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Investigation of the resonances Xð4140Þ and Xð4274Þ, which were recently confirmed by the LHCb
Collaboration [1], is carried out by treating them as the color triplet and sextet ½cs�½c̄ s̄� diquark-antidiquark
states with the spin-parity JP ¼ 1þ, respectively. We calculate the masses and meson-current couplings of
these tetraquarks in the context of the QCD two-point sum rule method by taking into account the quark,
gluon, and mixed vacuum condensates up to eight dimensions. We also study the vertices Xð4140ÞJ=ψϕ
and Xð4274ÞJ=ψϕ and evaluate corresponding strong couplings gXð4140ÞJ=ψϕ and gXð4274ÞJ=ψϕ by means of
the QCD light-cone sum rule method and a technique of the soft-meson approximation. In turn, these
couplings contain required information to determine the width of the Xð4140Þ → J=ψϕ and Xð4274Þ →
J=ψϕ decay channels. We compare our results for the masses and decay widths of the Xð4140Þ and
Xð4274Þ resonances with the LHCb data and alternative theoretical predictions.

DOI: 10.1103/PhysRevD.95.114003

I. INTRODUCTION

Recently, the LHCb Collaboration presented results of
the analysis of the exclusive decays Bþ → J=ψϕKþ and
confirmed existence of the resonances Xð4140Þ and
Xð4274Þ in the J=ψϕ invariant mass distribution [1]. It
also reported on the observation of the heavy resonances
Xð4500Þ and Xð4700Þ in the same J=ψϕ channel. The
measured masses and decay widths of these resonances
(hereafter, Xð4140Þ⇒X1, Xð4274Þ⇒X2, Xð4500Þ ⇒ X3

and Xð4700Þ ⇒ X4, respectively) read

X1∶ M ¼ 4146� 4.5þ4.6
−2.8 MeV; Γ¼ 83� 21þ21

−14 MeV;

X2∶ M ¼ 4273� 8.3þ17.2
−3.6 MeV; Γ¼ 56� 11þ8

−11 MeV;

X3∶ M ¼ 4506� 11þ12
−15 MeV; Γ¼ 92� 21þ21

−20 MeV;

X4∶ M ¼ 4704� 10þ14
−24 MeV; Γ¼ 120� 31þ42

−33 MeV:

ð1Þ

The LHCb determined the spin parities of these resonances,
as well. It turned out that X1 and X2 are axial-vector states
with JPC ¼ 1þþ, while the quantum numbers of X3 and X4

are JPC ¼ 0þþ.
The resonances X1 and X2 are old members of the XYZ

family of exotic states: They were observed by the CDF
Collaboration [2] in the decay processes B� → J=ψϕK�
and later confirmed by the CMS [3] and D0 collaborations
[4], respectively. The states X3 and X4 are heavier than X1,
X2 and were found for the first time. All of the X
resonances may belong to a class of the hidden-charm
exotic states. From production mechanisms and decay
channels, it is clear that, as tetraquark candidates, they

should contain the strange quark-antiquark pair ss̄. In other
words, the quark content of the X states is cc̄ss̄.
The unconventional hadrons, such as glueballs, hybrid

resonances, exotic four-quark systems, and pentaquarks
already attracted the interest of physicists [5–12]. Besides
the general theoretical problems of the multiparton states,
in some of these works their parameters were calculated, as
well. The X resonances as the four-quark states can be
treated within the diquark-antidiquark [13,14] or molecular
pictures suggested to explain their internal organization. In
fact, in theoretical investigations of X1 and X2, both of
these models were used: The resonances X1 and X2 were
considered as the meson molecules in Refs. [15–23], while
in Ref. [24,25] they were treated in the framework of the
diquark-antidiquark model. There are also alternative
approaches analyzing them as dynamically generated
resonances [26,27] or coupled-channel effects [28]. The
recent comprehensive review of the various theoretical
models, achieved progress, and existing problems in the
physics of multiquark resonances can be found in Ref. [29].
The experimental situation, stabilized after the LHCb

report, imposes new constraints on possible models of X
resonances. Indeed, an analysis carried out by the LHCb
Collaboration in Ref. [1] on the basis of the collected
experimental information ruled out an explanation of the
X1 as 0þþ or 2þþ D�þ

s D�−
s molecular states. The LHCb also

emphasized that molecular bound states or cusps cannot
account for X2.
Therefore, in order to explain the experimental data, new

models and ideas are suggested. First of all, there are
traditional attempts to describe the X resonances as excited
states of the conventional charmonium or as dynamical
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effects. Indeed, by analyzing experimental information of
the Belle and BABAR collaborations (see Refs. [30,31]) on
the B → Kχc1π

þπ− and B → KDD̄ decays, in Ref. [32]
the author identified the resonances X1 and Yð4080Þ
with the P-wave excited charmonium states χc1ð33P1Þ
and χc0ð33P0Þ, respectively,
The contribution of the rescattering effects to the process

Bþ → J=ψϕKþ was studied in Ref. [33] aiming to deter-
mine whether or not they can simulate the observed X1, X2,
X3, and X4 resonances. It was found that the D�þ

s D−
s and

ψ 0ϕ rescatterings via meson loops may simulate the
structures X1 and X4, respectively. But, description of
the X2 and X3 states as rescattering effects seem problem-
atic, which implies that they could be real four-quark
resonances. Nevertheless, on the basis of some other
arguments (for details, see Ref. [33]), the author did not
exclude treating X2 as the excited χc1ð33P1Þ state of the
conventional charmonium.
The diquark-antidiquark and moleculelike models pre-

vail in other pictures and form a theoretical basis for
numerous calculations to account for available information
on the X resonances [34–38]. Thus, the masses of the axial-
vector JP ¼ 1þ diquark-antidiquark ½cs�½c̄ s̄� states with the
triplet and sextet color structures were calculated in
Ref. [34]. Recently, in the light of the experimental data
of the LHCb Collaboration, they were interpreted as the X1

and X2 resonances, respectively [35]. Within the same
approach, the X3 and X4 states were considered as the D-
wave excitations of their light counterparts X1 and X2 [35].
In the context of the tetraquark models, the resonances

X1 and X2 were studied in Refs. [36,37], as well. In
accordance with Ref. [36], the light X1 resonance cannot be
considered as the diquark-antidiquark compact state. The
similar conclusion was made in respect to X2, which was
examined as an octet-octet-type, moleculelike state: The
mass of the X2 resonance found there was in agreement
with the LHCb data, but its decay width overshot consid-
erably the experimental result [37]. The scalar resonance
X3 was considered as the first radial excitation of the axial-
vector diquark-antidiquark Xð3915Þ state, while X4 was
analyzed as the ground state of the ½cs�½c̄ s̄� tetraquark built
of the vector diquark and antidiquark [38]. Here some
comments about Xð3915Þ are in order. It was registered by
the Belle Collaboration as a resonance in the J=ψω
invariant mass distribution at the exclusive decay B →
J=ψωK [39] and also seen in the reaction γγ → J=ψω [40].
This resonance was confirmed by the BABARCollaboration
in the same B → J=ψωK process [41]. The Xð3915Þ was
traditionally interpreted as the scalar cc̄ meson χc0ð23P0Þ,
but a lack of its expected χc0ð2PÞ → DD̄ decay modes gave
rise to other conjectures. Thus, an alternative assumption
concerning the Xð3915Þ resonance was made in Ref. [42],
where it was identified with the lightest scalar ½cs�½c̄ s̄�
tetraquark state. Namely, this resonance was considered in
Ref. [38] as the ground state of X3. Calculations seem to

confirm suggestions made on the nature of the X3 and X4

resonances [38].
An abundance of the observed charmoniumlike reso-

nances necessitated spectroscopic analysis of the diquark-
antidiquark states, which resulted in the suggestion of
various multiplets to systemize the discovered tetraquarks
(see Refs. [43–45]). The X resonances were included in the
1S and 2S multiplets of color triplet ½cs�s¼0;1½c̄ s̄�s̄¼0;1

tetraquarks [44]. Thus, X1 was identified with the JPC ¼
1þþ level of the 1S ground-state multiplet. The X2

resonance is, supposedly, a linear superposition of two
states with JPC ¼ 0þþ and JPC ¼ 2þþ. This suggestion
was made because, in the multiplet of the color triplet
tetraquarks, only one state can bear the quantum numbers
JPC ¼ 1þþ. The heavy resonances X3 and X4 are included
into the 2S multiplet as its JPC ¼ 0þþ members. But apart
from the color triplet multiplets, there may exist a multiplet
of the color sextet tetraquarks [43], which also contains a
state with JPC ¼ 1þþ. In other words, the multiplet of the
color sextet tetraquarks doubles a number of the states with
the same spin-parity [43], and the X2 resonance may be
identified with its JPC ¼ 1þþ member.
Even from this brief survey, it is evident that, in the

context of the diquark-antidiquark model, there exist
different, sometimes contradictory, suggestions concerning
the internal structure of the X resonances. Moreover, in
almost all of these investigations, the spectroscopic param-
eters of newly discovered states were found by means of the
QCD two-point sum rule method. Predictions of the sum
rules for the parameters of the exotic states extracted by
using various assumptions on the interpolating currents,
within theoretical errors, are consistent with the experi-
mental data. In most cases, results of various works are in
accord with each other, as well. In other words, the static
parameters of the exotic states, such as their masses and
meson-current couplings are not enough to verify existing
models by confronting them with experimental data and/or
alternative theoretical models. The additional information
useful in such cases can be gained from investigation of
decay channels of the exotic states.
The QCD sum rule is the powerful nonperturbative

method to explore the exclusive hadronic processes and
calculate the parameters of the hadrons, including the width
of their strong decays [46]. The width of the decay channels
can be computed by applying either the three-point sum
rule approach or the light-cone sum rule (LCSR) method
[47]. The tetraquark states dominantly decay to two
conventional mesons. In the present work, we will study,
namely, such decay modes of the X1 and X2 resonances.
Calculation of the couplings corresponding to strong
vertices of a tetraquark and two mesons in the context
of the LCSRmethod requires the use of additional technical
tools. The reasons for a distinct treatment of the vertices
with tetraquarks is very simple: Because these states are
composed of four valence quarks, the light-cone expansion
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of the relevant nonlocal correlation function in terms of
meson distribution amplitudes unavoidably reduces to
expressions with local matrix elements of the same meson.
As a result, conservation of the four-momentum in such a
strong vertex is fulfilled only if the four-momentum of this
meson is set equal to zero. The situation that emerges can
be handled by invoking the soft-meson approximation
[48,49]. For investigation of the diquark-antidiquark states,
the soft-meson approximation was adapted in Ref. [50] and
successfully applied to analyze decays some of the tetra-
quarks in Refs. [51–53].
In the present work, we explore the properties of the X1

and X2 resonances in the context of the QCD sum rule
method. We are going to interpolate X1 and X2, as in
Ref. [34], by the spin-parity JPC ¼ 1þþ currents with the
antisymmetric and symmetric color structures, respectively.
By accepting this scheme, we suggest that there exist two
different ground-state multiplets of triplet-triplet- and
sextet-sextet-type tetraquarks, and the X1 and X2 resonan-
ces are their members with the same JPC ¼ 1þþ. The
correctness of this hypothesis can be checked by computing
the masses of the X1 and X2 states, and, more importantly,
their decay widths ΓðX1 → J=ψϕÞ and ΓðX2 → J=ψϕÞ.
The masses and meson-current couplings of X1 and X2 will
be computed by utilizing the two-point QCD sum rule
approach. We will also analyze the vertices X1J=ψϕ,
X2J=ψϕ and calculate the strong couplings gX1J=ψϕ and
gX2J=ψϕ by means of the light-cone sum rule method
employing the soft-meson technique. The obtained results
will enable us to find the widths of the X1 → J=ψϕ and
X2 → J=ψϕ decays.
This work is structured in the following manner. In

Sec. II, we calculate the masses and meson-current cou-
plings of the X1 and X2 resonances. In Sec. III, we find the
strong couplings corresponding to the vertices X1J=ψϕ and
X2J=ψϕ and calculate the widths of the decay channels
X1 → J=ψϕ and X2 → J=ψϕ. In Sec. IV, we compare our
results with LHCb data and predictions obtained in other
works. It also contains our concluding remarks. The
explicit expressions of the quark propagators used in
sum rule calculations are moved to the Appendix.

II. PARAMETERS OF THE Xð4140Þ
AND Xð4274Þ RESONANCES

The QCD two-point sum rules for calculation of the
masses and meson-current couplings of the X1 and X2

resonances can be obtained from analysis of the correlation
function,

ΠμνðqÞ ¼ i
Z

d4xeiq·xh0jT fJμðxÞJ†νð0Þgj0i; ð2Þ

where JμðxÞ is the interpolating current of the X state with
the quantum numbers JPC ¼ 1þþ.

In accordance with the approach defended in
Refs. [34,35], the X1 and X2 resonances have the same
quantum numbers, but different internal color organization.
We follow their assumptions and study the X1 and X2 states
within the QCD two-point sum rule method using different
interpolating currents. Namely, we suggest that the current

J1μ ¼ sTaCγ5cbðs̄aγμCc̄Tb − s̄bγμCc̄TaÞ
þ sTaCγμcbðs̄aγ5Cc̄Tb − s̄bγ5Cc̄TaÞ; ð3Þ

which has the antisymmetric ½3̄c�cs ⊗ ½3c�c̄s color structure,
presumably describes the resonance X1, while

J2μ ¼ sTaCγ5cbðs̄aγμCc̄Tb þ s̄bγμCc̄TaÞ
þsTaCγμcbðs̄aγ5Cc̄Tb þ s̄bγ5Cc̄TaÞ; ð4Þ

with the symmetric ½6c�cs ⊗ ½6̄c�cs color organization cor-
responding to the tetraquark X2. In Eqs. (3) and (4), a and b
are color indices, and C is the charge conjugation matrix.
In order to derive the required sum rules, we find, as

usual, the expression of the correlator in terms of the
physical parameters of the X state. To this end, we saturate
the correlation function with a complete set of states with
the quantum numbers of X and perform in Eq. (2) an
integration over x to get

ΠPhys
μν ðqÞ ¼ h0jJμjXðqÞihXðqÞjJ†νj0i

m2
X − q2

þ � � � ; ð5Þ

with mX being the mass of the X state. Here, the dots
indicate contributions to the correlation function arising
from the higher resonances and continuum states. We
introduce the meson-current coupling fX by means of
the matrix element

h0jJμjXðqÞi ¼ fXmXεμ; ð6Þ

where εμ is the polarization vector of the X resonance.
Then, in terms of mX and fX, the correlation function can
be recast to the form

ΠPhys
μν ðqÞ ¼ m2

Xf
2
X

m2
X − q2

�
−gμν þ

qμqν
m2

X

�
þ � � � : ð7Þ

By applying the Borel transformation to Eq. (7), we get

Bq2Π
Phys
μν ðqÞ ¼ m2

Xf
2
Xe

−m2
X=M

2

�
−gμν þ

qμqν
m2

X

�
þ � � � : ð8Þ

The QCD side of the sum rule has to be calculated by
employing the quark-gluon degrees of freedom. For this
purpose, we contract the c- and s-quark fields and find, for
the correlation function ΠQCD

μν ðqÞ, the following expression
(for definiteness, below we provide explicit expression for
the current J1μ):
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ΠQCD
μν ðqÞ ¼ −i

Z
d4xeiqxϵ~ϵϵ0 ~ϵ0fTr½γμ ~Sn

0n
c ð−xÞ

× γνSm
0m

s ð−xÞ�Tr½γ5 ~Saa
0

s ðxÞγ5Sbb0c ðxÞ�
þ Tr½γμ ~Sn

0n
c ð−xÞγ5Sm0m

s ð−xÞ�Tr½γν ~Saa
0

s ðxÞ
× γ5Sbb

0
c ðxÞ� þ Tr½γ5 ~Sn

0n
c ð−xÞγνSm0m

s ð−xÞ�
× Tr½γ5 ~Saa

0
s ðxÞγμSbb0c ðxÞ� þ Tr½γ5 ~Sn

0n
c ð−xÞ

× γ5Sm
0m

s ð−xÞ�Tr½γν ~Saa
0

s ðxÞγμSbb0c ðxÞ�g; ð9Þ

where ϵ ¼ ϵcab, ~ϵ ¼ ϵcmn and ϵ0 ¼ ϵc
0a0b0 , ~ϵ0 ¼ ϵc

0m0n0 . In
Eq. (9), Sabs ðxÞ and Sabc ðxÞ are the s- and c-quark propa-
gators, respectively (see the Appendix). Here we also use
the notation

~SsðcÞðxÞ ¼ CSTsðcÞðxÞC: ð10Þ

The QCD sum rule can be obtained by isolating the same
Lorentz structures in both ΠPhys

μν ðqÞ and ΠQCD
μν ðqÞ. We work

with the terms ∼gμν. The invariant amplitude ΠQCDðq2Þ
corresponding to this structure can be written down as the
dispersion integral,

ΠQCDðq2Þ ¼
Z

∞

4ðmcþmsÞ2
ρQCDðsÞ
s − q2

dsþ � � � ; ð11Þ

where ρQCDðsÞ is the two-point spectral density. By
applying the Borel transformation to ΠQCDðq2Þ, equating
the obtained expression with the relevant part of the
function Bq2Π

Phys
μν ðqÞ, and subtracting the continuum con-

tribution, we find the final sum rule. The mass of the X state
can be evaluated from the sum rule,

m2
X ¼

R s0
4ðmcþmsÞ2 dssρ

QCDðsÞe−s=M2

R s0
4ðmcþmsÞ2 dsρðsÞe

−s=M2 ; ð12Þ

while to find the meson-current coupling fX, we employ
the expression

f2Xm
2
Xe

−m2
X=M

2 ¼
Z

s0

4ðmcþmsÞ2
dsρQCDðsÞe−s=M2

: ð13Þ

The methods for deriving the spectral density ρQCDðsÞ
were presented in the literature (see, for example,
Ref. [50].) Therefore, we do not concentrate here on details
of these standard and rather routine calculations.
The expressions for the mass and meson-current cou-

pling given by Eqs. (12) and (13) contain the input
parameters, the numerical values of which are collected
in Table I. The sum rules depend also on the auxiliary
parameters M2 and s0. In general, the physical quantities
extracted from the sum rules should not depend on the
Borel parameter and continuum threshold, but in real
calculations we can only minimize their effect on the

obtained results. They have also to obey the standard
requirements imposed by the sum rule calculations. Thus,
in the working regions of these parameters, a prevalence of
the pole contribution to the sum rules and convergence of
the operator product expansion (OPE) have to be satisfied.
Namely, these restrictions, and the stability of the obtained
predictions determine ranges within which the parameters
M2 and s0 can be varied. Results of our analysis are
collected in Table II, where we provide both the working
windows for the parameters M2 and s0, as well as the sum
rule’s results for the mass and meson-current couplings of
the Xð4140Þ and Xð4274Þ resonances. In the working
ranges of the parameters, the pole contributions equal
23% of the whole result, which is typical for the sum rule
calculations involving four-quark systems. In order to
control the convergence of OPE, we evaluate the contri-
bution arising from each term of the fixed dimension: in the
ranges shown in Table II, the convergence of OPE is
fulfilled: It is enough to note that the contribution of the
dimension-eight term to the final result does not exceed 1%
of its value.
As seen from Figs. 1 and 2, the mass and meson-current

coupling of the Xð4140Þ state are sensitive to the param-
eters M2 and s0. While their effects on the mass mX are
mild, the dependence of the meson-current coupling fX on
the chosen values of the Borel and continuum threshold

TABLE I. Parameters used in sum rule calculations.

Parameters Values

mJ=ψ ð3096.900� 0.006Þ MeV

fJ=ψ 405 MeV

mϕ ð1019.461� 0.019Þ MeV

fϕ 215� 5 MeV

mc ð1.27� 0.03Þ GeV
ms 96þ8

−4 MeV
hq̄qi −ð0.24� 0.01Þ3 GeV3

hs̄si 0.8hq̄qi
m2

0 ð0.8� 0.1Þ GeV2

hs̄gsσGsi m2
0hs̄si

hαsG2

π i ð0.012� 0.004Þ GeV4

hg3sG3i ð0.57� 0.29Þ GeV6

TABLE II. The masses and meson-current couplings of the
Xð4140Þ and Xð4274Þ tetraquarks.
X Xð4140Þ Xð4274Þ
M2ðGeV2Þ 4–6 4–6
s0ðGeV2Þ 20–22 21–23
mXðMeVÞ 4183� 115 4264� 117
fXðGeV4Þ ð0.94� 0.16Þ × 10−2 ð1.51� 0.21Þ × 10−2
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parameters is noticeable. These effects combined with the
ambiguities of the input parameters generate the theoretical
errors in the sum rule calculations, which are their
unavoidable feature. The errors of the calculations are also
presented in Table II. Similar estimations are valid for the
Xð4274Þ state, as well (see Figs. 3 and 4).

The masses of the Xð4140Þ and Xð4274Þ found in
the present work are in nice agreement with the LHCb
data. At this stage of our investigation, we can conclude
that Xð4140Þ and Xð4274Þ are the diquark-antidiquark
JPC ¼ 1þþ states of the color triplet and sextet multiplets,
respectively.
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FIG. 1. The mass of the Xð4140Þ state as a function of the Borel parameter M2 at fixed s0 (left panel) and as a function of the
continuum threshold s0 at fixed M2 (right panel).
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FIG. 2. The dependence of the meson-current coupling fX of the Xð4140Þ resonance on the Borel parameter at chosen values of s0 (left
panel), and on the s0 at fixed M2 (right panel).
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FIG. 3. The mass of the Xð4274Þ resonance as a function of the Borel parameter M2 at fixed s0 (left panel) and as a function of the
continuum threshold s0 at fixed M2 (right panel).
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III. WIDTH OF THE Xð4140Þ → J=ψϕ AND
Xð4274Þ → J=ψϕ DECAYS

The X1 and X2 states were observed as resonances in the
J=ψϕ invariant mass distribution. Therefore, the processes
X1 → J=ψϕ and X2 → J=ψϕ may be considered as their
main decay channels. In this section, we are going to
concentrate namely on these two decay processes. We will
outline steps necessary to analyze the vertex XJ=ψϕ, where
X is one of the X1 and X2 states, and calculate the strong
coupling gXJ=ψϕ and width of the decay X → J=ψϕ.
Within the sum rule method, the strong vertex XJ=ψϕ

can be studied using the correlation function

Πμνðp; qÞ ¼ i
Z

d4xeipxhϕðqÞjT fJJ=ψμ ðxÞJ†νð0Þgj0i; ð14Þ

where Jν and JJ=ψμ are the interpolating currents of the X
state and J=ψ meson, respectively. The current Jν is defined
by one of the Eqs. (3) and (4), whereas J=ψ has the form

JJ=ψμ ðxÞ ¼ c̄lðxÞγμclðxÞ: ð15Þ

We calculate Πμνðp; qÞ employing the QCD sum rule on
the light-cone and soft approximation. To this end, at the
first stage of calculations, one has to express this function in
terms of the physical quantities, namely in terms of the
masses, decay constants of the involved particles, and the
strong coupling gXJ=ψϕ itself. For ΠPhys

μν ðp; qÞ, we get

ΠPhys
μν ðp; qÞ ¼ h0jJJ=ψμ jJ=ψðpÞi

p2 −m2
J=ψ

hJ=ψðpÞϕðqÞjXðp0Þi

×
hXðp0ÞjJ†νj0i
p02 −m2

X
þ � � � ; ð16Þ

where p, q are the momenta of the J=ψ and ϕ mesons,
respectively, and by p0 ¼ pþ q we denote the momentum
of the X state.

We define the matrix element of the J=ψ meson in the
form

h0jJJ=ψμ jJ=ψðpÞi ¼ fJ=ψmJ=ψεμðpÞ;
where mJ=ψ , fJ=ψ , and εμðpÞ are its mass, decay constant
and polarization vector, respectively. We introduce also the
matrix element corresponding to the vertex

hJ=ψðpÞϕðqÞjXðp0Þi ¼ igXJ=ψϕϵαβγδε�αðpÞεβðp0Þε�γðqÞpδ:

ð17Þ

Here ε�γðqÞ is the polarization vector of the ϕ meson. Then
the contribution coming from the ground state takes the form

ΠPhys
μν ðp; qÞ ¼ i

fJ=ψfXmJ=ψmXgXJ=ψϕ
ðp02 −m2

XÞðp2 −m2
J=ψÞ

×

�
ϵμνγδε

�
γðpÞpδ −

1

m2
X
ϵμβγδε

�
γðpÞpδp0

βp
0
ν

�

þ � � � : ð18Þ
In the soft limit p ¼ p0 (see a discussion below and
Ref. [50]), and only the term ∼iϵμνγδε�γðpÞpδ survives
in Eq. (18).
In the soft-meson approximation we employ the one-

variable Borel transformation on p2. Then, an invariant
amplitude ΠPhysðp2Þ depends on the variable p2

ΠPhysðp2Þ ¼ fJ=ψfXmJ=ψmXgXJ=ψϕ
ðp2 −m2Þ2 ; ð19Þ

where m2 ¼ ðm2
X þm2

J=ψ Þ=2. Additionally, we apply to
both sides of the sum rule the operator

�
1 −M2

d
dM2

�
M2em

2=M2

; ð20Þ

which eliminates effects of unsuppressed terms in
ΠPhysðp2Þ appeared in the soft limit [48,49].
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FIG. 4. The meson-current coupling fX of the Xð4140Þ resonance as a function of the Borel parameterM2 at chosen values of s0 (left
panel) and as a function of s0 at fixed M2 (right panel).
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The QCD expression for the correlation function
ΠQCD

μν ðp; qÞ is calculated employing the quark propagators.
For the current J1μ, it takes the following form,

ΠQCD
μν ðp; qÞ ¼ i

Z
d4xeipxϵijkϵimn

× f½γν ~Sakc ðxÞγμ ~Snac ð−xÞγ5�
− ½γ5 ~Sakc ðxÞγμ ~Snac ð−xÞγν�gαβhϕðqÞjs̄jαsmβ j0i;

ð21Þ

with α and β being the spinor indices.
To proceed, we employ the replacement,

s̄jαsmβ →
1

4
Γk
βαðs̄jΓksmÞ; ð22Þ

where Γk is the full set of Dirac matrices, and carry out the
color summation. Then we substitute Eq. (A2) into the
expression obtained after the color summation and perform
four-dimensional integration over x. This integration leads
to the appearance of the Dirac delta δ4ðp0 − pÞ in the
integrand. The correlation function does not contain the
s-quark propagator; therefore, the argument of the Dirac
delta depends only on the four-momenta of the X state and
J=ψ meson. The next operation, i.e. an integration over p or
p0 inevitably equates p ¼ p0, which is the result of the
conservation of the four-momentum at the vertex XJ=ψϕ.
In other words, to conserve the four-momentum in the
tetraquark-meson-meson vertex, one should set q ¼ 0,
which in the full LCSR is known as the soft-meson
approximation [49]. At vertices of conventional mesons,
in general q ≠ 0, and only in the soft-meson approximation
does one set q equal to zero, while the tetraquark-meson-
meson vertex can be treated in the context of the LCSR
method only if q ¼ 0. Nevertheless, an important obser-
vation made in Ref. [49] is that both the soft-meson
approximation and full LCSR treatment of the ordinary
mesons’ vertices lead to very close numerical results for the
strong couplings.
In the soft limit, only the matrix element,

h0js̄ð0Þγμsð0Þjϕðp; λÞi ¼ fϕmϕϵ
ðλÞ
μ ; ð23Þ

of theϕmeson contributes to the correlation function, where
mϕ and fϕ are its mass and decay constant, respectively. The
soft-meson limit also reduces possible Lorentz structures
in ΠQCD

μν ðp; qÞ to the term ∼iϵμνγδε�γðpÞpδ, which matches

with the corresponding structure in ΠPhys
μν ðp; q ¼ 0Þ.

The relevant invariant amplitude can be written down as
a dispersion integral in terms of the spectral density
ρQCDc ðsÞ. We omit details of the calculations and provide
the final expression for ρQCDc ðsÞ, which reads

ρQCDc ðsÞ ¼ fϕmϕmc

4

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

cÞ
p

π2s
þ Ϝn−pertðsÞ

�
: ð24Þ

The nonperturbative component of ρQCDc ðsÞ, i.e. Ϝn−pertðsÞ
is given by the following formula,

Ϝn−pertðsÞ ¼
�
αsG2

π

�Z
1

0

f1ðz; sÞdzþ hg3sG3i

×
Z

1

0

f2ðz; sÞdzþ
�
αsG2

π

�
2
Z

1

0

f3ðz; sÞdz;

ð25Þ

where the terms proportional to hαsG2=πi, hg3sG3i, and
hαsG2=πi2 are nonperturbative contributions to the spectral
density and have four, six, and eight dimensions, respec-
tively. The explicit form of the functions f1ðz; sÞ, f2ðz; sÞ,
and f3ðz; sÞ are

f1ðz; sÞ ¼
1

18r2
f−ð2þ 3rð3þ 2rÞÞδð1Þðs −ΦÞ

þ ð1þ 2rÞ½m2
c − sr�δð2Þðs −ΦÞg; ð26Þ

f2ðz; sÞ ¼
ð1 − 2zÞ
27 · 9π2r5

f2r½3rð1þ rRÞδð2Þðs −ΦÞ
þ ½3sr2ð1þ rÞ − 2m2

cð1þ rRÞ�δð3Þðs −ΦÞ�
þ ½s2r4 − 2sm2

cr2ð1þ rÞ þm4
cð1þ rRÞ�

× δð4Þðs −ΦÞg; ð27Þ

f3ðz; sÞ ¼
m2

cπ
2

22 · 34r2
½δð4Þðs −ΦÞ − sδð5Þðs −ΦÞ�; ð28Þ

where we introduce the short-hand notations,

r ¼ zðz − 1Þ; R ¼ 3þ r; Φ ¼ m2
c

zð1 − zÞ ; ð29Þ

and δðnÞðs −ΦÞ is defined as

δðnÞðs −ΦÞ ¼ dn

dsn
δðs −ΦÞ: ð30Þ

For the interpolating current J2μ, we find

ΠQCD
μν ðp; qÞ

¼ i
Z

d4xeipxf½γν ~Sibc ðxÞγμ ~Saic ð−xÞγ5
− γ5 ~S

ib
c ðxÞγμ ~Saic ð−xÞγν�αβhϕðqÞjs̄aαsbβj0i

þ ½γν ~Sibc ðxÞγμ ~Sbic ð− xÞγ5 − γ5 ~S
ib
c ðxÞγμ ~Sbic ð− xÞγν�αβ

× hϕðqÞjs̄aαsaβj0ig: ð31Þ
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The corresponding spectral density is

ρð2ÞQCDc ðsÞ ¼ 2ρð1ÞQCDc ðsÞ; ð32Þ

where ρð1ÞQCDc ðsÞ is given by Eq. (24).
The final expression for the strong coupling gXJ=ψϕ has

the form

gXJ=ψϕ ¼ 1

fJ=ψfXmJ=ψmX

�
1 −M2

d
dM2

�
M2

×
Z

s0

4m2
c

dseðm2−sÞ=M2

ρQCDc ðsÞ: ð33Þ

The width of the decay X → J=ψϕ is given by the
formula

ΓðX→ J=ψϕÞ ¼ λðmX;mJ=ψ ;mϕÞ
48πm4

Xm
2
ϕ

g2XJ=ψϕ½ðm2
X þm2

ϕÞ

×m4
J=ψ þðm2

X −m2
ϕÞ2ðm2

X þm2
ϕ− 2m2

J=ψ Þ
þ 4m2

Xm
2
J=ψm

2
ϕ�; ð34Þ

where λða; b; cÞ is the standard function:

λða; b; cÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 þ b4 þ c4 − 2ða2b2 þ a2c2 þ b2c2Þ

p
2a

:

The results of the numerical computations for the strong
couplings and decay widths are collected in Table III. Here
we also show the working ranges for the parametersM2 and

s0, where the predictions for the couplings gX1J=ψϕ and
gX2J=ψϕ are obtained. Within these ranges, the sum rules
satisfy all requirements typical for such kind of calcula-
tions. Indeed, the pole contribution to the sum rule on the
average amounts to ∼44% of the result. The convergence of
OPE is fulfilled, too. Thus, the dimension-eight contribu-
tion constitutes only 1% of the sum rule.
In Fig. 5, we plot the couplings gX1J=ψϕ and gX2J=ψϕ as

functions of the Borel parameter at fixed s0. One can see
that the couplings are sensitive to the choice of the auxiliary
parameters M2 and s0. This sensitivity is a main source of
the theoretical ambiguities of the performed analysis,
numerical estimates of which can be found in Table III.
Comparing the theoretical predictions and LHCb data,

one sees that the width of the decay Xð4140Þ → J=ψϕ is in
accord with the experimental data, whereas ΓðXð4274Þ →
J=ψϕÞ considerably exceeds and does not explain them.

IV. DISCUSSION AND CONCLUDING REMARKS

In the present work, we have calculated the masses of the
resonances Xð4140Þ and Xð4274Þ and the width of the
decay channels Xð4140Þ → J=ψϕ and Xð4274Þ → J=ψϕ.
We have treated these resonances as the 1þþ states in the
multiplet of the color triplet and sextet diquark-antidi-
quarks, respectively. As seen from Table IV, our predictions
for the masses of Xð4140Þ and Xð4274Þ, obtained using the
two-point QCD sum rule method, are in nice agreement
with recent measurements of the LHCb Collaboration [1].
TheXð4140Þ andXð4274Þ states were previously studied

in Refs. [17,34–37]. Thus, the resonance Xð4140Þ was
treated in Ref. [17] as a moleculelike bound state with
JPC ¼ 0þþ built of the mesons D�

sD̄�
s . The calculation

of its mass, performed there using the two-point QCD sum
rule method and relevant interpolating current, gives a
result, which correctly describes the experimental data.
Nevertheless, the LHCb Collaboration has excluded inter-
pretation of the Xð4140Þ resonance as a moleculelike state.
As we have noted above, the masses of the Xð4140Þ and

Xð4274Þ resonances in the context of the two-point sum
rule method were computed also in Ref. [34]. The obtained

TABLE III. The strong coupling gXJ=ψϕ and decay width
ΓðX → J=ψϕÞ.
X Xð4140Þ Xð4274Þ
M2ðGeV2Þ 5–7 5–7
s0ðGeV2Þ 20–22 21–23
gXJ=ψϕ 2.34� 0.89 3.41� 1.21
ΓðX → J=ψϕÞ (MeV) 80� 29 272� 81

FIG. 5. The strong coupling gX1J=ψϕ (left) and gX2J=ψϕ (right) as functions of the Borel parameter.
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predictions within errors explain the LHCb data [35]. Let us
note that the Xð4140Þ and Xð4274Þ resonances were treated
in Refs. [34,35] as the axial-vector states with triplet and
sextet color structures, respectively.
The investigations carried out in Ref. [36] using a sum

rule approach and two types of interpolating currents,
excluded interpretation of the Xð4140Þ resonance as a
diquark-antidiquark state. The reason was that mX1

extracted from the corresponding sum rules either lay
below the LHCb data or overshot it (see Table IV).
The Xð4274Þ was explored as a moleculelike color octet

state [37], and its mass mX2
was estimated as

mX2
¼ 4.27� 0.09 GeV: ð35Þ

But the width of the decay Xð4274Þ → J=ψϕ,

ΓðXð4274Þ → J=ψϕÞ ¼ 1.8 GeV; ð36Þ

evaluated in the framework of the three-point QCD sum
rule approach, considerably exceeded the LHCb value;
therefore, the author ruled out the suggested interpretation
of the Xð4274Þ state.
We have calculated the widths of the Xð4140=4274Þ →

J=ψϕ decays, as well. The obtained predictions are
collected in Table IV. It is evident that our results for
the mass and width of the Xð4140Þ resonance allow us to
consider it as a serious candidate to the color triplet JPC ¼
1þþ diquark-antidiquark state. At the same time, interpre-
tation of Xð4274Þ as a pure color sextet tetraquark, which
is, in accordance with our results, a “wide” resonance in
light of the LHCb data, seems problematic: LHCb specifies
it as a narrow state. Perhaps Xð4274Þ is an admixture of the
color sextet tetraquark and a conventional charmonium. But
this and alternative suggestions on the nature of the
Xð4274Þ resonance require further investigation.
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APPENDIX: THE S− AND C-QUARK
PROPAGATORS

The light and heavy quark propagators are the important
quantities for finding the QCD side of the correlation
functions in both the mass and strong coupling calcula-
tions. We employ the s-quark propagator Sabs ðxÞ, which is
given by the following formula:

Sabs ðxÞ ¼ iδab
x

2π2x4
− δab

ms

4π2x2
− δab

hs̄si
12

þ iδab
xmshs̄si

48
− δab

x2

192
hs̄gsσGsi þ iδab

x2xms

1152

× hs̄gsσGsi − i
gsG

αβ
ab

32π2x2
½xσαβ þ σαβx �

− iδab
x2xg2shs̄si2

7776
− δab

x4hs̄sihg2sG2i
27648

þ � � � :
ðA1Þ

For the c-quark propagator Sabc ðxÞ, we employ the well-
known expression

Sabc ðxÞ¼ i
Z

d4k
ð2πÞ4 e

−ikx
	
δabðkþmcÞ
k2−m2

c

−
gsG

αβ
ab

4

σαβðkþmcÞþðkþmcÞσαβ
ðk2−m2

cÞ2

þg2sG2

12
δabmc

k2þmck
ðk2−m2

cÞ4
þg3sG3

48
δab

ðkþmcÞ
ðk2−m2

cÞ6

× ½kðk2−3m2
cÞþ2mcð2k2−m2

cÞ�ðkþmcÞþ �� �


:

ðA2Þ

In Eqs. (A1) and (A2), we adopt the notations

Gαβ
ab ¼ Gαβ

A tAab; G2 ¼ GA
αβG

A
αβ;

G3 ¼ fABCGA
μνGB

νδG
C
δμ; ðA3Þ

with a, b ¼ 1, 2, 3 being the color indices, and
A;B;C ¼ 1; 2…8. In Eq. (A3) tA ¼ λA=2, λA are the
Gell-Mann matrices, and the gluon field strength tensor
GA

αβ ≡GA
αβð0Þ is fixed at x ¼ 0.

TABLE IV. The LHCb data and theoretical predictions for the
mass and decay width of the resonances Xð4140Þ and Xð4274Þ.

mX1
(MeV) ΓX1

(MeV) mX2
(MeV) ΓX2

(MeV)

LHCb 4146� 4.5þ4.6
−2.8 83� 21þ21

−14 4273� 8.3þ17.2
−3.6 56� 11þ8

−11
Our w. 4183� 115 80� 29 4264� 117 272� 81
[17] 4140� 90 − − −
[34] 4070� 100 − 4220� 100 −
[36] 3950� 90 − − −

5000� 100 − − −
[37] − − 4270� 90 1800
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