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We calculate two- and three-body decays of the (lightest) vector glueball into (pseudo)scalar, (axial-)
vector, as well as pseudovector and excited vector mesons in the framework of a model of QCD. While
absolute values of widths cannot be predicted because the corresponding coupling constants are unknown,
some interesting branching ratios can be evaluated by setting the mass of the yet hypothetical vector
glueball to 3.8 GeVas predicted by quenched lattice QCD. We find that the decay mode ωππ should be one
of the largest (both through the decay chain O → b1π → ωππ and through the direct coupling O → ωππ).
Similarly, the (direct and indirect) decay into πKK�ð892Þ is sizable. Moreover, the decays into ρπ and
K�ð892ÞK are, although subleading, possible and could play a role in explaining the ρπ puzzle of the
charmonium state ψð2SÞ thanks to a (small) mixing with the vector glueball. The vector glueball can be
directly formed at the ongoing BESIII experiment as well as at the future PANDA experiment at the
FAIR facility. If the width is sufficiently small (≲100 MeV) it should not escape future detection. It should
be stressed that the employed model is based on some inputs and simplifying assumptions: the value
of glueball mass (at present, the quenched lattice value is used), the lack of mixing of the glueball with
other quarkonium states, and the use of few interaction terms. It then represents a first step toward the
identification of the main decay channels of the vector glueball, but shall be improved when corresponding
experimental candidates and/or new lattice results will be available.
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I. INTRODUCTION

The search for glueballs is an important part of exper-
imental as well as theoretical hadronic physics [1,2].
Lattice QCD predicts a rich spectrum of glueball states
below 5 GeV [3,4], but up to now no predominantly
glueball state could be unambiguously assigned to one of
the mesons listed in the PDG [5].
The lightest glueball predicted by lattice QCD is a scalar

particle. This is definitely the glueball which has been most
intensively studied both experimentally and theoretically.
Various theoretical approaches were developed to under-
stand which scalar-isoscalar resonance contains the largest
gluonic amount, e.g. Refs. [2,6] and references therein.
In most scenarios, either the resonance f0ð1500Þ or the
resonance f0ð1710Þ has the largest gluonic content in its
wave function.
The field corresponding to the scalar glueball is often

related to the dilaton [7,8]: the corresponding nonvanishing
condensate is proportional to the gluon condensate and is
linked to a basic feature of QCD, the trace anomaly, which
allows one to understand how a dimension enters into a
classically dimensionless theory. Indeed, dilatation invari-
ance and its anomalous breaking in the Yang-Mills sector

have been, together with chiral symmetry, the guiding
principle behind the development of an effective hadronic
model of QCD, the so-called extended linear sigma model
(eLSM) [9,10]. The eLSM has shown to be capable to
describe various hadronic masses and decays below
1.8 GeV, as the fit in Ref. [9] confirms. The eLSM can
be coupled to glueballs allowing to calculate their decays,
see the following discussion. The scalar glueball is auto-
matically present in the eLSM as a dilaton and is coupled to
light mesons: its assignment and its mixing with quark-
antiquark scalar fields have been studied in Ref. [10],
where only one assignment was found to be acceptable:
f0ð1710Þ is mostly gluonic. Besides the eLSM, evidence
that f0ð1710Þ has a large gluonic amount is recently
mounting from both lattice studies [11] and from a holo-
graphic approach [12].
The pseudoscalar glueball has also received much

attention (see Ref. [13] for a review), since it is linked
to another important feature of QCD: the chiral anomaly
[14]. Lattice QCD predicts a mass of about 2.6 GeV, but
the scenario in which the pseudoscalar glueball is light
(at about 1.5 GeV) was also widely investigated, e.g.
Refs. [13,15] and references therein. Yet, the mismatch
with the mass calculated from lattice QCD seems to be too
large for this scenario to be realistic. In a recent work, the
branching ratios of a putative pseudoscalar glueball with a
mass of about 2.6 GeV were calculated within the eLSM
mentioned above [16,17]. To this end, a chirally invariant
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interaction term coupling the pseudoscalar glueball to light
mesons was considered. It was found that the channel ππK
is dominant and that the channels ππη and ππη0 are sizable.
Such information can be useful in the future experimental
search of the pseudoscalar glueball at PANDA [18] and at
BESIII [19]. (Very recently, the very same interaction
Lagrangian has been used to study the branching ratios
of a second excited pseudoscalar glueball with a mass of
about 3.7 GeV [20].)
In this work we continue the investigation of glueballs by

concentrating our attention to the vector glueball, denoted
asO. The vector glueball has received some attention in the
past (e.g. in Refs. [21–25] and references therein, where it
was studied in the context of the so-called ρπ puzzle, see
also below), but to our knowledge a systematic prediction
of its decay rates has not yet been performed. Our plan is to
study the vector glueball in the framework of the mentioned
model of QCD, the eLSM, properly coupled to the vector
glueball. As a consequence, the results are model depen-
dent and only branching ratios can be calculated (full
decay rates depend on coupling constant which cannot
be calculated). Also the mass of the glueball cannot be
determined within the model. We thus use the value
predicted by quenched lattice QCD (3.8 GeV) [3], well
above the scalar and pseudoscalar ones (the discussion
concerning the use of the lattice mass as an input and the
validity of our interaction terms for the evaluation of the
glueball’s decays are presented in Sec. IV). It is then
expected that the vector glueball decays in two and three
light mesons. We thus plan to evaluate, in the framework of
our model, various branching ratios.
In order to obtain the interaction Lagrangians, we need to

couple the vector glueball to conventional light mesons
contained in the eLSM. Being glueballs chirally invariant
fields, we assume that the interactions fulfill chiral invari-
ance (and, at least for the dominant terms, also dilatation
invariance). Moreover, in addition to the standard pseudo-
scalar, scalar, vector, and axial-vector mesons studied in
Ref. [9], we will also consider pseudovector and excited
vector mesons. It is important to stress from the very
beginning that our approach could not yet be tested
experimentally. (In particular, for what concerns heavy
glueballs, there are at present no known candidates.)
Moreover, we shall also neglect mixing of the glueball
with conventional quarkonium states. As we discuss more
in detail later on, it will be possible to model in the future
such mixing when more information will be available.
With these cautionary remarks in mind, we aim to make

some observations concerning the decays of the vector
glueball. In particular, we will show that, in our calcula-
tional approach, one of the most important decay modes
of the vector glueball is the decay into a pseudoscalar-
pseudovector pair (in particular, the channel O → b1π →
ωππ). These decays are obtained from an interaction term
(our first effective Lagrangian for O, denoted as L1) which

involves the least possible number of quark-antiquark fields
(only two; hence, to assure dilatation invariance, also the
dilaton field is coupled). As a side effect, this analysis also
offers the mathematical basis for an extension of the eLSM
containing pseudovector and excited vector fields.
The second chiral Lagrangian that we build is denoted as

L2 and contains the coupling of O to (pseudo)scalar and
(axial-)vector fields. Here, three quark-antiquark fields
are at first present at each vertex, hence three-body decay
of O is automatically obtained. The decays of O into two
pseudoscalar mesons and one vector mesons are dominant.
In particular, the direct decay channels O → ωππ and
O → K�ð892ÞKπ are the largest. Both the first and the
second Lagrangians predict a decay into ωππ and into
K�ð892ÞKπ (indirect in the first case, direct in the second),
which then represent the two golden channels toward a
possible future detection of the vector glueball. In the end,
when condensation of scalar fields is taken into account, L2

also delivers two-body decays. Here, one vector and one
scalar field are the most relevant decay channels.
Finally, we shall also analyze a third interaction

Lagrangian (denoted as L3), in which four quark-antiquark
fields are present at each vertex. This Lagrangian breaks
dilatation invariance (the coupling constant is proportional
to Energy−2), yet we decided to study it since it delivers
interesting decays into one vector and one axial-vector pair
and into one vector and one pseudoscalar pair. In particular,
the ρπ and K�ð892ÞK decay modes are relevant in con-
nection to the so-called ρπ-puzzle of the state ψð2SÞ, see
the discussion in Sec. IV.
The vector glueball can be constructed with (at least)

three constituent gluons, hence its decays and mixing are
expected to be sufficiently small to allow detection (even if
in the context of our model we cannot calculate them).
Even if the predicted mass of O lies at about 3.8 GeV and
hence above the DD threshold, we do not find a sizable
decay into charmed mesons. Namely, theDD channel turns
out to be small (albeit nonzero), while other channels with a
potentially sizable interaction—such as the pseudoscalar-
pseudovector channel mentioned above—are not kinemat-
ically allowed when charmed mesons are considered.
In the future, the PANDA experiment at FAIR [18] will

be able to form glueballs and to study their decays. In
particular, the vector glueball has the quantum numbers
of the photon, hence it can be also directly formed at
BESIII (for which an energy scan in the region 3.5 to 4 GeV
with particular attention to the ωππ and K�ð892ÞKπ
channels would be necessary). It should be mentioned that
in a previous study at BES [21], a vector glueball was
searched—without success—in the ρπ channel, which is
however not the favorite decay mode found in our study.
This paper is organized as follows. In Sec. II we show

the quark-antiquark nonets and their properties, while in
Sec. III we introduce three effective Lagrangians and
calculate decay ratios. In Sec. IV we present various
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discussions: the validity and the limits of the used inter-
action Lagrangians, the use of the mass from lattice QCD as
an input, the large-Nc limit, and the so-called ρπ puzzle of
ψð2SÞ. Finally, in Sec. V we outline our conclusions and
outlooks. In the Appendixes we show relevant details of the
eLSM and of the calculations.

II. CHIRAL MULTIPLETS

In this section, we concentrate on the quark-antiquark
fields which represent the decay products of the vector
glueball. We split our study into two parts: first, we
consider (pseudo)scalar and (axial-)vector fields, which
are also the basic ingredients of the eLSM when proper
chiral combinations of them are taken into account. Then,
in the second part we describe pseudovector mesons and
excited vector mesons and the corresponding chiral
combination.

A. (Pseudo)scalar and (axial-)vector
quark-antiquark multiplets

The nonet of pseudoscalar fields is introduced as

P ¼ 1ffiffiffi
2

p

0
BB@

ηNþπ0ffiffi
2

p πþ Kþ

π− ηN−π0ffiffi
2

p K0

K− K̄0 ηS

1
CCA; ð1Þ

which contains the renowned light pseudoscalar nonet
fπ; K; η; η0g [5], where η and η0 arise via the mixing
η ¼ ηN cos θp þ ηS sin θp, η0 ¼ −ηN sin θp þ ηS cos θp
with θp ≃ −44.6° [9]. (Using other values as e.g. θp ¼
−41.4° [26] changes only slightly the results presented in
this work.) As a next step, we introduce the matrix of scalar
fields,

S ¼ 1ffiffiffi
2

p

0
BBB@

σNþa0
0ffiffi

2
p aþ0 Kþ

S

a−0
σN−a00ffiffi

2
p K0

S

K−
S K̄0

S σS

1
CCCA; ð2Þ

which contains the fields fa0ð1450Þ; K�
0ð1430Þ; σN; σSg.

(Note, the scalar quark-antiquark states lie above 1 GeV
[9], thus the nonet of light scalar states fa0ð980Þ;
K�

0ð800Þ; f0ð500Þ; f0ð980Þg is something else. A possibil-
ity is a nonet of light tetraquark states [27,28] or a nonet of
dynamically generated states [29–31].) As a first approxi-
mation, the nonstrange bare field σN ≡ jūuþ d̄di= ffiffiffi

2
p

corresponds predominantly to the resonance f0ð1370Þ
and the bare field σS ≡ js̄si predominantly to f0ð1500Þ.
Finally, in the eLSM the state f0ð1710Þ is predominantly a
scalar glueball, see details in Ref. [10] in which the mixing
matrix is presented.
Nowadays evidence toward a large gluonic amount in

f0ð1710Þ is increasing: besides the eLSM [10], in the
recent lattice work of Ref. [11] the radiative decay
j=ψ → γG (where G is a pure glueball) has been analyzed
and found to be in good agreement with the experimental
decay rate j=ψ → γf0ð1710Þ. Moreover, the study of
Ref. [12] reaches the same conclusion in the framework
of holographic QCD.
The scalar and pseudoscalar matrices are combined into

Φ ¼ Sþ iP; ð3Þ

which has a simple transformation under chiral trans-
formations ULð3Þ ×URð3Þ∶Φ → ULΦU†

R, where UL and
UR are Uð3Þ matrices. Under parity Φ → Φ† and under
charge conjugation Φ → Φt. The matrix Φ is used as a
building block in the construction of the eLSM Lagrangian,
see Appendix A and Tables I and II.
We now turn to vector and axial-vector fields. The nonet

of vector fields is introduced as

Vμ ¼ 1ffiffiffi
2

p

0
BBB@

ωNþρ0ffiffi
2

p ρþ K⋆þ

ρμ− ωN−ρ0ffiffi
2

p K⋆0

K⋆− K̄⋆0 ωS

1
CCCA

μ

; ð4Þ

and the nonet of axial-vector fields as

TABLE I. Summary of the quark-antiquark nonets and their properties.

Nonet L S JPC Current Assignment

P 0 0 0−þ Pij ¼ 1ffiffi
2

p q̄jiγ5qi π, K, η, η0

S 1 1 0þþ Sij ¼ 1ffiffi
2

p q̄jqi a0ð1450Þ, K�
0ð1430Þ, f0ð1370Þ, f0ð1510Þ

Vμ 0 1 1−− Vμ
ij ¼ 1ffiffi

2
p q̄jγμqi ρð770Þ, K�ð892Þ, ωð785Þ, ϕð1024Þ

Aμ 1 1 1þþ Aμ
ij ¼ 1ffiffi

2
p q̄jγ5γμqi a1ð1230Þ, K1;A, f1ð1285Þ, f1ð1420Þ

Bμ 1 0 1þ−
Bμ
ij ¼ 1ffiffi

2
p q̄jγ5∂

↔μ
qi

b1ð1230Þ, K1;B, h1ð1170Þ,h1ð1380Þ

Eμ
ang 2 1 1−−

Eμ
ang;ij ¼ 1ffiffi

2
p q̄ji∂

↔μ
qi

ρð1700Þ, K�ð1680Þ, ωð1650Þ, ϕð???Þ
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Aμ ¼ 1ffiffiffi
2

p

0
BBB@

f1Nþa0
1ffiffi

2
p aþ1 Kþ

1;A

a−1
f1N−a01ffiffi

2
p K0

1;A

K−
1;A K̄0

1;A f1S

1
CCCA

μ

: ð5Þ

The matrix Vμ contains the vector states fρ; K�ð892Þ;
ω;ϕg, while the matrix Aμ contains the axial-vector
states fa1ð1230Þ; K1;A; f1ð1285Þ; f1ð1420Þg, where K1;A

is a mixture of the two physical states K1ð1270Þ and
K1ð1400Þ, see Sec. II B. We neglect (the anyhow small)
strange-nonstrange mixing, hence ω≡ ωN and f1N ≡
f1ð1285Þ are purely nonstrange mesons of the typeffiffiffiffiffiffiffiffi
1=2

p ðūuþ d̄dÞ, while ωS ≡ ϕ and f1S ≡ f1ð1285Þ are
purely s̄s states.
Then, one defines the right-handed and left-handed

combinations:

Rμ ¼ Vμ − Aμ and Lμ ¼ Vμ þ Aμ: ð6Þ

Under chiral transformation they transform in a compact
way: Rμ → URRμU†

R, L
μ → ULLμU†

L. Details of the cur-
rents and transformations are shown in Tables I and II.
The eLSM Lagrangian includes the multiplets S, P, V,

and A presented above. In addition, a dilaton/glueball field
is also present in order to describe dilatation symmetry and
its anomalous breaking. The details of the eLSM (together
with its symmetries, most notably chiral and dilatation
symmetries together with their anomalous, explicit, and
spontaneous breaking terms) are briefly summarized in
Appendix A and extensively presented in Refs. [9,10] for
Nf ¼ 3. (Previous versions of the eLSM for Nf ¼ 2 are
discussed in Ref. [32] while an extension to Nf ¼ 4 can be
found in Ref. [33]. Baryons are considered in Ref. [34],
while properties at finite density are studied in Ref. [35] and
at finite temperature in Ref. [36]. Recently, it was also
shown that the low-energy limit of the eLSM is equivalent
to chiral perturbation theory [37].)

B. Pseudovector and excited vector mesons

We aim to investigate also the decay of the vector
glueball into pseudovector and excited vector mesons.
To this end we introduce the matrix

Bμ ¼ 1ffiffiffi
2

p

0
BBB@

h1;Nþb0
1ffiffi

2
p bþ1 K⋆þ

1;B

b−1
h1;Nþb0

1ffiffi
2

p K⋆0
1;B

K⋆−
1;B K̄⋆0

1;B h1;S

1
CCCA

μ

ð7Þ

that describes the nonet of pseudovector resonances

fb1ð1230Þ; K1;B; h1ð1170Þ; h1ð1380Þg: ð8Þ

Also here, the strange-nonstrange isoscalar mixing is
neglected, thus h1;N ≡ h1ð1170Þ is a purely nonstrange state,
while h1;S ≡ h1ð1380Þ is a purely strange-antistrange state.
The kaonic fields K1;A from Eq. (5) andK1;B from Eq. (7)

mix and generate the two physical resonancesK1ð1270Þ and
K1ð1400Þ:
�
Kþ

1 ð1270Þ
Kþ

1 ð1400Þ

�μ

¼
�

cosφ −i sinφ
−i sinφ cosφ

��Kþ
1;A

Kþ
1;B

�μ

: ð9Þ

The mixing angle reads φ ¼ ð56.3� 4.2Þ° [38]. The same
transformations hold for K0

1ð1270Þ and K0
1ð1400Þ, while

for the other kaonic states one has to take into account that
K−

1 ð1270Þ ¼ Kþ
1 ð1270Þ† and K̄0

1ð1270Þ ¼ K0
1ð1270Þ† [and

so for K−
1 ð1400Þ].

The chiral partners of the pseudovector mesons are
excited vector mesons which arise from the combination
L ¼ 2, S ¼ 1 coupled to JPC ¼ 1−−. The corresponding
fields listed in the PDG [5] are given by

fρð1700Þ; K�ð1680Þ;ωð1650Þ;ϕð???Þg:

Note, ϕð???Þ was not yet found (one expects a vector
state with a mass of about 1.95 GeV from the comparison to
the radially excited vector mesons). The corresponding
nonet reads

Eμ
ang ¼ 1ffiffiffi

2
p

0
BBB@

ωang;Nþρ0angffiffi
2

p ρþang K⋆þ
ang

ρ−ang
ωang;N−ρ0angffiffi

2
p K⋆0

ang

K⋆−
ang K̄⋆0

ang ωang;S

1
CCCA

μ

: ð10Þ

We then build the matrix

~Φμ ¼ Eμ
ang − iBμ; ð11Þ

which under chiral transformations changes as ~Φμ →
UL

~ΦμU†
R [just as the standard (pseudo)scalar Φ, hence

the name], under parity as ~Φμ → ~Φ†μ, and under charge
conjugations as ~Φμ → − ~Φt;μ, see Tables I and II for details.
Although not the goal of the present paper, one could use
the matrix ~Φμ in order to build an extension of the eLSM

TABLE II. Transformation properties of the chiral multiplets.

Chiral multiplet Current URð3Þ × ULð3Þ P C

Φ ¼ Sþ iP
ffiffiffi
2

p
q̄R;jqL;i ULΦU†

R Φ† Φt

Rμ ¼ Vμ − Aμ ffiffiffi
2

p
q̄R;jγμqR;i URRμU†

R
Lμ Ltμ

Lμ ¼ Vμ þ Aμ ffiffiffi
2

p
q̄L;jγμqL;i ULRμU†

L
Rμ Rtμ

~Φμ ¼ Eμ
ang − iBμ ffiffiffi

2
p

q̄R;ji∂
↔μ

qL;i
UL

~ΦμU†
R

~Φ†μ − ~Φtμ
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which includes pseudovector and excited vector mesons.
This project is left for the future.
Finally, we present in Tables I and II the summary of all

relevant properties and transformations of the nonets
introduced in this section.

III. DECAY OF THE VECTOR GLUEBALL
INTO CONVENTIONAL MESONS

In this section we present the interaction terms describ-
ing the coupling of the vector glueball field Oμ to the
various quark-antiquark multiplets introduced in the pre-
vious section. Chiral symmetry as well as invariance under
parity and charge conjugations are the guiding principles.
In addition, dilatation invariance is assumed to hold in
the two most relevant terms. A third interaction which
breaks dilatation invariance and involves the Levi-Civita
tensor is also considered. Branching ratios are summarized
in Tables III–VI.

A. Decays into (pseudo)scalar and excited
vector and pseudovector mesons

The (nontrivial) chiral Lagrangian with the minimal
number of quark-antiquark fields contains the coupling
of the vector glueball to (pseudo)scalar and excited
(pseudo)vector mesons:

L1 ¼ λO;1GOμTr½Φ† ~Φμ þ ~Φμ†Φ�: ð12Þ

We introduced also the dilaton G in such a way that the
interaction term has exactly dimension 4 (λO;1 is dimen-
sionless) as required by dilatation invariance (we recall that
only positive or vanishing powers of G are acceptable [9]).
Using Table II we obtain

L1 ¼ λO;1GOμTr½2SEμ
ang − 2PBμ�: ð13Þ

Setting the dilaton field G to its condensate G ¼ G0 [8],
substituting P → P as described in Appendix A, and by
introducing the physical kaonic fields defined in Eq. (9),
lead to the desired expressions for the two-body decays
(see Appendix B for its analytic form). In particular, we
have decays of the type O → BP and O → SEang. The
main decay channel is O → b1π. We thus expect a
significant decay rate of an hypothetical vector glueball
into the channel

O → b1π → ωππ: ð14Þ

Unfortunately, we cannot determine λO;1 in the present
framework, but we can easily calculate various decay ratios
which represent clear predictions of the present approach,
see Table III. Besides the channel b1π, also the decays
involving kaons and K1ð1270Þ and K1ð1400Þ are sizable.
In Table III (as well as in all other tables presented in this

work) we keep for definiteness two significant digits for our
results. It is difficult to estimate the actual uncertainty of
our ratios, since various unknown factors enter. One source
of error is related to the mass of the glueball, for which we
used the quenched lattice result of 3.81 GeV (one may
estimate it ∼10%–15% [3] see also the detailed discussion
in Sec. IV B and the cautionary remarks written there).
Another source of uncertainty is connected to the validity
of the employed effective model; indeed, in Ref. [33] an
application of the eLSM to heavy charmed mesons has
found to be applicable within 10% for what concerns the
calculation of decays. It seems reasonable to expect a
similar accuracy in the present approach, even if it is not yet
possible to test the decays of heavy glueballs since they
were not yet discovered. Putting altogether, we can estimate
the validity of our branching ratios to about 20%–30%.
However, the interesting point is that the qualitative out-
comes of our study are not strongly dependent on the
precise input of the parameters. For instance, in Table I the
main information (O → b1π dominates) is stable.
At the present state of knowledge, the decays into scalar

mesons can only be approximate. For this reason, we did
not “unmix” σN and σS. In addition, we also expect a three-
body decay [when G in Eq. (12) is not set to its vacuum’s
expectation value]:

O → Gb1π: ð15Þ

Upon identifying G with f0ð1710Þ (the by far dominant
contribution in the eLSM [10]), one obtains a very small
decay ratio:

ΓO→f0ð1710Þb1π
ΓO→b1π

¼ 3.9 × 10−6: ð16Þ

TABLE III. Branching ratios for the decay of the vector
glueball into a pseudoscalar-pseudovector pair and into a sca-
lar-excited-vector pair.

Quantity Value

O→ηh1ð1170Þ
O→b1π

0.17

O→ηh1ð1380Þ
O→b1π

0.11

O→η0h1ð1170Þ
O→b1π

0.15

O→η0h1ð1380Þ
O→b1π

0.10

O→KK1ð1270Þ
O→b1π

0.75

O→KK1ð1400Þ
O→b1π

0.30

O→K�
0
ð1430ÞK�ð1680Þ
O→b1π

0.20

O→a0ð1450Þρð1700Þ
O→b1π

0.14

O→f0ð1370Þωð1650Þ
O→b1π

0.034
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There are further three-body interactions contained in L1,
but they are not kinematically allowed.
Moreover, we did not include in the table the ratio

ωang;S ≡ ϕð???Þ because the corresponding state was not
yet experimentally found. Yet, assigning it to a yet
hypothetical ϕð1950Þ state, we obtain ΓO→f0ð1510Þϕð1950Þ=
ΓO→b1π ≃ 0.037.
We also neglect the mixing OμTr½Eμ

ang� arising when
the field S condenses (see Appendix A). Namely, the large
mass difference between O and excited vector mesons
assures that such mixing is negligible.

B. Coupling to (pseudo)scalar and
(axial-)vector mesons

Next, we consider a chirally invariant and dilatation
invariant Lagrangian which couples O to three quark-
antiquark states. It involves both (pseudo)scalar and (axial-)
vector fields:

L2 ¼ λO;2OμTr½LμΦΦ† þ RμΦ†Φ�; ð17Þ

where λO;2 is a dimensionless (unknown) coupling con-
stant. By taking into account the expression listed in
Table II, one obtains terms delivering three-body and
two-body decays. The three-body decays are given by

L2;three-body ¼ λO;2OμTr½2VμðP2 þ S2Þ�
þ 2λO;2OμTr½Aμ2i½P; S��; ð18Þ

hence decays of the typeO → VPP,O → VSS,O → APS,
and O → PPS (the later obtained by the shift A → Zw∂P,
see details in Appendix B) follow. One of the most relevant
decays (the second in magnitude) is

O → ωππ;

which we use as a reference for the ratios listed in Table IV
(see Appendix C for the analytic expression). The channel
O → πKK�ð892Þ turns out to be the largest, followed by
ωππ. In the last line of Table IV we have also reported, as
an example, a three-body decay into a0ð1450Þa0ð1450Þω,
which is however very small. This is the case for all
kinematically allowed VSS decays.
Quite interestingly, the most prominent decay of the

Lagrangian L1 is O → b1π → ωππ (see Table III), hence it
also generates a ωππ final state (the state b1 has a dominant
decay into ωπ). At a first approximation, one can write

Γtot
O→ωππ ≃ Γdirect-fromL2

O→ωππ þ Γindirect-fromL1

O→b1π→ωππ ; ð19Þ

although strictly speaking interferences can appear (usually
they are smaller than 10%, see the discussion in Ref. [17];
we will neglect such interferences in the following).
Anyway, both L1 and L2 agree in predicting a strong

signal into the final state ωππ. Similarly, the final state into
πKK�ð892Þ is also relevant, since it comes directly from L2

and indirectly from L1 via the channels KK1ð1270Þ →
KπK�ð892Þ and KK1ð1400Þ → KπK�ð892Þ [but the
decays of K1ð1270Þ and K1ð1400Þ do not have a single
dominating channel [5]].
Two-body decays from L2 are obtained when one of the

Φ condenses, Φ → Φ0 þΦ:

L2;two-body¼λO;2OμTr½Vμ2fΦ0;SÞ�−λO;2OμTr½Aμ2i½Φ0;P��:
ð20Þ

Then, the decays O → VS, O → AP, and O → PP follow
(expressions in Appendix B). The (most relevant) decay
ratios are listed in Table V. The second term in Eq. (20) is
suppressed because the decay amplitudes are proportional
to the chirally suppressed difference ðϕN −

ffiffiffi
2

p
ϕSÞ [this

quantity vanishes in the UVð3Þ limit]. Hence both decay
channels O → AP and O → PP are expected to be very
small. In particular, L2;two-body contains only interaction
terms of the vector glueball with K1;AK. Due to the fact that
the K1;A is a mixture of K1ð1270Þ and K1ð1400Þ [Eq. (9)],

TABLE V. Branching ratios for the two-body decay of the
vector glueball into one (pseudo)scalar and one (axial-)vector
meson and into a kaon-kaon pair.

Quantity Value

O→a0ð1450Þρ
O→ωππ

0.47

O→f0ð1370Þω
O→ωππ

0.15

O→K�
0
ð1430ÞK�ð892Þ
O→ωππ

0.30

O→KK
O→ωππ

0.018

TABLE IV. Branching ratios for the direct three-body decay of
the vector glueball into two (pseudo)scalar and one vector meson.

Quantity Value

O→KKρ
O→ωππ

0.50
O→KKω
O→ωππ

0.17
O→KKϕ
O→ωππ

0.21

O→πKK�ð892Þ
O→ωππ

1.2

O→ηηω
O→ωππ

0.064

O→ηη0ω
O→ωππ

0.019

O→η0η0ω
O→ωππ

0.019

O→ηηϕ
O→ωππ

0.039

O→ηη0ϕ
O→ωππ

0.011

O→η0η0ϕ
O→ωππ

0.011

O→a0ð1450Þa0ð1450Þω
O→ωππ

0.00029
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one would obtain decay rates into K1ð1270ÞK and
K1ð1400ÞK, which are already included in Table III.
Strictly speaking, one could describe these decays only
once the ratio λO;2=λO;1 is known. However, the contribu-
tion proportional to λO;2 is suppressed, hence it represents a
correction to the results listed in Table III. These decay
modes are then omitted from Table V. The decay into
two kaons [also proportional to ðϕN −

ffiffiffi
2

p
ϕSÞ] is small as

expected.
Finally, the decay into DD (the only decay in charmed

mesons which is kinematically allowed) can be obtained
by using the extension of the eLSM to the four-flavor case
[33]. Due to the fact that chiral symmetry can be only
considered as very approximate when charmed mesons are
considered, the prediction offers only a qualitative result.
Anyway, the ratio

ΓO→DD

ΓO→ωππ
≈ 0.029

shows that the D̄D mode is also expected to be small. This
result is important because it shows that the vector glueball,
even if according to lattice QCD has a mass above the
D̄D threshold, decays only rarely in charmed mesons. The
(direct and indirect) ωππ and πKK�ð892Þ decay modes are
expected to be much larger.

C. Coupling to (axial-)vector mesons

As a last interaction term we consider an expression
which breaks dilatation invariance:

L3 ¼ αεμνρσ∂ρOσTr½LμΦRνΦ†�; ð21Þ

where α has dimension of energy−2. Even if it is expected
to lead to smaller decay rates than the previous two
Lagrangians, the presence of an “anomalous” Levi-Civita
tensor may point to a non-negligible interaction strength

even in the presence of an explicit breaking of dilatation
symmetry.
We restrict our study to the case in which the scalar field

condenses. Hence, upon setting Φ ¼ Φ0, we obtain

L3;two-body ¼ 2αεμνρσ∂ρOσTr½AμΦ0VνΦ0� ð22Þ

which leads to O → AV and O → PV (upon shifting A).
We chose the decay channel O → ρπ as our reference
decay mode (see Appendix B for its expression). In
Table VI we present the branching ratios which follow
from L3. The dominant decay modes are into ρπ,
KK�ð892Þ, and ρa1ð1230Þ (with increasing strength).
The ρπ and KK�ð892Þ modes are also important in the
description of the ρπ puzzle of ψð2SÞ described in the next
section.

IV. DISCUSSIONS

In this section we discuss in detail some important issues
related to our approach and our results. First, we motivate
the applicability of our interaction Lagrangians, second
we justify the use of glueball’s masses form lattice QCD
as an input, and third we present the so-called ρπ-puzzle
and its connection to the vector glueball.

A. On the applicability of the interaction Lagrangians

The eLSM is a low-energy chiral model valid up to
1.7 GeV, while the vector glueball studied in this work has
a mass of about 3.8 GeV. It should be stressed that the
joint model

LeLSM þ LO-eLSM ð23Þ

(where LO-eLSM ¼ L1 þ L2 þ L2 is the sum of the three
interaction terms described in the previous section) should
be regarded as a model suited to calculate exclusively the
decays of the field O. However, one should not use such a
model to calculate, for instance, pion-pion scattering or
analogous quantities up to the energy of about 4 GeV, since
the approach is clearly not complete for that purpose.
Approaches which couple one heavy field to light

mesons were widely used in the literature, e.g.
Refs. [15,39,40] and references therein. The idea behind
these approaches can be explained at best with a simple
example: the decay of the scalar charmonium state χc0 with
a mass of 3.41 GeV into two light pseudoscalar mesons.
The field χc0 is flavor blind and, by requiring that the whole
interaction Lagrangian is invariant under Uð3ÞV flavor
transformations, one is led to the toy-model Lagrangian

Ltoy ¼ gχχc0Tr½PtP�; ð24Þ

where P is the 3 × 3 matrix of pseudoscalar mesons (see
Sec. II) and gχ is an effective coupling constant. Upon

TABLE VI. Branching ratios for the decay of the vector
glueball into a vector-pseudoscalar and vector-axial-vector pair.

Quantity Value

O→KK�ð892Þ
O→ρπ

1.3

O→ηω
O→ρπ

0.16

O→η0ω
O→ρπ

0.13

O→ηϕ
O→ρπ

0.21

O→η0ϕ
O→ρπ

0.18

O→ρa1ð1230Þ
O→ρπ

1.8

O→ωf1ð1285Þ
O→ρπ

0.55

O→ωf1ð1420Þ
O→ρπ

0.82
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expanding, one obtains Ltoy ¼ gχχc0ðπ⃗2 þ 2KþK−þ
2K0K̄0 þ η2 þ η02Þ. By taking into account phase space,
the theoretical decay ratios read Γχc0→KK

=Γχc0→ππ
¼ 1.28,

Γχc0→ηη
=Γχc0→ππ

¼ 0.32, and Γχc0→η0η0=Γχc0→ππ
¼ 0.28, which

should be compared to the experimental results of
1.42� 0.14, 0.35� 0.04, and 0.23� 0.04, respectively
[5]. Considering that this toy approach is very simple
and does not contain any violation of flavor symmetry (it
involves only the dominant term in the large-Nc expansion,
see below), it works remarkably well when compared to
data. Quite interestingly, the toy model also predicts that
Γχc0→π0η

¼ Γχc0→π0η0
¼ Γχc0→ηη0 ¼ 0 [the first two results are a

consequence of isospin symmetry, naturally included in
Uð3ÞV flavor symmetry]. Indeed, none of these decays
has been seen in the experiment and only stringent upper
values exist [5].
The discussed toy model for the resonance χc0 is clearly

limited, but shows an important fact: the decays of a heavy
state (such as a charmonium resonance) into light mesons
still respects the underlying symmetries of the light system
(which is simply flavor symmetry in the present example).
This is the case even if the employed toy model cannot be
considered as a full hadronic model valid up to the mass of
charm-anticharm states. Indeed, this principle has been
utilized in a large number of papers, see for example
Refs. [15,39] for what concerns the decay of the heavy
charmonium state j=ψ into pseudoscalar mesons and
Ref. [40] for what concerns decays of j=ψ involving scalar
mesons.
In the present work, the calculation of the decays of the

vector glueball follows the very same simple idea. Indeed,
in decays of charmonia, one has first a conversion to
gluons, which then transform to light mesons. Intuitively
speaking, the glueball is dominated by gluons, a situation
which is similar to the intermediate state of a charmonium
decay. Moreover, glueballs have some features similar to
that of ordinary mesons: they are made of heavy constituent
gluons [41] and their size does not seem to be different
from that of ordinary quark-antiquark states [42]. Hence,
considerations based on symmetry appear to be a valid
starting point to get some information on decay ratios such
as the ones of the vector glueball presented in this work.
Clearly, only the future experimental discovery of glueballs
and/or advanced lattice calculations (see the next subsec-
tion) will be able to test this basic assumption of effective
hadronic models.
In order to be more realistic, in the present work a better

and more complete low-energy model with (pseudo)scalar
and (axial-)vector states was used: the eLSM. As explained
previously, this hadronic model is based on chiral sym-
metry and dilatation invariance (as well as explicit, anoma-
lous, and spontaneous breaking of these symmetries), it
contains a finite number of terms, and has been used to
describe meson phenomenology up to 1.7 GeV. (It is

interesting to note that in Ref. [33], the eLSM was also
applied to charmed mesons. It was found that the decays of
such heavy mesons still approximately reflect chiral sym-
metry.) Moreover, we took into account that the heavy field
that we couple to the eLSM, the vector glueball, is not only
flavor blind, but also chirally blind: in this way chiral
symmetry (together with its spontaneous breaking) has an
influence on the determination of the decays. While a direct
comparison with data is not yet possible, predictions can be
obtained by the calculation of decay ratios. These pre-
dictions are model dependent and still neglect symmetry
breaking terms and mixing effects. Yet, some branching
ratios might be useful in the future search of the vector
glueball. Moreover, the same approach can be actually
applied to all glueballs listed in the lattice spectrum of
Ref. [3], as the example of the vector glueball or the
example of the pseudoscalar glueball show [16].

B. On the glueball masses

At present, the best theoretical method to calculate
glueball’s masses is lattice, since it numerically simulates
the Yang-Mills (or the QCD) Lagrangian, hence it takes
into account the nonperturbative nature of interactions
involving gluons. The masses calculated in Ref. [3] (whose
results are also reported in the “quark model” summary of
the PDG [5]) were obtained in the so-called quenched
approximation (no quark fluctuations). However, in
Ref. [43] an unquenched calculation has been performed.
In the conclusions of Ref. [43] it is written: “The most
conservative interpretation of our results is that the masses
in terms of lattice representations are broadly consistent
with results from quenched QCD.” This is indeed a
promising result for model builders. If mass shifts due
to unquenching are not too large, one may be—with due
care—optimistic that quark-antiquark admixtures do not
spoil the presented picture. On the other hand, it must be
stressed that the study of Ref. [43] has not been repeated yet
by other groups (see however the very recent two-flavor
study of light glueballs in Ref. [44], where the masses also
do not vary much when quarks are included). A full study
involving glueballs and their mixing with conventional
mesons would be very useful to advance in the field. This is
unfortunately not an easy task. As stated in Refs. [45,46],
glueballs on the lattice become challenging in full QCD and
it is very hard to determine their admixture in physical
resonances. Namely, glueball signals deteriorate fast into
noise, making them very hard to extract.
In connection to hadronic effective models, it should be

however also stressed that the masses of glueballs which
enter the Lagrangian should be the quenched ones (and not
the unquenched). Namely the unquenching can
be performed within the hadronic model. This is the case
of the scalar glueball studied in Ref. [10]. We also recall
that lattice is the best among many different approaches
toward the calculations of the spectrum of glueballs, see
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Refs. [1,47] for a list of various results. Even in the original
works based on bag models, e.g. Ref. [48], the vector
glueball turned out to be quite heavy (about 3–4 GeV).
Quite interestingly, AdS/QCD also finds a mass of the
vector state within the same range [49]. If, as we shall
describe below, the width of the vector glueball turns out to
be sufficiently narrow [surely, the ratio Γ=ðM − EthresholdÞ is
expected to be sufficiently smaller than 1], shifts due to
mesonic quantum fluctuations [50] are also suppressed and
shall not change drastically the mass.
Yet, in order to study mixing effects within hadronic

models, first one needs to identify some promising candi-
dates. Namely, the mixing is strongly dependent on the mass
difference between nearby bare states. Its study will be
possible (and highly needed) when more information will be
available. As we shall discuss in the next subsection, at least
in one case such mixing was estimated to be rather small.
Summarizing, it is important to say that a change in the

mass of the vector glueball of about 300 MeV (above or
below the value 3.8 GeV used in this paper) shall not
change the overall picture. At present, the use of the well
established quenched lattice value of Ref. [3] for the vector
glueball seems the most reasonable choice to start with.

C. On the ρπ puzzle

The decay of the vector glueball O → ρπ and O →
KK�ð892Þ (which arise from L3, see Table VI) are
interesting in connection to the so-called ρπ puzzle
[22,23,25]. This puzzle has to do with the experimentally
missing ρπ and KK�ð892Þ decays of the resonance ψð2SÞ.
This state is (predominately) a charmonium which emerges
as a radial excitation of the famous j=ψ meson. Its mass is
3.6806109 GeV (quite close to the mass of the vector
glueball evaluated by lattice QCD) and its decay width is
very small: Γψð2SÞ ¼ 0.298 MeV. Due to the similarity of
j=ψ and ψð2SÞ, one expects that the ratio,

Γψð2SÞ→a certain light meson channel

Γj=ψ→a certain light meson channel
≃ 0.14; ð25Þ

holds for all light channels. The value 0.14 (the 14% rule) is
the ratio of the decays into eþe− [21]. This rule works
pretty well for various decay channels, but is badly broken
for ρπ and KK�ð892Þ channels, which are clearly seen for
j=ψ but, as mentioned, are not seen for ψð2SÞ.
A possibility to solve this puzzle invokes the presence of

a nearby vector glueball. A mixing of a bare charmonium
c̄c state and a bare glueball O≡ ggg leads to two physical
states:

�
ψð2SÞ
O0

�
¼

�
cos θ sin θ

− sin θ cos θ

�

×

�
c̄cðwith n ¼ 2; L ¼ 0; S ¼ 1Þ

O≡ ggg

�
: ð26Þ

Then, within this picture the state ψð2SÞ does not corre-
spond to a pure charmonium, but contains (a small)
glueball amount. In Ref. [23] it is estimated that
jθj≲ 2°. This is in agreement with the fact that such a
glueball-quarkonium mixing is suppressed in the large-Nc
limit and by the fact that the vector glueball contains (at
least) three constituent gluons.
In conclusion, for what concerns the decays

ΓO→light mesons, the estimated small mixing with a 2S
charmonium state has a small influence, thus justifying
a posteriori the results presented in this work. However, a
precise study of this small mixing must be left for the future
(when and if a vector glueball candidate will be found in
that mass region).

V. CONCLUSIONS AND OUTLOOK

In this work we have presented three chirally invariant
effective interaction terms describing two-body and three-
body decays of a not-yet discovered vector glueball into
(pseudo)scalar, (axial-)vector and pseudo(excited-)vector
mesons. While the intensity of the coupling constant
cannot be determined, one can predict, in the context of
our model, some decay ratios and thus determine which
decay channels are expected to dominate. Hopefully, our
results, even if model dependent and subject to various
uncertainties (validity of the symmetries used to write the
Lagrangians, the value of input’s mass of the vector
glueball, and the absence of mixing, see below), can be
of some help in the future experimental search of the
vector glueball. In particular, we have found the follow-
ing outcomes. In the first two interaction terms (which
are also dilatation invariant and are expected to be
dominant) the main decay channels are O → b1π →
ωππ (first term) as well as O → ωππ and O →
πKK�ð892Þ (second term), see Tables III, IV, and V
for all results. Interestingly, the first and second terms
predict sizable ωππ and πKK�ð892Þ final states, which
according to our results represent the golden channels for
the identification of a vector glueball’s candidate. Our
third interaction term breaks dilatation invariance but was
considered because it predicts decays into one vector and
one pseudoscalar meson, in particular O → ρπ and O →
KK�ð892Þ (Table VI). In turn, these channels may help to
understand the ρπ puzzle of ψð2SÞ.
The width of the vector glueball (and of glueballs

in general) cannot yet be determined theoretically.
According to large-Nc arguments [51–54], a glueball
decay into two mesons scales as ΓG→M1M2

∝ N−2
c , hence

it is more suppressed than Okubo-Zweig-Iizuka (OZI)-
allowed decays of conventional mesons (such as ρ → ππ)
which scale ΓOZI-allowed

M→M1M2
∝ N−1

c , but less suppressed than
OZI-forbidden decays (such as j=ψ → light mesons
[55,56]), which scale ΓOZI-forbidden

M→M1M2
∝ N−3

c . Large-Nc con-
siderations represent only a qualitative statement (and

DECAYS OF THE VECTOR GLUEBALL PHYSICAL REVIEW D 95, 114004 (2017)

114004-9



could be well broken for the physical value Nc ¼ 3, as it
is e.g. in the case of the axial anomaly), but they support
the hope that (at least some) glueballs are not too wide,
hence one can be cautiously optimistic that (some)
glueballs can be detected in the future (in particular, at
the PANDA experiment [18], designed also for that
purpose). Moreover, the vector glueball studied in this
work is built out of (at least) three constituent gluons, for
which decay requires also the complete annihilations of
three gluons, hence possibly not too large.
For what concerns the mass of the glueball, we have used

3.81 GeVas determined in Ref. [3]. Even if the uncertainty
is still large, the picture concerning the main decay
channels does not qualitatively change when varying the
input’s mass. In addition, unquenching effects do not seem
to completely change the picture of glueballs [43], but
future lattice studies are needed to confirm this result
and to quantify deviations. In this respect, the coupling
of glueballs to mesons can be a very interesting future
achievement of lattice QCD. Namely, it will be possible
to further constraint models such as the one described in
this work.
The mixing of the glueball with other nearby quarko-

nium states needs also to be studied in the future. In one
particular case, the mixing of the vector glueball with the
predominantly charmonium state ψð2SÞ has been esti-
mated to be rather small [23]. At present, the lack of
candidates for the vector glueball makes a study of
mixing not yet possible (in fact, mixing strongly depends
on the precise value of the masses, which are not yet
known). In this work, as a first, necessary step, we thus
aimed to study the main interaction terms of a bare,
unmixed vector glueball. As soon as candidates will be
found, it will be very interesting and exciting to study
mixing in more detail.
All of the remarks above show that there is a lot of

room for improvement of our approach in the future.
New lattice results and experimental findings will be of
great help to advance in this difficult but exciting field of
QCD. In this respect, this work represents a first step
toward the search of the vector glueball, whose main goal

is the identification of the possible dominating decay
channels.
Other glueball states can be studied by following the

same procedure outlined in this work. For instance, the
tensor glueball (JPC ¼ 2þþ) is expected to have a mass
of about 2.2 GeV (it is the second lightest glueball
according to lattice QCD [3]); a good candidate could be
the very narrow resonance fJð2220Þ [57,58] (at present
the options are J ¼ 2 or 4 [5]; further experimental
information is needed). A future study within the
eLSM should include—besides the states included in
this work—also tensor mesons and their chiral partners,
the pseudotensor mesons. In addition to the tensor
glueball, one has a full tower of states listed by lattice
QCD: pseudotensor glueball, pseudovector glueball, odd-
balls (glueball with exotic quantum numbers such as
JPC ¼ 0þ− and JPC ¼ 2þ−) as well as various glueballs
with J ¼ 3. Various branching ratios are parameter-free
once the mass of the glueball is fixed and offer a useful
information toward the future search of these important
(and still missing) states of QCD.
As a final remark, it must be stressed that the upcoming

PANDA experiment [18] is tailor made for the search of
glueballs, since almost all glueballs (with the exceptions
of oddballs) can be directly formed in proton-antiproton
fusion processes.
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APPENDIX A: THE eLSM

The Lagrangian of the eLSM is built by requiring
chiral symmetry [Uð3ÞR ×Uð3ÞL], dilatation invariance,
as well as invariances under charge conjugation C and
parity P:

Lmes ¼ Ldil þ Tr½ðDμΦÞ†ðDμΦÞ� −m2
0

�
G
G0

�
2

TrðΦ†ΦÞ − λ1½TrðΦ†ΦÞ�2 − λ2TrðΦ†ΦÞ2 − 1

4
Tr½ðLμνÞ2 þ ðRμνÞ2�

þ Tr

��
m2

1

2

�
G
G0

�
2

þ Δ
�
ðL2

μ þ R2
μÞ
�
þ Tr½HðΦþΦ†Þ� þ c1ðdetΦ − detΦ†Þ2 þ i

g2
2
fTrðLμν½Lμ; Lν�Þ

þ TrðRμν½Rμ; Rν�Þg þ h1
2
TrðΦ†ΦÞTrðL2

μ þ R2
μÞ þ h2Tr½jLμΦj2 þ jΦRμj2� þ 2h3TrðLμΦRμΦ†Þ; ðA1Þ

where DμΦ ¼ ∂μΦ − ig1ðLμΦ −ΦRμÞ is the covariant derivative and

Ldil ¼
1

2
ð∂μGÞ2 −

1

4

m2
G

Λ2

�
G4 ln

����GΛ
���� −G4

4

�
ðA2Þ
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the dilaton (i.e. the scalar glueball) Lagrangian, see
Refs. [9,10] for details.
Spontaneous breaking of chiral symmetry takes place

(m2
0 < 0). As a consequence, one has to perform the shift

of the scalar-isoscalar fields by their vacuum expectation
values ϕN and ϕS:

σN → σN þ ϕN and σS → σS þ ϕS: ðA3Þ

In matrix form,

S → Φ0 þ S with Φ0 ¼
1ffiffiffi
2

p

0
BB@

ϕNffiffi
2

p 0 0

0 ϕNffiffi
2

p 0

0 0 ϕS

1
CCA: ðA4Þ

In addition, one has also to “shift” the axial-vector
fields,

a⃗μ1 → a⃗μ1 þ Zπwπ∂μπ⃗; Kþ;μ
1;A → Kþ;μ

1;A þ ZKwk∂μK;…

fμ1;N → fμ1;N þ ZηNwηN∂μηN; fμ1;S → fμ1;S þ ZηSwηS∂μηS;

ðA5Þ

and to consider the wave-function renormalization of the
pseudoscalar fields:

π⃗ → Zππ⃗; Kþ → ZKKþ;… ðA6Þ

ηN → ZηNηN; ηS → ZηSηS: ðA7Þ

The constants entering into the previous expressions
are

Zπ ¼ ZηN ¼ ma1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

a1 − g21ϕ
2
N

q ;

ZK ¼ 2mK1;Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

K1;A
− g21ðϕN þ ffiffiffi

2
p

ϕSÞ2
q ;

ZηS ¼
mf1Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
f1S

− 2g21ϕ
2
S

q ; ðA8Þ

and

wπ ¼ wηN ¼ g1ϕN

m2
a1

;

wK ¼ g1ðϕN þ ffiffiffi
2

p
ϕSÞ

2m2
K1;A

;

wηS ¼
ffiffiffi
2

p
g1ϕS

m2
f1S

: ðA9Þ

The numerical values of the renormalization constants
are Zπ ¼ 1.709, ZK ¼ 1.604, ZηS ¼ 1.539 [9], while
those of the w-parameters are wπ ¼ 0.683, wK ¼
0.611, and wηS ¼ 0.554 GeV−1. Moreover, the conden-
sates ϕN and ϕS read

ϕN ¼ Zπfπ ¼ 0.158 GeV;

ϕS ¼
2ZKfK − ϕNffiffiffi

2
p ¼ 0.138 GeV; ðA10Þ

where the standard values fπ ¼ 0.0922 and fK ¼
0.110 GeV have been used [5]. The previous expression
can be summarized by the matrix replacements,

P → P ¼ 1ffiffiffi
2

p

0
BBB@

Zπffiffi
2

p ðηN þ π0Þ Zππ
þ ZKKþ

Zππ
− Zπffiffi

2
p ðηN − π0Þ ZKK0

ZKK− ZKK̄0 ZηSηS

1
CCCA;

ðA11Þ

and

Aμ → Aμ

¼ 1ffiffiffi
2

p

0
BBB@

f1Nþa0
1ffiffi

2
p aþ1 Kþ

1;A

a−1
f1N−a01ffiffi

2
p K0

1;A

K−
1;A K̄0

1;A f1S

1
CCCA

μ

þ ∂μffiffiffi
2

p

0
BBB@

Zπwπffiffi
2

p ðηN þ π0Þ Zπwππ
þ ZKwKKþ

Zπwππ
− Zπwπffiffi

2
p ðηN − π0Þ ZKwKK0

ZKwKK− ZKwKK̄0 ZηSwηSηS

1
CCCA:

ðA12Þ

In the UVð3Þ limit (in which all three bare quark masses
are equals), one has ΦN ¼ ffiffiffi

2
p

ΦS, Z ¼ Zπ ¼ ZK ¼ ZηS ,
and w ¼ wπ ¼ wK ¼ wηS . Hence, in this limit, P → P ¼
ZP and Aμ → Aμ ¼ Aþ Zw∂μP.
The eLSM has been also enlarged to four flavors in

Ref. [33]. Interestingly, charmed meson masses and large-
Nc dominant decays can be described relatively well
(even if one is far from the natural domain of chiral
symmetry).
In the end, we also recall that the pseudoscalar glueball

can be coupled to the eLSM via the chiral Lagrangian
L ~G ¼ ic ~GΦ

~GðdetΦ − detΦ†Þ, which reflects the axial
anomaly in the pseudoscalar-isoscalar sector, see details
and results in Refs. [16,17]. In a recent extension, the
very same Lagrangian is used to study the decay of a
hypothetical excited pseudoscalar glueball [20].
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APPENDIX B: EXPRESSIONS FOR
TWO-BODY DECAYS

The decay O → b1π from L1 reads

ΓO→b1π ¼ cOb1π
kOb1π

8πM2
O

ðλ1G0ZπÞ2

×
1

3

�
2þ ðM2

O −m2
π þm2

b1
Þ2

4M2
Om

2
b1

�
; ðB1Þ

where cOb1π ¼ 3 is an isospin factor,MO ¼ 3.8 GeV is the
glueball mass, and mπ and mb1 are the pion and b1 masses.
The quantity kOb1π is the modulus of the three-momentum
of one of the two outgoing particles:

kOb1π ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4

O − 2M2
Oðm2

π þm2
b1
Þ þ ðm2

π −m2
b1
Þ2

q
2MO

: ðB2Þ

The decays of the other channels in Table III are calculated
in an analogous way, upon taking into account the change
of masses, isospin factors, as well as the constants entering
in the amplitudes. The two-body decays of L2 presented in
Table V are calculated by using the same procedure.
We now turn to L3. The decay O → ρπ reads

ΓO→ρπ ¼ cOρπ
kOρπ

8πM2
O

�
α

4
wπZπΦ2

N

�
2
�
2

3
k2OρπM

2
O

�
; ðB3Þ

where cOρπ ¼ 3 and kOρπ is the modulus of the momentum
in this case. The other decays O → VP are calculated in
the same way. The last decay that we consider is
O → ρa1ð1230Þ:

ΓO→ρa1ð1230Þ ¼ cOρa1

kOρa1

8πM2
O

�
α

4
ϕ2
N

�
2

×
1

3

�
6M2

O þ 2k2Oρa1
M2

O

m2
ρ

þ 2k2Oρa1
M2

O

m2
a1

�
;

ðB4Þ

where cOρa1 ¼ 3 and kOρa1 is the corresponding momen-
tum. Analogous decays in Table VI are calculated in a
similar way.

APPENDIX C: THREE-BODY DECAYS OF O
INTO TWO PSEUDOSCALAR MESONS

AND A VECTOR MESON

For completeness we report the explicit expression for
the three-body decay width of the process O → P1P2V:

ΓO→P1P2V ¼ sO→P1P2V

32ð2πÞ3M3
O

Z ðMO−m3Þ2

ðm1þm2Þ2
dm2

12

×
Z ðm23Þmax

ðm23Þmin

j − iMO→P1P2V j2dm2
23; ðC1Þ

where (see [5])

ðm23Þmin ¼ ðE�
2 þ E�

3Þ2 −
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E�2
2 −m2

2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�2
3 −m2

3

q 	2
;

ðC2Þ

ðm23Þmax ¼ ðE�
2 þ E�

3Þ2 −
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E�2
2 −m2

2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�2
3 −m2

3

q 	2
;

ðC3Þ

and

E�
2 ¼

m2
12 −m2

1 þm2
2

2m12

;

E�
3 ¼

M2
O −m2

12 −m2
3

2m12

: ðC4Þ

The quantities m1 and m2 refer to the masses of the two
pseudoscalar states P1 and P2, while m3 is the mass of an
(axial-)vector state V. We recall also that m2

ij ¼ ðki þ kjÞ2
with k1, k2, and k3 being the four-momenta of the three
outgoing particles. Clearly, p ¼ k1 þ k2 þ k3, where p is
the four-momentum of the vector glueball.
The amplitude MO→P1P2V is calculated at tree level and

s ~G→P1P2V
is a symmetrization factor (it equals 1 if P1 and

P2 are different, it equals 2 for P1 ¼ P2). As an example,
we consider the decay into π0π0ω. The amplitude is

j − iMO→π0π0ωj2 ¼
λ22Z

4
π

4

1

3

�
2þ ðM2 þm2

3 −m2
12Þ2

4M2
Om

2
3

�
;

ðC5Þ

and the symmetry factor is sO→π0π0ω ¼ 2.
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