to
Λ2
QCD=Q

2 since αsðQÞ∼1=logðQ2=Λ2
QCDÞ. Reflecting this

fact, Xβ0ðQ2;μfÞ, which is related to X0ðQ2Þ by Eqs. (22)
and (24), is also not expansible with respect to 1=Q2. This
is a short answer to the question why the ðΛ2

QCD=Q
2Þn-

terms in Xβ0ðQ2; μfÞ is not uniquely determined.
Note that Xβ0ðQ2; μfÞ − X0ðQ2Þ is expansible in 1=Q2

and the ðΛ2
QCD=Q

2Þn-terms are regarded as a part of this
series expansion. In this respect Eq. (73) is essential since it
ensures that the singularities of Xβ0ðQ2; μfÞ caused by
αsðQÞk cancel with those of −X0ðQ2Þ. Considering the fact
that Xβ0ðQ2; μfÞ is a uniquely defined quantity, it is
deduced that the nonuniqueness of the ðΛ2

QCD=Q
2Þn-terms

in Xβ0ðQ2; μfÞ − X0ðQ2Þ is caused by the nonuniqueness of
X0ðQ2Þ. In fact there are potentially many candidates of
X0ðQ2Þ satisfying the property (73). A new X0 constructed
by adding ðΛ2

QCD=Q
2Þn to the old one also satisfies

Eq. (73), since all the series coefficients of Λ2
QCD=Q

2 ¼
e−4π=ðβ0αsðQ2ÞÞ in αsðQ2Þ are zero.
The nonuniqueness of X0 stems from the nonuniqueness

of WX in our method. The variation of WX indeed changes
X0 by powers of Λ2

QCD=Q
2 as shown in Eq. (67) while

keeping the asymptotic expansion (73). This change of X0

is compensated by the change of the ðΛ2
QCD=Q

2Þn-terms as
shown below Eq. (70). Thus, the nonuniqueness of the
power corrections is also attributed to the nonuniqueness
of WX.
At this stage, it suggests that it would be meaningless to

focus on the power corrections ðΛ2
QCD=Q

2Þn alone in XUV
since it becomes definite only after we specify X0, and only
the sum of them (XUV) is a meaningful quantity.
Nevertheless, it turns out that if we limit schemes to a
reasonable class, the separation of XUV into X0 and
ðΛ2

QCD=Q
2Þn-terms becomes unique by a uniqueness of

WX. We will elaborate on this point in the next subsection.
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F. Massive gluon scheme as the optimal scheme

We discuss which scheme is favored from the analytical
properties of XUVðQ2Þ when we extend it to a function of
the complex variable Λ2

QCD=Q
2. Since the power-correction

terms in XUV are obviously analytic in the wholeΛ2
QCD=Q

2-
plane, we mainly focus on the analytic structure of X0ðQ2Þ.
X0ðQ2Þ in the massive gluon scheme can be expressed as

an analytic function of Λ2
QCD=Q

2 by Eq. (30), provided that
the integral path can be rotated. Using this expression we
can show that X0 has a cut along the negative real axis
starting from the origin and is regular everywhere else in

the Λ2
QCD=Q

2-plane. It follows from the fact thatWðmÞ
XþðzÞ in

this scheme can have cuts along the negative real axis
starting only from z ¼ 0 and z ¼ −1 and is regular
everywhere else.16 Thus, X0ðQ2Þ in this scheme [hence,
XUVðQ2Þ] satisfies the required analyticity in the complex
plane in terms of perturbative QCD, where the form of the
singularity at Λ2

QCD=Q
2 ¼ 0 is dictated by the renormal-

ization-group equation. We have already seen this favorable
feature of the massive gluon scheme for the Adler function
in Sec. II C.
In a general scheme, i.e., for a general preweight,X0ðQ2Þ

can be expressed as an analytic function in the following

manner. We rewrite the preweight as the sum of WðmÞ
X ðzÞ,

which is the preweight in the massive gluon scheme, and

the rest asWXðzÞ ¼ WðmÞ
X ðzÞ þ δWXðzÞ. We can follow the

same steps which led to Eq. (66) in the previous section,
assuming regularity of δWXðzÞ close to the origin, and
obtain, for sufficiently small jΛ2

QCD=Q
2j,

X0ðQ2Þ ¼ XðmÞ
0 ðQ2Þ þ 4π

β0

�
δWXð0Þ − δWX

�
e5=3Λ2

QCD

Q2

��
;

ð74Þ

where XðmÞ
0 ðQ2Þ represents X0 in the massive gluon scheme.

Then we can enlarge the domain of this function by analytic
continuation to the entire Λ2

QCD=Q
2-plane, except at singular

points of δWXðe5=3Λ2
QCD=Q

2Þ and the origin.
In this construction we can regard that the essential part

is determined byWðmÞ
X ðzÞ, which already gives the required

analyticity of X0ðQ2Þ. δWXðzÞ is subsidiary in the sense
that it is not necessary in an essential way and should not
have additional singularities (except at Λ2

QCD=Q
2 ¼ ∞) in

order not to violate the required analyticity of X0ðQ2Þ or

XUVðQ2Þ. Thus, we may say that the massive gluon scheme
is an optimal (or minimal) scheme in terms of the
analyticity, according to this construction of X0ðQ2Þ.
We would like to know how many preweights are

allowed as a reference scheme in the above construction
of X0ðQ2Þ, or in other words, how many minimal schemes
exist. The integral expression (30) is used to define the
reference scheme, and this expression is realized naturally
by the following conditions on the preweight17:

ð0Þ WXðzÞ is analytic in the upper half-plane ; and
2ImWXðxÞ ¼ wXðxÞ for x ≥ 0: ð75Þ

ð1Þ ImWXðxÞ ¼ 0 for x ≤ 0: ð76Þ

ð2Þ
Z
CR

dz
πz

WXðzÞ is absolutely convergent to 0 as R → ∞;

where CR ¼ fReiθj0 ≤ θ ≤ πg: ð77Þ

The preweight in the massive gluon scheme WðmÞ
X ðzÞ

satisfies the conditions (0) and (1). If it also satisfies the
condition (2),18 we can rotate the integration path to the
negative axis, and the expression (30) is obtained, namely,
XUV satisfies the required analyticity.
We now prove that the above conditions (0)–(2) are

sufficient to determine the preweight uniquely. Let us
examine the difference of the preweights satisfying the
above conditions,

δWXðzÞ ¼ Wð2Þ
X ðzÞ −Wð1Þ

X ðzÞ: ð78Þ

We can translate the conditions (0)–(2) into conditions for
δWX as

ImδWXðxÞ ¼ 0 for x ∈ R; ð79ÞZ
CR

dz
πz

δWXðzÞ is absolutely convergent to 0 as R → ∞:

ð80Þ
Using Eq. (80), we can show

Pr :
Z

∞

−∞

dx
π

δWXðxÞ
x − x0

¼ iδWXðx0Þ; ð81Þ

where Pr. denotes the principal value integral and x0 is
assumed to be a real parameter. Taking the imaginary part
of this equation and using Eq. (79), we obtain

16This can be shown using the property that WðmÞ
X ðzÞ can have

singularities only at z ¼ 0, 1, ∞, where z ¼ τ=Q2 ¼ ð−τÞ=q2 ¼
1 corresponds to the threshold of the massive gluon plus massless
partons. In passing, since 2ImWðmÞ

X ðxÞ ¼ wXðxÞ holds for x > 0,
wXðxÞ can have singularities only at x ¼ 0, 1, ∞ along the
integral path of Eq. (29); c.f., Eqs. (36) and (53).

17The condition (0) is already included in the definition of a
general WXðzÞ. Note also that wXð0Þ ¼ 0 due to our assumption
that XLO is IR finite [see Eq. (1)]; hence, the conditions (0)
and (1) are mutually consistent at x ¼ 0.

18We can show that WðmÞ
X satisfies the condition (2), if

jwXðzÞj ¼ OðjzjaÞ for ∃a < 0 for sufficiently large jzj in the
lower half-plane.
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ReδWXðxÞ≡ 0 for x ∈ R: ð82Þ
One can see from Eq. (79) and Eq. (82) that δWX is
identically zero in the upper half-plane including the real
axis (by the identity theorem). Since we do not expect any
physical singularity to disturb enlargement of this analy-
ticity domain,19 we can conclude that δWX ¼ 0 in the entire
complex plane,

δWXðzÞ≡ 0 for z ∈ C: ð83Þ

Hence, ifWðmÞ
X ðzÞ in the massive gluon scheme satisfies the

condition (2), the allowed scheme is uniquely determined
to this one. This is the case in the Adler function and the
QCD potential, which are considered as explicit examples
in Secs. II C and II D.
This argument shows that through the above conditions

(0)–(2) we can realize the correct analytic structure of XUV
minimally and single out the preweight uniquely simulta-
neously. Therefore, due to the uniqueness of the preweight,
the separation of XUV into X0 and power corrections
∼ðΛ2

QCD=Q
2Þn is fixed,20 and in particular the coefficient

of the ðΛ2
QCD=Q

2Þn-term is no longer changeable within the
minimal schemes. It should be regarded as a natural one
among all possibilities.

G. Behaviors of XUV in massive gluon scheme

In the previous subsection, we pointed out that the
massive gluon scheme can be regarded as special among
all the schemes. We examine some details of the behaviors
of X0ðQ2Þ and the power corrections in XUV, respectively,
in this scheme.21

1. Behavior of X0ðQ2Þ
As discussed below Eq. (73), the behavior of X0ðQ2Þ

close to 1=Q2 ¼ 0 is determined by the fact that X0ðQ2Þ
has the same asymptotic expansion as the perturbative
series of XðQ2Þ; see Eq. (26). Namely the behavior of
X0ðQ2Þ at large Q2 is almost insensitive to the scheme of

WðmÞ
X . In contrast, the global behavior of X0ðQ2Þ generally

depends on the scheme of WX.
Let us examine some details about the massive gluon

scheme. The limit of X0 in this scheme at 1=Q2 → ∞ is
calculated from Eq. (32) as

X0ðQ2Þ → 4π

β0
WðmÞ

Xþð0Þ ¼
4π

β0
d0: ð85Þ

Namely X0ðQ2Þ approaches a constant for sufficiently
large 1=Q2.
In addition, if we regard X0ðQ2Þ as a function of

Q̂−2 ¼ Λ2
QCD=Q

2, we can see that X0 and its derivatives
have definite signs at least for the two examples which we
studied,

X0 ≥ 0;
dX0

dðQ̂−2Þ ≥ 0;
d2X0

dðQ̂−2Þ2 ≤ 0 for X ¼D; αF:

ð86Þ

This property follows from W0
XþðxÞ ≤ 0, W00

XþðxÞ ≥ 0 for
x ≥ 0, and

dnX0

dðQ̂−2Þn ¼
Z

∞

0

dτ
πτ

�
τ

Λ2
QCD

�
ndnWðmÞ

XþðxÞ
dxn

				
x¼ τ

Q2

4π

β0

×
−π

log2ðτe−5=3Λ2
QCDÞ þ π2

: ð87Þ

As a result, combined with the asymptotic forms at
1=Q2 ¼ 0;∞, the behavior of each X0 is determined
globally, and the form is simple (and similar), as seen
from Figs. 2 or 3.

2. Power corrections in XUV

We show that the power corrections in XUV can be
detected generally from the Borel transformation. Consider
an integral

CXðvÞ≡
Z

∞

0

dz
2π

WðmÞ
X ðzÞz−v−1: ð88Þ

The expansion of WðmÞ
X ðzÞ for small-z is determined by the

singularities of CXðvÞ as [c.f., Eqs. (10) and (12)] (see
footnote 2)

19Note that a singularity in δWXðzÞ except for a cut along the
negative real axis generates an additional singularity in Xð2Þ

0 ðQ2Þ
compared with Xð1Þ

0 ðQ2Þ as one can see from Eq. (74).
20In the case of the force between QQ̄, WðmÞ

F does not satisfy
the condition (2), although the integral path Ca can be rotated
owing to αβ0ðτÞ in αF;UV. In fact, it would be more general to
adopt the condition ð2Þ0 instead of the condition (2) to define the
minimal schemes,

ð2Þ0 The integral of jWXðzÞ=zj along CR is bounded ; i:e:;Z
π

0

dθjWXðReiθÞj < ∃M for a sufficiently largeR; ð84Þ

since the rotation of the path Ca is assured even in this case. For
simplicity we discussed with a stronger condition [(2)] above. If
we adopt the conditions (0), (1) and ð2Þ0, δWX ¼ ðreal constÞ
follows by a similar discussion. The constant shift of a preweight,
however, does not change X0 (and obviously power corrections in
XUV) as seen from Eq. (67). Hence, the main result still holds that
the separation into X0 and ðΛ2

QCD=Q
2Þn-terms is unique under

these relaxed conditions.
21In this subsection, we assume that WðmÞ

X ðzÞ has a good
convergence for large jzj in the upper half-plane including the real
axis.
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WðmÞ
X ðzÞ ¼ −2π

X
n∈VIR

Resv¼n½CXðvÞzv� ¼
X

cnzn; ð89Þ

where VIR denotes a set of non-negative poles of CXðvÞ.
Using Eq. (27), CXðvÞ is explicitly calculated in the
massive gluon scheme as

CXðvÞ ¼
Z

∞

0

dx
2π

wXðxÞ
Z

∞

0

dz
2π

z−v−1

x − z − i0

¼ −
1

2

e−iπv

sinðπvÞ
Z

∞

0

dx
2π

wXðxÞx−u−1

¼ −
1

2

e−iπv

sin ðπvÞBXðvÞ ¼ −
1

2

cosðπvÞ
sin ðπvÞBXðvÞ

þ i
2
BXðvÞ; ð90Þ

where we used Eq. (10). (The same equation was derived in
Ref. [12] in a different context.) By taking the imaginary
part of CXðvÞ, we can check that the usual Borel trans-
formation is obtained consistently with Eq. (14). The factor
fsin ðπvÞg−1 in the real part of Eq. (90) generates additional
integer poles, that is, UIR ⊂ VIR. In particular, the first few

terms of the expansion ofWðmÞ
X ðzÞ stem from this factor and

reduce to real coefficients,

WðmÞ
X ðzÞ ¼

X
0≤n<uIR

BXðnÞzn þ � � � ; ð91Þ

where we use Eq. (89). Therefore, from Eqs. (18), (23)
and (91), the coefficient of the ðe5=3Λ2

QCD=Q
2Þn-term of

XUV is revealed to be 4πBXðnÞ=β0.
Incidentally, we have a similar relation for WðmÞ

Xþ in the
massive gluon scheme as

CXþðuÞ≡
Z

∞

0

dz
2π

WðmÞ
XþðzÞz−u−1

¼
Z

∞

0

dx
2π

wXðxÞ
Z

∞

0

dz
2π

z−u−1

xþ z − i0

¼ −
1

2

1

sin ðπuÞ
Z

∞

0

dx
2π

wXðxÞx−u−1

¼ −
1

2

1

sin ðπuÞBXðuÞ; ð92Þ

where we used Eqs. (29) and (10).
Note that Eq. (91) does not mean that the power

corrections included in XUV are related to perturbative
ambiguity, but it is purely a mathematical relation. We

explore the origin of the expansion of WðmÞ
X ðzÞ and clarify

the meaning in terms of the method of expansion by regions
in the next section.

III. POWER CORRECTIONS AND OPE IN LIGHT
OF EXPANSION BY REGIONS

In this section we investigate (i) the origin of the power
corrections in XUV, and (ii) the relation of XUV to Wilson
coefficients in OPE, by means of the method of expansion
by regions, or asymptotic expansion in limits of large
momentum [29–31]. With this method, we can identify
which momentum region contributes to each power cor-
rection. We show that the power corrections in XUV for the
Adler function Eq. (42) and the interquark force Eq. (58),
respectively, are genuine UV contributions. We also pro-
vide an effective field theoretical point of view of our
framework presented in the previous section.
We first discuss some general aspects (Sec. III A) and

subsequently clarify detailed features in the examples of the
Adler function (Sec. III B) and the interquark force or QCD
potential (Sec. III C). We also give a supplementary argu-
ment using an explicit cutoff (Sec. III D).

A. General aspects

We discuss two issues using the method of expansion by
regions. First we answer the question: “Which kinematical
regions do the power corrections ðΛ2

QCD=Q
2Þn in XUV

originate from?” This question can be addressed accurately
in the massive gluon scheme. The motivation to ask this
question is as follows. Since the power corrections stem
from the contour Cb in Eq. (16) close to the IR pole at
τ ¼ e5=3Λ2

QCD, one may suspect that the power corrections
originate from IR contributions, although we claim that
XUV consists of UV contributions. (See Figs. 4.)
We can use the method of expansion by regions in the

following manner. The 1=Q2 expansion of Xβ0ðQ2; μfÞ is
determined by the small-z expansion of WðmÞ

X ðzÞ in the
integral along Cb [Eq. (17)], and the ðΛ2

QCD=Q
2Þn-terms are

included as a part of it. Since the preweight in the massive

gluon schemeWðmÞ
X ðτ=Q2Þ is expressed as a usual Feynman

FIG. 4. Deformed integral path introduced in Sec. II B and
different interpretations on relevant kinematical regions. [Upper
figure] The pole contribution is interpreted to be an IR effect.
[Bottom figure] The pole contribution is interpreted to be a UV
effect, which is shown to be legitimate for the Adler function and
the force between QQ̄.
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integral with a massive gluon propagator [Eq. (28)], we can
use the expansion-by-regions technique to decompose the

small-(τ=Q2) expansion of WðmÞ
X ðτ=Q2Þ into contributions

from different kinematical regions.
In this analysis, we interpret the integral variable p ∈

ð0;∞Þ in Eq. (28) as the gluon loop momentum, even
though it was originally restricted to be higher than the
factorization scale μf. The reason is stated as follows.
Xβ0ðQ2; μfÞ can be written as

Xβ0ðQ2; μfÞ ¼
Z
p2>μ2f

dðp2Þ
2πp2

wXðp2=Q2Þαβ0ðp2Þ; ð93Þ

where p denotes the gluon loop momentum. We can rewrite
this integral as

Xβ0ðQ2; μfÞ ¼
Z

∞

μ2f

dτ
2πτ

αβ0ðτÞ

×
Z

∞

0

dðp2ÞwXðp2=Q2Þδðp2 − τÞ

¼ Im
Z

∞

μ2f

dτ
πτ

αβ0ðτÞ
Z

∞

0

dðp2Þ
2π

wXðp2=Q2Þ
p2 − τ − i0

¼ Im

�Z
Ca

−
Z
Cb

�
dτ
πτ

WðmÞ
X ðτ=Q2Þαβ0ðτÞ:

ð94Þ

Hence, the integral variable p of WðmÞ
X can be regarded as

the gluon loop momentum, whereas τ can be regarded as an
auxiliary parameter. Since we discuss the expansion of

WðmÞ
X ðτ=Q2Þ along τ ∈ Cb where jτj ≤ μ2f ≪ Q2, τ plays

the role of a soft scale, whereas Q2 plays the role of a hard
scale in the analysis by expansion by regions.
If the first few terms of the power corrections are found

to originate from UV region, we can further deduce that the
integral along Ca [¼ X0ðQ2Þ − 4πc0=β0] also originates
(dominantly) from UV region for largeQ2. This is because,
Xβ0ðQ2; μfÞ consists of UV contributions (given by an
integral over τ ≥ μ2f), and the Ca-integral is given by the
difference of Xβ0 and the Cb-integral. (We discuss this issue
further in Sec. III D.)
Secondly the correspondence between Xβ0ðQ2; μfÞ in

our formulation and OPE in a low-energy effective field
theory can be examined using expansion by regions of
Feynman diagrams [29].22 Since an early stage of the
development of the expansion-by-regions method, its
relation to effective field theory and OPE has been explored

[29–31]. The hard contributions in the context of expansion
by regions are interpreted as Wilson coefficients in the
effective field theory, and the soft contributions are inter-
preted as perturbative quantum corrections due to low-
energy degrees of freedom. In other words, the low-energy
effective Lagrangian is constructed by including hard
contributions in terms of effective vertices whereas the
soft contributions are left to be evaluated. This procedure is
what is usually called “integrating out hard modes.” In
OPE, the correspondence between hard contributions and
Wilson coefficients are unchanged, while quantum correc-
tions due to low-energy degrees of freedom are evaluated as
nonperturbative matrix elements.
Xβ0ðQ2; μfÞ introduced in Eq. (13) can also be inter-

preted as a Wilson coefficient in OPE, as we will see in
explicit examples below. However, the way to separate UV
and IR effects is different from that of expansion by regions
in the following sense: (i) The Wilson coefficient of our
method is regularized by a cutoff, whereas the one in the
expansion-by-regions method is formulated in dimensional
regularization. (ii) We separate the UV contribution from
the IR contribution by only one measure, i.e., scale of the
gluon momentum. On the other hand, the method of
expansion by regions distinguishes momentum regions
with a finer resolution in general.
In the case that the relevant low-energy effective field

theory is known, the expansion-by-regions technique is a
standard tool to systematically compute Wilson coefficients
to high orders. Detailed connection between the full theory
and the effective field theory can be made, including
correspondence of relevant kinematical regions. Since
Xβ0ðQ2; μfÞ in our formulation is well-defined in the full
theory, using this information it is possible to establish a
firm connection between Xβ0ðQ2; μfÞ and Wilson coeffi-
cients, as we have briefly reviewed in Sec. II D.
On the other hand, in the case that the relevant effective

field theory is unknown, we can still infer its structure using
the expansion by regions, as well as factorize UV and IR
contributions to the Wilson coefficients and nonperturba-
tive matrix elements, respectively, in dimensional regulari-
zation. Changing to a cutoff regularization would be less
founded, since consistent treatment is not guaranteed by an
effective field theory framework. Furthermore, since the
analysis necessarily becomes diagram-based, correspon-
dence with operators, gauge symmetry, or the equation of
motion is not transparent.
We can clarify these two issues in explicit computations

for the observables which we studied already, the Adler
function and the QCD force (or the QCD potential).

B. Example 1: Adler function

Using the expansion-by-region method we first compute
the small-z expansion of the preweight WðmÞ

D ðzÞ for the
Adler function in the massive gluon scheme. In this way we

22This part of the analysis deals with Xβ0 at each order of
perturbation and has only a minor connection with the separation
of Xβ0 into X0 and power corrections or with the scheme
dependence.
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can identify which kinematical region the power correction
in Eq. (42) originate from.
The kinematical regions contributing to the expansion of

WðmÞ
D ðzÞ are shown in Fig. 5, in which blue (red) lines carry

hard (soft) momenta. Note that, since the external momen-
tum is hard, a hard momentum should flow through
between the two external vertices. There is no contribution
from the kinematical region, in which the gluon is hard and
some of the quark lines are soft.23 Hence, we divide the
kinematical regions into three regions, (H, H), (S, H) and
(S, S), as shown in the figure,

WðmÞ
D ðzÞ ¼ WðH;HÞ

D ðzÞ þWðS;HÞ
D ðzÞ þWðS;SÞ

D ðzÞ; ð95Þ

where WðH;HÞ
D ¼ WðH;HÞA

D þWðH;HÞB
D , etc.

For instance, the “all-hard” contribution WðH;HÞ
D is

computed as follows. Recall that WðmÞ
D in the massive

gluon scheme is given as [c.f., Eq. (28)]

WðmÞ
D ðτ=Q2Þ ¼

Z
∞

0

dðp2Þ
2π

1

p2 − τ
wDðp2=Q2Þ: ð96Þ

WðH;HÞ
D is obtained by expanding the gluon propagator in τ as

WðH;HÞ
D ðτ=Q2Þ¼

X∞
n¼0

Z
∞

0

dðp2Þ
2π

τn

ðp2Þnþ1
wDðp2=Q2Þ; ð97Þ

where it is understood thatwD is regularized by dimensional
regularization.24 Apart from the gluon propagator, the
integrand does not receive any modification since the
soft-scale parameter τ is contained only in the factor
1=ðp2 − τÞ. The result of the computation reads

WðH;HÞ
D ðzÞ

¼ NCCF

�
1

4π
þ 8 − 6ζ3

3π
zþ

�
−
½ϵ−1�
2π

þ 4 − 12ζ3
6π

�
z2

þ
�
−
½ϵ−2�
6π

þ 5½ϵ−1�
12π

þ 265

216π
þ π

36

�
z3 þOðz4Þ

�
: ð98Þ

Divergent terms are denoted as

½ϵ−1� ¼ 1

ε
− γE þ log

�
4πQ2

μ2

�
þOðεÞ; ð99Þ

½ϵ−2� ¼ 1

ε2
−
2

ε

�
γE − log

�
4πQ2

μ2

��

þ 2

�
γE − log

�
4πQ2

μ2

��
2

þOðεÞ; ð100Þ

where the space-time dimension is denoted as d ¼ 4 − 2ε;
γE ¼ 0.57721… is the Euler constant and μ is the renorm-
alization scale. If we neglect logðQ2=μ2Þ, these terms
correspond to those which are subtracted in the usual MS
renormalization.
The results of the other two contributions are

given by

WðS;HÞ
D ðzÞ ¼ NCCF

��½ϵ−1�
2π

þ 6 − 3 log zþ 3iπ
6π

�
z2

þ
�½ϵ−2�

3π
−
1þ logð−zÞ

3π
½ϵ−1�

þ log2ð−zÞ
6π

þ logð−zÞ
3π

−
91

54π

�
z3 þOðz4Þ

�
;

ð101Þ

WðS;SÞ
D ðzÞ ¼ NCCF

��
−
½ϵ−2�
6π

þ 4 logð−zÞ − 1

12π
½ϵ−1�

−
log2ð−zÞ

3π
þ logð−zÞ

6π
−

π

12
þ 35

216π

�
z3

þOðz4Þ
�
; ð102Þ

where we use a short-hand notation logð−zÞ≡ log z − iπ.

Although WðH;HÞ
D , WðS;HÞ

D and WðS;SÞ
D individually contain

the divergent terms (99), (100), which are μ-dependent,
these terms cancel altogether in the sum (95).25

FIG. 5. Different kinematical regions contributing to the Adler
function in light of expansion by regions. A blue (red) line
represents that a hard (soft) momentum ∼Qð∼ ffiffiffi

τ
p Þ is flowing

through the line.

23This is because in such a region the soft scale integral
becomes scaleless, since the soft scale τ is included only in the
gluon propagator, and if gluon is hard, after expansion in τ no soft
scale remains in the denominator.

24It means that one should not use Eq. (36) for wD. One
expands the integrand before performing any momentum integral
while keeping ε ≠ 0.

25Cancellation of divergent terms is a common feature in the
method of expansion by regions and signifies that the result is
independent of the factorization scale separating the soft and hard
regions.
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The first two terms of the all-hard contribution [Eq. (98)]
are exactly equal to the first two terms (c0 and c1) of the

expansion of WðmÞ
D ðzÞ [Eq. (40)], while the order z0 and z1

terms are absent in WðS;HÞ
D ðzÞ and WðS;SÞ

D ðzÞ. Therefore we
conclude that the μf-independent Λ2

QCD=Q
2-term of

DUVðQ2Þ belongs to the hard contribution. Consequently
the dominant part ofD0ðQ2Þ is also UVorigin, according to
the argument in the previous subsection. Thus, the lower
figure of Figs. 4 corresponds to the proper interpretation up
to order 1=Q2.
In Sec. II B we found that the imaginary part of the

expansion coefficients of WðmÞ
X ðzÞ results in μf-dependent

terms, and the μf-dependent terms are related to IR con-
tributions. The expansion-by-regions analysis shows that
the imaginary part of the expansion coefficients stems only
from the region where the gluon has a soft-scale momen-
tum. This is because the only source of the imaginary part is

the integral of 1=ðp2 − τÞ. Indeed WðS;HÞ
D ðzÞ and WðS;SÞ

D ðzÞ
include an imaginary part. Oppositely, the all-hard con-

tribution WðH;HÞ
D ðzÞ in Eq. (98) is explicitly real. In fact,

Eq. (97) shows that WðH;HÞ
D ðzÞ is Euclidean and real to all

orders in 1=Q2 expansion.
In Ref. [12], using the method of a massive gluon, terms

which are nonanalytic in the gluon mass λ are identified as
IR contributions, while terms which are powerlike in λ as
UV contributions. Written in the form of Eq. (97), the
source of the imaginary part can be attributed to the same
origin. For example, a nonanalytic term log λ2 generates an
imaginary part when we substitute λ2 ¼ −τ with τ > 0.
In Table I we summarize the contribution from each

momentum region to the expansion coefficients ofWðmÞ
D ðzÞ

up to Oðz3Þ [Eqs. (98), (101), (102)]. The first two

coefficients of WðmÞ
D ðzÞ originate only from the all-hard

region [(H,H) region], and there is no divergence up to this
order. From the order z2, the contribution from each region
diverges and only the sum is finite. In the case that each
contribution is divergent, it is μ-dependent, and the sep-
aration between different regions becomes somewhat
vague. The contribution from the soft-gluon and hard-
quark region [(S,H) region] starts at order z2, and the region
where the gluon is soft and some of the quarks are soft [(S,
S) region] contributes from order z3. As already mentioned
above, (S,H) and (S,S) contributions have a nonzero
imaginary part. Notably these regions also contribute to
the real part, although the values are divergent and become
definite only after they are added to the (H,H) contribu-
tions. Namely, from the order z2, the real part of the
expansion coefficients receive mixed contributions from
the hard and soft momentum regions of the gluon. This is in
contrast to the imaginary part, to which only the soft-gluon-
momentum regions can contribute.
It is worth emphasizing that the soft contributions are not

always pure imaginary, i.e., not all of the real part of the

expansion coefficients originate from the hard-gluon
region.26 Thus, the method of expansion by regions has
a finer resolution than our analysis given in Sec. II B and
detects soft contributions even in the real part of cn for
n ≥ uIR. From this detailed examination, we confirm
consistency27 of our treatment of XUV in Sec. II B, where
we classify as the genuine UV contribution the
ðΛ2

QCD=Q
2Þn-terms for 0 ≤ n < uIR.

Let us turn to examine OPE of the Adler function using
the method of expansion by regions. The relevant low-
energy effective field theory is not known. Applying the
expansion-by-regions method to the diagrams for the
reduced Adler function, they are decomposed into con-
tributions from different kinematical regions as shown in
Fig. 6. For instance, the all-hard region can be identified
with the Wilson coefficient for the identity operator, as
illustrated in the figure. Similarly, a contribution involving
soft gluons/quarks can be identified with the matrix
element of a higher-dimensional local operator times its
Wilson coefficient. This includes the local gluon conden-
sate at order 1=Q4.
Using this correspondence, we argue that DUVðQ2Þ is

almost identified with the Wilson coefficient of the
identity operator C1ðQ2; μfÞ. Recall that DUVðQ2Þ is a
μf-independent part of Dβ0ðQ2; μfÞ, which is diagrammati-
cally given by Fig. 1 with an effective coupling αβ0ðτÞ and
an IR cutoff μf of the gluon momentum. As inferred from
the above correspondence, in general the all-hard region of
a diagram, where all the momenta are larger than the cutoff
scale μf, contributes to C1ðQ2; μfÞ, since the entire loop
integral shrinks to a local vertex. In contrast a contribution
which includes soft modes becomes a nonperturbative
matrix element times its Wilson coefficient.
Dβ0ðQ2; μfÞ is slightly different from C1 in that it

includes both hard and soft quarks. The leading

TABLE I. Expansion coefficients cn of the contribution from

each kinematical region to WðmÞ
D ðzÞ up to order z3 [Eqs. (98),

(101), (102)]. The symbol “R” stands for a nonzero real value,
while “C” represents a complex value with a nonzero imaginary
part. A blank represents that the coefficient is zero.

c0 c1 c2 c3

WðH;HÞ
D ðzÞ R R R R

WðS;HÞ
D ðzÞ C C

WðS;SÞ
D ðzÞ C

26In particular, the soft contribution may give analytic terms
(i.e. terms without logarithms). This point was not correctly
addressed in Ref. [12], Sec. II. 4.

27There may occur a contradiction to the result of Sec. II B in
exceptional cases where the leading soft-gluon contribution
happens to be pure real. This may happen if the leading IR
renormalon vanishes accidentally.
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contribution involving soft quarks reduces to the matrix
element of the dimension-six operator ðq̄γμqÞðq̄γμqÞ made
only of the quark field.28 (Note that the dimension-three
operator q̄q is absent since it appears together with the
quark mass.) Thus, we obtain29

Dβ0ðQ2; μfÞ ¼ C1ðQ2; μfÞ þOðμ6f=Q6Þ: ð103Þ

As a result, the μf-independent part DUV is identified with
C1ðQ2; μfÞ up to Oðμ4f=Q4Þ via Eq. (41),

C1ðQ2; μfÞ −DUVðQ2Þ ¼ Oðμ4f=Q4Þ: ð104Þ

In particular, the power correction Λ2
QCD=Q

2 in DUV is a
part of the Wilson coefficient C1.
We note that the matrix element of the dimension-four

operator q̄Dq vanishes by the equation of motion Dq ¼ 0.
Essentially the same effect is observed in the computation

of the expansion coefficient of WðmÞ
D in the first part of this

subsection. WðS;SÞ
D represents contributions in which the

gluon and some of the quarks have soft momenta (see
Fig. 5). By explicit computation we confirm that each of

WðS;SÞA
D and WðS;SÞB

D is nonzero at Oðz2Þ,30 while they
cancel in the sum, resulting in the z3 term as the leading
term in their sum.31 This property is considered to be a
consequence of gauge invariance and the equation of
motion. Since each diagram does not respect gauge
invariance, the soft contribution from each diagram at
order 1=Q4 is nonvanishing, but the sum of all the diagrams
should vanish at this order. The first gauge invariant
operator involving soft quarks is dimension six, as already
noted.

C. Example 2: QCD potential

The UV contribution to the force between the static
quark and antiquark αF;UVð1=r2Þ and its power behavior
are analyzed in Sec. II D, where it is shown that the μf-
independent r2-term exists in αF;UVð1=r2Þ. This result is
obtained from the one-dimensional integral representation
of the QCD potential (46), and we investigate the QCD
potential in this subsection.
The preweight WðmÞ

V ðzÞ of the QCD potential in the
massive gluon scheme is given in Eq. (48) and computed
from the integration

WðmÞ
V ðzÞ ¼ −

2CF

π

Z
∞

0

sinðprÞp
p2 − τ − i0

dp; ð105Þ

where z ¼ τr2. We investigate the kinematical regions

which contribute to the small-z expansion of WðmÞ
V ðzÞ.

To apply the method of expansion by regions, we introduce
a variant of the dimensional regularization by replacing
dp → p−2εdp in Eq. (105). While in the conventional
expansion-by-regions method [31] only Feynman integrals
in momentum space are considered, Eq. (105) contains
both coordinate-space variable (r) and momentum-space
variable (p). To our knowledge, there is no systematic
argument concerning validity of the expansion-by-regions
method in such cases. Nevertheless in the current specific
example, we can show validity of the method using the
argument in Ref. [32].
Similarly to Eq. (97), the contribution from the hard

region p ∼ 1=r is given as

WðHÞ
V ðzÞ ¼ −

2CF

π

X∞
n¼0

Z
∞

0

τn

ðp2Þnþ1
sinðprÞp1−2εdp ð106Þ

¼ −
2CF

π
r2ε

X∞
n¼0

zn
πΓð−2n − 2εÞ

Γðnþ εþ 1ÞΓð−n − εÞ ð107Þ

FIG. 6. Relations between contributions to the Adler function
evaluated with the expansion-by-regions method (colored graphs;
c.f. Fig. 5) and those with a (would-be) low-energy effective field
theory (black graphs). The corresponding terms in OPE are also
shown.

28Although one may be worried that the cutoff regularization
would break gauge invariance and generate gauge noninvariant
operators, in fact our regularization method preserves gauge
invariance.

29Contributions from the soft region of the fermion bubble
subgraphs are also suppressed.

30Note that WðS;SÞC
D ¼ 0 by massless quark loop, see Fig. 6.

31The same cancellation mechanism cannot be seen explicitly
in the computation of the massless diagrams in Fig. 6, since the
soft-scale integrals are scaleless and vanish for all the diagrams.
On the other hand, in Fig. 5 the gluon mass τ acts as the soft scale.
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¼ −CF cosð
ffiffiffi
z

p Þ þOðεÞ; ð108Þ

while the contribution from the soft region p ∼
ffiffiffi
τ

p
is

given as

WðSÞ
V ðzÞ ¼ −

2CF

π

X∞
n¼0

ð−1Þn
ð2nþ 1Þ!

Z
∞

0

ðprÞ2nþ1

p2 − τ − i0
p1−2εdp

ð109Þ

¼ −
CF

π

X∞
n¼0

ð ffiffiffi
z

p Þ2nþ1

ð2nþ 1Þ! τ
−εΓ

�
ε −

1

2

�
Γ
�
3

2
− ε

�
eiπðn−εþ1=2Þ

ð110Þ

¼ −iCF sinð
ffiffiffi
z

p Þ þOðεÞ: ð111Þ

Both hard and soft contributions are finite as ε → 0 to all
orders in the small-z expansion.
The hard and soft contributions separate into the real and

imaginary part, respectively. There is no mixed contribution
from both regions to each expansion coefficient, so that the
correspondence is simpler than the Adler function. Namely,
each coefficient is either real or pure imaginary, where the
former originates from the hard region and the latter from
the soft region. The real and imaginary coefficients appear
alternately. The order z1 term of cosð ffiffiffi

z
p Þ gives the Λ2

QCDr
2

term of αF;UV [linear potential in VQCDðrÞ], which indeed
stems from the hard region.
As already explained in Sec. II D, the effective field

theory for the QCD potential is known as pNRQCD, and its
construction can be understood using the integration-by-
regions method. According to this understanding,
pNRQCD for the static QCD potential is constructed by
integrating out the so-called “hard” and “soft” scales. The
remaining active dynamical degrees of freedom are those in
the “ultrasoft” scale and the ΛQCD scale.32

Computations in the framework of pNRQCD is system-
atically organized using the multipole expansion, which
gives an OPE in this effective field theory. A number of
Wilson coefficients in pNRQCD have been computed using
the method of expansion by regions. Wilson coefficients
are usually regularized by dimensional regularization, and
they contain divergences in general. It is possible to change
to another regularization scheme within pNRQCD frame-
work, and the physical predictions should not depend on
the regularization scheme. Hence, through such a route,
computation of the QCD potential in our framework can be
related to that of pNRQCD or full QCD without any
ambiguity.

In dimensional regularization and in strict expansion in
αs, the leading Wilson coefficient VSðrÞ in Eq. (61)
coincides with VQCDðrÞ to all orders in αs, since contri-
butions from the ultrasoft and ΛQCD scales (e.g., the second
term) evaluate to scaleless integrals at each order of αs in
the expansion-by-regions method. In OPE the ultrasoft and
ΛQCD contributions turn into nonperturbative matrix ele-
ments. If we adopt the large-β0 approximation and the
cutoff in the gluon momentum, VSðrÞ coincides with
Vβ0ðr; μfÞ in our formulation. At the same time, the leading
nonperturbative matrix element is estimated as order μ3fr

2

in this regularization scheme. By examining the matching
between full QCD and pNRQCD in detail, we can check
that with this regularization Eq. (61) also achieves a
consistent separation of the UV (hardþ soft) and IR
(ultrasoftþ ΛQCD) contributions to the whole static QCD
potential VQCDðrÞ. Details of the computation can be
found, e.g., in Ref. [18].

D. Relevant kinematical region for XUV:
Reconsideration with explicit cutoff

We revisit the issue: “Which kinematical regions does
XUV originate from?” In this subsection, we address this
point by introducing an explicit cutoff scale to separate the
kinematical regions, instead of the method of expansion by
regions. The use of the explicit cutoff enables us to
understand more directly that the contribution from the
integral along Ca originates from UV regions. In the
following, X is assumed to be the reduced Adler function
or the (dimensionless) QCD potential.
We divide WðmÞ

X in Eq. (28) into two parts as follows:

WðmÞ
X ðzÞ ¼ WH

Xðz; μ2f=Q2Þ þWS
Xðz; μ2f=Q2Þ ð112Þ

with

WH
Xðτ=Q2; μ2f=Q

2Þ≡
Z

∞

μ2f

dðp2Þ
2π

wXðp2=Q2Þ
p2 − τ

ð113Þ

WS
Xðτ=Q2; μ2f=Q

2Þ≡
Z

μ2f

0

dðp2Þ
2π

wXðp2=Q2Þ
p2 − τ

; ð114Þ

which consist of UV and IR modes, respectively.
We first show that the contribution from the integral

along Ca,

Im
Z
Ca

dτ
πτ

WðmÞ
X

�
τ

Q2

�
αβ0ðτÞ

¼
Z

∞

0

dτ
πτ

WðmÞ
Xþ

�
τ

Q2

�
Imαβ0ð−τ þ i0Þ

∼ −
4π

β0
c0 þ

4πd0
β0

1

log ðQ2=Λ2
QCDÞ

as Q2 ≫ Λ2
QCD;

ð115Þ

32There is no contribution from the “potential region” in the
computation of the static QCD potential due to the fact that the
static propagator originating from the Wilson line does not
include the kinetic energy term ∼p⃗2=ð2mÞ.
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originates dominantly from WH
X [see Eq. (26) for its

asymptotic form]. For this purpose it is sufficient to show
that the part given through WS

X gives subdominant con-
tribution. Then we investigate

Z
∞

0

dτ
πτ

WS
Xþ

�
τ

Q2
;
μ2f
Q2

�
Imαβ0ð−τ þ i0Þ; ð116Þ

where WS
Xþðz; μ2f=Q2Þ≡WS

Xð−z; μ2f=Q2Þ. In the compu-
tation of WS

Xþ, there exists some constant ~c > 0 such that

jwXðp2=Q2Þj ≤ ~cðp2=Q2ÞuIR ð117Þ

for sufficiently large Q2. Using Eq. (117), we obtain

				WS
Xþ

�
τ

Q2
;
μ2f
Q2

�				 ≤
Z

μ2f

0

dðp2Þ
2π

jwXðp2=Q2Þj
p2 þ τ

≤
~c
π

μ2f
μ2f þ τ

�
μ2f
Q2

�uIR

; ð118Þ

where we use the fact that the integrand becomes a
monotonically increasing function of p for uIR ≥ 1=2.
Therefore, it is shown that Eq. (116) is suppressed by
ð1=Q2ÞuIR ,
Z

∞

0

dτ
πτ

WS
Xþ

�
τ

Q2
;
μ2f
Q2

�
Imαβ0ð−τ þ i0Þ ¼ Oðð1=Q2ÞuIRÞ;

ð119Þ

which is subdominant compared with the asymptotic
behavior shown in Eq. (115). Thus, we conclude that
the contribution from the integral along Ca originates from
UV (large p) regions for large Q.
We also show that the first few terms of the expansion of

WðmÞ
X ðzÞ is dominantly reproduced by that of WH

X . In this
case, we use the relation jτj ≤ μ2f which is satisfied along
Cb. The expansion of WH

X is obtained by expanding the
gluon propagator in Eq (113),

WH
Xðz; μ2f=Q2Þ ¼

X∞
n¼0

cHn zn; ð120Þ

where cHn is given as a function of μ2f=Q
2,

cHn ¼
Z

∞

μ2f=Q
2

dx
2π

wXðxÞx−n−1: ð121Þ

In the following, we focus on the case n < uIR, which
gives the power correction ∼ðΛ2

QCD=Q
2Þn in XUV. We

rewrite cHn as

cHn ¼ cn −
Z

μ2f=Q
2

0

dx
2π

wXðxÞx−n−1: ð122Þ

Here we use cn ¼
R
∞
0 ðdx=2πÞwXðxÞx−n−1 as shown in

Eqs. (91) and (10). Then a similar evaluation as Eq. (118)
leads that the difference between cn and cHn satisfies

jcn − cHn j ≤
~c

2πðuIR − nÞ ðμ
2
f=Q

2ÞuIR−n; ð123Þ

thereby, cHn ∼ cn for n < uIR for large Q. Namely, we have
confirmed that the power corrections in XUV originate from
UV (large p) regions.
From the above discussion we conclude that each term in

XUV (the integral along Ca and the first few terms of the
integral along Cb) originates from UV regions.
We finally note that the method presented in this

subsection has a drawback that it is difficult to discuss
cHn for n ≥ uIR systematically in contrast to the method of
expansion by regions. The difference of these two methods
is clear in the case of the QCD potential. In the method of
expansion by regions, the hard (soft) contributions are
identified with the real (imaginary) part of the preweight to
all orders in z [Eqs. (108) and (111)]. However, it is difficult
to reach the same result within the method with the explicit
cutoff. The method presented here has an advantage to
examine the contribution from the integral along Ca.

IV. RELATION BETWEEN XUV AND
PERTURBATIVE SERIES AT LARGE ORDERS

In this section we show that XUVðQ2Þ derived in Sec. II B
is reproduced from the perturbative series in the large-β0
approximation at large orders. Based on this observation
we confirm that our result XUV is consistent with the
renormalon uncertainty and the OPE framework.
The smallest term of the perturbative series of Eq. (3) is

given at around n� ¼ 4πuIR=ðβ0αsÞ; hence, it is natural to
regard the truncated series at this order Xn� ðQ2Þ as an
optimal prediction within perturbation theory. The uncer-
tainty of the prediction Xn� ðQ2Þ is of the order of
ðΛ2

QCD=Q
2ÞuIR . By taking a small αsðμÞ, we can examine

the large order perturbative series keeping the perturbative
series finite, since n� becomes large in this case. The
truncated series Xn� is written as

Xn� ðQ2Þ ¼
Xn�−1
n¼0

Z
∞

0

dτ
2πτ

wX

�
τ

Q2

�
αsðμÞ

×

�
β0αsðμÞ

4π
log

�
μ2e5=3

τ

��n

¼
Z

∞

0

dτ
2πτ

wX

�
τ

Q2

�
αsðμÞ

1 − Ln�

1 − L
ð124Þ
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¼ Im
Z

∞

0

dτ
πτ

WX

�
τ

Q2

�
αsðμÞ

1 − Ln�

1 − L
; ð125Þ

where we define

L ¼ β0αsðμÞ
4π

log

�
μ2e5=3

τ

�
: ð126Þ

Since the integrand of Eq. (125) is regular along the
integral path (positive real axis), we can deform the path
into Ca,

Xn� ðQ2Þ ¼ Im
Z
Ca

dτ
πτ

WX

�
τ

Q2

�
αsðμÞ

1 − Ln�

1 − L

¼ Im
Z
Ca

dτ
πτ

WX

�
τ

Q2

�
αsðμÞ

1

1 − L

þ Im
Z
Ca

dτ
πτ

WX

�
τ

Q2

�
αsðμÞ

−Ln�

1 − L
: ð127Þ

The first term is a part of X0ðQ2Þ since

αsðμÞ
1

1 − L
¼ αβ0ðτÞ: ð128Þ

In the second term of Eq. (127), the integrand has a pole at
τ ¼ e5=3Λ2

QCD. We decompose the integral into the princi-
ple value part and the delta function part, after taking the
integral path again on the positive axis,

αβ0ðτÞ ¼ Pr :αβ0ðτÞ −
4π

β0
πτiδðτ − e5=3Λ2

QCDÞ: ð129Þ

Thus, we obtain

Xn� ðQ2Þ ¼ Im
Z
Ca

dτ
πτ

WX

�
τ

Q2

�
αβ0ðτÞ

þ 4π

β0
ReWX

�
e5=3Λ2

QCD

Q2

�

þ Pr :
Z

∞

0

dτ
2πτ

wX

�
τ

Q2

�
αβ0ðτÞð−Ln� Þ; ð130Þ

where we used Eq. (14) for the third term. By expanding
ReWX in Λ2

QCD=Q
2, we can see that Xn� ðQ2Þ indeed

includes XUVðQ2Þ; see Eqs. (21) and (23).
In Fig. 7, we show XUV and perturbative series

truncated at various orders for X ¼ D and αF. (The
truncated order is denoted as n.) One can see that
the truncated perturbative series gradually approaches
to XUV for n≲ n� as we raise n. For n≳ n� it starts
to deviate from XUV.
The difference between Xn� and XUV is given by

Xn� ðQ2Þ−XUVðQ2Þ¼4π

β0

�
ReWX

�
e5=3Λ2

QCD

Q2

�

−
X

0≤n<uIR

cn

�
e5=3Λ2

QCD

Q2

�n�

þPr :
Z

∞

0

dτ
2πτ

wX

�
τ

Q2

�
αβ0ðτÞð−Ln� Þ:

ð131Þ

For large n�, this difference has a power behavior Λ2
QCD=Q

2

whose order is the same as the renormalon uncertainty,33

FIG. 7. Truncated perturbative series up to Oðαns ðμÞÞ in the large-β0 approximation and XUV, for the reduced Adler function X ¼ D
(left) and the F-scheme coupling X ¼ αF (right). We choose αsðμÞ ¼ 0.0243 corresponding to n� ¼ 24 (n� ¼ 18) for X ¼ D (X ¼ αF)
and uIR ¼ 2 (uIR ¼ 3=2). Optimal perturbative prediction Xn� lies close to XUV in each figure. We set nf ¼ 1.

33The difference Eq. (131) can contain a polynomial of
log ðQ2=Λ2

QCDÞ, log log ðQ2=Λ2
QCDÞ;…, as a factor in front of

the ðΛ2
QCD=Q

2ÞuIR -term. Therefore, strictly speaking, the differ-
ence is oðΛ2

QCD=Q
2ÞuIR−δ with 0 < ∀ δ ≤ 1.
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Xn� ðQ2Þ − XUVðQ2Þ ∼OððΛ2
QCD=Q

2ÞuIRÞ: ð132Þ

More precisely, we can detect the n�-dependence of
Eq. (131) analytically as

Xn� ðQ2Þ − XUVðQ2Þ ∼ log n� ×
buIR
β0

�
e5=3Λ2

QCD

Q2

�uIR

;

ð133Þ

where buIR is an expansion coefficient of wX; c.f., Eq. (12).
(We give a derivation in Appendix D.) In Fig. 8 we check
Eqs. (132) and (133) numerically for X ¼ D and αF. We
confirm the predicted behavior, although n� ¼ 18 for αF is
not large enough to reach the asymptotic forms.
We can draw some conclusions from Eq. (132). First, it

shows that the power behaviors in XUV are not a new
contribution which should be added to the perturbative
prediction, rather they are already contained in the pertur-
bative series. Secondly, using Eq. (132) and the assumption
of the renormalon uncertainty, we can extract the following
relation between XUV and the true value XðQ2Þ:

XðQ2Þ − XUVðQ2Þ ¼ ½XðQ2Þ − Xn� ðQ2Þ�
þ ½Xn� ðQ2Þ − XUVðQ2Þ�

∼OððΛ2
QCD=Q

2ÞuIRÞ: ð134Þ

This result is consistent with the interpretation that
XUVðQ2Þ is the leading order contribution to XðQ2Þ in
the OPE framework and the deviation from XðQ2Þ starts
from the next-to-leading order in OPE and has the same
order of magnitude as the nonperturbative matrix element
of the order of ðΛ2

QCD=Q
2ÞuIR .

We end this section with comparisons between the
known exact perturbative series and those obtained under
the large-β0 approximation to make sure how far we can
trust the result based on the large-β0 approximation.
Figures 9 and 10 show that the large-β0 approximation
reproduces qualitatively the same behavior of the exact

series of DðQ2Þ [33,34] and αFð1=r2Þ [24–26].34 Therefore
we expect that the results in this paper (especially Fig. 7)
grasp an essential feature of QCD.

V. EXAMPLE OF TIMELIKE QUANTITY:
R-RATIO IN e + e− COLLISION

So far we have considered Euclidean quantities. In this
section we investigate how our method can be extended to
the case of the R-ratio in eþe− collision as an example of a
timelike quantity. We obtain a result which can be regarded
as an extension of the massive gluon scheme.
In calculating the R-ratio, we set Q2 < 0 (i.e. q2 > 0)

and take the imaginary part of ΠðQ2Þ according to the
optical theorem. The difference from Euclidean quantities
is that we do not have a one-dimensional integral repre-
sentation of the R-ratio in the form of Eq. (4). Thus, we
cannot directly apply the method developed for Euclidean
quantities in Sec. II, and a reconsideration is needed. Our
strategy is to start from a Euclidean quantity and to use the
analytic continuation to derive the result for the R-ratio.
We consider the reduced vacuum polarization and

reduced R-ratio, in which αs-independent terms are sub-
tracted. Let us start from the reduced vacuum polarization35

in the Euclid region Q2 > 0 with an IR cutoff scale,

Πβ0ðQ2; μfÞ ¼
Z

∞

μ2f

�
dτ
2πτ

�
r
wΠ

�
τ

Q2

�
αβ0ðτÞ; ð135Þ

where we denote by ½dτ=ð2πτÞ�r a regularized integral
measure which makes the integral UV finite. We do not
need to specify a way of regularization since the R-ratio,
which we are interested in, is finite, and thus the final result
should be independent of the regularization method. The
weight is given as [10]

wΠðxÞ ¼ w1ðxÞθð1 − xÞ þ w2ðxÞθðx − 1Þ ð136Þ

with

w1ðxÞ¼A½2ð1− logxÞxþð5−3 logxÞx2
þ2ð1þxÞ2fLi2ð−xÞþ logx logð1þxÞg�; ð137Þ

FIG. 8. Difference between truncated perturbative series Xn�
and XUV for the reduced Adler function (left) and αF (right). The
red (blue) lines correspond to the input αsðμÞ ¼ 0.1013ð0.0243Þ.
The truncation orders n� are shown in the plots. We set nf ¼ 1.

34There is an IR divergence in the exact series of αF from the
three-loop order, and the divergence cancels with contributions
from the ultrasoft scale. We do not include the contribution of the
ultrasoft scale because this contribution cannot be regarded as a
part of the Wilson coefficient. Instead, we simply subtract the
term proportional to ð1=ϵþ 4ð2 logðμ=pÞ þ logð4πÞ − γEÞÞ in
momentum space in dimensional regularization.

35Note that we define the reduced vacuum polarization (135)
such that its perturbative expansion does not contain the
α0s-part

NC

12π2
ðlog ðQ2=μ2Þ þ CÞ, which is included in the renor-

malized ΠðQ2Þ of Eq. (34). Correspondingly, the reduced
R-ratio is different by NCe2q for each quark flavor compared
with the R-ratio.
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w2ðxÞ ¼ A½5þ 3 log xþ 2ð1þ log xÞx
þ 2ð1þ xÞ2fLi2ð−x−1Þ − log x logð1þ x−1Þg�;

ð138Þ

where A ¼ −NCCF=ð12π2Þ. The small-x and large-x
behaviors of wΠðxÞ are given, respectively, by

wΠðxÞ ¼ A

�
3

2
x2 −

11 − 6 log x
9

x3 þ � � �
�

ðx ≪ 1Þ;

ð139Þ

wΠðxÞ ¼ A

�
3

2
−
11þ 6 log x

9

1

x
þ � � �

�
ðx ≫ 1Þ: ð140Þ

We can see that the first IR renormalon is located at
u ¼ 2 for the reduced vacuum polarization. The constant

c∞ ≡ 3A=2 in Eq. (140) stems from the UV renormalon at
u ¼ 0, which is the source of the UV divergence of the
integral (135). As shown in Eqs. (137) and (138), wΠ has
different analytic forms for x < 1 and x > 1; hence, we
separate the integral path at τ ¼ Q2 in order to represent
Eq. (135) as an analytic function of Q2,

Πβ0ðQ2; μfÞ ¼
Z

Q2

μ2f

dτ
2πτ

w1

�
τ

Q2

�
αβ0ðτÞ

þ
Z

∞

Q2

dτ
2πτ

�
w2

�
τ

Q2

�
− c∞

�
αβ0ðτÞ

þ
Z

∞

Q2

�
dτ
2πτ

�
r
c∞αβ0ðτÞ: ð141Þ

We also separate the divergent part which needs a
regularization.

FIG. 9. Perturbative series of DðQ2Þ: exact result for the nonsinglet component (left) and large-β0 approximation (right). NkLO line
represents the sum of the series up to Oðαkþ1

s Þ. The input is taken as αsðμÞ ¼ 0.2, and we set nf ¼ 1.

FIG. 10. Perturbative series of αFð1=r2Þ. The parameters are the same as those of Fig. 9.

MISHIMA, SUMINO, and TAKAURA PHYSICAL REVIEW D 95, 114016 (2017)

114016-24



Now we replaceQ2 → jQ2jeiπ in Eq. (141) and derive an
expression for the timelike region. The integral path of the
first term in Eq. (141) can be deformed after replacing
Q2 → jQ2jeiπ as

Z
Q2

μ2f

dτ
2πτ

w1

�
τ

Q2

�
αβ0ðτÞ→

Z
−jQ2j

0

dτ
2πτ

w1

�
τ

jQ2je
−iπ

�
αβ0ðτÞ

−
Z
Cb

dτ
2πτ

w1

�
τ

jQ2je
−iπ

�
αβ0ðτÞ:

ð142Þ

The second term in Eq. (141) changes as

Z
∞

Q2

dτ
2πτ

�
w2

�
τ

Q2

�
− c∞

�
αβ0ðτÞ

→
Z

−∞

−jQ2j

dτ
2πτ

�
w2

�
τ

jQ2j e
−iπ

�
− c∞

�
αβ0ðτÞ; ð143Þ

where the end point of the integral path is changed from
∞ to −∞ using the fact that the contribution from CR
[defined in Eq. (77)] vanishes as R → ∞. The third term
becomes

Z
∞

Q2

�
dτ
2πτ

�
r
c∞αβ0ðτÞ → −

Z
−jQ2j

0

�
dτ
2πτ

�
r
c∞αβ0ðτÞ

þ
Z
Ca

�
dτ
2πτ

�
r
c∞αβ0ðτÞ: ð144Þ

Collecting these terms, we obtain an expression for the
reduced vacuum polarization in the timelike region,

Πβ0ðjQ2jeiπ; μfÞ ¼
Z

∞

0

dτ
2πτ

�
wΠ

�
τ

q2

�
− c∞

�
αβ0ð−τ þ i0Þ

þ
Z
Ca

�
dτ
2πτ

�
r
c∞αβ0ðτÞ

−
Z
Cb

dτ
2πτ

w1

�
τ

q2
e−iπ

�
αβ0ðτÞ: ð145Þ

By taking the imaginary part, we obtain the reduced
R-ratio,

Rβ0ðq2; μfÞ ¼ 12π

�X
q

e2q

�
ImΠβ0ðjQ2jeiπ; μfÞ: ð146Þ

Setting
P

qe
2
q ¼ 1 for simplicity, we have

Rβ0ðq2; μfÞ ¼
Z

∞

0

dτ
πτ

WRþ

�
τ

q2

�
Imαβ0ð−τ þ i0Þ

− Im
Z
Cb

dτ
πτ

WR

�
τ

q2

�
αβ0ðτÞ: ð147Þ

We regardWR andWRþ as preweights (although we do not
have a weight), which are defined as

WRðzÞ ¼ 6πfw1ðze−iπÞ − c∞g ðjzj < 1Þ; ð148Þ

WRþðzÞ ¼ 6πfwΠðzÞ − c∞g: ð149Þ

In taking the imaginary part of the second term of Eq. (145)
to obtain Eq. (147), we used

2Im
Z
Ca

�
dτ
2πτ

�
r
c∞αβ0ðτÞ ¼ Im

Z
Cb

dτ
πτ

c∞αβ0ðτÞ; ð150Þ

since the imaginary part of the integrand is zero on the
positive real axis. The way to evaluate the second term of
Eq. (147), i.e., the integral along Cb, is no longer different
from the case of Euclidean quantities (see the discussion in
Sec. II B). The expansion of WRðzÞ in z reads

WRðzÞ ¼ NCCF

�
3

4π
−

3

4π
z2 þ 11− 6 log zþ 6iπ

18π
z3 þ � � �

�
:

ð151Þ

As a result, we can separate the μf-dependence of Eq. (147)
and obtain a μf-independent part RUV as

Rβ0ðq2; μfÞ ¼ RUVðq2Þ þOðμ6f=q6Þ; ð152Þ

where
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RUVðq2Þ ¼ R0ðq2Þ −
3NCCF

β0

e10=3Λ4
QCD

q4
; ð153Þ

R0ðq2Þ ¼
Z

∞

0

dτ
πτ

WRþ

�
τ

q2

�
Imαβ0ð−τ þ i0Þ þ 3NCCF

β0
:

ð154Þ

The μf-dependence appears first at order 1=q6. In fact, the
first IR renormalon of the reduced R-ratio is known to be
located at uIR ¼ 3. Therefore the result is consistent with
Eq. (22). However, note that the absence of u ¼ 2 renor-
malon is considered to be an artifact of the large-β0
approximation, and there is a possibility that the result
[Eqs. (152)–(154)] is not based on a good approximation of
the exact perturbative series. Hence, we are cautious in
applying our formulation to serious studies of the R-ratio at
the current stage. Even in such a case, nevertheless, we can
still learn some lessons from the above result.
First, the 1=q2-term is absent in Eq. (153) due to the

vanishing z1-term in Eq. (151).36 As a result, we obtain a
very different behavior of the reduced R-ratio from those
of the reduced Adler function and αF, as seen in Figs. 2, 3
and 11. This fact serves as an evidence that the power
corrections indeed play an important role in the determi-
nation of the behavior of a physical quantity and under-
standing of it.
Secondly, our formulation in this section has common

features to those of the Euclidean observables in the
massive gluon scheme. Let us clarify this point. RUV
and R0 [Eq. (153) and (154)] have the same expressions
as those of a Euclidean observable obtained in the massive
gluon scheme [Eqs. (24) and (30)]. In addition, WRþ

defined in Eq. (149) can be regarded to be “constructed
by massive gluon scheme.” To justify this statement, we can
use Eq. (92), which is satisfied by WXþ in the massive
gluon scheme. We regard it as an abstract property of the
massive gluon scheme, since this relation can be checked as
long as the observable has a Borel transformation. The
Borel transformation of the (reduced) R-ratio is known and
given in Appendix A. We can show that WRþ satisfies the
same relation as Eq. (92),

Z
∞

0

dz
2π

WRþðzÞz−u−1 ¼ 6π

Z
∞

0

dz
2π

ðwΠðzÞ − c∞Þz−u−1

¼ 6π

Z
∞

0

dz
2π

wΠðzÞz−u−1

¼ 6πBΠðuÞjQ2>0

¼ −6π
1

sin ðπuÞBImΠðuÞjq2>0

¼ −
1

2 sinðπuÞBRðuÞ; ð155Þ

where37 we use the relation between the Borel trans-
formations with opposite signs of Q2 (or q2) [1,35] and
Eq. (146). Similarly, we confirm that WR defined in
Eq. (148) is consistent with the massive gluon scheme,
since the expansion ofWR is correctly reproduced from the
relation

CRðvÞ ¼ −
e−iπv

2 sin ðπvÞBRðvÞ ð156Þ

and the inverted formula (91), which are also obtained in
the case of the massive gluon scheme.38 Namely, our
formulation used here can be regarded as a natural
extension of the massive gluon scheme developed in
Sec. II to the timelike quantity.
Thus, our formulation for the R-ratio derived by

analytic continuation is an extension of the massive
gluon scheme. This is natural if one recalls the dis-
cussion in Sec. II F that the massive gluon scheme is
unique with respect to the analyticity of an observable.
Namely, if we adopt a formulation which has a good
property in terms of analyticity, the same result is likely
to be obtained.

VI. CONCLUSIONS AND DISCUSSION

In this paper we proposed a method to extract a
cutoff-independent UV contribution XUV from a general

FIG. 11. RUV [Eq. (153)], R0 [Eq. (154)] and the Λ4
QCD=q

4-term
[Eq. (153)] as functions of Λ2

QCD=q
2.

36As discussed below Eq. (156), the absence of z1-term is
caused by BRð1Þ ¼ 0, and it further stems from the absence of a
u ¼ 1 renormalon in the reduced Adler function. The absence of
the 1=q2-term is also understood easily by reversing the sign of
Q2 in Eq. (42).

37The integral of ðwΠðzÞ − c∞Þz−u−1 has the same form as that
of wΠðzÞz−u−1 as a function of u by analytic continuation.

38In Ref. [12], the functionsWR andWRþ were obtained by the
massive gluon method directly. Our method can be used to
circumvent complicated calculations.
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observable XðQ2Þ with an explicit IR cutoff, which is
free from IR renormalon ambiguities. Our method can
be applied in the deep Euclidean region (Q2 ≫ Λ2

QCD)
and in the large-β0 approximation of perturbative
series to all orders. The UV contribution XUV consists
of the nonpowerlike (logarithmic) term X0 and the
power correction terms ∼ðΛ2

QCD=Q
2Þn independent of

renormalons.
In our method we introduce an analytic function WX,

which we call “preweight,” for the systematic treatment of
various observables. General properties of the preweight,
such as its scheme dependence, were investigated.
Separation of XUV into X0 and the power corrections (in
particular the coefficients of the power corrections)
depends on the scheme choice. Among various schemes,
the “massive gluon scheme,” in which WX is given by a
dispersive integral, has particularly good analytical proper-
ties: (1) The analyticity of XUV satisfies physical require-
ments within perturbative QCD; (2) Origins of the power
corrections can be analyzed accurately using the integra-
tion-by-regions method. We showed that the feature (1) is
satisfied optimally in the massive gluon scheme. We also
find that the analyticity of XUV and a unique scheme choice
follow simultaneously if the preweight satisfies certain
good analytical properties in the upper half-plane. This
discussion establishes natural coefficients of the power
corrections.
We can use the integration-by-regions method to

elucidate the relation between our formulation and
OPE. Using this relation we showed that XUV coincides
with the leading Wilson coefficient in the explicit
examples considered. Thus, we can systematically sub-
tract IR renormalons from the leading Wilson coefficient
in a cutoff-independent way. Furthermore, we used the
integration-by-regions method to clarify that the leading
power corrections in XUV indeed originate from UV
regions.
As applications of our method, we investigated the

Adler function and the force between a static quark-
antiquark pair. For each observable, there is a nontrivial
power correction in XUV, which originates from UV
region. In the context of OPE, this power correction is a
part of the Wilson coefficient of the leading identity
operator, and it is consistent with the structure of OPE.
Comparison with the exact perturbative series indicates
that the large-β0 approximation is fairly good; hence, it is
natural to regard that the power correction (in the massive
gluon scheme) is inherent in the perturbative series or the
UV contribution.
By now there exist ample numerical evidences for

validity of the large-β0 approximation and IR renormalon
dominance hypothesis. Apart from these assumptions, we
tried to avoid including ad hoc assumptions into our
method. Thus, we believe that we provide a firm connection
between the OPE framework and our method for

subtracting IR renormalons from Wilson coefficients.
Moreover, we consider that our method (in particular in
the massive gluon scheme) would be an optimal one within
the OPE framework, with respect to systematicity, analy-
ticity, and insensitivity to the factorization scale (IR cut-
off scale).
There remain two directions toward generalization of our

method: one is to extend it to timelike quantities, and the
other is to go beyond the large-β0 approximation. For the
former, we presented an example (R-ratio) but the gener-
alization is left to be done. We do not have a clear guide to
the latter, since the improvement of the large-β0 approxi-
mation in the ordinary perturbation theory is still incom-
plete, and we need a control up to any order in αs. We
speculate that the method of integration by regions may
play a key role to achieve the generalization since the
method enables more complicated scale separation than the
single scale separation which we adopted in this paper. In
addition, we note that a systematic improvement beyond
the large-β0 approximation has been achieved for the static
QCD potential and better consistency with OPE has been
observed [5,16], using the fact that the preweight takes a
simple form to all orders in αs.
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APPENDIX A: BOREL TRANSFORMATIONS

We list formulas for the Borel transformations in
the large-β0 approximation of the dimensionless observ-
ables analyzed in this paper (reduced Adler function,
F-scheme coupling defined from the static QCD force,
and R-ratio).

BDðuÞ ¼
8NCCF

3π

1

2 − u

X∞
k¼2

ð−1Þkk
ðk2 − ð1 − uÞ2Þ2 ; ½35� ðA1Þ

BαFðuÞ ¼
sin ðπuÞ

πu
Γð2 − 2uÞ; ðA2Þ

BRðuÞ ¼
3 sinðπuÞ

πu
BDðuÞ: ½1� ðA3Þ

APPENDIX B: PREWEIGHT OF
ADLER FUNCTION

Another expression of the preweight of the reduced
Adler function in the massive gluon scheme is given by
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WðmÞ
DþðzÞ ¼ WðmÞ

D ð−zÞ

¼ NCCF

36πðzþ 1Þ
�
−48z3Li2ð1 − zÞ þ 48z3Li2ð−zÞ þ 24z3Li2

�
1

zþ 1

�
− 24z3Li3

�
1 −

1

z

�

− 72z3Li3ð1 − zÞ þ 24z3Li3ð−zÞ − 48z3Li3

�
1

zþ 1

�
þ 24z3Li2ð1 − zÞ logðzÞ

− 48z3Li2ð1 − zÞ logðzþ 1Þ − 12z2Li2

�
1 −

1

z

�
þ 36z2Li2ð1 − zÞ − 48z2Li2

�
1

zþ 1

�

− 24z2Li2ð1 − z2Þ − 24zLi3ð1 − z2Þ þ 24z3Li2ð1 − z2Þ þ 24z3Li3ð1 − z2Þ

− 36zLi2ð−zÞ þ 24zLi2

�
1

zþ 1

�
þ 24zLi3

�
1 −

1

z

�
þ 72zLi3ð1 − zÞ − 24zLi3ð−zÞ

þ 48zLi3

�
1

zþ 1

�
þ 12Li2

�
1 −

1

z

�
þ 12Li2ð1 − zÞ þ 12Li2ð−zÞ − 24zLi2ð1 − zÞ logðzÞ

þ 48zLi2ð1 − zÞ logðzþ 1Þ þ 24z3ζð3Þ þ 4π2z3 þ 4z3log3ðzÞ þ 8z3log3ðzþ 1Þ
þ 12z3log2ðzÞ þ 12z3log2ðzþ 1Þ − 42z3 logðzÞ þ 24z3 logðzÞ logðzþ 1Þ − 4π2z3 logðzþ 1Þ
þ 42z3 logðzþ 1Þ þ 8π2z2 − 66z2 þ 6z2log2ðzÞ − 24z2log2ðzþ 1Þ − 42z2 logðzÞ
þ 66z2 logðzþ 1Þ − 24zζð3Þ − 4π2z − 57z − 4zlog3ðzÞ − 8zlog3ðzþ 1Þ þ 12zlog2ðzþ 1Þ

þ 6log2ðzÞ − 24z logðzÞ logðzþ 1Þ þ 4π2z logðzþ 1Þ þ 6z logðzþ 1Þ − 18 logðzþ 1Þ þ 9

�
: ðB1Þ

This expression is suited for verifying its analytical proper-
ties, such as, that WðmÞ

D ðzÞ has a branch cut along the

positive real axis from z ¼ 0, and that WðmÞ
DþðzÞ takes a real

value for z > 0. [Note that the polylogarithm LinðzÞ for
n ≥ 2 has a branch cut along the positive real axis from
z ¼ 1. In the above expression the arguments of Lin are less
than or equal to one for z ≥ 0.]

APPENDIX C: ASYMPTOTIC EXPANSION
OF X0ðQ2Þ

We sketch how to derive the relation (73). Similarly to
Eqs. (125)–(130), we can rewrite the truncated series Xn as
follows:

XnðQ2Þ ¼
Xn−1
k¼0

Z
∞

0

dτ
2πτ

wX

�
τ

Q2

�
αkþ1
s lk

¼
Z

∞

0

dτ
2πτ

wX

�
τ

Q2

�
αs

1 − ðαslÞn
1 − αsl

¼ Im
Z

∞

0

dτ
πτ

WX

�
τ

Q2

�
αs

1 − ðαslÞn
1 − αsl

¼ Im
Z
Ca

dτ
πτ

WX

�
τ

Q2

�
αs

1 − αsl

− Im
Z
Ca

dτ
πτ

WX

�
τ

Q2

�
αnþ1
s ln

1 − αsl
; ðC1Þ

where αs ¼ αsðμÞ, and

l ¼ β0
4π

log ðe5=3μ2=τÞ: ðC2Þ

In the first term of Eq. (C1), we can rewrite
αs=ð1 − αslÞ ¼ αβ0ðτÞ. In the second term, we can deform
the integral path back to the positive real axis and rewrite

αnþ1
s ln

1 − αsl
→ Pr :

αnþ1
s ln

1 − αsl
þ 4πi

β0
πτδðτ − e5=3Λ2

QCDÞ; ðC3Þ

where Pr. denotes the principal value.
Therefore, the difference between X0ðQ2Þ, given by

Eq. (25), and XnðQ2Þ can be written as

X0ðQ2Þ − XnðQ2Þ ¼ 4π

β0

�
c0 − ReWX

�
e5=3Λ2

QCD

Q2

��

þ Pr :
Z

∞

0

dτ
2πτ

wX

�
τ

Q2

�
αnþ1
s ln

1 − αsl
:

ðC4Þ

The first term is OðΛ2
QCD=Q

2Þ. This follows from
WXðzÞ ¼

P
ncnz

n and Imc0 ¼ wXð0Þ ¼ 0. Hence, the first
term is smaller than OðαsðμÞkÞ for an arbitrary positive
integer k [or it is zero in expansion in αsðμÞ]. It remains to
show that
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Pr :
Z

∞

0

dτ
2πτ

wX

�
τ

Q2

�
αnþ1
s ln

1 − αsl
¼ OðαsðμÞnþ1Þ: ðC5Þ

It can be shown that the left-hand side isOðαsðμÞnþ1Þ in the
case that

R
t dx
x wXðxÞ × ½polynomial of log x� is absolutely

convergent as t → ∞ and that the first IR renormalon is a
single pole. [Although the QCD potential/force does not
satisfy the first condition, we can show Eq. (C5) in another
way.] It is valid for general μ, and in particular if we set
μ ¼ Q, we obtain the relation (73).

APPENDIX D: EVALUATION OF
Xn� ðQ2Þ−XUVðQ2Þ

We examine the principal value integral appearing in
Xn� ðQ2Þ − XUVðQ2Þ [the second term of Eq. (131)] for
large-n�.

Pr :
Z

∞

0

dτ
2πτ

wX

�
τ

Q2

�
αβ0ðτÞLn� : ðD1Þ

Write L of Eq. (126) as a function of n�

Lð ~Λ2=τÞ ¼ β0αs
4π

ðlogðμ2=Λ2
QCDÞ þ logðe5=3Λ2

QCD=τÞÞ

¼ 1þ uIR
n�

logð ~Λ2=τÞ; ðD2Þ

where ~Λ2 ≡ e5=3Λ2
QCD, then we get

Lð ~Λ2=τÞn� →
�
~Λ2

τ

�uIR
as n� → ∞: ðD3Þ

If we use this form, the integral (D1) does not converge
around the region τ ∼ 0 due to the behavior wXðτ=Q2Þ ¼
buIRðτ=Q2ÞuIR þ � � �. Therefore we should calculate keeping
n� finite for this part. It is useful to factorize the integral as
follows:

Pr :
Z

∞

0

dτ
2πτ

wX

�
τ

Q2

�
αβ0ðτÞLð ~Λ2=τÞn�

¼ Pr :
Z

∞

0

dx
2πx

�
wX

�
~Λ2

Q2
x

�
− buIR

�
~Λ2

Q2
x

�uIR
θð1 − xÞ

�

×
4π

β0

1

log x
Lð1=xÞn�

þ Pr :
Z

∞

0

dx
2πx

buIR

�
~Λ2

Q2
x

�uIR
θð1 − xÞ 4π

β0

1

log x
Lð1=xÞn� :

ðD4Þ

The second term of Eq. (D4) is separated as

Pr :
Z

∞

0

dx
2πx

buIR

�
~Λ2

Q2
x

�uIR
θð1−xÞ4π

β0

1

logx
fLð1=xÞn� −1g

þPr :
Z

∞

0

dx
2πx

buIR

�
~Λ2

Q2
x

�uIR
θð1−xÞ4π

β0

1

logx

≡4π

β0
buIR

�
~Λ2

Q2

�uIR
Fðn�Þ

þPr :
Z

∞

0

dx
2πx

buIR

�
~Λ2

Q2
x

�uIR
θð1−xÞ4π

β0

1

logx
: ðD5Þ

Substituting this into Eq. (D4), we obtain

Pr :
Z

∞

0

dτ
2πτ

wX

�
τ

Q2

�
αβ0ðτÞLn�

≃ 4πbuIR
β0

�
~Λ2

Q2

�uIR
Fðn�Þ

þ Pr :
Z

∞

0

dx
2πx

�
wX

�
~Λ2

Q2
x

�

− buIR

�
~Λ2

Q2
x

�
uIRð1 − xuIRÞθð1 − xÞ

�
4π

β0

1

log x

�
1

x

�
uIR
;

ðD6Þ

where we used the limit (D3) for the second term.
One can show that the second term of Eq. (D6) is
oððΛ2

QCD=Q
2ÞuIR−δÞ (see footnote 33) although it is fairly

complicated. Fðn�Þ behaves for large-n� as

Fðn�Þ ¼
Z

1

0

dx
2πx

xuIR
1

log x

��
1þ uIR

n�
log

�
1

x

��
n�
− 1

�

¼ −
Z

∞

0

dt
2π

e−t

t

��
1þ t

n�

�
n�
− 1

�

¼ −
1

4π
ðlog n� þ log 2þ γEÞ þO

�
1ffiffiffiffiffi
n�

p
�
; ðD7Þ

which gives the result Eq. (133).
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