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Using nonlinear evolution equations of QCD, we compute the von Neumann entropy of the system of
partons resolved by deep inelastic scattering at a given Bjorken x and momentum transfer q2 ¼ −Q2. We
interpret the result as the entropy of entanglement between the spatial region probed by deep inelastic
scattering and the rest of the proton. At small x the relation between the entanglement entropy SðxÞ and the
parton distribution xGðxÞ becomes very simple: SðxÞ ¼ ln½xGðxÞ�. In this small x, large rapidity Y regime,
all partonic microstates have equal probabilities—the proton is composed by an exponentially large
number expðΔYÞ of microstates that occur with equal and exponentially small probabilities expð−ΔYÞ,
where Δ is defined by xGðxÞ ∼ 1=xΔ. For this equipartitioned state, the entanglement entropy is maximal—
so at small x, deep inelastic scattering probes a maximally entangled state. We propose the entanglement
entropy as an observable that can be studied in deep inelastic scattering. This will require event-by-event
measurements of hadronic final states, and would allow to study the transformation of entanglement
entropy into the Boltzmann one. We estimate that the proton is represented by the maximally entangled
state at x ≤ 10−3; this kinematic region will be amenable to studies at the Electron Ion Collider.
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I. INTRODUCTION AND SUMMARY

In almost fifty years that ensued after the birth of the
parton model [1–6], it has become an indispensable build-
ing block of high energy physics. The picture of “quasifree”
partons “frozen” in the infinite-momentum frame due to the
Lorentz dilation is clear and intuitively appealing. Even
more importantly, the parton model combined with the
QCD factorization [7] allows us to describe a vast variety of
hard processes in terms of universal parton distributions.
The renormalization group (RG) flow of QCD [8–10] in
terms of the parton model can be recast in the form of parton
splitting [11–13], leading to the evolution of parton
densities in Bjorken x and virtuality Q2.
Nevertheless, in spite of a spectacular success of the

parton model, it raises a number of conceptual questions:
(i) The hadron in its rest frame is described by a pure

quantum mechanical state jψi with density matrix
ρ̂ ¼ jψihψ j and zero von Neumann entropy
S ¼ −tr½ρ̂ ln ρ̂� ¼ 0. How does this pure state evolve
to the set of “quasifree” partons in the infinite-
momentum frame? If the partons were truly free and
thus incoherent, they would be characterized by a
non-zero entropy. Since the Lorentz boost cannot

transform a pure state into a mixed one, what is the
precise meaning of “quasifree”?What is the rigorous
definition of the parton distribution when applied to
a pure quantum state?

(ii) Deep inelastic scattering (DIS) at Bjorken x and
momentum transfer q2 ¼ −Q2 probes only a part of
the proton’s wave function; let us denote it A. In the
proton’s rest frame, where it is definitely described
by a pure quantum mechanical state, the DIS probes
the spatial region A localized within a tube of radius
∼1=Q and length ∼1=ðmxÞ [14,15], where m is the
proton’s mass. The inclusive DIS measurement thus
sums over the unobserved part of the wave function
localized in the region B complementary to A, so we
have access only to the reduced density matrix
ρ̂A ¼ trBρ̂, and not the entire density matrix
ρ̂ ¼ jψihψ j. Is there an entanglement entropy SA ¼
−tr½ρ̂A ln ρ̂A� associated with the DIS measurement?
If there is, how does it relate to the conventional
parton distribution?

(iii) What is the relation between the parton distribution
and the multiplicity of final state hadrons in deep
inelastic scattering? Is the “parton liberation” [16]
picture universal, or does it apply only in the parton
saturation domain? What is the interpretation of
parton saturation [17] and color glass condensate
[18–20] in terms of von Neumann entropy?
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Answering these questions would also allow us to
interpret the inelastic electron scattering measurements in
the domain of strong coupling (relevant at small and
moderate Q2), where the concept of quasifree partons does
not apply. Even at very large momentum transfer, this
domain is relevant in the interpretation of deep inelastic
scattering—this is because the parton evolution equations
describing the renormalization group (RG) flow in QCD
depend on the initial conditions at some moderate initial
Q2 ¼ Q2

0. There is another reason for relating parton
distributions to the entanglement entropy—there exist
quantum bounds on entropy (see for example [21–24]),
whereas a priori there is no bound on the growth of parton
distributions1 at small x and large Q2.
In this paper we attempt to address these questions in the

framework of high energy QCD, see [25] for an introduc-
tion. Before we proceed to presenting the derivation, let us
state our main results:
(1) Using both a toy (1þ 1) dimensional model of

nonlinear QCD evolution and full nonlinear (3þ 1)
dimensional evolution equations, we have computed
the von Neumann entropy of partons SðxÞ at a given
x [and Q2, for the (3þ 1) case]—it is given by
Eqs. (19) and (61).

(2) We have found the relation between the von Neu-
mann entropy SðxÞ and the gluon distribution2

xGðxÞ accessed in deep inelastic scattering. At small
x this relation becomes very simple:

SðxÞ ¼ ln½xGðxÞ�: ð1Þ

Equation (1) implies that all microstates of the
system are equally probable, and the von Neumann
entropy is maximal. We argue that this equiparti-
tioning of microscopic states that maximizes the
von Neumann entropy corresponds to the parton
saturation.

(3) At small x, we find that the von Neumann entropy
diverges logarithmically at small x:

SðxÞ ¼ Δ ln½1=x� ¼ Δ ln
L
ϵ
; ð2Þ

where L ¼ ðmxÞ−1 is the longitudinal distance
probed in DIS (m is the proton mass) and ϵ≡
1=m is the proton’s Compton wavelength, see Fig. 1;
Δ is defined by xGðxÞ ∼ 1=xΔ. This expression

reminds the well known result for the entanglement
entropy in (1þ 1) conformal field theory (CFT)
[26,27]

SE ¼ c
3
ln
L
ϵ
; ð3Þ

where L is the length of the studied region, ϵ is the
regularization scale describing the resolution of the
measurement, and c is the central charge of CFT that
counts the number of degrees of freedom. We argue
that this agreement is not coincidental, and propose
that the parton distributions, and the entropy asso-
ciated with them, arise from the entanglement
between the spatial domain probed by DIS and
the rest of the target. Therefore the maximal value of
the entanglement entropy attained at small x implies
that the corresponding partonic state is maximally
entangled. Unlike the parton distribution, the en-
tanglement entropy is an appropriate observable
even at strong coupling when the description in
terms of quasifree partons fails.

(4) Assuming that the second law of thermodynamics
applies to entanglement entropy (see e.g. [24] for a
discussion), we get an inequality for the entropy of
final state hadrons Sh and the entropy of the initial
state SðxÞ in DIS: Sh ≥ SðxÞ. There are indications
from holography that the entropy may not increase
in the real-time evolution of strongly coupled
systems (for a recent result, see [28]); this would
imply the proportionality Sh ∼ SðxÞ in accord with
the “parton liberation” picture [16] and “local
parton-hadron duality” [29]. This relation can be
tested in deep inelastic scattering experiments by
using event-by-event measurements of hadronic
final state.

The entanglement entropy between the large x and small
x components of the wave function due to QCD evolution

Lc

lci

lcompt

FIG. 1. The parton cascade in deep inelastic electron-proton
scattering. In the target rest frame, the partonic fluctuation
develops over the longitudinal distance L ¼ ðmxÞ−1, where m
is the proton mass. It interacts with the target that probes the
partonic fluctuation with a resolution scale given by the proton’s
Compton wavelength ϵ ¼ m−1.

1The growth of the total cross section is limited by the Froissart
theorem; however the relation of parton distributions to the cross
section gets modified in the domain of high parton densities due
to shadowing corrections to the scattering amplitude. Let us
emphasize from the beginning that here we will view the parton
distribution as the multiplicity of partons at a given x and Q2.

2Here the parton distribution xGðxÞ is defined as the number of
gluons at a given x.

DMITRI E. KHARZEEV and EUGENE M. LEVIN PHYSICAL REVIEW D 95, 114008 (2017)

114008-2



has recently been addressed in Ref. [30], see also [31]. This
“momentum space entanglement” [32] characterizing the
renormalization group flow is different from the entangle-
ment between the spatial region probed by deep inelastic
scattering and the rest of the proton that is the object of our
present study.

II. ENTANGLEMENT ENTROPY AND PARTON
DISTRIBUTIONS

A. Quantum mechanics of parton entanglement

The entropy S of a macroscopic state is given by the
logarithm of the number W of distinct microscopic states
that compose it—the Boltzmann formula S ¼ k logW
forms the basis of statistical physics (and is appropriately
inscribed on Boltzmann’s tombstone). Since partons are
introduced as the microscopic constituents that compose
the macroscopic state of the proton, it seems natural to
evaluate the corresponding entropy. However, the proton as
a whole is a pure quantum state with a zero von Neumann
entropy—so we come to the apparent contradiction
described in the Introduction.
To resolve it, let us consider a region of space A (for

simplicity of notation, one-dimensional) probed by deep
inelastic scattering (DIS). In the proton’s rest frame, it is a
segment of length L ¼ ðmxÞ−1, wherem is the proton mass
and x is the Bjorken x [14,15]. Let us denote by B the
region of space complementary to A, so that the entire space
is A∩B. The physical states inside the region A probed by
DIS are states in a Hilbert space HA of dimension nA, and
unobserved states in the region B belong to the Hilbert
space HB of dimension nB. The composite system in A∩B
(the entire proton) is then described by the vector jΨABi in
the space HA ⊗ HB that is a tensor product of the two
spaces:

jΨABi ¼
X
i;j

cijjφA
i i ⊗ jφB

j i; ð4Þ

where ci;j are the elements of the matrix C that has a
dimension nA × nB. If one can find such states jφAi and
jφBi that jΨABi ¼ jφAi ⊗ jφBi, i.e., that the sum (4)
contains only one term, then the state jΨABi is separable,
or a product state. Otherwise the state jΨABi is entangled.
Let us introduce the coordinates y ∈ A and z ∈ B.

The wave function3 corresponding to (4) can thus be
written down in coordinate space as ΨABðy; zÞ, and the
corresponding density matrix ρAB ¼ jΨABihΨABj in coor-
dinate space is

ρABðy; y0; z; z0Þ ¼ ΨABðy; zÞΨABðy0; z0Þ�: ð5Þ

The state described by (5) is a pure quantum state with zero
entropy.
Let us now introduce the density matrix describing the

state probed in DIS. Since the region outside of A is
inaccessible to the measurement, we have to integrate over
the coordinates z ∈ B [33]:

ρAðy; y0Þ ¼
Z

ΨABðy; zÞΨABðy0; zÞ�dz; ð6Þ

or in operator form, ρA ¼ trBρAB. The density matrix (6)
describes a mixed state with a nonzero von Neumann
entropy.
The Schmidt decomposition theorem [34] (see [35] for a

discussion) states that the pure wave function jΨABi of our
bipartite system can be expanded as a single sum

jΨABi ¼
X
n

αnjΨA
nijΨB

n i ð7Þ

for a suitably chosen orthonormal sets of states jΨA
ni and

jΨB
n i localized in the domains A and B, respectively, where

αn are positive and real numbers that are the square roots of
the eigenvalues of matrix CC†. In parton model, we assume
that this full orthonormal set of states is given by the Fock
states with different numbers n of partons.
The density matrix (6) of the mixed state probed in

region A can now be written down as

ρA ¼ trBρAB ¼
X
n

α2njΨA
nihΨA

n j; ð8Þ

where α2n ≡ pn is the probability of a state with n partons.
The identification of the basis jΨA

ni in the Schmidt
decomposition (7) with the states with a fixed number n
of partons is natural—only in this case we do not have to
deal with quantum interference between states with differ-
ent numbers of partons, and such interference is absent in
the parton model. Because the parton model represents a
description of QCD that is a relativistic field theory, the
number of terms in the sum (7) (the Schmidt rank) is in
general infinite. Note that a pure product state with no
entanglement would have a Schmidt rank one.
The von Neumann entropy of this state is given by

S ¼ −
X
n

pn lnpn: ð9Þ

From our derivation it is clear that this entropy results from
the entanglement between the regions A and B, and can
thus be interpreted as the entanglement entropy. In terms of
information theory, Eq. (9) represents the Shannon entropy
for the probability distribution ðp1;…; pNÞ.
We will now evaluate the probabilities pn and the

corresponding entropy in two cases: (i) a toy (1þ 1)
dimensional model of non-linear QCD evolution; and (ii) in

3In the rest frame of the proton, it can be interpreted as the
wave function of the incident photon.
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full (3þ 1) dimensional case where the nonlinear
evolution is described by the Balitsky-Kovchegov (BK)
equation [25].

B. 1 + 1 toy model of non-linear QCD evolution

It will be convenient for us to describe the parton
evolution using the dipole representation—in this repre-
sentation, a set of partons is represented by a set of color
dipoles. In this section we consider a (1þ 1) dimensional
toy model that emerges from the BK equation if one fixes
the sizes of the interacting dipoles [36,37]. In this model the
Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation for the
dipole scattering cross section σ at a rapidity Y is reduced to

dσðYÞ
dY

¼ ΔσðYÞ; ð10Þ

whereΔ is the BFKL intercept. The Eq. (10) reproduces the
powerlike increase of the cross section with energy,
expðΔYÞ ¼ ð1=xÞΔ.
Let us now introduce PnðYÞ, which is the probability to

find n dipoles (of a fixed size in our model) at rapidity Y.
For this probability we can write the following recurrent
equation (see Fig. 2):

dPnðYÞ
dY

¼ −ΔnPnðYÞ þ ðn − 1ÞΔPn−1ðY:Þ ð11Þ

This is a typical cascade equation in which the first term
describes the depletion of the probability to find n dipoles
due to the splitting into (nþ 1) dipoles, while the second
one—the growth due to the splitting of (n − 1) dipoles into
n dipoles.
The Eq. (11) can be rewritten in a more convenient form

by introducing the generating function

ZðY; uÞ ¼
X
n

PnðYÞun: ð12Þ

At the initial rapidity Y ¼ 0 we have only one dipole so
P1ðY ¼ 0Þ ¼ 1 and Pn>1 ¼ 0 (so the state is pure); at
u ¼ 1, ZðY; u ¼ 1Þ ¼ P

nPðyÞ ¼ 1. These two properties
determine the initial and the boundary conditions for the
generating function:

ZðY ¼ 0; uÞ ¼ u; ZðY; u ¼ 1Þ ¼ 1: ð13Þ

We can now rewrite the Eq. (11) as the following equation
for the generating function:

∂ZðY; uÞ
∂Y ¼ −Δuð1 − uÞ ∂ZðY; uÞ∂u : ð14Þ

It is instructive to observe that (14) implies a nonlinear
equation for ZðY; uÞ [36,37]. Indeed, the general solution to
(14) is of the form ZðY; uÞ ¼ ZðuðYÞÞ; if we substitute this
function into (14), the derivatives ∂Z=∂u on the l.h.s. and
r.h.s. of (14) cancel, and we get a differential equation for
the function uðYÞ. By using the first of the initial conditions
(13), we can then rewrite (14) for rapidity near the one at
which the initial condition is provided as

∂Z
∂Y ¼ −ΔðZ − Z2Þ: ð15Þ

Therefore, our parton cascade includes the interactions
between the partons that lead to nonlinear evolution
in QCD.4

The solution to (14) with the initial and boundary
condition of Eq. (13) takes the form [37]

ZðY; uÞ ¼ ue−ΔY

1þ uðe−ΔY − 1Þ ¼ ue−ΔY
X∞
n¼1

unð1 − e−ΔYÞn:

ð16Þ

Comparing Eq. (16) with Eq. (12) one can see that

PnðYÞ ¼ e−ΔYð1 − e−ΔYÞn−1: ð17Þ

We are now in a position to calculate the von Neumann
entropy of the system given by the Gibbs formula (9) by
identifying the probabilities of microstates pn with the
probabilities to find n dipoles inside the hadron Pn given by
(17), pn ¼ PnðYÞ. The resulting entropy is given by

S ¼ −
X
n

e−ΔYð1 − e−ΔYÞn−1ð− ln ðeΔY − 1Þ

þ n ln ð1 − e−ΔYÞÞ: ð18Þ

By using the generating function, Eq. (18) can be rewritten
in the following way:

SðYÞ ¼ ln ðeΔY − 1ÞZðY; u ¼ 1Þ

þ ln

�
1

1 − e−ΔY

�
u
∂ZðY; uÞ

∂u
����
u¼1

; ð19Þ

which leads to

FIG. 2. The graphic form of the Eq. (11) for the probability of n
dipoles occurring at rapidity Y.

4The dipole scattering amplitude in our model is given by
NðYÞ ¼ 1 − ZðY; 1 − γÞ, where γ is the dipole scattering ampli-
tude at Y ¼ 0. It also obeys the following nonlinear equation:
dNðYÞ=dY ¼ ΔðN − N2Þ [37,38].
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SðYÞ ¼ ln ðeΔY − 1Þ þ eΔY ln

�
1

1 − e−ΔY

�
: ð20Þ

One can see that at large ΔY ≫ 1

SðYÞ → ΔY: ð21Þ

In Fig. 3 we show the dependence of the entropy on
rapidity, as given by (20)—one can see that the asymptotic
behavior of Eq. (21) starts rather early, at ΔY ≃ 2.
To establish the relation between the entropy and the

parton distribution, let us now evaluate the latter within the
same framework. We will define the parton distribution
xGðxÞ as the average number hni of partons at a given
Bjorken x. Using Eq. (12) and Eq. (16) we can calculate
this number:

xGðxÞ ¼ hni ¼
X
n

nPnðYÞ ¼ u
dZðY; uÞ

du

����
u¼1

¼ eΔY ¼
�
1

x

�
Δ
: ð22Þ

Note that in perturbative QCD xGðx;QÞ obeys the
BFKL evolution equation and grows at small x as
ð1=xÞΔ with Δ ¼ 4 ln 2ᾱS, where ᾱS ≡ αSNc=π. It should
be stressed that the multiplicity of gluons xGðxÞ evolves in
accord with the linear evolution equation in spite of the
nonlinear equation Eq. (14) for the generating function Z.
By comparing (22) and (21) we can see that at small x the

relation between the entropy and the structure function
becomes very simple:

S ¼ ln ðxGðxÞÞ: ð23Þ

On the other hand for ΔY < 1 corresponding to a small
increase in the number of partons, the entropy S is given by

S ≈ − ln

�
xGðxÞ − xGðx ¼ x0Þ

xGðx ¼ x0Þ
��

xGðxÞ − xGðx ¼ x0Þ
xGðx ¼ x0Þ

�
;

ð24Þ

where xGðx ¼ x0Þ is the number of partons at an initial
value of x ¼ x0. In Eq. (24) we assumed that δxG≡
xGðxÞ − xGðx ¼ x0Þ ≪ xGðx ¼ x0Þ.
It is important to note that the small x, large rapidity

relation (23) emerges in the limit where all probabilities Pn
become equal, see (17)—in this regime, an exponentially
large number of partonic microstates occur with equal and
exponentially small probabilities PnðYÞ ¼ expð−ΔYÞ ¼
1=hni. It is well known that this equipartitioning of
microstates maximizes the von Neumann entropy and
describes the maximally entangled state. We thus conclude
that at small x the proton represents a maximally entangled
quantum state of partons.
In terms of information theory, the maximal value of the

Shannon entropy (9) achieved at small x means that all
“signals” with different numbers of partons are equally
likely, and it is impossible to predict how many partons will
be detected. In other words, the information about the
structure of the proton (provided through an initial con-
dition at some large x0) becomes completely scrambled at
small x—so nonlinear QCD evolution is a very noisy
“communication channel” between large and small x. A
particular realization of this “information scrambling” is a
chaotic behavior at small x observed earlier [39] in a
discrete model of nonlinear QCD evolution; however as we
have shown the entropy attains it maximal value even if the
chaos is not present. This implies that at sufficiently small x
the structure functions of all hadrons should become
universal, i.e., independent of the initial conditions.

C. Multiplicity distribution

The information about the entropy of the final state is
contained in the hadron multiplicity distribution. It is thus
of interest to evaluate it assuming that it is the same as the
parton multiplicity distribution that we have computed
above. If the two distributions appear similar, it would
suggest the absence of a substantial entropy increase during
the transformation of partons to hadrons. Another reason
for evaluating the multiplicity distribution stems from the
fact that the entanglement entropy reaches its value (21)
corresponding to a maximally entangled, equipartitioned
state at a relatively modest rapidity difference Y ≤ 2=Δ≃ 6
readily accessible at current hadron colliders. It is important
thus to check whether this approximately equipartitioned
form of the entanglement entropy is consistent with the
experimental hadron multiplicity distributions.
Since the average multiplicity in our case is hni≡ n̄ ¼

eΔY we can rewrite the multiplicity distribution (17) in the
following form:

FIG. 3. The entanglement entropy a function ΔY (Δ is the
BFKL intercept). The dashed line corresponds to the large
rapidity (or, equivalently, small x) limit of Eq. (21).
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PnðYÞ ¼ e−ΔYð1 − e−ΔYÞn−1

¼ 1

n̄

�
n̄ − 1

n̄

�
n−1

¼ 1

N̄

�
N̄

N̄ þ 1

�
n

; ð25Þ

where we have denoted N̄ ¼ n̄ − 1. Comparing Eq. (25)
with the general form for the negative binomial distribution
(NBD)

PNBDðr; n̄; nÞ ¼
�

r
rþ hni

�
r Γðnþ rÞ
n!ΓðrÞ

� hni
rþ hni

�
n
; ð26Þ

we see that our result Eq. (25) leads to the hadron
multiplicity distribution that can be written down as

Pn ¼
σn
σinel

¼ n̄ − 1

n̄
PNBDð1; n̄ − 1; nÞ; ð27Þ

where σn is the cross section of producing n hadrons in a
collision, and σinel is the inelastic cross section. Therefore at
large n̄ our distribution is close to the negative binomial
distribution with number of failures r ¼ 1 and with
probability of success p ¼ N̄=ðN̄ þ 1Þ ¼ 1 − 1=n̄.
It turns out that the distribution given by Eq. (27)

describes quite well the experimental distributions in high
energy proton-proton collisions measured at the LHC [40].
For comparison with the experiment it is convenient to use
the cumulants

Cq ¼ hnqi=hniq; ð28Þ

where h…i denotes the average over the distribution in
hadron multiplicity n. These quantities can be readily
computed using the generating function Z given by (16):

Cq ¼
�
u
d
du

�
q
ZðY; uÞju¼1: ð29Þ

Using (16) we can compute a few of the lowest cumulants
up to C5 that have been measured experimentally at the
LHC at center-of-mass system energy of

ffiffiffi
s

p ¼ 7 TeV:

C2 ¼ 2 − 1=n̄; C3 ¼
6ðn̄ − 1Þn̄þ 1

n̄2
;

C4 ¼
ð12n̄ðn̄ − 1Þ þ 1Þð2n̄ − 1Þ

n̄3
;

C5 ¼
ðn̄ − 1Þð120n̄2ðn̄ − 1Þ þ 30n̄Þ þ 1

n̄4
: ð30Þ

Using the experimental multiplicity in the rapidity
window jηj ≤ 0.5 equal to n̄ ¼ 5.8� 0.1 [41] we get from
(30) the following predictions for the cumulants:
C2 ≃ 1.83, C3 ≃ 5.0, C4 ≃ 18.2 and C5 ≃ 83. These val-
ues are in a reasonably good agreement with the exper-
imental data of Ref. [40] [see Fig. 6(b) of that paper]:

Cexp
2 ¼ 2.0� 0.05, Cexp

3 ¼ 5.9� 0.6, Cexp
4 ¼ 21� 2, and

Cexp
5 ¼ 90� 19. This agreement indicates that the multi-

plicity distribution of the produced hadrons is very close to
the distribution in the number of partons that determines the
entanglement entropy.
It is instructive to put the upper bounds for these

cumulants achieved at asymptotically high collision energyffiffiffi
s

p
→ ∞, when the average multiplicity n̄ becomes very

large. Taking the limits of (30) at n̄ → ∞ we get C2 ¼ 2,
C3 ¼ 6, C4 ¼ 24 and C5 ¼ 120 as a prediction for the
asymptotically high energies. Comparing these numbers to
the experimental values [40] listed above, we see that the
multiplicity distribution measured at

ffiffiffi
s

p ¼ 7 TeV is
already quite close to the expected asymptotic form.

D. Relation to the entanglement entropy
in conformal field theory

At small x, the formulas (23) and (22) yield the following
result for the von Neumann entropy:

SðxÞ ¼ Δ ln½1=x� ¼ Δ ln
L
ϵ
; ð31Þ

where L ¼ ðmxÞ−1 is the longitudinal distance probed in
DIS (m is the proton mass) and ϵ≡ 1=m is the proton’s
Compton wavelength, see Fig. 1. This expression looks
very similar to the well-known result for the entanglement
entropy in (1þ 1) conformal field theory (CFT) [26,27]:

SE ¼ c
3
ln
L
ϵ
; ð32Þ

where L is the length of the probed region, ϵ is the
regularization scale describing the resolution of the meas-
urement, and c is the central charge of CFT that counts the
number of degrees of freedom. The divergence in (32)
reflects the growth of the number of states near the
boundary of the probed region when the resolution of
the probe ϵ increases.
The divergence in (2) is precisely of the same origin—

the coherent quantum state of partons in DIS extends in the
target rest frame over the distance L ¼ ðmxÞ−1, and is
probed with the resolution given by the proton’s Compton
wavelength ϵ≡ 1=m. The limit ϵ → 0 in (32) is obviously
equivalent to the small x limit L ¼ ðmxÞ−1 → ∞ in (2), as
in both cases L=ϵ → ∞.
Several comments on the possible relation between the

results (2) and (32) are in order:
First, (2) refers to the quantum state, since the nonlinear

evolution equations that we used to derive (2) is a faithful
representation of RG flow in quantum field theory. The
divergence of (2) at small x thus reflects the presence of the
infinite number of states present in the theory. For the entire
coherent quantum state, the entropy (2) should vanish—
and it does: when the resolution of the measurement
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ϵ≡ 1=m coincides with L ¼ ðmxÞ−1 at x ¼ 1, S → 0. This
property is obviously shared between (2) and (32).
Second, in the limit when partons become incoherent the

entropy (2) should become extensive in L—for example, at
high temperature T ≫ L−1 the entropy of one-dimensional
gas is S ∼ LT. The entanglement entropy (32) in (1þ 1)
CFT has been evaluated also at finite temperature [27], with
the following result:

SE ∼
c
3
ln

�
1

πTϵ

�
sinhðπTLÞ: ð33Þ

At low temperatures T ≪ L−1 (33) reduces to (32), whereas
in the high temperature limit T ≫ L−1 we indeed obtain
SE ∼ c=3LT as expected for the extensive Boltzmann
entropy of a one-dimensional gas.
The similarity of (2) and (32) makes it plausible that at

small x the field theory describing parton evolution
approaches a fixed point corresponding to a CFT with
the central charge c ¼ 3Δ. Let us discuss this in more
detail. The length of the region L ¼ ðmxÞ−1 probed in DIS
grows at small x (high energies), whereas ϵ≡ 1=m stays
fixed. To compare with the behavior in 2D field theory, we
can however keep L fixed and decrease the value of ϵ—the
high-energy behavior of our model is thus mapped onto the
ultraviolet behavior of the 2D field theory. In other words,
as the energy increases, we resolve shorter distances. The
number of degrees of freedom increases from infrared to
ultraviolet, and in (1þ 1) field theory this intuitive expect-
ation is confirmed by the rigorous c-theorem [42] stating
that the behavior of c is monotonic under renormalization
group flow.
This allows us to conjecture a bound on the small x

behavior of the parton distributions. Indeed, in two dimen-
sional CFTs the central charge assumes discrete values
given by (see e.g., [27]):

c ¼ 1 −
6

mðmþ 1Þ ; m ¼ 3; 4;…;∞: ð34Þ

The largest value of c ¼ 1 corresponds to the free bosonic
field theory—this is a likely fixed point in our theory as it
corresponds to the asymptotically free behavior at short
distances. Assuming that at small x the partonic system
indeed is described by a CFT, i.e., looks the same at all
scales, we can thus put an upper bound on the value of
Δ ¼ c=3:

Δ ≤
1

3
: ð35Þ

The growth of parton multiplicities at high energies should
thus be limited by

xGðxÞ ≤ const
1

x1=3
: ð36Þ

In fact, the value Δ ¼ 1=3 describes quite well the small x
behavior observed in DIS experiments5 [43–45]. If we
interpret this value in terms of the leading order BFKL
result Δ ¼ 4 ln 2ᾱS, it implies the strong coupling value
ᾱS ≃ 0.12. Of course, the relation of our result for the
entanglement entropy (31) to the CFTone (32) at this point
is only a conjecture that will have to be verified.
The “asymptotic” small x regime in which the formulas

(23), (2) apply begins at Y ≤ 2=Δ ¼ 6 (see Fig. 3), or at
x ¼ expð−YÞ ≤ 10−3. It is accessible to the current and
planned experiments, and can be investigated at the future
Electron-Ion Collider (EIC).
The small x regime described by (23) and (2) implies the

equipartitioning between the partonic microstates that max-
imizes the entropy. It can thus be viewed as an analog of
thermal equilibriumfor the parton systemat smallx—just like
statistical systems approach the thermally equilibratedmacro-
state with the largest entropy, small x evolution leads to the
universal state in which the entropy assumes the maximal
value for a given x. It is thus natural to associate this regime
with parton saturation corresponding to the equilibrium
between the parton splitting and recombination processes.

E. Entanglement entropy from the (3 + 1) dimensional
Balitsky-Kovchegov equation

In this section we consider the evolution in (3þ 1)
dimensional QCD. We will see that the result for the
entropy in this case is very similar to the one obtained
above in the (1þ 1) toy model. As discussed in
Refs. [36,37] the parton cascade equation Eq. (11) in the
(3þ 1) case can be written down in the following form:

∂PnðY; r1; r2…ri…rnÞ
ᾱs∂ðYÞ

¼ −
Xn
i¼1

ωðriÞPnðY; r1; r2…ri…rnÞ

þ
Xn−1
i¼1

ðri þ rnÞ2
ð2πÞr2i r2n

Pn−1ðY; r1; r2…ðri þ rnÞ…rn−1Þ

ð37Þ

5The experimental data on the deep inelastic structure function
F2 show that F2ðx;QÞ ∝ ð1xÞΔ, with Δ that increases as a function
of Q2 from 0.2 to 0.35 for Q2 ≥ 5 GeV2 (see Ref. [44]). The
modern fits of experimental data are based on three ingredients:
nonlinear evolution, running QCD coupling and next-to-leading
order corrections to the BFKL kernel. Therefore, in general it is
rather difficult to extract the value of effective value of Δ for the
linear BFKL evolution. However, for largeQ2 both nonlinear and
NLO corrections are rather small and the effective running QCD
coupling turns out to be on the order of 0.1 (see Ref. [43]) leading
to Δ ≈ 0.3 [43–45].
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where PnðY; frigÞ is the probability to have n-dipoles with
size ri at rapidity Y − y. This QCD cascade leads to
Balitsky-Kovchegov equation [25] for the amplitude and
gives the theoretical description of the DIS.
Comparing Eq. (37) with Eq. (11) we see that the

probability for one dipole to survive is not a constant as
in Eq. (11) but depends on the dipole size:

ᾱSωðriÞ≡ ᾱSωi ¼
ᾱS
2π

Z
ρ

r2i
ðri − r0Þ2r02 d

2r0 ¼ ᾱS lnðr2i =ρ2Þ;

ð38Þ

where ρ is an infrared cutoff and ᾱS ¼ αSNc=π. The
probability for a dipole of the size jr1 þ r2j to decay into
two with the sizes r1 and r2 is equal to [36]

Kðr1; r2jr1 þ r2Þ ¼
ᾱS
2π

ðr1 þ r2Þ2
r21r

2
2

: ð39Þ

For n ¼ 1 Eq. (37) has the solution

P1ðY; r1Þ ¼ δðr − r1Þe−ωðr1ÞᾱSðYÞ ð40Þ

which reflects the fact that at Y − y ¼ 0 we have only one
dipole of size r. It means also that Pn>1ðY ¼ 0; frigÞ ¼ 0.
Since PnðY; frigÞ is the probability to find dipoles frig,

we have the following sum rule

X∞
n¼1

Z Yn
i¼1

d2riPnðY; frigÞ ¼ 1; ð41Þ

i.e., the sum of all probabilities is equal to 1.
Replacing PnðY; frigÞ by its Mellin image Pnðω; frigÞ

PnðY; frigÞ ¼
Z

ϵþi∞

ϵ−i∞

dω
2π

eωᾱSYPnðω; frigÞ ð42Þ

we reduce Eq. (37) to the form

Pnðω; frigÞ ¼ −
Xn
i¼1

ωiPnðω; frigÞ

þ 1

2π

Xn−1
j¼1

ðrj þ rnÞ2
r2jr

2
n

× Pn−1ðω; fri; rj → ðrj þ rnÞgÞ: ð43Þ

One can see that Pnðω; frigÞ can be rewritten as

Pnðω; frigÞ ¼ 2πr2δðr − r1Þ
�
1

2π

�
n Yn
i¼1

1

r2i
Ωnðω; fωigÞ;

ð44Þ

with the following equation for Ωnðω; fωigÞ:

ωΩnðω; fωigÞ ¼ −
�Xn

i¼1

ωi

�
Ωnðω; fωigÞ

þ
Xn−1
j¼1

Ωn−1ðω; fωi;ωjngÞ: ð45Þ

The solution is given by the recurrent equation

Ωnðω; fωigÞ ¼ ðn − 1ÞΩn−1ðω; fωi;ωn−1;ngÞ

×
1

ωþP
n
j¼1 ωj

; ð46Þ

in writing Eq. (46) we used the symmetry between ri and
introduced the following short notations: ωi ¼ ωðriÞ and
ωij ¼ ωðri þ rjÞ. Therefore, in Eq. (45) and Eq. (46) ωjn ¼
ωðrj þ rnÞ and ωn−1;n ¼ ωðrn−1 þ rnÞ.
We cannot solve Eq. (46) in an explicit way due to the

term ωn−1;n. However, we are able to do this for two
instructive cases. The first case corresponds to the double
log approximation of perturbative QCD in which ri and rn
are both larger than jri þ rnj. In this case Eq. (46) can be
rewritten as

Ωnðω; fωigÞ ¼ ðn − 1ÞΩn−1ðω; fωigÞ

×
1

ωþP
n−2
j¼1 ωj þ 2ωn−1

: ð47Þ

The general solution to Eq. (47) takes the form

Ωnðω; fωigÞ ¼ ðn − 1Þ!
Yn
j¼2

1

ωþPj−2
l¼1 ωl þ 2ωn−1

: ð48Þ

The second case describes the decay of the large dipole
into an asymmetric pair of dipoles, one large and one small.
In this case, jri þ rnj → ri while rn ≪ ri. As noted in
Ref. [46] this case corresponds to summation of terms
lnn ðr2i Q2

sÞ for r2i Q
2
s ≫ 1; in other words, it describes the

behavior of the parton cascade deep inside of the saturation
region. In this kinematic region ωi ¼ ln ðr2i Q2

sÞ≡ zi. The
solution of Eq. (46) in this case takes the following form:

Ωnðω; fωigÞ ¼ ðn − 1Þ!
Yn
j¼1

1

ωþPj
l¼1 ωl

¼ ðn − 1Þ!
Yn
j¼1

1

ωþPj
l¼1 zl

: ð49Þ

Using Eq. (42) and Eq. (44) we find

DMITRI E. KHARZEEV and EUGENE M. LEVIN PHYSICAL REVIEW D 95, 114008 (2017)

114008-8



PnðY; frigÞ ¼ 2πr2δðr − r1Þ
�
1

2π

�
n Yn
i¼1

1

r2i

Z
ϵþi∞

ϵ−i∞

dω
2π

eωᾱSYΩnðω; fωigÞ: ð50Þ

For
R Q

n
i¼1 d

2riPnðY; frigÞ we can rewrite Eq. (50) in the form

Z Yn
i¼1

d2riPnðY; frigÞ ¼
Z

ϵþi∞

ϵ−i∞

dω
2π

eωᾱSY
Z Yn

i¼1

dziΩnðω; fzigÞ: ð51Þ

Using Feynman parameters we can simplify Eq. (50) as follows:

Z
ϵþi∞

ϵ−i∞

dω
2π

eωᾱSYΩnðω;fzigÞ ¼ ðᾱSYÞn
Z

1

0

Yn
i¼2

dαi exp

�
−
�
z1þ z2

Xn
i¼2

αiþ z3
Xn
i¼3

αiþ�� �þ zl
Xn
i¼l

αiþ� � �þ znαn

�
ᾱSY

	

¼ ðᾱSYÞn
Z

1

0

Yn
i¼2

dαi exp

�
−
�
z1þαn

Xn
i¼2

ziþαn−1
Xn
i¼3

ziþ� � �þαl
Xn
i¼l

ziþ� � �þ znαn

�
ᾱSY

	

¼ e−ᾱSz1Y
Yn
i¼2

�
1− e−ð

P
n
l¼i

zlÞᾱSYP
n
l¼i zl

�
≡ ðᾱSYÞne−ᾱSz1Y

Yn
i¼2

Φ
�
ᾱSY

Xn
l¼i

zl

�
ð52Þ

Equation (51) now takes the form

Z Yn
i¼1

dziPnðY; fzigÞ ¼ e−ᾱSz1Y
Z

ᾱSz1Y

0

ΦðtnÞdtn
Z

tn

0

dtn−1Φðtn−1Þ…
Z

t3

0

dt2Φðt2Þ ¼
1

n!
ΞnðᾱSz1YÞe−ᾱSz1Y; ð53Þ

where ti ¼ ᾱSY
P

n
l¼i zl and

ΞðtÞ ¼
Z

t

0

Φðt0Þdt0 ¼ Cþ Γð0; tÞ þ ln t; ð54Þ

here C is the Euler constant and Γð0; tÞ is the incomplete
gamma function. One can see that

ΞðtÞ ¼
�
t if t ≪ 1;

lnð1=tÞ if t ≫ 1:
ð55Þ

In Eq. (53) we used the usual ordering condition:

z1 ≫ z2 ≫ … ≫ zi ≫ zi−1 ≫ … ≫ 0: ð56Þ
From Eq. (53) one can see that Ω satisfies the initial
condition Ωn>1ðY−y¼0;frigÞ¼0 since ΞnðᾱSz1YÞ → 0
at Y → 0.
To find the entropy we need to evaluate the Gibbs

formula

S ¼ −
X∞
n¼1

Yn
i¼1

Z
d2riPnðY; frigÞ lnðPnðY; frigÞÞ ð57Þ

It is hard to calculate the integrals in Eq. (57) in general
case, but fortunately we can find the entropy at large Y.
Indeed, at large values of Y (ω1ᾱSY ≫ 1) Pn reduces to the
following form [see Eq. (52)]

Pnðω; fωigÞ ⟶
ω1ᾱSY≫1

e−ω1ᾱSYe−
P

n
i¼1

zi

�Yn
j¼2

1Pj
l¼2 zl

þ � � �
	
:

ð58Þ

Plugging Eq. (58) into Eq. (57) we obtain

S ¼ ωðrÞᾱSY
X∞
n¼1

Z Yn
i¼1

d2riPnðY − y; frigÞ

− e−ᾱSz1Y
X∞
n¼1

Z Yn
i¼2

dzi

�Xn
i¼2

zi −
Xn
i¼2

ln

�Xn
l¼i

zl

�	

×
Yn
i¼2

�
1 − e−ð

P
n
l¼i

zlÞᾱSYP
n
l¼i zl

�
: ð59Þ

Using Eq. (41) and neglecting
P

n
i¼2 ln ð

P
n
l¼i zlÞ in Eq. (59)

we reduce this equation to the form

S¼ ᾱSzY − e−zᾱSðYÞ
X∞
n¼1

Z
ᾱSzY

0

tndtnΦðtnÞ
1

ðn−1Þ!Ξ
n−1ðtnÞ

¼ ᾱSzY − e−zᾱSðYÞ
Z

ᾱSzY

0

tndtnΦðtnÞexpðΞðtnÞÞ ð60Þ

with z≡ ln ðr2Q2
sÞ. We emphasize that the normalization of

the first term is fixed by the condition (41) and does not

DEEP INELASTIC SCATTERING AS A PROBE OF … PHYSICAL REVIEW D 95, 114008 (2017)

114008-9



depend on the approximations we make in evaluating the
integrals over riðziÞ.
The second term in Eq. (60) is small in comparison with

the first one (see Fig. 4). Therefore, the entropy at large Y
takes the form

S ≈ ᾱSzY ð61Þ

which coincides with the expression (21) that we obtained
for the toy model in the previous section if we take
Δ ¼ ᾱSz ¼ ᾱS ln ðr2Q2

sÞ. The characteristic dipole size r2

in deep inelastic scattering is set by the momentum trans-
fer Q2.

III. DISCUSSION

Using nonlinear evolution equations of QCD, we have
evaluated the von Neumann entropy of the system of
partons that is resolved in a DIS measurement at a given
Bjorken x and momentum transfer q2 ¼ −Q2 (note that in
our estimates presented in the previous section r2 ∼ 1=Q2).
We have found that at small x the relation between the
entropy and the parton distribution becomes very simple
and is given by (23). In this small x regime (corresponding
to x < 10−3 and rapidity Y > 6, as we estimated above), all
partonic microstates have equal probabilities—the proton is
composed by an exponentially large number expðΔYÞ of
partonic microstates that occur with equal and exponen-
tially small probabilities expð−ΔYÞ. In this equipartitioned
state, the entropy (9) (that we have interpreted as resulting
from the entanglement) is maximal—so the partonic state
at small x is maximally entangled.
If we interpret (9) in terms of information theory as the

Shannon entropy, then the equipartitioning in the max-
imally entangled state (MES) means that all “signals” with
different number of partons are equally likely, and it is
impossible to predict how many partons will be detected in

a given event. In other words, the information about the
structure of the proton encoded in an initial condition
becomes completely scrambled in the MES at small x.
Therefore the structure functions at sufficiently small x
should become universal for all hadrons.
Since the parton distribution and the entanglement

entropy at small x are related by (23), one may question
the utility of entropy in characterizing the process of DIS.
However there are several reasons to believe that the
entanglement entropy is a useful DIS observable:

(i) Identifying the entropy of partonic system as the
entanglement entropy explains the apparent loss of
quantum coherence in the parton model, solving an
old conceptual problem described in the Introduc-
tion. The entropy that we have found originates from
the entanglement between the spatial domain probed
by DIS and the rest of the target, whereas the entire
proton is in a pure quantum state with zero entropy.

(ii) Parton distributions have a well-defined meaning
only for weakly coupled partons at large momentum
transfer Q2—but the entanglement entropy is a
universal concept that applies to states at any value
of the coupling constant.

(iii) Unlike the parton distributions, the entanglement
entropy is subject to strict bounds—for example, if
the small x regime is described by a CFT, the growth
of parton distributions should be bounded by
xGðxÞ ≤ const x−1=3, see (36).

(iv) If the second law of thermodynamics applies to
entanglement entropy (and there are indications [24]
that it does), then the entropy of a final hadronic state
Sh cannot be smaller than the entropy SðxÞ accessed
at a given Bjorken x, and we expect the proportion-
ality Sh ∼ SðxÞ. The correspondence between the
number of partons in the initial state and the number
of hadrons in the final state is in accord with the
“parton liberation” [16] and “local parton-hadron
duality” [29] pictures. The link between the entropy
in the initial state at small x and the final state
entropy has also been discussed in Refs. [47–52].

The entropy is a useful measure of information that can
be obtained in an experiment—therefore it is an appropriate
general characterization of the outcome of a DIS meas-
urement. The entropic approach proposed here underlines
the importance of measuring the hadronic final state of DIS.
We thus encourage experimentalists to combine the mea-
surements of the DIS cross sections with the determination
of hadronic final state. The determination of the Shannon
entropy of hadrons in the final state of DIS can be done
using the event-by-event multiplicity measurements, see
e.g., [53,54]. As we estimated above, the “asymptotic”
small x regime in which the formulas (23), (2) begins at
x ≤ 10−3. It is accessible to the current and planned
experiments, and can be investigated at the future
Electron-Ion Collider (EIC) [55].

First term in Eq. (49)

Second term in Eq. (49)

0 2 4 6 8 10
0

2

4

6

8

10

SzY

S

FIG. 4. Entropy dependence on ᾱSzY (see text). Solid line
corresponds to the first tern in Eq. (60) while the dashed line
describes the second term.
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