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We construct the electromagnetic anomaly effective term for a generalized linear sigma model with two
chiral nonets, one with a quark-antiquark structure, the other one with a four-quark content. We compute in
the leading order of this framework the decays into two photons of six pseudoscalars: π0ð137Þ, π0ð1300Þ,
ηð547Þ, ηð958Þ, ηð1295Þ and ηð1760Þ. Our results agree well with the available experimental data.
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I. INTRODUCTION

Linear sigma models have long played an important role
in particle physics, both in the description of low energy
QCD and in the electroweak sector of the standard model.
A fully interacting linear sigma model depicting the low-
lying scalar and pseudoscalar mesons together with a term
mocking the gluon axial anomaly has been developed in
[1–4]. This model was further extended in [5–8] to include
a second chiral nonet with a four-quark structure such that
in the end the model comprised 36 mesons, 18 scalars and
18 pseudoscalars. In this context a very good agreement
with the experimental data regarding both the masses and
some particular scattering processes was obtained. Other
extensions of the linear sigma model in the literature that
aim at describing a variety of low-energy processes include
[9–11]. Various effective Lagrangian approaches treating
the Uð1ÞA anomaly but also the strong CP problem were
also discussed in [12–14].
In this work we discuss a possible electromagnetic

anomaly term suitable for this type of model that does
not contain derivative interactions. The effective term for
the axial anomalies was constructed in the pioneering work
of Wess and Zumino [15] and Witten [16] and used in the
context of chiral perturbation theory [17] for computing
various anomalous processes that involved photons.
However, the Wess-Zumino Witten term contains deriva-
tive interactions and makes more sense in a nonlinear
context. Here we will use a procedure initiated in [2] for the
gluon anomaly. This consists in determining from the
actual Lagrangian the divergence of the anomalous axial
current and then introducing an effective term that matches
exactly the anomaly. Thus we will obtain in a natural way
the correct anomalous interaction that satisfies the require-
ments of the symmetry.
Our approach practically bypasses the vector meson

dominance (VMD) approximation which is widely applied
in the literature to study the interaction of photons and

mesons [18–22]. We expect that our estimates presented in
this work should not be too far from those obtained from
VMD applied in conjunction with a version of our model in
which the vectors and axial vectors are introduced (in the
current approach our Lagrangian only contains scalar
and pseudoscalar fields). However, extending our frame-
work to include vectors and axial vectors is an extensive
undertaking which potentially introduces additional
uncertainties. For processes of interest in this work, that
are not directly on vectors and axial vectors, the method-
ology presented here is therefore more economical and
advantageous.
In Sec. II we determine the anomaly for the case when

the Lagrangian contains only one chiral nonetM. In Sec. III
we apply the results of Sec. II to a generalized linear sigma
model with two chiral nonets. Section IV contains an
estimate of the decay rates to two photons for π0ð137Þ,
π0ð1300Þ, ηð547Þ, ηð958Þ, ηð1295Þ and ηð1760Þ. In Sec. V
we calculate the anomalous term for the four-quark nonet
M0. Three decay rates to two photons are considered as
inputs whereas the decay rates for the other three pseudo-
scalars are predicted. Section VI is dedicated to a general
discussion of the results.

II. AXIAL ANOMALY IN A LINEAR
SIGMA MODEL

According to the Wess-Zumino Witten terms [16] in
a nonlinear realization of a sigma model there are
many possible contributions to the electromagnetic axial
anomaly. In the standard picture all these terms contain
derivatives of the pseudoscalar fields. In this work we are
interested in approximating at least part of these terms in a
linear sigma model that includes scalar and pseudoscalar
mesons but no derivative interaction terms for the mesons.
In doing so we are extending the work of [2] to the
electromagnetic axial anomaly in a linear sigma model.
Since the axial currents and also the Lagrangian must

both be invariant with respect to the Uð1Þem we must first
introduce the appropriate covariant derivative for the
kinetic term and then analyze possible interaction terms.
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Starting with the latter we note that since we do not
introduce additional derivative interaction terms the con-
tribution of interest should be either proportional to the
electromagnetic Fμν or to the product FμνFρσ . In the first
case there is no constant tensor that allows us to write a
Lorentz invariant term and in the second the only possibil-
ity is ϵμνρσFμνFρσ. This term should correspond to the
standard anomalous triangle diagrams. Higher order terms
may also contribute but in the linear sigma model this
would correspond to higher dimension operators that will
be neglected in the first approximation.
Before going further we will briefly describe the initial

toy model [2] and then apply our results to a more
complicated one [8] for which most of the parameters
are known in leading order. Consider the Lagrangian

L ¼ −
1

2
TrðDμMDμM†Þ − V0ðI1; I2; I3Þ; ð1Þ

where M is a nonet that has the schematic structure
q̄Abð1þ γ5ÞqAa with A the color index and a, b the flavor
indices. Moreover V0 is an arbitrary function of the three
Uð3ÞL ×Uð3ÞR invariants:

I1 ¼ TrðMM†�
I2 ¼ Tr½ðMM†Þ2�
I3 ¼ Tr½ðMM†Þ3�: ð2Þ

The covariant derivative is given by

DμM ¼ ∂μM − ieQMAμ þ ieMQAμ

DμM† ¼ ∂μM† þ ieM†QAμ − ieQM†Aμ; ð3Þ

where Q ¼ diagð2
3
;− 1

3
;− 1

3
Þ. Since the first term in the

Lagrangian is of particular interest we give below its
expression in detail:

−
1

2
TrðDμMDμM†Þ

¼ −
1

2
Trð∂μM∂μM†Þ − ie

1

2
Tr½∂μMðM†Q −QM†Þ�Aμ

þ ie
1

2
Tr½∂μM†ðQM −MQÞ�Aμ

−
1

2
e2Tr½QM −MQÞðM†Q −QM†�: ð4Þ

One can further write

Mb
a ¼ Sba þ iΦb

a; ð5Þ

where Sba is the scalar nonet andΦb
a is the pseudoscalar one.

The transformation of the fields under vector Lþ R and
axial vector L − R infinitesimal variations are [5]

δVΦ ¼ ½EV;Φ�
δVS ¼ ½EV; S�
δAΦ ¼ −i½EA; S�þ
δAS ¼ i½EA;Φ�þ; ð6Þ

where EV ¼ −E†
V and EA ¼ −E†

A. Consequently

δAM ¼ ½EA;M�þ: ð7Þ
We denote by λk where k ¼ 0.::8 the eight Gell-Mann

matrices together with the matrix λ0 ¼ 1ffiffi
3

p diagð1; 1; 1Þ. We

are mainly interested in the electromagnetic axial anomaly,
especially that pertaining to the triangle diagrams with one
pseudoscalar state. It is known that a condition for the
anomalous term to be nonzero is TrðλkQ2Þ ≠ 0 [23].
Therefore we shall consider from the Noether theorem
associated with the Lagrangian in Eq. (1) and with the axial
transformation only the currents corresponding to λ0, λ3
and λ8. They can be computed as

Jakμ ¼ Tr

� ∂L
∂∂μM

δMk

�
þ Tr

� ∂L
∂∂μM† δM

†
k

�
; ð8Þ

where

δMk ¼ −iðλkM þMλkÞ
δM†

k ¼ iðλkM† þM†λkÞ: ð9Þ
Then the axial currents are calculated from Eqs. (4) and (9):

Jakμ ¼ i
2
Tr½∂μM†ðλkM þMλkÞ�

−
e
2
Tr½ðMλk þ λkMÞðM†Q −QM†Þ�Aμ þ H:c:

ð10Þ
where the H.c. refers to the full expression and k takes only
the values 0, 3, 8.
The divergence of the currents in Eq. (10) is given by

∂μJakμ ¼ i
2
Tr½∂μ∂μM†ðλkM þMλkÞ�

−
i
2
Tr½ðM†λk þ λkM†Þ∂μ∂μMÞ�

−
he
2
Trð∂μMλk þ λk∂μMÞðM†Q −QM†Þ�Aμ

þ e
2
TrðMλk þ λkMÞðM†Q −QM†Þ�∂μAμ

þ e
2
Tr½ð∂μM†λk þ λk∂μM†Þ

× ðQM −MQÞ�Aμ þ H:c:
i
: ð11Þ

This expression can be further simplified to
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∂μJakμ ¼ i
2
Tr½∂μ∂μM†ðλkM þMλkÞ� − i

2
Tr½∂μ∂μMðλkM† þM†λkÞ� − e½Tr½λk∂μM þ ∂μMλkÞðM†Q −QM†Þ�Aμ

þ Tr½ðλkM þMλkÞð∂μM†Q −Q∂μM†Þ�Aμ þ Tr½ðλkM þMλkÞðM†Q −QM†Þ�∂μAμ�: ð12Þ
It can be shown that this divergence vanishes. To see this we express the kinetic term in the Lagrangian in Eq. (1) through

integration by parts such that the derivative ∂μM† does not appear:

Lkin ¼ −
1

2
TrðDμMDμM†Þ ¼ 1

2
Trð∂μ∂μMM†Þ − ie

1

2
Tr½∂μMðM†Q −QM†Þ�Aμ − ie

1

2
Tr½M†ðQM −MQÞ�∂μAμ

− ie
1

2
Tr½M†ðQ∂μM − ∂μMQÞ�∂μAμ −

1

2
e2Tr½QM −MQ�ðM†Q −QM†Þ�: ð13Þ

Next we apply the equation of motion ∂μ
∂L

∂∂μM† − ∂L
∂M† to the Lagrangian in Eq. (1) [note that we expressed the kinetic term as

in Eq. (13) so there are no derivative terms for M†]:

−
1

2
∂μ∂μM½� þ ie

1

2
∂μMð½�Q −Q½�ÞAμ þ ie

1

2
½�ðQ∂μM − ∂μMQÞ þ ie

1

2
½�ðQM −MQÞ∂μAμ

þ 1

2
e2ðQM −MQÞð½�Q −Q½�Þ þ ∂V0

∂M† ½�: ð14Þ

Here the empty square brackets correspond to the place in the trace where the matrix M† has been (we use this notation in
order to keep track of the various matrix components) and will be replaced by the same components of the quantity
λkM† þM†λk. Then we subtract from the corresponding expression in Eq. (14) the Hermitian conjugate to obtain

−
1

2
∂μ∂μMðλkM þMλkÞ þ ie

1

2
∂μMð½λkM† þM†λk�Q −Q½λkM† þM†λk�ÞAμ

þ ie
1

2
½λkM† þM†λk�ðQ∂μM − ∂μMQÞ þ ie

1

2
½λkM† þM†λk�ðQM −MQÞ∂μAμ

þ 1

2
e2ðQM −MQÞð½λkM† þM†λk�Q −Q½λkM† þM†λk�ÞAμAμ þ

∂V0

∂M† ½λkM† þM†λk� − H:c: ð15Þ

In the trace of the expression in Eq. (15) some of the terms do not contribute. We shall start with the last one:

Tr
�∂V0

∂M† ½λkM† þM†λk�
�
− H:c: ¼ ∂V0

∂I1 Tr½M½λkM† þM†λk�� − H:c:þ 2
∂V0

∂I2 Tr½MM†M½λkM† þM†λk�� − H:c:

þ 3
∂V0

∂I3 Tr½MM†MM†M½λkM† þM†λk�� − H:c: ¼ 0: ð16Þ

The next term that does not bring any contribution is

1

2
e2ðQM −MQÞð½λkM† þM†λk�Q −Q½λkM† þM†λk�Þ − H:c:

¼ 1

2
e2ðQM −MQÞ½λkðM†Q −QM†Þ þ ðM†Q −QM†Þλk� − H:c: ¼ 0; ð17Þ

since the above expression can be written as

Tr½AλkA† þ AA†λk� − Tr½λkAA† þ AλkA†� ¼ 0; ð18Þ
noting that λk with k ¼ 0, 3, 8 and Q commute. But then the rest of the expression in Eq. (15) multiplied by i can be
simplified to

i

�
−
1

2
Tr½∂μ∂μMðλkM† þM†λkÞ� þ 1

2
Tr½∂μ∂μM†ðλkM þMλkÞ� − eTr½∂μMððλkM† þM†λkÞQ −QðλkM† þM†λkÞ�Aμ

− eTr½∂μM†ðQðλkM þMλkÞ − ðλkM þMλkÞQÞ�Aμ − ieTr½ðλkM† þM†λkÞðQM −MQÞ�∂μAμ

�
¼ ∂μJakμ : ð19Þ
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Here we used the fact that the left-hand side of Eq. (19) is
identical to the right-hand side of Eq. (11). Moreover since
Eq. (19) was obtained by applying the equation of motion
the result should be equal to zero.
However according to the Adler-Bell-Jackiw anomaly

the divergence of the axial currents that contributes to the
triangle diagram should be given by

∂μJakμ ¼ −
e2

16π2
ϵμνρσFμνFρσTr½λkQ2�; ð20Þ

where the trace is over the flavors and colors. Thus in order
to effectively describe the anomaly in first order in M and
M† we follow the methodology of [2] and introduce in the
Lagrangian the term

X ¼ i
X3
i¼1

aiðln½Tr½xiM þMxi��

− ln½Tr½xiM† þM†xi��ÞϵμνρσFμνFρσ; ð21Þ
where a1, a2, a3 are coefficients to be determined and xi,
i ¼ 1, 2, 3 are the 3 × 3 matrices x1 ¼ diagð1; 0; 0Þ,
x2 ¼ diagð0; 1; 0Þ and x3 ¼ diagð0; 0; 1Þ.
We first observe that

λ3 ¼ x1 − x2

λ8 ¼ 1ffiffiffi
3

p ðx1 þ x2 − 2x3Þ

λ0 ¼ 1ffiffiffi
3

p ðx1 þ x2 þ x3Þ; ð22Þ

and that the transformation from λk (k ¼ 3, 8, 0 standard
Gell-Mann matrices) to xi, i ¼ 1, 2, 3 is nonsingular. We
then can write

Ja3μ ¼ Ka1
μ − Ka2

μ

Ja8μ ¼ 1ffiffiffi
3

p ðKa1
μ þ Ka2

μ − 2Ka3
μ Þ

Ja0μ ¼ 1ffiffiffi
3

p ðKa1
μ þ Ka2

μ þ Ka3
μ Þ; ð23Þ

where the currentsKai
μ (i ¼ 1, 2, 3) are similar to the currents

Jakμ (k ¼ 3, 8, 0) but with the matrices λk replaced by the
matrices xi. We differentiate X with respect to M† to get

−
∂X
∂M† ¼

X
i

iaiðxi½� þ ½�xiÞ
1

xiM† þM†xi
ϵμνρσFμνFρσ;

ð24Þ
where again the empty square brackets represent the matrix
element that has been eliminated through differentiation.We
replace the square brackets by xjM† þM†xj (which corre-
sponds to δM†) and subtract the Hermitian conjugate to
obtain

�X
i

iaiTr½ðxiðxjM† þM†xjÞ þ ðxjM† þM†xjÞxiÞ
i

×
1

xiM† þM†xi
− H:c:

�
ϵμνρσFμνFρσ ¼ 4iajϵμνρσFμνFρσ:

ð25Þ

This result is obvious if we notice that whenever i ≠ j in the
above expression the corresponding trace is equal to zero.
The next step is then to consider the equation of motion for
the full LagrangianLþ X and tomultiply the corresponding
expressions by i to get

∂μJaiμ − 4ajϵμνρσFμνFρσ ¼ 0 ð26Þ

which further leads to

∂μJ3aμ ¼ 2ða1 − a2ÞϵμνρσFμνFρσ

∂μJ8aμ ¼ 2
1ffiffiffi
3

p ða1 þ a2 − 2a3ÞϵμνρσFμνFρσ

∂μJ0aμ ¼ 2
1ffiffiffi
3

p ða1 þ a2 þ a3ÞϵμνρσFμνFρσ: ð27Þ

We then require for the currents in Eq. (26) to satisfy Eq. (20)
which leads directly to

a1 ¼ −
4

3
e2

1

64π2

a2 ¼ −
1

3
e2

1

64π2

a3 ¼ −
1

3
e2

1

64π2
: ð28Þ

We shall check the result we have obtained against the
first order result in chiral perturbation theory [17]. For that
we notice that if one considers an SUð3ÞV symmetric
vacuum expectation value of the scalars hSabi ¼ δabα one
can write

ln Tr½xiM þMxi� − H:c: ¼ ln½2αþ 2Mii� − H:c: ≈
1

α
2iΦii

ð29Þ

where we expanded around the vacuum expectation value.
Using the fact that

Φ11 ¼
1ffiffiffi
6

p ηþ 1ffiffiffi
2

p π0 þ
1ffiffiffi
3

p η0

Φ22 ¼
1ffiffiffi
6

p η −
1ffiffiffi
2

p π0 þ
1ffiffiffi
3

p η0

Φ33 ¼ −
2ffiffiffi
6

p ηþ 1ffiffiffi
3

p η0 ð30Þ
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we get for the anomalous term

X ¼ 2

�
1ffiffiffi
2

p π0 þ
1ffiffiffi
6

p ηþ 2
1ffiffiffi
3

p η0
�
e2

1

64π2α
ϵμνρσFμνρσ:

ð31Þ

We first notice that 2α ¼ ffiffiffi
2

p
fπ [5] and that Eq. (31) leads

to the vertex

16i

�
1ffiffiffi
2

p π0 þ
1ffiffiffi
6

p ηþ 2
1ffiffiffi
3

p η0
� ffiffiffi

2
p

64fππ2
ϵμνρσe2ϵνϵσ0kμkρ0

ð32Þ

to determine a coupling of the pseudoscalars as

π0 coupling ¼ 1

4π2fπ

η coupling ¼ 1

4π2fπ

1ffiffiffi
3

p

η0 coupling ¼ 1

4π2fπ

2
ffiffiffi
2

p
ffiffiffi
3

p ; ð33Þ

which agrees exactly with the results in chiral perturbation
theory in first order [17].
Equation (29) can be further expanded to lead to

ln Tr½xiM þMxi� − H:c: ¼ 1

α
2iΦii − 2i

1

α2
SiiΦii þ � � �

ð34Þ

Using

S11 ¼
1ffiffiffi
6

p f1 þ
1ffiffiffi
2

p a0 þ
1ffiffiffi
3

p f2

S22 ¼
1ffiffiffi
6

p f1 −
1ffiffiffi
2

p a0 þ
1ffiffiffi
3

p f2

S33 ¼ −
2ffiffiffi
6

p f1 þ
1ffiffiffi
3

p f2 ð35Þ

one can read the tree level vertices of interaction that
contain a scalar, a pseudoscalar and two photons. There is
no contribution at tree level to the decays of pseudoscalars
but there might be higher order contributions at one loop.
However the axial anomaly in the generalized linear sigma
model gives reasonable predictions for the pseudoscalar
decays to two photons at tree level.

III. DECAYS OF THE PSEUDOSCALAR MESONS
TO TWO PHOTONS

Here we will extend the anomaly term introduced in
Eq. (21) in the context of a more complicated model
discussed in detail in the series of papers [5–8]. The model

of interest is a generalized linear sigma model with two
chiral nonets, one with a quark-antiquark structure M, the
other one with a four-quark structure M0:

M ¼ Sþ iΦ

M0 ¼ S0 þ iΦ0; ð36Þ

where S and S0 represent the scalar nonets and Φ and Φ0
the pseudoscalar nonets. The matricesM and M0 transform
in the sameway under SUð3ÞL × SUð3ÞR but have different
Uð1ÞA transformation properties. The Lagrangian is
given by

L ¼ −
1

2
Tr½DμMDμM†� − 1

2
Tr½DμM0DμM0†�

− V0ðM;M0Þ − VSB þ X; ð37Þ

where in the leading order of the model which corresponds
to retaining only terms with no more than eight quark and
antiquark lines,

V0 ¼ −c2Tr½MM†� þ c4Tr½MM†MM†� þ d2Tr½M0M0†�
þ e3ðϵabcϵdefMa

dM
b
eM0c

f þ H:c:Þ

þ c3

�
γ1 ln

�
detM
detM†

�
þ ð1 − γ1Þ

TrðMM0†Þ
TrðM0M†Þ

�
2

: ð38Þ

The potential is invariant under Uð3ÞL ×Uð3ÞR with the
exception of the last term which breaks Uð1ÞA. The
symmetry breaking term has the form

VSB ¼ −2Tr½AS� ð39Þ

where A ¼ diagðA1; A2; A3Þ is a matrix proportional to the
three light quark masses. The model allows for two-quark
condensates, αa ¼ hSaai, as well as four-quark condensates
βa ¼ hS0aai. Here we assume [1] isotopic spin symmetry so
A1 ¼ A2 and

α1 ¼ α2 ≠ α3; β1 ¼ β2 ≠ β3: ð40Þ

We also need the “minimum” conditions,

�∂V0

∂S
�
þ
�∂VSB

∂S
�

¼ 0;

�∂V0

∂S0
�

¼ 0: ð41Þ

There are 12 parameters describing the Lagrangian and
the vacuum. These include the six coupling constants given
in Eq. (38), the two quark mass parameters (A1 ¼ A2; A3)
and the four vacuum parameters (α1 ¼ α2;α3; β1 ¼ β2; β3).
The four minimum equations reduce the number of needed
input parameters to eight. The details of numerical work for
solving this system are given in [8], and for the reader’s
convenience a summary is given in the Appendix.
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To further settle the notations we denote

Φ1
1 ¼

1ffiffiffi
2

p ðπ0 þ ηaÞ

Φ2
2 ¼

1ffiffiffi
2

p ð−π0 þ ηaÞ

Φ3
3 ¼ ηb

Φ01
1 ¼ 1ffiffiffi

2
p ðπ00 þ ηcÞ

Φ02
2 ¼ 1ffiffiffi

2
p ð−π00 þ ηcÞ

Φ03
3 ¼ ηd: ð42Þ

The Lagrangian in Eq. (37) displays chiral symmetry
breaking with the vacuum expectation values hSabi ¼ αaδ

a
b

and hS0ab i ¼ βaδ
a
b. However we will work in the SUð2ÞV

limit where α1 ¼ α2 and β1 ¼ β2 [this is obtained by setting
A1 ¼ A2 in Eq. (39)]. Consequently the scalar and pseu-
doscalar states become an admixture of two-quark and
four-quark components. Here we are interested in the
neutral pions and I ¼ 0 pseudoscalars. The transformation
matrix to the physical pions is [8]

�
π0p

π00p

�
¼ R−1

π

�
π0

π00

�
; ð43Þ

whereas that for the I ¼ 0 pseudoscalars is
0
BBB@

η1

η2

η3

η4

1
CCCA ¼ R−1

0

0
BBB@

ηa

ηb

ηc

ηd

1
CCCA: ð44Þ

Here Rπ and R0 are the corresponding rotation matrices and
depend on the model inputs.
The physical states in Eq. (43) are chosen to be

π0p ¼ π0ð137Þ
π00p ¼ π0ð1300Þ: ð45Þ

According to the best fit in [8] the best candidates for the
states in Eq. (44) are (see the Appendix)

η1 ¼ ηð547Þ
η2 ¼ ηð958Þ
η3 ¼ ηð1295Þ
η4 ¼ ηð1760Þ: ð46Þ

Probing the heavier eta mesons above 1 GeV is known
to be a challenging problem, particularly due to their
mixing with pseudoscalar glueballs which introduces
model dependency. Particularly, the status of ηð1405Þ and
ηð1475Þ are not quite established and speculated to be a good
“non-q̄q” candidate [24], or dynamically generated in the
f0ð980Þη channel [25]. The closeness of ηð1405Þ to the
lowest pseudoscalar glueball is investigated in [26], and its
proximity to ηð1475Þ is studied in an extended linear sigma
model in [27].
Next we need to evaluate the exact vertex of interaction

of the physical pseudoscalars with two photons for the
model exhibited in Eq. (37). For that we evaluate the term X
in the Lagrangian:

X ¼
�
−i

4

3

1

64π2
½ln Tr½x1M þMx1� − ln Tr½x1M† þM†x1�� − i

1

3

1

64π2
½ln Tr½x2M þMx2� − ln Tr½x2M† þM†x2��

− i
1

3

1

64π2
½ln Tr½x3M þMx3� − ln Tr½x3M† þM†x3��

�
ϵμνρσFμνFρσ

¼ e2

32π2
ϵμνρσFμνFρσ

�
π0ffiffiffi
2

p
α1

þ 5

3

ηaffiffiffi
2

p
α1

þ 1

3

ηb
α3

�

¼ e2

32π2
ϵμνρσFμνFρσ

�
1

α1
ffiffiffi
2

p ½ðRπÞ11π0p þ ðRπÞ12π00p þ
5

3
ffiffiffi
2

p ½ðR0Þ11η1 þ ðR0Þ12η2 þ ðR0Þ13η3 þ ðR0Þ14η4�

þ 1

3α3
½ðR0Þ21η1 þ ðR0Þ22η2 þ ðR0Þ23η3 þ ðR0Þ24η4�

�
: ð47Þ

From this one can extract the coupling for each pseudoscalar as

ifipiϵ
μνρσFμνFρσ ð48Þ

where fi (i ¼ 1.::6) is the coupling of the pseudoscalar pi as follows:

AMIR H. FARIBORZ and RENATA JORA PHYSICAL REVIEW D 95, 114001 (2017)

114001-6



f1ðπ0pÞ ¼
e2

32α1π
2

ffiffiffi
2

p ðRπÞ11

f2ðπ00pÞ ¼
e2

32α1π
2

ffiffiffi
2

p ðRπÞ12

f3ðη1Þ ¼
e2

32π2

�
5

3α1
ffiffiffi
2

p ðR0Þ11 þ
1

3α3
ðR0Þ21

�

f4ðη2Þ ¼
e2

32π2

�
5

3α1
ffiffiffi
2

p ðR0Þ12 þ
1

3α3
ðR0Þ22

�

f5ðη3Þ ¼
e2

32π2

�
5

3α1
ffiffiffi
2

p ðR0Þ13 þ
1

3α3
ðR0Þ23

�

f6ðη4Þ ¼
e2

32π2

�
5

3α1
ffiffiffi
2

p ðR0Þ14 þ
1

3α3
ðR0Þ24

�
: ð49Þ

The decay rate to two photons is then calculated as

Γðpi → γγÞ ¼ f2i m
3
pi

π
: ð50Þ

See [28,29] for a detailed theoretical discussion of the light
quark masses and of the excited pion decay constant.

IV. DECAY RATES AND COMPARISON WITH
THE EXPERIMENT

The central decay rate for π0p as taken from PDG [30] is

Γðπ0p → γγÞexp ¼ 7.64 × 10−3 KeV: ð51Þ
Various experimental measurements indicate very close
values:

Γðπ0p → γγÞ1 exp ¼ 7.25� 0.23 × 10−3 KeV

Γðπ0p → γγÞ2 exp ¼ 7.74� 0.66 × 10−3 KeV

Γðπ0p → γγÞ3 exp ¼ 7.82� 0.14 × 10−3 KeV ð52Þ

where the subscripts 1, 2 and 3 refer to [31,32] and [33]
respectively.
Unfortunately there are no experimental data regarding

the decay rates of π00p, η3 and η4. We apply Eq. (50)
together with the numerical values for all the parameters
involved computed in [8] to determine the theoretical decay
rates summarized in Table I.
The theoretical estimate for the decay Γðπ0p → γγÞ is in

excellent agreement with the experimental result and that
for Γðη1 → γγÞ is within the experimental range. The value
for Γðη2 → γγÞ is of the same order of magnitude and just
outside the experimental range. This result may imply that
the decay rate may receive some corrections at one loop but
can also be a signal that in the η’s sector might be an
unusual mixing among the pseudoscalar states and possible
glueball states that was not taken into account in the

initial Lagrangian. It is worthwhile here to make a short
comparison of our generalized linear sigma model with
standard results in chiral perturbation theory. In [34,35] and
[36] a two mixing angle scheme for the decay of the
pseudoscalar mesons in chiral perturbation theory was
introduced which was further discussed in [37,38] and
[17]. It is interesting to note how our model fits into this
scheme. For the situation where spontaneous symmetry
breaking occurs down to the SUð3ÞV subgroup of the chiral
group our model leads to a mixing of the pseudoscalar
constants with a single mixing angle. However when other
symmetry breaking terms participate and SUð3ÞV is further
broken down (case discussed here and in [8]) the generalized
linear sigma model is entirely equivalent at least from this
point of view to a scheme with two mixing angles. The
decays of π0p, η1 and η2 were calculated in chiral perturba-
tion theory with one loop corrections early on in [39,40].
Later in [17] these pseudoscalar decay rates were computed
in an actualized version of chiral perturbation theory. Our
effective generalized linear sigma model contains already at
tree level many of the important phenomenological features
of a low energy theory. Although we considered simple
linear coupling of the pseudoscalar mesons to two photons
our theoretical results are in good agreement with the
experimental ones. These results may be improved by
considering higher order terms in the axial anomaly or by
simply improving the basic Lagrangian. However this study
constitutes a separate challenge and should be treated in
detail in further works.
For the rest of the decays there are no experimental results,

only other theoretical estimates in the literature. For example
the result for Γðπ00p → γγÞ agrees in order of magnitudewith
the result obtained in [41] (Γðπ00p → γγÞ ¼ 3.6 KeV).
However our theoretical estimate for Γðη3 → γγÞ is almost
one order of magnitude higher than the estimate in [42]
(Γðη3 → γγÞ ¼ 0.093 KeV). These discrepancies are prob-
ably model dependent and only the experiments can decide
which one corresponds to the reality.

TABLE I. Comparison between the theoretical estimates for
the decay of the pseudoscalar to two photons and the exper-
imental data.

Decay rate to
two photons

Our model
prediction (KeV)

Experimental
result (KeV)

Γðπ0p→γγÞ ð7.665�0.007Þ×10−3 7.64×10−3 [30]
7.25�0.23×10−3 [31]
7.74�0.66×10−3 [32]
7.82�0.14×10−3 [33]

Γðπ00p→γγÞ 1.1�0.1 −
Γðη1→γγÞ 0.39�0.04 0.516�0.018 [30]
Γðη2→γγÞ 7.0�0.7 4.28�0.19 [30]
Γðη3→γγÞ 0.8�0.5 −
Γðη4→γγÞ 1.4�0.8 −
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V. ANOMALY TERM FOR THE NONET M0

Here we aim to compute the anomaly term associated
withM0. In doing so we first consider a model that contains
only the field M0. We need to take into account that the
tetraquark nonet transforms unusually under the axial
transformations [5]:

δAΦ0 ¼ −i½EA; S0�þ þ 2iS0TrEA

δAS0 ¼ i½EA;Φ0�þ − 2iΦ0TrEA ð53Þ

which can be summarized as

δAðM0Þ ¼ ½EA;M0�þ − 2M0TrEA: ð54Þ

Note that the difference comes only from the Uð1ÞA
transformation because the field M0 transforms as M0 →
exp½−4iν�M0 as opposed to the field M that transforms
as M → exp½2iν�M. The procedure for obtaining the
anomalous term is similar to that in Sec. II such that we

can define the relation between the currents Ja0μ and Ka0
μ as

before:

J0a3μ ¼ K0a1
μ − K0a2

μ

J0a8μ ¼ 1ffiffiffi
3

p ðK0a1
μ þ K0a2

μ − 2K0a3
μ Þ

J0a0μ ¼ 1ffiffiffi
3

p ðK0a1
μ þ K0a2

μ þ K0a3
μ Þ: ð55Þ

We introduce the following term for the M0 induced
anomaly:

X0 ¼ i
X
i¼1;3

a0i½ln TrðxiM0 þM0xiÞ

− ln TrðxiM0† þM0†xiÞ�ϵμνρσFμνFρσ: ð56Þ

Similar to the steps taken in Sec. II we need to compute
only − ∂X0

∂M0† δM
0†
k :

−
∂X0

∂M0† ½xkM0† þM0†xk − 2M0†� ¼ −i
X
i¼1;3

a0i
Tr½xiðxkM0† þM0†xk − 2M0†Þ þ ðxkM0† þM0†xk − 2M0†Þxi�

Tr½xiM0† þM0†xi�
ϵμνρσFμνFρσ

¼ −2i
X
i≠k

a0iϵ
μνρσFμνFρσ: ð57Þ

Then one obtains the anomaly equations as

∂μK0a1
μ þ 4ða02 þ a03ÞϵμνρσFμνFρσ ¼ 0

∂μK0a2
μ þ 4ða01 þ a03ÞϵμνρσFμνFρσ ¼ 0

∂μK0a3
μ þ 4ða01 þ a02ÞϵμνρσFμνFρσ ¼ 0: ð58Þ

From Eq. (58) one can construct the system of equations for
the coefficients a0i,

4ða020 þ a030Þ ¼
4

3

e2

16π2

4ða010 þ a030Þ ¼
1

3

e2

16π2

4ða010 þ a020Þ ¼
1

3

e2

16π2
; ð59Þ

which yields the following preliminary values of the
coefficients:

a010 ¼ −
1

3

e2

64π2

a020 ¼
2

3

e2

64π2

a030 ¼
2

3

e2

64π2
; ð60Þ

where the subscript 0 indicates that the values are calcu-
lated in the absence of the anomaly term for M. The
anomaly term for the fieldM0 being settled we need to take
into account also the presence of the fieldM. Since the full
anomaly equation must be fulfilled by both M and M0 the
most general possibility is

X þ X0 ¼
�
i
X
i¼1;3

ziai½ln Tr½xiM þMxi�

− ln Tr½xiM† þM†xi��
þ ia0i½ln Tr½xiM0 þM0xi�

− ln Tr½xiM0† þM0†xi��
�
ϵμνρσFμνFρσ; ð61Þ

where zi are parameters introduced in order to quantify our
lack of knowledge regarding the individual contributions of
M and M0. Then Eq. (59) is modified to

4ða02 þ a03Þ ¼
4

3

e2

16π2
ð1 − z1Þ

4ða01 þ a03Þ ¼
1

3

e2

16π2
ð1 − z2Þ

4ða01 þ a02Þ ¼
1

3

e2

16π2
ð1 − z3Þ: ð62Þ
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One can solve the system of equations to find

a01 ¼ −
e2

384π2
ð2þ z2 þ z3 − 4z1Þ

a02 ¼ −
e2

384π2
ð−4þ z3 − z2 þ 4z1Þ

a03 ¼ −
e2

384π2
ð−4 − z3 þ z2 þ 4z1Þ: ð63Þ

The decay rates to two photons are calculated from the
formula

Γðpi → γγÞ ¼ h2i m
3
pi

π
; ð64Þ

where

h1ðπ0pÞ¼−
� ffiffiffi

2
p

α1
½a1z1−a2z2�ðRπÞ11þ

ffiffiffi
2

p

β1
½a01−a02�ðRπÞ21

�

h2ðπ00pÞ¼−
� ffiffiffi

2
p

α1
½a1z1−a2z2�ðRπÞ12þ

ffiffiffi
2

p

β1
½a01−a02�ðRπÞ22

�

h3ðη1Þ¼−
� ffiffiffi

2
p

α1
½a1z1þa2z2�ðR0Þ11þ

ffiffiffi
2

p

β1
½a01þa02�ðR0Þ31

þ2
a3z3
α3

ðR0Þ21þ2
a03
β3

ðR0Þ41
�

h4ðη2Þ¼−
� ffiffiffi

2
p

α1
½a1z1þa2z2�ðR0Þ12þ

ffiffiffi
2

p

β1
½a01þa02�ðR0Þ32

þ2
a3z3
α3

ðR0Þ22þ2
a03
β3

ðR0Þ42
�

h5ðη3Þ¼−
� ffiffiffi

2
p

α1
½a1z1þa2z2�ðR0Þ13þ

ffiffiffi
2

p

β1
½a01þa02�ðR0Þ33

þ2
a3z3
α3

ðR0Þ23þ2
a03
β3

ðR0Þ43
�

h6ðη4Þ¼−
� ffiffiffi

2
p

α1
½a1z1þa2z2�ðR0Þ14þ

ffiffiffi
2

p

β1
½a01þa02�ðR0Þ34

þ2
a3z3
α3

ðR0Þ24þ2
a03
β3

ðR0Þ44
�
: ð65Þ

Here the values for the coefficients ai and a0i (i ¼ 1, 2, 3)
are extracted from Eqs. (28) and (63).
Since there are three undetermined coefficients z1, z2, z3

we equate the theoretical decay rates obtained for π0p, η1
and η2 with the experimental ones, Γðπ0p → γγÞexp ¼
7.67 × 10−3 KeV, Γðη1 → γγÞexp ¼ 0.516 KeV and
Γðη2 → γγÞexp ¼ 4.28 KeV, and solve for the parameters
z1, z2 and z3. This leads to eight sets of solutions among
which only four are acceptable from the experimental point
of view. Herewe took into account the total decay widths for
the pseudoscalars as taken from [30]: Γðπ00pÞexp ¼
400� 200 MeV, Γðη3Þexp ¼ 55� 5 MeV and Γðη4Þexp ¼
240� 30 MeV and the fact that the theoretical results
cannot exceed these values. Unfortunately there is little
experimental information about the decays of these pseu-
doscalars to extract more constraints. In Table II we
summarize the unknown decay rates for π00p, η3 and η4
computed for each set of solutions.
We note that our value for Γðπ00p → γγÞ of 6.0�

3.5 KeV overlaps with the theoretical estimate in [41] of
3.6 KeV but for the heavier eta mesons there are discrep-
ancies of one or more orders of magnitude [42].

VI. DISCUSSION

In this work we considered a generalized linear sigma
model discussed in [5–8] that contained both scalar and
pseudoscalar mesons and constructed an effective term that
satisfied the axial electromagnetic anomaly. The couplings
of the pseudoscalar mesons with two photons in our model
coincide in first order to those extracted from the Wess-
Zumino Witten term. In this framework we made a global
fit for the model parameters to predict the decay rates of six
pseudoscalars to two photons in two distinct cases: first
when the axial anomaly term associated to M0 was
neglected, and second when axial anomaly terms for both
M andM0 were present. In the first case (where the anomaly
term does not include M0), our predictions agree well with
the available experimental results, whereas in the second
case (where the anomaly term includes bothM andM0) our
model is able to fit the available data, and for the cases
where there are no experimental data, our model agrees
with some of the theoretical predictions in the literature but
differs from some others by one or more orders of
magnitude. The decay rates calculated in our model are

TABLE II. Theoretical estimates for the decay rates to two photons for π00p, η3 and η4 computed for the four sets of solutions for the
parameters z1, z2 and z3.

Γðπ00p → γγÞ (KeV) Γðη3 → γγÞ (MeV) Γðη4 → γγÞ (MeV) z1 z2 z3

6.0� 3.5 1.0� 0.6 2.2� 1.2 −1.07569 −8.08470 −16.48762
6.0� 3.5 2.0� 1.9 1.8� 0.6 −0.33176 −5.10897 −21.02232
6.0� 3.5 0.6� 0.6 0.1þ0.3

−0.1 0.36040 −2.34034 6.84749
6.0� 3.5 0.1� 0.1 0.2þ0.6

−0.2 1.10433 0.63540 2.31279
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very sensitive to the pseudoscalar masses, especially that of
the pion π0ð137Þ. The work presented here was within the
leading order of the generalized linear sigma model where
effective terms with more than eight quarks and antiquarks
have been neglected. We expect that the inclusion of
these higher order terms as well as the inclusion of scalar
and pseudoscalar glueballs will improve the estimates made
in this work, particularly for the decay properties of
heavier etas.
There is one further point that deserves clarification: that

of the transformation properties of the anomalous term
under the electromagnetic interaction and under the vector
symmetry. First we will show that indeed gauge invariance
is respected. Under the electromagnetic symmetry the field
M transforms as ð1þ iαQÞMð1 − iαQÞ. Then

Tr½xið1þ iαQÞMð1 − iαQÞ þ ð1þ iαQÞMð1 − iαQÞxi�
¼ Tr½xiM þMxi� þ iαTr½xiQM − xiMQþQMxi

−MQxi� ¼ 0; ð66Þ

as the matrices Q and xi commute because they are
diagonal.
The term X (and also X0) introduced in Eq. (21) breaks

not only the axial symmetry but also the vector SUð3ÞV
one. However it is assumed that the vector symmetry is
already broken by the quark mass term and moreover the
charge matrix does not commute with Uð3ÞV so this
breaking is expected. The agreement with the first order
Wess-Zumino Witten strengthens our findings.
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APPENDIX: BRIEF REVIEW OF THE
NUMERICAL ANALYSIS FOR MODEL

PARAMETERS AND ROTATION MATRICES

In this appendix we give a summary of numerical
determinations of the eight independent Lagrangian param-
eters of Eqs. (37) and (38). Five of these eight are
determined from the following masses together with the
pion decay constant:

m½a0ð980Þ� ¼ 980� 20 MeV

m½a0ð1450Þ� ¼ 1474� 19 MeV

m½πð1300Þ� ¼ 1300� 100 MeV

mπ ¼ 137 MeV

Fπ ¼ 131 MeV: ðA1Þ

Since m½πð1300Þ� has a large uncertainty, the Lagrangian
parameters would depend on the choice of this experi-
mental input. The sixth input is taken as the light “quark
mass ratio” A3=A1, which is varied over its appropriate
range (in this work we use 27–30).
The remaining two parameters (c3 and γ1) only affect the

isosinglet pseudoscalars (whose properties also depend on
the ten parameters discussed above). However, there are
several choices for determination of these two parameters
depending on how the four isosinglet pseudoscalars pre-
dicted in this model are matched to many experimental
candidates below 2 GeV. The two lightest predicted by the
model (η1 and η2) are identified with ηð547Þ and η0ð958Þ
with masses

mexp½ηð547Þ� ¼ 547.853� 0.024 MeV;

mexp½η0ð958Þ� ¼ 957.78� 0.06 MeV: ðA2Þ

For the two heavier ones (η3 and η4), there are six ways that
they can be identified with the four experimental candidates
above 1 GeV: ηð1295Þ, ηð1405Þ, ηð1475Þ, and ηð1760Þ
with masses

mexp½ηð1295Þ� ¼ 1294� 4 MeV;

mexp½ηð1405Þ� ¼ 1409.8� 2.4 MeV;

mexp½ηð1475Þ� ¼ 1476� 4 MeV;

mexp½ηð1760Þ� ¼ 1756� 9 MeV: ðA3Þ

This leads to six scenarios considered in detail in [8]. The
two experimental inputs for determination of the two
parameters c3 and γ1 are taken to be TrM2

η and detM2
η, i.e.

TrðM2
ηÞ ¼ TrðM2

ηÞexp;
detðM2

ηÞ ¼ det ðM2
ηÞexp: ðA4Þ

Moreover, for each of the six scenarios, γ1 is found from a
quadratic equation, and as a result, there are altogether 12
possibilities for determination of γ1 and c3. Since only
Tr and det of experimental masses are imposed for each of
these 12 possibilities, the resulting γ1 and c3 do not
necessarily recover the exact individual experimental
masses; therefore the best overall agreement between the
predicted masses (for each of the 12 possibilities) was
examined in [8]. Quantitatively, the goodness of each
solution was measured by the smallness of the following
quantity:

χsl ¼
X4
k¼1

jmtheo
sl ðηkÞ −mexp

s ðηkÞj
mexp

s ðηkÞ
; ðA5Þ

in which s corresponds to the scenario (i.e. s ¼ 1 � � � 6) and l
corresponds to the solution number (i.e. l ¼ I, II). The
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quantity χsl × 100 gives the overall percent discrepancy
between our theoretical prediction and experiment. For the
six scenarios and the two solutions for each scenario, χsl was
analyzed inRef. [8]. For the third scenario [corresponding to
identification of η3 and η4 with experimental candidates
ηð1295Þ and ηð1760Þ] and solution I the best agreementwith
the mass spectrum of the eta system was obtained (i.e. χ3I
was the smallest). Furthermore, all six scenarios were
examined in the analysis of η0 → ηππ decay in [43] and it
was found that the best overall result (both for the partial
decaywidth of η0 → ηππ aswell as the energy dependence of
its squared decay amplitude) is obtained for scenario “3I”

consistent with the analysis of Ref. [8]. In this work, we use
the result of the “3I” scenario.
The numerical values for the rotation matrices defined

in (43) and (44) can be consequently determined. Since
two of the model inputs A3=A1 and m½πð1300Þ� have
large uncertainties, the numerical values of these rota-
tion matrices naturally have some dependencies on these
two inputs. Table III gives numerical values of R−1

π for
three values of m½πð1300Þ� (this rotation matrix is
independent of A3=A1), and Table IV gives the rotation
matrix R−1

0 for three values of m½πð1300Þ� and three
values of A3=A1.
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1.215 1.300 1.400

0.923 0.385 0.924 0.382 0.952 0.306
−0.385 0.923 −0.382 0.924 −0.306 0.952

TABLE IV. Rotation matrix R−1
0 for different values of A3=A1 and m½πð1300Þ�.

m½πð1300Þ�ðGeVÞ →
A3=A1↓

1.215 1.300 1.400

27.0

−0.637 0.692 −0.219 0.261 −0.646 0.695 −0.186 0.256 −0.658 0.717 −0.132 0.189
0.750 0.456 −0.349 0.329 −0.743 −0.538 0.372 −0.147 −0.738 −0.607 0.288 −0.062
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0.044 0.031 0.752 0.657 0.162 0.115 0.743 0.639 0.150 0.104 0.743 0.644

28.5

−0.656 0.677 −0.212 0.258 −0.666 0.679 −0.176 0.254 −0.678 0.700 −0.123 0.187
0.737 0.487 −0.355 0.306 −0.724 −0.558 0.379 −0.142 −0.719 −0.627 0.294 −0.064
−0.150 −0.551 −0.517 0.637 −0.060 −0.461 −0.527 0.711 −0.024 −0.325 −0.592 0.737
0.060 0.0417 0.749 0.658 0.170 0.119 0.740 0.640 0.153 0.106 0.741 0.646

30.0

−0.675 0.661 −0.205 0.255 −0.686 0.662 −0.166 0.252 −0.699 0.681 −0.114 0.185
0.722 0.512 −0.363 0.291 −0.703 −0.579 0.388 −0.141 −0.697 −0.647 0.300 −0.067
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