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Multiplicity distributions of charged particles produced in the eþe− collisions at energies ranging from
14 to 91 GeVare studied using Tsallis q-statistics and the recently proposed Weibull distribution functions,
in both restricted rapidity windows as well as in full phase space. It is shown that Tsallis q-statistics
explains the data in a statistically acceptable manner in all rapidity ranges while the Weibull distribution
fails to reproduce the data in full phase space. Modifications to the distributions are proposed to establish
manifold improvements in the fitting of the data.
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I. INTRODUCTION

Particle collisions at very high energies produce quark-
quark, quark-gluon and gluon-gluon interactions which
result in the production of a multitude of elementary
particles. Several of these particles being mesons, baryons
and leptons. This particle production is described in terms
of several theoretical and phenomenological models
derived from quantum chromodynamics. Several models
use laws of fluid mechanics, statistical mechanics, thermo-
dynamics, hydrodynamics etc. to describe the particle
production. These models have been intriguingly success-
ful. Present day high energy experiments, include several
layers of detectors capable of detecting and recording the
particles, both neutral and charged, produced in collisions
very precisely. The distributions of these particles are then
matched with predictions from various phenomenological
models with an improved precision, to understand the
production mechanism. Concepts from ensemble theory in
statistical mechanics have been used to develop models
which include statistical fluctuations as an important source
of information. Distributions derived from statistics such as
Poisson distribution, negative binomial distribution [1,2],
Koba-Nielson-Olesen (KNO) scaling law [3] etc. have also
played an important role in the understanding of multi-
plicity distributions. However, as more and more data at
different collision energies became available, the KNO
scaling violation was beginning to be observed, particularly
in distributions with high multiplicity tails. Several new
distributions have since been proposed. Some of these
include modified negative binomial distribution [4],
Krasznovszky and Wagner’s [5], Tsallis [6,7], Gamma
[8], the H-function extension of the negative binomial
distribution [9], Log-normal [10], Weibull [11] etc. dis-
tributions. The novel approach in the Tsallis q-statistics
incorporating nonextensive entropy to describe the particle
production has been successfully applied to heavy-ion and

p-p collisions at some energies. The nonextensive property
of the entropy is quantified in terms of a parameter q which
is shown to be more than unity under this assumption. The
Tsallis distribution has been applied to eþ e− collision
data to describe the multiplicity distribution. Weibull
distribution is another statistical distribution which has
been studied recently [11] to describe multiplicity distri-
butions in eþe− collisions by S. Dash et al. The Weibull
distribution has been also considered earlier by S. Hegyi
[12,13] for eþe− as well as ep data from H1 experiment at
Hadron-Electron Ring Accelerator.
In the present study, our focus is on investigating the

multiplicity distributions, mostly in restricted rapidity win-
dows, at different energies and to study the characteristic
properties of charged particle production in eþe− collisions.
In one of our earlier papers [14], we used Tsallis distribution
to fit eþe− data from 34.8 to 206 GeVof energy in the full
phase space and modified the Tsallis distribution to obtain
the best fits as compared to several other distributions. In this
paper we will limit ourselves to comparing the distributions
using Tsallis q-statistics with theWeibull distribution in both
restricted rapidity regions as well as in the full phase space to
understand the constraints for the models used. We also
propose a modification to improve the comparison between
the predicted and the experimental values. In Sec. II, we give
a very brief outline of probability distribution functions
(PDF) of Tsallis, Weibull and their modified forms along
with the references for full details. Section III presents the
analyses of experimental data and the results obtained by two
approaches. In approach I, we compare the Tsallis and
Weibull distributions in full phase space as well as in
restricted rapidity windows. Approach II describes the
analysis results from the modified PDFs for Tsallis and
Weibull distributions. The modification of distributions
is done by convoluting PDFs from 2-jet fraction and
multi-jet fractions by using appropriate weights. The 2-jet
fraction for 91 GeV data has been taken from the DURHAM
algorithm. Discussion and Conclusion are presented in
Sec. IV.*manjit@pu.ac.in
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II. CHARGED MULTIPLICITY DISTRIBUTIONS

Charged particle multiplicity is defined as the average
number of charged particles, n produced in a collision
hni ¼ Pnmax

n¼0 nPn. Angles at which these particles are
produced, are measured in terms of rapidity defined as
y ¼ − ln EþPL

E−PL
where E is the particle energy and PL is the

longitudinal momentum. We briefly outline the distribu-
tions used for studying the multiplicity distributions;

A. Tsallis distribution

Tsallis statistics deals with entropy in the usual
Boltzman-Gibbs thermostatistics modified by introducing
q-parameter and defined as;

S ¼ 1 −
P

aP
q
a

q − 1
ð1Þ

where Pa is the probability associated with microstate a
and sum of the probabilities over all microstates is
normalized to one;

P
aPa ¼ 1.

Tsallis entropy is defined as;

SqðA;BÞ ¼ SA þ SB þ ð1 − qÞSASB ð2Þ

where q is entropic index with value, q > 1 and 1 − q
measures the departure of entropy from its extensive
behavior.
In Tsallis q-statistics probability is calculated by using

the partition function Z, as

PN ¼ ZN
q

Z
ð3Þ

where Z represents the total partition function and ZN
q

represents partition function at a particular multiplicity.
For N particles, partition function can be written as,

Zðβ; μ; VÞ ¼
X�

1

N!

�

nNðV − Nv0ÞNΘðV − Nv0Þ ð4Þ

where n represents the gas density, V is the volume of the
system and v0 is the excluded volume associated to a
particle. The Heaviside Θ-function limits the number of
particles inside the volume V to N < V=v0. N̄, the average
number of particles, is given by

N̄ ¼ Vn½1þ ðq − 1ÞλðVnλ − 1Þ − 2v0n� ð5Þ

where λ is related to the temperature through the parameter
β as;

λðβ; μÞ ¼ −
β

n
∂n
∂β : ð6Þ

The K-parameter is related to q and excluded volume, by

1

K
¼ ðq − 1Þλ2 − 2

v0
V
: ð7Þ

Details of the Tsallis distribution and how to find the
probability distribution can be obtained from [7]. In one of
our earlier papers, we have analysed the eþe− interactions
at various energies for full phase space data and described
the procedure in detail in reference [14].

B. Modified Tsallis distribution

In our earlier paper [14], we proposed to modify the
multiplicity distribution in terms of two components: one
due to multiplicity in 2-jet events and another due to multi-
jet events. We then calculated the probability function from
the weighted superposition of Tsallis distributions of these
two components, as given below;

PNðα∶n̄1; V1; v01; q1∶n̄2; V2; v02; q2Þ
¼ αPNðn̄1; V1; v01; q1Þ
þ ð1 − αÞPNðn̄2; V2; v02; q2Þ ð8Þ

where α is a weight factor which gives 2-jet fraction from
the total events and is determined from a jet finding
algorithm.

C. Weibull distribution

Weibull distribution is a continuous probability distri-
bution which can take many shapes. It can also be fitted to
non-symmetrical data.
The probability density function of a Weibull random

variable is

PNðN; λ; kÞ ¼
� k

λ ðNλÞðk−1Þexp−ð
N
λÞk N ≥ 0

0 N < 0
: ð9Þ

The standard Weibull has characteristic value λ > 0, also
known as scale factor, and shape parameter k > 0 for its
two parameters. The two parameters for the distribution are
related to the mean of function, as

N̄ ¼ λΓð1þ 1=kÞ: ð10Þ

D. Modified Weibull distribution

Modified Weibull distribution has been obtained by the
weighted superposition of two Weibull distributions to
produce the multiplicity distribution. We convolute the
weighted distributions due to 2-jet component and multi-jet
component of the events, as below;
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PNðα∶N1; λ1; k1;N2; λ2; k2Þ
¼ αPNðN1; λ1; k1Þ
þ ð1 − αÞPNðN2; λ2; k2Þ ð11Þ

where α is the weight factor for 2-jet fraction out of the total
events and the remaining 1 − α is the multi-jet fraction. α is
calculated from the DURHAM jet algorithm, as discussed
in the next section.

III. ANALYSIS ON EXPERIMENTAL
DATA & RESULTS

Experimental data on eþe− collisions at different collision
energies from different experiments are analysed. The data
used are from the experiments, TASSO [15], ALEPH [16],
and DELPHI [17] at

ffiffiffi
s

p ¼ 14, 22, 34.8, 44 & 91 GeV and
from the restricted rapidity windows of jyj < 0.5; 1.0;
1.5; 2.0, where ever data are available. Charged particle
multiplicity distribution in terms of probability distribution,
is given by Pn ¼ σn

σtot
, where σn is the cross section for

multiplicity n and σtot represents the total cross section of the
interaction at a center ofmass energy

ffiffiffi
s

p
. Experimentally this

probability can be obtained using number of charged
particles produced at specificmultiplicity,n and total number
of particles, Ntot produced in the process, by Pn ¼ n

Ntot
. The

experimental distribution is fitted with the predictions from
Tsallis q-statistics and the Weibull distribution, as described
in the following two approaches.

A. Approach I

The probability distributions using Tsallis distribution
function and Weibull function are calculated using equa-
tions (3–7) & (9–10) and fitted to the experimental data.
Figure 1 shows the Tsallis fits to the data and Fig. 2 shows
the Weibull distributions fitted to the data in different
rapidity intervals at various center of mass energies. Both
Tsallis and Weibull functions are fitted to the data also in
full phase space and the results are shown in Fig. 3.
We find that thoughWeibull shows a reasonable fitting in

restricted rapidity intervals, it fails to reproduce the dis-
tributions in the high rapidity intervals and also in full
phase space. While Tsallis distribution shows good fits in
both full phase space and separately in each rapidity
interval. A detailed comparison between the two functions
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FIG. 1. Charged multiplicity distribution from top to bottom, jyj < 0.5, jyj < 1, jyj < 1.5 and jyj < 2 at
ffiffiffi
s

p ¼ 14, 22, 34.8, 44 and
91 GeV. Solid lines represent the Tsallis distribution and points represent the data.
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is shown in Tables I and II where χ2=ndf and p values at all
energies for all rapidity intervals are given. It is observed
that the χ2=ndf values are considerably lower for the
Tsallis fittings in comparison to the Weibull fittings. This is
true for all rapidity intervals as well as for the full phase

space. A careful examination of the p-values shows that the
data at 14, 34.8 & 91 GeV (DELPHI Collaboration) are
statistically excluded. For other energies, the confidence
level of Weibull remains CL < 0.1% while Tsallis distri-
bution remains good with CL > 0.1% for all cases.
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FIG. 2. Charged multiplicity distributions from top to bottom for jyj < 0.5, jyj < 1, jyj < 1.5 and jyj < 2 at
ffiffiffi
s

p ¼ 14, 22, 34.8, 44 and
91 GeV. Solid lines represent the Weibull distributions fitted to the data.
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FIG. 3. Charged multiplicity distribution for full phase space at
ffiffiffi
s

p ¼ 14, 22, 34.8, 44 and 91 GeV. Solid lines represent the Tsallis
distribution(up) and Weibull distribution(down) fitted to the data.

S. SHARMA, M. KAUR, and S. THAKUR PHYSICAL REVIEW D 95, 114002 (2017)

114002-4



Tables III and IV give fit parameters of both Weibull and
Tsallis distributions for extreme rapidity intervals, jyj < 0.5
and jyj < 2. To avoid too many tables, we are not including
the parameter values for other rapidity intervals. We also
show the parameter values for full phase space for both the
functions in Table V. A comparison of the values in Tables I
and II reveals that χ2=ndf values become worse as we go

from lower rapidity to higher rapidity range in both the
distributions. However the χ2=ndf values for the Tsallis
distributions are again lower by several orders, confirming
that Tsallis distribution fits the data far better than Weibull.
From Tables III, IV and V, we also observe that for

Weibull distribution, as expected, λ values increase with
energy as well as with rapidity. Similarly for Tsallis

TABLE I. χ2=ndf comparison for different rapidity intervals and full phase space of Weibull distributions.

jyj < 0.5 jyj < 1 jyj < 1.5 jyj < 2 full y

Energy (GeV) χ2=ndf p value χ2=ndf p value χ2=ndf p value χ2=ndf p value χ2=ndf p value

14 17.54=11 0.0929 40.31=17 0.0012 62.55=20 0.0001 101.91=22 0.0001 105.60=10 0.0001
22 4.30=11 0.9603 26.66=18 0.0856 35.94=23 0.0418 51.06=25 0.0016 122.73=11 0.0001
34.8 25.92=12 0.0110 202.02=23 0.0001 277.37=28 0.0001 213.92=31 0.0001 611.21=15 0.0001
44 5.33=14 0.9807 77.65=24 0.0001 85.17=29 0.0001 74.78=31 0.0001 148.15=16 0.0001
91 A 6.28=16 0.9848 33.35=30 0.3076 66.63=36 0.0014 61.48=42 0.0265 34.97=19 0.0141
91 D 37.92=18 0.0040 294.51=32 0.0001 631.22=41 0.0001 756.61=45 0.0001 1524=22 0.0001

TABLE II. χ2=ndf comparison for different rapidity intervals and full phase space of Tsallis distributions.

jyj < 0.5 jyj < 1 jyj < 1.5 jyj < 2 full y

Energy (GeV) χ2=ndf p value χ2=ndf p value χ2=ndf p value χ2=ndf p value χ2=ndf p value

14 13.96=9 0.1238 24.82=15 0.0524 33.59=18 0.0141 75.92=20 0.0001 32.62=8 0.0001
22 3.16=9 0.9576 11.46=16 0.7802 7.95=21 0.9953 12.07=23 0.9694 10.05=9 0.3465
34.8 14.65=10 0.1454 96.73=21 0.0001 73.43=26 0.0001 27.36=29 0.5523 38.35=13 0.0003
44 4.04=12 0.9827 40.38=22 0.0098 39.24=27 0.0602 37.83=29 0.1262 7.01=14 0.9347
91 A 5.23=14 0.9823 22.13=28 0.7752 39.43=34 0.2400 23.38=40 0.9833 5.71=17 0.9949
91 D 35.79=16 0.0031 184.91=30 0.0001 345.54=39 0.0001 292.72=43 0.0001 106.21=20 0.0001

TABLE III. Parameters of Weibull and Tsallis functions for jyj < 0.5.

Weibull → Tsallis →

Energy (GeV) k λ χ2=ndf nV nv0 K q χ2=ndf

14 1.37� 0.030 2.46� 0.043 17.54=11 1.053� 0.102 0.554� 0.046 3.941� 0.437 1.173� 0.162 13.96=9
22 1.41� 0.031 2.53� 0.046 4.30=11 1.455� 0.198 0.263� 0.156 4.474� 0.520 1.326� 0.324 3.16=9
34.8 1.40� 0.014 2.72� 0.021 25.92=12 1.678� 0.108 0.144� 0.081 3.919� 0.195 1.338� 0.205 14.65=10
44 1.35� 0.023 2.95� 0.043 5.33=14 1.490� 0.168 0.347� 0.251 3.076� 0.219 1.358� 0.317 4.04=12
91 A 1.25� 0.074 3.31� 0.166 6.28=16 1.365� 0.053 0.443� 0.018 2.218� 0.457 1.164� 0.103 5.23=14
91 D 1.20� 0.013 3.39� 0.052 37.92=18 1.518� 0.078 0.227� 0.078 1.924� 0.071 1.122� 0.108 35.79=16

TABLE IV. Parameters of Weibull and Tsallis functions for jyj < 2.0.

Weibull → Tsallis →

Energy (GeV) k λ χ2=ndf nV nv0 K q χ2=ndf

14 2.58� 0.035 8.58� 0.052 101.91=22 5.514� 0.362 0.170� 0.064 22.18� 2.093 1.361� 0.358 75.92=20
22 2.44� 0.033 9.82� 0.066 51.06=25 5.097� 0.349 0.285� 0.082 12.80� 0.729 1.326� 0.316 12.07=23
34.8 2.28� 0.015 10.72� 0.037 213.92=31 5.580� 0.179 0.138� 0.041 8.931� 0.188 1.219� 0.171 27.36=29
44 2.21� 0.023 11.77� 0.073 74.78=31 5.626� 0.025 0.179� 0.011 7.946� 0.248 1.252� 0.029 37.83=29
91 A 1.96� 0.039 14.96� 0.220 61.48=42 5.537� 0.050 0.294� 0.018 4.708� 0.255 1.448� 0.131 23.38=40
91 D 2.02� 0.009 15.73� 0.053 756.61=45 5.692� 0.150 0.289� 0.051 5.015� 0.052 1.439� 0.217 292.72=43
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TABLE V. Parameters of Weibull and Tsallis function for full rapidity window.

Weibull → Tsallis →

Energy (GeV) k λ χ2=ndf nV nv0 K q χ2=ndf

14 3.42� 0.049 10.22� 0.055 105.60=10 6.436� 0.306 0.195� 0.035 130.15� 7.575 1.0001� 0.00004 32.62=8
22 3.61� 0.050 12.49� 0.069 122.73=11 5.863� 0.346 0.443� 0.324 100.42� 23.631 1.002� 0.001 10.05=9
34.8 3.73� 0.024 14.87� 0.036 611.21=15 8.490� 0.229 0.238� 0.024 54.21� 3.128 1.016� 0.014 38.35=13
44 3.62� 0.040 16.64� 0.072 148.15=16 9.091� 0.421 0.273� 0.048 39.15� 2.710 1.164� 0.127 7.01=14
91 A 3.67� 0.114 23.87� 0.284 34.97=19 10.633� 1.024 0.360� 0.114 23.06� 2.217 1.345� 0.273 5.71=17
91 D 4.21� 0.025 24.63� 0.076 1524=22 12.331� 0.266 0.205� 0.027 24.56� 0.476 1.361� 0.197 106.21=20

TABLE VI. Parameters of the modified Weibull function for different rapidity intervals and full rapidity window for 91 GeV.

Energy jyj interval k1 λ1 k2 λ2 χ2=ndf p value

91 A 0.5 1.336� 0.142 4.067� 0.396 1.853� 0.333 2.758� 0.403 2.41=14 0.9998
91 A 1.0 1.947� 0.105 5.428� 0.261 1.785� 0.181 10.653� 0.529 2.78=28 0.9999
91 A 1.5 2.243� 0.089 8.122� 0.227 2.293� 0.116 16.544� 0.356 11.77=34 0.9999
91 A 2.0 2.481� 0.100 11.413� 0.300 2.781� 0.170 21.197� 0.420 11.35=40 0.9999
91 A full jyj 3.674� 0.197 25.002� 0.350 5.643� 0.632 19.997� 0.868 13.23=17 0.8780
91 D 0.5 1.351� 0.022 4.253� 0.076 1.725� 0.100 2.539� 0.102 10.97=16 0.8113
91 D 1 1.864� 0.026 5.315� 0.053 2.001� 0.002 11.510� 0.059 70.05=30 0.0001
91 D 1.5 1.785� 0.014 13.05� 0.08 2.731� 0.063 7.516� 0.112 247.3=39 0.0001
91 D 2 2.154� 0.017 17.35� 0.084 3.064� 0.061 9.841� 0.120 144.5=43 0.0001
91 D full jyj 4.113� 0.03 26.14� 0.05 6.275� 0.112 18.38� 0.167 582.6=20 0.0001

TABLE VII. Parameters of the modified Tsallis function for different rapidity intervals and full rapidity window for 91 GeV.

Energy jyj interval nV1 nv01 nV2 nv02 K1 K2

91 A 0.5 1.648� 0.878 0.302� 0.170 3.899� 1.682 0.180� 0.155 8.807� 2.418 7.403� 4.288
91 A 1 2.704� 0.285 0.385� 0.192 6.041� 1.309 0.313� 0.231 8.067� 2.295 7.869� 2.758
91 A 1.5 4.504� 0.094 0.174� 0.025 4.037� 0.163 0.422� 0.037 3.914� 0.314 50.150� 30.71
91 A 2 5.354� 0.044 0.276� 0.015 28.397� 5.352 0.445� 0.187 5.056� 0.133 5.598� 0.687
91 A full jyj 11.044� 1.411 0.293� 0.117 20.630� 3.613 0.117� 0.180 87.083� 70.631 53.714� 23.121
91 D 0.5 1.822� 0.224 0.116� 0.280 5.845� 0.772 3.528� 0.212 0.249� 0.074 7.814� 0.704
91 D 1 2.273� 0.175 0.445� 0.302 6.203� 0.392 6.499� 0.268 0.236� 0.065 8.307� 0.471
91 D 1.5 4.679� 0.231 0.133� 0.056 7.786� 0.288 6.801� 0.298 0.742� 0.430 14.511� 0.751
91 D 2 5.504� 0.230 0.318� 0.063 8.457� 0.251 8.709� 0.303 0.669� 0.054 22.262� 1.305
91 D full jyj 9.867� 0.387 0.414� 0.044 33.642� 1.508 10.591� 1.025 0.577� 0.153 20.031� 0.390

TABLE VIII. q values of the modified Tsallis function for different rapidity intervals and full rapidity window for 91 GeV.

Energy jyj interval q1 q2 χ2=ndf p value

91 A 0.5 1.025� 0.022 1.629� 0.526 2.31=10 0.9934
91 A 1 1.214� 0.211 1.989� 0.698 2.17=24 1.000
91 A 1.5 1.024� 0.001 1.649� 0.248 12.38=30 0.9981
91 A 2 1.064� 0.025 1.819� 0.899 4.88=36 1.000
91 A full jyj 1.056� 0.492 1.957� 0.703 3.02=13 0.9979
91 D 0.5 1.279� 0.433 1.261� 0.547 10.62=12 0.5617
91 D 1 1.012� 0.155 1.989� 0.387 26.07=26 0.4593
91 D 1.5 1.292� 0.240 1.467� 0.560 43.07=35 0.1642
91 D 2 1.551� 0.465 1.257� 0.516 40.55=39 0.4019
91 D full jyj 1.014� 0.108 1.947� 0.616 49.29=16 0.0001
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distribution, the q value which measures the entropic index
of the Tsallis statistics, increases with energy and is more
than one in every case. This confirms the nonextensivity of
the Tsallis statistics.

B. Approach II

It was observed [18] that the multiplicity distributions
have a shoulderlike structure at high energies. The Tsallis
and the Weibull distributions both give very high χ2=ndf
values and do not describe the data well at high energy.
In our previous publication [14] we suggested to adopt
the Giovannini’s approach [18] whereby the multiplicity

distribution is obtained by using the weighted superposition
of two distributions; one accounting for the 2-jet events and
another for multi-jet events. For the present work, we use
this approach on both Tsallis and Weibull distributions. We
call these modified Tsallis and modified Weibull distribu-
tions. The probability functions for the two cases are given
in Eqs. (8) and (11). Using the modified distributions,
data at 91 GeVonly has been analyzed, since the shoulder
structure starts showing up prominently from this energy.
α ¼ 0.657 in the two equations is the 2-jet fraction
derived from the DURHAM algorithm, as explained in
references [19,20].
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FIG. 4. Multiplicity distributions at
ffiffiffi
s

p ¼ 91 GeV for the modified Tsallis distribution and the modified Weibull distribution for
jyj < 0.5, jyj < 1.0, jyj < 1.5, jyj < 2.0 and full phase space from top to bottom.
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Using approach II for
ffiffiffi
s

p ¼ 91 GeV, data from ALEPH
and DELPHI Collaborations are analyzed for various
rapidity intervals as well as in the full phase space. We
use these data as the shoulder structure is prominent at this
energy and the data in different rapidity intervals are
available. Fit parameters, χ2=ndf and p values for both
modified Weibull and modified Tsallis distributions in the
four rapidity intervals and full phase space are given in
Table VI, VII and VIII. Figure 4 shows the comparison of
distributions for ALEPH data only. Data from DELPHI are
not included in the fits to avoid cluttering of points. It may
be observed from Fig. 4 and the three tables that by using
this approach, the fits to the data improve enormously and
the χ2=ndf values decrease substantially. Both the
Modified Weibull distribution and the modified Tsallis
distribution describe the ALEPH data at 91 GeV well.
However the DELPHI data at 91 GeV is statistically
excluded with CL < 0.1% for the modified Weibull dis-
tribution for rapidity intervals with jyj > 1 and in full phase
space. The modified Tsallis distribution describes well the
DELPHI data in all rapidity intervals but fails in full
phase space.
The fit procedure uses ROOT 5.36 from CERN to

minimize the χ2 using the library MINUIT2. The fitting
procedure for Tsallis distribution involves four free param-
eters, namely nV, nv0, K, q and a normalization constant.
Several options of minimization (MIGRAD, MINOS, FUMILI)
had to be tried to get the covariance matrix positive definite.
Also n,V and v0 are correlated, we had to choose nV and
nV0 as free parameters for meaningful fits independent of
the starting values of fit parameters. In addition, nV0 must
be constrained to avoid a nonphysical situation or else the
fitting may give negative values for nV0 which is mean-
ingless. In effect, ðV − Nv0Þ should be constrained to be
positive since Nv0 can not be larger than V. In the Weibull
distribution, the fit procedure is more straightforward
without involving such constraints. However, for both
modified Tsallis and modified Weibull distributions, the
fit parameters are doubled. Minimization then leads to
larger errors on the fit parameters, especially in K2 and q2
for Tsallis and λ2 and K2 for Weibull. This may be the
reason for very large p values, particularly close to unity.

IV. CONCLUSION

Detailed analysis of the data on eþe− collisions at
energies

ffiffiffi
s

p ¼ 14 to 91 GeV has been done by considering
the recently proposed Weibull distribution in comparison to
the Tsallis distribution. It is observed that for both Weibull
and Tsallis distributions, the data at 14, 34.8 GeV and
91 GeV from DELPHI Collaboration, are statistically
excluded in most of the rapidity intervals as well as in
the full phase space. At other energies, the confidence level
of the Weibull fit in the large rapidity intervals as well as in
the full phase space remains CL < 0.1% and hence is

statistically excluded, while the Tsallis distribution gives
good results for all of the cases with CL > 0.1%.
The shape parameter k in the Weibull distribution affects

the shape of the distribution. Within a given rapidity
interval, the value of k decreases slightly with increasing
energy. However, it increases considerably from smaller to
larger rapidity intervals, as can be seen in Tables III and IV.
This behavior is related to the soft gluon emission and
subsequent hadronization. The scale parameter λ of the
Weibull distribution measures the width of the distribution.
The larger the scale parameter, the more spread out the
distribution is. This again is observed in Tables III and IV.
The width of the probability distribution depends upon c.m.
energy. At higher collision energies, the mean multiplicity
increases and so does the number of high multiplicity
events. As a result, λ is expected to increase to take into
account the width of distributions. This trend is endorsed by
λ values in Tables III–IV. Similar results can be observed
from the modified Weibull fit distribution parameters in
Table VI where λ values increase systematically from lower
to higher rapidity windows. In the Tsallis distribution, the
K parameter measures the deviation from Poisson distri-
bution and is related to the variance. The definition of K is
motivated by the k parameter of a negative binomial
distribution, as given by Eq. (6). Tsallis statistics for
q > 1 with excluded volume v0 produces the multiplicity
distributions that are wider than the Boltzmann-Gibbs ones.
In some analyses the excluded volume is fixed between
0.3–0.4 fm3. The corresponding value of volume V then
varies from a few fm3 to a few tens of fm3 [7].
It is known that the multiplicity distributions at higher

energies show a shoulder structure. In order to improve
upon bothWeibull and Tsallis fits to the data, we propose to
build the multiplicity distribution by a convolution of 2-jet
component and the multijet component. For the energy
point at 91 GeV, the 2-jet fraction values calculated from
various jet algorithms are available. We show that by
appropriately weighting the multiplicity distribution with
the 2-jet fraction obtained from the DURHAM algorithm
for

ffiffiffi
s

p ¼ 91 GeV, both Tsallis and Weibull distributions
describe the data by the ALEPH experiment, very well,
giving the statistically significant results. The Tsallis
distribution reproduces the data well with CL > 0.1% in
all rapidity windows for the data from two experiments,
ALEPH and DELPHI, with an exception of failure with the
DELPHI data in the full phase space. The modified Weibull
distribution, also improves the fits by several orders, but
fails to describe the DELPHI data in most of the rapidity
windows and in the full phase space, as observed from p
values in Table VI.
In the fitting of the PDFs, modified Weibull fits have four

free parameters while modified Tsallis distribution has
eight free parameters. Due to limited number of data points,
fit parameters suffer from large errors, especially in Tsallis
distribution. While the Weibull has the advantage of a
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smaller number of fit parameters offering a simplistic
description in comparison to the Tsallis, yet the perfor-
mance of Tsallis can not be undermined. It is pertinent to
mention that DELPHI data has nearly five times fewer
events than the ALEPH data. Thus for the subtle conclusion
to be drawn, the analysis of data at higher energies from
different experiments is desirable. The q value known as the
entropic index in Tsallis distribution, accounts for the
nonextensive thermostatistical effects in hadron production
and is expected to be more than one. In the results presented
in Tables III–V and VIII, the q values are found to be
greater than one at all energies confirming that the Tsallis

q-statistics has nonextensive behavior of entropy in both
restricted rapidity intervals as well as in full phase space.
We shall soon extend our analysis and comparison at higher
energies using data from the large electron positron, in full
phase space and by calculating the 2-jet fraction from
various jet algorithms.
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