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The decay mode B → K�lþl− is one of the most promising modes to probe physics beyond the standard
model (SM), since the angular distribution of the decay products enables measurement of several
constraining observables. LHCb has recently measured these observables using 3 fb−1 of data as a binned
function of q2, the dilepton invariant mass squared. We find that LHCb data imply evidence for right-
handed currents, which are absent in the SM. These conclusions are derived in the maximum q2 limit and
are free from hadronic corrections. Our approach differs from other approaches that probe new physics at
low q2 as it does not require estimates of hadronic parameters but relies instead on heavy quark symmetries
that are reliable at the maximum q2 kinematic end point.
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I. INTRODUCTION

The rare decay B → K�lþl−, which involves a b → s
flavor changing loop induced quark transition at the quark
level, provides an indirect but very sensitive probe of new
physics (NP) beyond the standard model (SM). The angular
distribution of the decay products provides a large number
of observables [1] and thus can be used to reduce hadronic
uncertainties making the mode a very special tool to probe
for NP. Significant work has been done to probe NP in this
mode. Most previous attempts have focused [2] on the low
dilepton invariant mass squared region q2 ¼ 1–6 GeV2. An
alternative approach that probes the maximum q2 limit has
also been studied in the literature [3,4]. We show that this
limit holds significant promise for clean probes of NP. A
previous study suggested a possible signal of NP in the
large q2 region [5]. In this letter we show that LHCb data
imply a 5σ signal for the existence of NP. While the
evidence for right-handed (RH) currents is clear, other NP
contributions are also possible. Our conclusions are derived
in the maximum q2 limit (q2max) and are free from hadronic
corrections. Our approach differs from other approaches
that probe NP at low q2 by not requiring estimates of
hadronic parameters but relying instead on heavy quark
symmetries that are completely reliable at the kinematic
end point q2max [3,6]. While the observables themselves
remain unaltered from their SM values, their derivatives
and second derivatives at the end point are sensitive to NP

effects. The paper is organized as follows. In Sec. II, we
discuss the model independent theoretical framework used
for the analysis. The numerical procedure for the extraction
of RH currents is described in Sec. III. We illustrate the
effect of resonances and the convergence of the polynomial
fit in Secs. IV and V, respectively. Finally, Sec. VI contains
concluding remarks.

II. THEORETICAL FORMALISM

In this section we briefly discuss the model independent
theoretical framework that has been adopted in this work.
The decay B → K�lþl− is described by six transversity
amplitudes that can be written as [7]

AL;R
λ ¼ Cλ

L;RF λ − ~Gλ ¼ ð ~Cλ
9 ∓ C10ÞF λ − ~Gλ ð1Þ

within the standard model in the massless lepton limit [8].
This parametric form of the amplitude is general enough
to comprehensively include all short-distance and
long-distance effects, factorizable and nonfactorizable con-
tributions, resonance contributions and complete electro-
magnetic corrections to hadronic operators up to all orders.
In Eq. (1) C9 and C10 are Wilson coefficients with ~Cλ

9

being the redefined “effective” Wilson coefficient defined
[7,9,10] as

~Cλ
9 ¼ C9 þ ΔCðfacÞ

9 ðq2Þ þ ΔCλ;ðnon-facÞ
9 ðq2Þ ð2Þ

where ΔCðfacÞ
9 ðq2Þ, ΔCλ;ðnon-facÞ

9 ðq2Þ correspond to factor-
izable and soft gluon nonfactorizable contributions.
The Wilson coefficient C10 is unaffected by strong inter-
action effects coming from electromagnetic corrections to
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hadronic operators [11]. The form factors F λ and ~Gλ

introduced in Eq. (1) can, in principle, be related to the
conventional form factors describing the decay if power
corrections are ignored. However, our approach does not
rely on estimates of F λ and ~Gλ.
In the SM, F λ’s and C10 are real, whereas ~Cλ

9 and ~Gλ

contain the imaginary contributions of the amplitudes.
Defining two variables rλ and ελ, the amplitudes AL;R

λ in
Eq. (1) can be rewritten as

AL;R
λ ¼ ð∓ C10 − rλÞF λ þ iελ; ð3Þ

where

rλ ¼
Reð ~GλÞ
F λ

− Reð ~Cλ
9Þ; ð4Þ

ελ ¼ Imð ~Cλ
9ÞF λ − Imð ~GλÞ: ð5Þ

The observables F⊥, F∥, FL, AFB and A5 are defined as

Fλ ¼
jAL

λ j2 þ jAR
λ j2

Γf
λ ∈ f⊥; ∥; 0g; ð6Þ

AFB ¼ 3

2

ReðAL
∥A

L�
⊥ −AR

∥A
R�
⊥ Þ

Γf
; ð7Þ

A5 ¼
3

2
ffiffiffi
2

p ReðAL
0A

L�
⊥ −AR

0A
R�
⊥ Þ

Γf
; ð8Þ

where Γf ≡P
λðjAL

λ j2 þ jAR
λ j2Þ, and are related to the

observables measured by LHCb [14] as follows:

F⊥ ¼ 1 − FL þ 2S3
2

; A4 ¼ −
2

π
S4;

A5 ¼
3

4
S5; AFB ¼ −ALHCb

FB : ð9Þ

We neglect the ελ contributions to the amplitude for the
time being, but their effect in the numerical analysis is
discussed in Appendix A. In the presence of RH currents
the transversity amplitudes are given by [11]

AL;R
⊥ ¼ ðð ~C⊥

9 þ C0
9Þ ∓ ðC10 þ C0

10ÞÞF⊥ − ~G⊥; ð10Þ

AL;R
∥ ¼ ðð ~C∥

9 − C0
9Þ ∓ ðC10 − C0

10ÞÞF ∥ − ~G∥; ð11Þ

AL;R
0 ¼ ðð ~C0

9 − C0
9Þ ∓ ðC10 − C0

10ÞÞF 0 − ~G0: ð12Þ

Note that setting the RH contributions C0
9 and C0

10 to 0, the
amplitudes reduce to the SM ones in Eq. (1).

Introducing new variables

ξ ¼ C0
10

C10

and ξ0 ¼ C0
9

C10

ð13Þ

the observables F⊥, F∥, AFB, A5 [Eqs. (6)—(8)] can be
expressed as

F⊥ ¼ 2ζð1þ ξÞ2ð1þ R2⊥Þ; ð14Þ

F∥P2
1 ¼ 2ζð1 − ξÞ2ð1þ R2

∥Þ; ð15Þ

FLP2
2 ¼ 2ζð1 − ξÞ2ð1þ R2

0Þ; ð16Þ

AFBP1 ¼ 3ζð1 − ξ2ÞðR∥ þ R⊥Þ; ð17Þ
ffiffiffi
2

p
A5P2 ¼ 3ζð1 − ξ2ÞðR0 þ R⊥Þ; ð18Þ

where P1 ¼ F⊥
F ∥
, P2 ¼ F⊥

F 0
, ζ ¼ F 2⊥C2

10

Γf
,

R⊥ ¼
r⊥
C10

− ξ0

1þ ξ
; R∥ ¼

r∥
C10

þ ξ0

1 − ξ
; R0 ¼

r0
C10

þ ξ0

1 − ξ
:

ð19Þ

We consider the observables FL, F∥, F⊥, AFB and A5,
with the constraint FL þ F∥ þ F⊥ ¼ 1. Using Eqs. (14)–
(18), we obtain expressions for R⊥, R∥, R0 and P2 in terms
of the observables and P1,

R⊥ ¼ � 3

2

ð1−ξ
1þξÞF⊥ þ 1

2
P1Z1

P1AFB
; ð20Þ

R∥ ¼ � 3

2

ð1þξ
1−ξÞP1F∥ þ 1

2
Z1

AFB
; ð21Þ

R0 ¼ � 3

2
ffiffiffi
2

p ð1þξ
1−ξÞP2FL þ 1

2
Z2

A5

; ð22Þ

P2 ¼ ð1−ξ
1þξÞ2P1AFBF⊥ffiffiffi

2
p

A5ðð1−ξ1þξÞ2F⊥ þ Z1P1Þ − Z2P1AFB

; ð23Þ

where Z1¼ð4F∥F⊥−16
9
A2
FBÞ12 and Z2¼ð4FLF⊥−32

9
A2
5Þ12.

Since we have one extra parameter compared to observ-
ables, all of the above expressions depend on P1.
Fortunately in the large q2 limit, the relations between
form factors enable us to eliminate one parameter.
At the kinematic limit q2 ¼ q2max ¼ ðmB −mK�Þ2 the K�

meson is at rest and the two leptons travel back to back in
the B meson rest frame. There is no preferred direction in
the decay kinematics. Hence, the differential decay dis-
tribution in this kinematic limit must be independent of the
angles θl and ϕ, which can be integrated out. This imposes
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constraints on the amplitude AL;R
λ and hence the observ-

ables. The entire decay, including the decayK� → Kπ takes
place in a single plane, resulting in a vanishing contribution
to the “⊥” helicity, or F⊥ ¼ 0. Since the K� decays at rest,
the distribution ofKπ is isotropic and cannot depend on θK .
It can easily be seen that this is only possible if F∥ ¼
2FL [6].
At q2 ¼ q2max, Γf → 0 as all the transversity amplitudes

vanish in this limit. The constraints on the amplitudes
described above result in unique values of the helicity
fractions and the asymmetries at this kinematical end point.
The values of the helicity fractions and asymmetries were
derived in Ref. [6,7] where it is explicitly shown that

FLðq2maxÞ ¼
1

3
; F∥ðq2maxÞ ¼

2

3
; A4ðq2maxÞ ¼

2

3π
;

F⊥ðq2maxÞ ¼ 0; AFBðq2maxÞ ¼ 0; A5;7;8;9ðq2maxÞ ¼ 0:

ð24Þ

The large q2 region where the K� has low-recoil energy
has also been studied [3,12] in a modified heavy quark
effective theory framework. In the limit q2 → q2max the
hadronic form factors satisfy the conditions

~G∥

F ∥
¼

~G⊥
F⊥

¼
~G0

F 0

¼ −κ
2mbmBC7

q2
; ð25Þ

where κ ≈ 1 as shown in [12]. The helicity independence of
the ratios ~Gλ=F λ at q2max is easy to understand, since both
the B and K� mesons are at rest, resulting in a complete
overlap of the wave functions of these two mesons and the
absence of any preferred direction in the Kπ distribution.
Due to the constraints arising from decay kinematics and
Lorentz invariance, on the observables at q2max [in Eq. (24)],
it is shown in Ref. [6] that the nonfactorizable contributions
are helicity independent at the end point. Hence from
Eq. (4) it can be seen that r0 ¼ r∥ ¼ r⊥ ≡ r [13].
Therefore, Eq. (19) implies that, by definition of the
variables Rλ, in the presence of RH currents, one should
expect R0 ¼ R∥ ≠ R⊥ at q2 ¼ q2max without any approxi-
mation. As argued above this relation is unaltered
by nonfactorizable and resonance contributions at this
kinematic end point.
We study the values of Rλ, ζ and P1;2 in the large q2

region and consider the kinematic limit q2 → q2max. It is
easy to see from Eq. (14) that F⊥ðq2maxÞ ¼ 0 implies
that ζ ¼ 0 in the limit q2 → q2max. Further, since
R∥ðq2maxÞ ¼ R0ðq2maxÞ, Eqs. (15) and (16) imply that in
the limit q2 → q2max, P2 ¼

ffiffiffi
2

p
P1. However, both P1 and

P2 go to 0 at q2max. It is therefore imperative that we take
into account the limiting values very carefully by Taylor
expanding all observables around the end point q2max in
terms of the variable δ≡ q2max − q2. The leading power

of δ in the Taylor expansion must take into account the
relative momentum dependence of the amplitudes AL;R

λ .
Equations (6)–(8) and (24) together imply that AL;R

⊥ must
have an expansion at leastOð ffiffiffi

δ
p Þ higher compared toAL;R

∥;0 .
This is in agreement with Ref. [6]. Hence the leading term
in FL and F∥ must be Oðδ0Þ, whereas the leading term for
F⊥ is OðδÞ. The leading terms for the asymmetries, A5 and
AFB, are Oð ffiffiffi

δ
p Þ. Thus, we expand the observables as

follows:

FL ¼ 1

3
þ Fð1Þ

L δþ Fð2Þ
L δ2 þ Fð3Þ

L δ3; ð26Þ

F⊥ ¼ Fð1Þ
⊥ δþ Fð2Þ

⊥ δ2 þ Fð3Þ
⊥ δ3; ð27Þ

AFB ¼ Að1Þ
FBδ

1=2 þ Að2Þ
FBδ

3=2 þ Að3Þ
FBδ

5=2; ð28Þ

A5 ¼ Að1Þ
5 δ1=2 þ Að2Þ

5 δ3=2 þ Að3Þ
5 δ5=2; ð29Þ

where for each observable O, OðnÞ is the coefficient of
the nth term in the expansion. The polynomial fit to data is
not based on heavy quark effective theory (HQET) or any
other theoretical assumption. A parametric fit to data is
performed, so as to obtain the limiting values of the
coefficients to determine the slope and second derivative
of the observables at q2max. It should be noted that the
polynomial parametrizations are inadequate to describe the
q2 dependent behavior of resonances. However, systemat-
ics of resonance effects are discussed in Sec. IV in detail
validating the approach followed here.
The relation in Eq. (25) between form factors is expected

to be satisfied in the large q2 region. Equation (25) is
naturally satisfied if it is valid at each order in the Taylor
expansion of the form factors,

q2
~Gλ

F λ
¼ q2max

~Gð1Þ
λ þ δð ~Gð2Þ

λ −
~Gð1Þ
λ

q2max
Þ þOðδ2Þ

F ð1Þ
λ þ δF ð2Þ

λ þOðδ2Þ
: ð30Þ

We require only that the relation be valid up to order δ. In
order for Eq. (30) to have a constant value in the

neighborhood of q2max up to OðδÞ, we must have F ð2Þ
λ ¼

cF ð1Þ
λ and ðq2max

~Gð2Þ
λ − ~Gð1Þ

λ Þ ¼ cq2max
~Gð1Þ
λ where c is any

constant. As discussed earlier, P2 ¼
ffiffiffi
2

p
P1 at q2max; hence,

we must have Pð1Þ
2 ¼ ffiffiffi

2
p

Pð1Þ
1 , where Pð1Þ

1;2 are the coef-

ficients of the leading Oð ffiffiffi
δ

p Þ term in the expansion.
However, the above argument implies that at the next

order, we must also have Pð2Þ
2 ¼ ffiffiffi

2
p

Pð2Þ
1 , since

F ð2Þ
λ ¼ cF ð1Þ

λ . This provides the needed input that

together with Eq. (23) determines Pð1Þ
1 purely in terms

of observables.

SIGNAL OF RIGHT-HANDED CURRENTS USING … PHYSICAL REVIEW D 95, 114006 (2017)

114006-3



The expressions for Rλ in the limit q2 → q2max are

R⊥ðq2maxÞ ¼
8Að1Þ

FBð−2Að2Þ
5 þ Að2Þ

FBÞ þ 9ð3Fð1Þ
L þ Fð1Þ

⊥ ÞFð1Þ
⊥

8ð2Að2Þ
5 − Að2Þ

FBÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
Fð1Þ
⊥ − Að1Þ2

FB

q
¼ ω2 − ω1

ω2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1 − 1

p ; ð31Þ

R∥ðq2maxÞ ¼
3ð3Fð1Þ

L þ Fð1Þ
⊥ Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
Fð1Þ
⊥ − Að1Þ2

FB

q
−8Að2Þ

5 þ 4Að1Þ
FB þ 3Að1Þ

FBð3Fð1Þ
L þ Fð1Þ

⊥ Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1 − 1

p
ω2 − 1

¼ R0ðq2maxÞ; ð32Þ

where

ω1 ¼
3

2

Fð1Þ
⊥

Að1Þ2
FB

and ω2 ¼
4ð2Að2Þ

5 − Að2Þ
FBÞ

3Að1Þ
FBð3Fð1Þ

L þ Fð1Þ
⊥ Þ

: ð33Þ

It should be noted that Eqs. (31)–(33) are derived only at
q2max. However, even at the end point, the expressions

depend on polynomial coefficients: Fð1Þ
L and Fð1Þ

⊥ as well as

Að2Þ
FB and Að2Þ

5 which are not related by HQET. Hence, in our
approach, corrections beyond HQET are automatically
incorporated through fits to data.
In the absence of RH currents or other NP that

treats the “⊥” amplitude differently one would expect
R⊥ðq2maxÞ ¼ R∥ðq2maxÞ ¼ R0ðq2maxÞ. It is easily seen that the
lhs of Eq. (17) is positive around q2max and since ζ > 0, we
must have R⊥ ¼ R∥ ¼ R0 > 0. Since very large contribu-
tions from RH currents are not possible, as they would have
been seen elsewhere, Rλðq2maxÞ > 0 still holds and restricts
ξ and ξ0 to reasonably small values.

III. RIGHT-HANDED CURRENT ANALYSIS

In this section we describe the numerical analysis based
on the theoretical formalism derived in the previous
section. We start by fitting the latest LHCb measurements
[14] of the observables FL, F⊥, AFB and A5 as functions
of q2 using the Taylor expansion at q2max as given in
Eqs. (26)–(29). The fits were performed by minimizing
the χ2 function, which compares the bin integrated values
of q2 functions of the observables with their measured
experimental values for all 14 bins. The correlations
reported by LHCb among all observables have also been
considered. The bin integration for the polynomial fit is
weighted with the recent measurements of differential
decay rate [15]. A polynomial is fitted for dΓ=dq2 data
for the entire q2 region. This fitted polynomial for dΓ=dq2
[say denoted by Γðq2Þ] is then used in weighted average for
all the observables. For an observable O the bin averaged
value within the q2 interval ½bi; bf� is obtained by,

R bf
bi

Oðq2ÞΓðq2Þdq2= R bf
bi

Γðq2Þdq2. We use the 14 bin data
set based on the method of moments [16] from LHCb rather
than the eight bin data set as it enables better constraints
near q2max. The best fit values for each coefficient of the
observables FL, F⊥, AFB and A5 [Eqs. (26)–(29)] are given
in Table I. The errors in each coefficient are evaluated using
a covariance matrix technique. A detailed study of the
systematics in fitting the polynomial is described in Sec. V.
Variations in the order of the polynomial from 2 to 4 and the
number of bins used in fitting (from the last four to all
fourteen) demonstrate good convergence when larger
numbers of bins are considered.
In Fig. 1 the results of the fits for the observables FL, F⊥,

AFB and A5, respectively, are compared with the measured
LHCb data [14]. We notice that the factorization require-

ment Að1Þ
FB ¼ 2Að1Þ

5 holds to within �1σ. We treat Að1Þ
FB and

2Að1Þ
5 as two independent measurements of the same

quantity as we have neglected correlation between observ-
ables. We obtain ω1 ¼ 1.10� 0.30ð1.03� 0.34Þ and
ω2 ¼ −4.19� 10.48ð−4.04� 10.12Þ, where the first val-

ues are determined using Að1Þ
FB and the values in the round

brackets use 2Að1Þ
5 .

TABLE I. Best fit and 1σ uncertainties for the coefficients of
observables [in Eqs. (26)–(29)] obtained by fitting recent LHCb’s
14-bin measurements [14] as a function of q2 for the entire
region.

Oð1Þð10−2Þ Oð2Þð10−3Þ Oð3Þð10−4Þ
FL −2.85� 1.26 12.13� 1.90 −5.68� 0.67
F⊥ 6.89� 1.65 −9.79� 2.47 3.83� 0.86
AFB −30.58� 1.95 26.96� 3.58 −4.15� 1.47
A5 −15.85� 1.87 5.38� 3.33 2.46� 1.29

FIG. 1. An analytic fit to 14-bin LHCb data using Taylor
expansion at q2max for the observables FL, F⊥, AFB and A5 are
shown as the brown curves. The�1σ error bands are indicated by
the light brown shaded regions, derived including correlation
among all observables. The points with the black error bars are
LHCb 14-bin measurements [14].
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We estimate the range of values for R⊥ and R∥;0 in two
different ways. One approach estimates R⊥ and R∥;0 using

randomly chosen values of Fð1Þ
L , Fð1Þ

P , Að1Þ
FB, A

ð1Þ
5 , Að2Þ

FB and

Að2Þ
5 , from a Gaussian distribution with the central value as

the mean and errors from Table I. If RH currents are absent
the values lie along a straight line with a 45° slope in the
R⊥-R∥;0 plane. However, we find a slope that is nearly
horizontal, indicating that R⊥ ≫ R∥;0. The deviation of
slope from 45° provides evidence of contributions from RH
currents.
In an alternate approach we fit the values of R⊥ and R∥;0

with the two estimated values of ω1 andω2 by minimizing a
χ2 function. The allowed regions in the R⊥-R∥;0 plane are
shown in Fig. 2. The solid red straight line on the far left
corresponds to the case R⊥ ¼ R∥;0. The SM value is
indicated by the star on the red line. The light gray and
dark gray contours indicate the 1σ and 5σ permitted
regions. We emphasize that for the SM, even in the
presence of resonances the contours should be aligned
along the 45° line, since resonances contribute equally to all
helicities through ΔC9 in Eq. (2). Hence the deviation of
the contours from the SM expectation is a signal for RH
currents. As it is discussed in Sec. IV, charmonium
resonance contributions in bin averaged data always raise
the values of ω1, whereas we find that the values of ω1 are
close to the lowest possible physical value allowed.
Having established the existence of RH contributions,

we perform a χ2 fit to the parameters ξ and ξ0 which indicate
the size of the new Wilson coefficients. This is easily done
using Eqs. (19), (31) and (32). However, this requires as an
input the estimate of r=C10 from Eq. (25) at q2max. The
allowed regions in the ξ-ξ0 plane are shown in Fig. 3. The
left panel shows the region obtained using the SM estimate of r=C10 ¼ 0.84 [12]. The best fit values of ξ and ξ0, with

�1σ errors, are −0.63� 0.43 and −0.92� 0.10, respec-
tively. The yellow, orange and red bands denote 1σ, 3σ and
5σ confidence level regions, respectively. The SM value of
C0
10=C10 and C0

9=C10 is indicated by the star, beyond the 5σ
confidence level contour, which is in agreement with the
result shown in Fig. 2. The SM estimate of r=C10 can have
uncertainties that cannot easily be accounted for. These
could range from errors in Wilson coefficients, contribu-
tions from other kinds of new physics or even the con-
tributions from resonances. In order to ascertain the
accuracy of our conclusion to these uncertainties, we have
scanned r=C10 over a range of values. While the evidence
for right-handed currents is clear, the central values of ξ and
ξ0 obtained from the fit can be reduced somewhat if r=C10 is
smaller due to NP contributions that alter the Wilson
coefficient C9 and the significance of discrepancy can also
be reduced ∼5σ as can be seen from Fig. 3’s upper right
panel plot. The value r=C10 ¼ 0.6 corresponds to the
scenario in which NP contribution to the Wilson coefficient
C9 is CNP

9 ≈ −1 as indicated by a global fit analysis for
b → s transition [2]. In this case, best fit values of ξ and ξ0

FIG. 2. Allowed regions in the R⊥-R∥;0 plane are shown. The
solid red straight line on the far left corresponds to the case
R⊥ ¼ R∥;0. The SM value is indicated by the star. The gray point
corresponds to best fit central values. The light and dark gray
contours correspond to 1σ and 5σ confidence level regions,
respectively.

FIG. 3. Allowed regions in the C0
10=C10-C0

9=C10 plane are
shown in three different panels. The yellow, orange and red bands
are the 1σ, 3σ and 5σ confidence level regions, respectively. The
center red dot denotes the best fit point; the SM values ofC0

10=C10

and C0
9=C10 are indicated by a star, which sits more than 5σ

confidence level contour in the upper left panel, at 5σ contour in
the upper right panel and at 3σ contour in the bottom panel. The
plots illustrate the sensitivity to r=C10. The upper left panel shows
the SM value, the upper right panel includes an additional NP
contribution CNP

9 ≈ −1 [2] while the bottom panel highlights the
case where r=C10 is considered as a nuisance parameter (see the
text for details).
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with �1σ errors are −0.73� 0.32 and −0.69� 0.10. We
have performed another analysis where the input r=C10 is
considered as a nuisance parameter and the result is shown
in the bottom panel of Fig. 3. In this case the best fit value
with �1σ error for the parameters ξ, ξ0 and r=C10 is
−0.63� 0.43, −0.92� 0.14 and 0.84� 0.10, respectively.
It can be seen that the uncertainties in C0

10=C10 and C0
9=C10

parameters have increased due to the variation of r=C10 and
the SM prediction still remains on a 3σ level contour
providing evidence of RH currents. We note that if ξ ≠ 0 is
confirmed by further measurements, additional scalar and/
or pseudoscalar contributions are needed in order to have
consistency with Bs → μþμ− data [17].
We now discuss the effect of the complex part of the

transversity amplitudes, i.e. ελ contributions [in Eq. (3)],
which has not been considered so far. In our approach
ελ can be estimated at the end point purely from data.
The ελ corrections do not contribute to the asymmetries
AFB and A5; however, they do contribute to the helicity
fractions FL and F⊥ [7]. Interestingly, in a Taylor expan-
sion of ε̂λ ≡ 2jελj2=Γf, the coefficient of the leading term

must be positive. We have used LHCb data to estimate ε̂ð0Þ0 ,

ε̂ð1Þ0 , ε̂ð1Þ∥ and ε̂ð1Þ⊥ that modify the estimates of ω1 and ω2.
The detailed expressions and discussions are given in
Appendix A. We have also studied the effects of nonzero
K� width in Appendix B. Including these effects we find
that our conclusions are slightly strengthened.

IV. EFFECT OF RESONANCES

In this section we examine if resonances can alter the
results that are obtained using a polynomial fit to the
observables in Eqs. (26)–(29), where it is assumed that
resonances are absent. The data include resonance con-
tributions in the bin averaged observables and these
averages may not fit well to the polynomial if resonance
contributions are sizable. It may be noted that in our
approach the polynomial function is used only for a
parametric fit to data. In principle, the data could have
been fitted to any chosen function. An inappropriate
function results in a poor fit with large errors. We have
estimated all errors and the fits reflect the errors caused by
the assumption of ignoring resonances. It should be noted
that the fit itself is not invalidated; however the errors
estimated in Table I decrease if a better function or the
estimate of systematics of resonances is accounted for.
Thus, our uncertainties are an overestimate. We also
emphasize that the real part of resonance contributions is
notionally included in the amplitudes and the imaginary
parts are also accounted for as discussed in Appendix A.
Since both our theory and experimental data include
resonance contributions, the observed discrepancy cannot
arise due to resonances. Below we discuss the differences
between q2 distributions with and without resonances as
systematic uncertainties.

This study is performed on observables, evaluated using
theoretical estimates of form factors and Wilson coeffi-
cients. We assume the values of the form factors evaluated
using LCSR [18] for q2 ≤ 15 GeV2 and from lattice QCD
[19] for the q2 ≥ 15 GeV2 region. The effects of reso-
nances are incorporated as in [20]. The procedure defines
the function gðmc; q2Þ, in Ceff

9 , as

gðmc; q2Þ ¼ −
8

9
ln
mc

mb
−
4

9

þ q2

3
P
Z

∞

4m̂2
D

Rcc̄
hadðxÞ

xðx − q2Þ dxþ i
π

3
Rcc̄
hadðq2Þ:

ð34Þ
where P is the principal value of the integral and
m̂D ¼ mD=mb. The cross-section ratio Rcc̄

hadðq2Þ is given by
Rcc̄
hadðq2Þ ¼ Rcc̄

contðq2Þ þ Rcc̄
resðq2Þ: ð35Þ

Here, Rcc̄
cont and Rcc̄

res denote the contributions from the
continuum and the narrow resonances, respectively. The
latter is given by the Breit-Wigner formula

Rcc̄
resðq2Þ ¼ Nr

X
V¼J=ψ ;ψ 0::

9q2

α

BrðV → lþl−ÞΓV
totΓV

had

ðq2 −m2
VÞ2 þm2

VΓV2
tot

eiδV

ð36Þ
where ΓV

tot is the total width of the vector meson V, δV is an
arbitrary relative strong phase associated with each of the
resonances and Nr is a normalization factor that fixes
the size of the resonance contributions compared to the
nonresonant ones correctly. We include the J=ψð1SÞ,
ψð2SÞ, ψð3770Þ, ψð4040Þ, ψð4160Þ and ψð4415Þ reso-
nances in our study. The masses and widths of these vector
mesons are taken from the PDG compilation [21].
The continuum term Rcc̄

contðq2Þ is parametrized differently
in Refs. [20,22], but we have verified that both of these
parametrizations give indistinguishable results for our
analysis. We introduce yet another overall normalization
factor Nb that normalizes the value of dΓ=dq2 so as to
match it with its experimentally measured value.
We numerically integrate the theoretical differential

decay rate including all the resonances, in q2, for eight
bin intervals given in [15]. We add all these eight bin
averaged values to obtain a quantity, which we refer to here
as dΓtot

th =dq
2. However, dΓtot

th =dq
2 depends on the two

unknown quantities Nb and Nr. We integrate the same
theoretical differential decay rate again including all the
resonances, in the q2 region ½2.972; 3.212�, to match the cuts
used in the LHCb experiment (Ref. [23]) and denote the
result as dΓJ=ψ

th =dq2, which is once again also a function of
the same two quantities Nb and Nr. These two theoretical
quantities, dΓtot

th =dq
2 and dΓJ=ψ

th =dq2, are then compared
with the central values of the experimentally measured
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differential decay rates 4.379 × 10−7 (total bin average
value for eight bins) and 1.29 × 10−3, respectively. The
solutions for Nb and Nr are obtained by solving the two
equations,

dΓtot
th ðNb; NrÞ
dq2

¼ 4.379 × 10−7;

dΓJ=ψ
th ðNb; NrÞ

dq2
¼ 1.29 × 10−3:

Two solutions for normalizations are obtained from the
resultant quadratic equations. For every set of δV chosen,
two sets of Nb and Nr are calculated. We have also verified
that our results are insensitive to the variation in q2 cuts
for the J=ψ resonance. This implies that if the q2 cut is
changed to ½3.052; 3.152� [24], the normalization factors are
modified only by a few percent.
We have varied δV from 0 to 2π through 15° intervals for

each resonance. In order to keep the size of data limited we
present only a sample of some of the plots obtained by
varying δV for the J=ψð1SÞ, ψð4040Þ and ψð4160Þ reso-
nances. The plots are given in link [25] as movies. The
movies were created using more than 22000 plots.
It may be noted from these plots that when resonances

are included, the helicity fractions do not vary significantly
due to resonance contributions. The asymmetries AFB and
A5 always decrease in magnitude for the 15 GeV2 ≤ q2 ≤
19 GeV2 region. Hence if the effect of resonances could
somehow be removed from the data, the values of AFB and
A5 would be larger in magnitude. This observation is also
valid for the slope of the fitted polynomial for AFB and A5 at
the end point. The value of ω1 in this case is smaller
compared to the values obtained from fits to experimental
data in which resonances are automatically present. In other
words including resonance effects in the 15 GeV2 ≤ q2 ≤
19 GeV2 region always increases ω1. It should be noted
that the values of ω1, obtained by fitting to experimentally
observed data, are already close to unity and any further
reduction forces ω1 into the unphysical domain.
In a toy Monte Carlo study, values of δV were randomly

chosen one million times and the values of observables
obtained without resonances were compared to those where
resonances were included. This enabled us to verify that the
conclusions drawn for δV ∈ nπ=12 (∀n ¼ 1;…; 12) are
valid in general.
It is also easy to see analytically that adding resonances

would strengthen the case for NP rather than weaken it.

Consider the observable Z1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4F∥F⊥ − 16

9
A2
FB

q
from

Refs. [7,13], which can be cast as

Z1 ¼
4

3
jAFBj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9F∥F⊥
4A2

FB
− 1

s
¼ 4

3
jAFBj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω1 − 1

p
ð37Þ

where Ω1 ¼ 9F∥F⊥
4A2

FB
. Since Z1 is real it is obvious that

Ω1 > 1. Experimental data indicate that Ω1 is very close
to unity for the entire range above q2 > 15 GeV2. If
resonance contributions are explicitly included Z1 becomes

Z1 ¼
4

3
jAFBj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ðF∥ −

2ε2∥
Γf
ÞðF⊥ − 2ε2⊥

Γf
Þ

4A2
FB

− 1

vuut

¼ 4

3
jAFBj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω1 −O

�
2ε2∥;⊥Ω1

F∥;⊥Γf

�
− 1

s
; ð38Þ

where ελ is defined in Eq. (5). Note thatOð2ε
2
∥;⊥Ω1

F∥;⊥Γf
Þ is always

positive, decreasing the radical. Hence, one can conclude
that resonance contributions cannot be significant in data or
else the value of Ω1 would become unphysical. It should be
noted that ω1 ≡ Ω1ðq2maxÞ, implying that the value of ω1

which we find very close to unity is consistent and would
only decrease and become unphysical if resonances were
included. The same arguments hold for the observables Z2

and Ω2 or ω2.
It may be noted that in a previous study of resonance

effects in B → Klþl− [22], the difficulty in accommodat-
ing the LHCb result in the standard treatment of the SM or
QCD was noted and possible right-handed current con-
tributions were suggested.

V. CONVERGENCE OF POLYNOMIAL FIT

It is discussed in Sec. II that the observables are Taylor
expanded around the end point q2max in Eqs. (26)–(29). In
this section, we study the systematics of the fits to

coefficients Fð1Þ
L , Fð1Þ

P , Að1Þ
FB, Að2Þ

FB, Að1Þ
5 and Að1Þ

5 , which
appear in the expressions of ω1 and ω2 given in Eq. (33).
We vary the order of the polynomial fitted from 2 to 4. Fits
are also performed by varying the number of bins from the
last four to 14 bins. The plots for the observables AFB, A5,
FL and F⊥ are shown in Appendix C. The summary of the
variation of fits with respect to the order of the polynomial
and number of bins is given in Fig. 4 for all observable

coefficients Fð1Þ
L , Fð1Þ

P , Að1Þ
FB, A

ð2Þ
FB, A

ð1Þ
5 and Að2Þ

5 , respectively.
The color code for the order of the polynomial used to fit is
given in the panel. The x axis denotes the number of bins
from last four to the last ten bins. We find that all the fitted
coefficients show a good degree of convergence even when
a larger number of bins is added. The values obtained for
the coefficients are consistent within �1σ regions apart

from some small mismatches in Fð1Þ
P and Að1Þ

5 . We choose as
a benchmark the third order polynomial fit to all 14 bins.
To validate this choice of a third order polynomial fit

to all 14 bins, we also perform an identical fit for
observables generated using form factor values from
LCSR [18] for the q2 ≤ 15 GeV2 and from lattice QCD
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[19] for the q2 ≥ 15 GeV2 region. The fits are shown in
Fig. 5, where the blue error bars are bin integrated SM
estimates and the solid blue curve with the shaded region
represents the best fit polynomial with �1σ errors. The fits
to SM observables are satisfactory for the entire q2 region.

VI. CONCLUSION

In conclusion, we have shown how RH currents can be
uniquely probed without any hadronic approximations at
q2max. Our approach adopted in Sec. II differs from other
approaches [2] that probe new physics at low q2, as it does
not require estimates of hadronic parameters but relies
instead on heavy quark symmetry based arguments that are

reliable at q2max [3,4]. Our parameters are defined so as to
notionally include nonfactorizable loop correction and
power corrections and must differ from those of others.
It should be noted that we use data directly, instead of
theory estimates, to derive our conclusions. We understand
that experimental measurements cannot alone result in
discovery of NP as reparametrization invariance suggests
and to that end we rely on theoretical understanding of
symmetries at the end point. While the observables
themselves remain unaltered from their SM values, their
derivatives and second derivatives at the end point are
sensitive to NP effects. Large values of AFB and A5, which
do not rapidly approach 0 in the neighborhood of q2max,
are indicative of NP effects. In Sec. III we show that LHCb
data imply 5σ evidence of NP at q2max. While the signal for
right-handed currents is clear, the large central values of ξ
and ξ0 obtained are reduced if other NP contributions are
present. Allowing variation in the only input parameter, i.e.
r=C10, we obtain 3σ evidence of RH currents from the latest
LHCb measurements. A detailed study of resonance effects
has been carried out in Sec. IV, which provides more
significant evidence for RH currents. The systematics of
polynomial fit has been discussed in Sec. V where a good
convergence has been observed when a large number of
bins is considered. The choice of a particular polynomial
parametrization has been justified with a fit to SM
observables. The effect of complex contributions in the
amplitudes (in Appendix A) and the finite K� width (in
Appendix B) leaves the conclusions unchanged. In view of
these, we speculate that if the current features of data persist
with higher statistics the existence of RH currents can be
established in the near future.

FIG. 4. Systematic study of the coefficients of observables with the variation of polynomial order and the number of bins used for the
fit. The color code for the different orders of the fitted polynomial is depicted in the panel. The x axis denotes the number of bins used for

the fit from the last four to 14 bins. Coefficient values show good convergence within the�1σ error bars except for a few bins in the Fð1Þ
⊥

and Að1Þ
5 distributions.

FIG. 5. Fits with third order polynomials to the theoretical SM
observables, generated using LCSR form factors for q2 ≤
15 GeV2 and lattice QCD form factors for q2 ≥ 15 GeV2.
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APPENDIX A: EFFECT OF COMPLEX
CONTRIBUTIONS OF AMPLITUDE

We show that the contributions arising from the complex
part ðελÞ of the amplitudes, in Eq. (3), can be incorporated
in the following way.
Defining a new notation ε̂λ ≡ 2jελj2=Γf, the Taylor

expansions for each ε̂λ around q2 ¼ q2max are given by

ε̂⊥ ¼ ε̂ð1Þ⊥ δþ ε̂ð2Þ⊥ δ2 þ ε̂ð3Þ⊥ δ3;

ε̂0 ¼ ε̂ð0Þ0 þ ε̂ð1Þ0 δþ ε̂ð2Þ0 δ2;

ε̂∥ ¼ ε̂ð0Þ∥ þ ε̂ð1Þ∥ δþ ε̂ð2Þ∥ δ2;

where δ≡ q2max − q2 and the limiting values of helicity
fractions, FLðq2maxÞ ¼ 1=3 and F∥ðq2maxÞ ¼ 2=3, constrain

the coefficients, i.e. ε̂ð0Þ∥ ¼ 2ε̂ð0Þ0 . The presence of complex
amplitudes leads to a modification of the expressions of ω1

and ω2 [Eq. (33)] in the following way:

ω1 ¼
9

4

ð2
3
− 2ε̂ð0Þ0 ÞðFð1Þ

⊥ − ε̂ð1Þ⊥ Þ
Að1Þ2
FB

; ðA1Þ

ω2 ¼
4ð2Að2Þ

5 − Að2Þ
FBÞð1 − 3ε̂ð0Þ0 Þ

3Að1Þ
FBð3Fð1Þ

L þ Fð1Þ
⊥ þ ε̂ð1Þ∥ − 2ε̂ð1Þ0 Þ

: ðA2Þ

The procedure to incorporate the complex part of the
amplitudes ελ is described in Ref. [7], where it was shown
that the complex part of the amplitudes ελ is proportional to
the asymmetries A7, A8 and A9. Using 3 fb−1 of LHCb data

[14], we simulated values of the coefficients ε̂ð0Þ0 , ε̂ð1Þ0 , ε̂ð1Þ∥

and ε̂ð1Þ⊥ ; these turn out to be very small at the kinematic
end point. These estimated coefficients are used to
evaluate ω1 ¼ 1.03� 0.31ð0.98� 0.29Þ and ω2 ¼
−4.52� 17.40ð−3.94� 9.86Þ [Eqs. (A1) and (A2)], where
the first values are determined using Að1Þ

FB and Að1Þ
9 whereas

the values in the round brackets use 2Að1Þ
5 and − 2

3
Að1Þ
8 . The

factorization assumption is needed only at leading order in

the expansions of observables, which requires Að1Þ
FB ¼ 2Að1Þ

5

and Að1Þ
9 ¼ − 2

3
Að1Þ
8 .

It should be noted that the inclusion of ε̂λ ’s changes the
values of ω1 and ω2 insignificantly, with corresponding
estimates for the real case being well within the�1σ errors.
Hence, the conclusions derived in the paper are robust
against the inclusion of complex contributions in the
amplitudes.

APPENDIX B: FINITE K� WIDTH EFFECT

The finite width of the K� can alter the position of the
kinematic end point, i.e. q2max value. As LHCb considers a
much wider range for the width of K�, compared to the
observed width (which is ∼50 MeV), we have varied
the q2max value in the Taylor expansion of observables
[Eqs. (26)–(29)] within an interval 18.34–20.10 GeV2.
The observables ω1 and ω2 are evaluated for each case
and a weighted average over the Breit-Wigner shape
for a K� gives ω1 ¼ 1.11� 0.30ð1.03� 0.35Þ and ω2 ¼
−3.56� 28.34ð−3.50� 27.44Þ. The change in the values
of ω1 and ω2 has an insignificant effect in Figs. 1 and 2 and
the results derived in this work.

APPENDIX C: POLYNOMIAL FIT VARIATION

The variation of fits with respect to the order of the
polynomial and number of bins is shown in Figs. 6–9 for
observables AFB, A5, FL and F⊥, respectively. The color
code is the same as in Fig. 1. The panel in each plot depicts
the number of bins (from kinematic end point) and the
order of polynomial is used for the fit. The extracted
coefficient values of the observables from these plots are
summarized in Fig. 5.
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FIG. 6. Fits to AFB using various numbers of bins and polynomial parametrizations. The color code is the same as in Fig. 1.
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FIG. 7. Fits to A5 various numbers of bins and polynomial parametrizations. The color code is the same as in Fig. 1.
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FIG. 8. Fits to FL various numbers of bins and polynomial parametrizations. The color code is the same as in Fig. 1.
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