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In the Standard Model (SM) we calculate the decay rate of the neutron radiative β− decay to order
Oðα2=π2 ∼ 10−5Þ, where α is the fine-structure constant, and radiative corrections to order Oðα=π ∼ 10−3Þ.
The obtained results together with the recent analysis of the neutron radiative β− decay to next-to-leading
order in the large proton-mass expansion, performed by Ivanov et al. [Phys. Rev. D 95, 033007 (2017)],
describe recent experimental data by the RDK II Collaboration [Bales et al., Phys. Rev. Lett. 116, 242501
(2016)] within 1.5 standard deviations. We argue a substantial influence of strong low-energy interactions
of hadrons coupled to photons on the properties of the amplitude of the neutron radiative β− decay under
gauge transformations of real and virtual photons.
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I. INTRODUCTION

During a long period the radiative β− decay of a free
neutron n → pþ e− þ ν̄e þ γ was used as an auxiliary
process in the analysis of the radiative corrections to the
neutronβ− decay for the cancellation of infrared divergences,
coming from the virtual photon exchanges [1–7]. Only
starting from 1996 has it been accepted as a physical process
because of the work by Gaponov and Khafizov [8], who
made the first calculation of the energy spectrum and the
decay rate. Then, the neutron radiative β− decay was
reinvestigated in [9] and [10,11]. The first experimental
data BRβγ ¼3.13ð35Þ×10−3 and BRβγ ¼ 3.09ð32Þ × 10−3,
measured by Nico et al. [12] and Cooper et al. [13], for the
photon-energy region 15 keV ≤ ω ≤ 340 keV, were in
agreement within one standard deviation with the theoretical
values BRβγ ¼ 2.87 × 10−3 [10] and BRβγ ¼ 2.85 × 10−3,
calculated by Gardner [12] using the theoretical decay rate,
published in [9]. Recently new precise experimental values
of the branching ratios of the radiative β− decay of a free
neutron have been reported by the RDK II Collaboration
Bales et al. [14]: BRðexpÞ

βγ ¼3.35ð16Þ×10−3 and BRðexpÞ
βγ ¼

5.82ð66Þ×10−3, measured for the photon-energy regions
14 keV ≤ ω ≤ 782 keV and 0.4 keV≤ω≤ 14 keV, respec-
tively.Recently [15] the rate of the neutron radiativeβ− decay
has been recalculated in the Standard Model (SM) and in the
tree approximation to next-to-leading order in the large
proton mass expansion by taking into account the

contributions of the weak magnetism and proton recoil.
As has been found the new theoretical values of the branching
ratios BRβγ¼3.04×10−3 and BRβγ¼5.08×10−3, calculated
for experimental photon-energy regions 14 keV ≤ ω ≤
782 keV and 0.4 keV≤ω≤ 14 keV, respectively, agree
with new experimental values BRðexpÞ

βγ ¼ 3.35ð16Þ × 10−3

and BRðexpÞ
βγ ¼ 5.82ð66Þ × 10−3 only within 2 and 1.2 stan-

dard deviations. As has been shown in [15] the relative
contributions of the weak magnetism and proton recoil to
the branching ratios of the neutron radiative β− decay are of
about 0.7%. Of course, these contributions are small com-
pared to the error bars of the experimental values but they are
by a factor 4 larger than the contribution of the weak
magnetism and proton recoil 0.16% to the rate of the neutron
β− decay [10]. As has been pointed out in [15] the con-
tributions to the rate of the neutron radiative β− decay,
calculated in the SM and in the tree approximation to
next-to-leading order in the large baryon mass expansion
including the contributions of baryon resonances (see, for
example, Bernard et al. [9]), cannot in principle exceed 1.5%.
So one may expect some tangible contributions only beyond
the tree approximation, taking into account, for example, one-
virtual-photon exchanges to leading order in the large proton
mass expansion, i.e., the radiative corrections of order
Oðα=πÞ. We would like to remind the reader that radiative
corrections of orderOðα=πÞ change the rate of the neutron β−
decay byabout 3.75% [10,15]. Because of an enhancement of
the contributions of order 1=M, where 2M ¼ mn þmp is an
averaged nucleon mass [10,15], to the rate of the neutron
radiative β− decay, one may also expect an enhancement of
the relative contributions of the radiative corrections of
order Oðα=πÞ.
For the first time the radiative corrections of order

Oðα=πÞ for the analysis of T-odd momentum correlations
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in the neutron radiative β− decay to order Oðα2=π2Þ have
been calculated by Gardner and He [16,17]. In this paper
we give a complete analysis of the radiative corrections to
order Oðα=πÞ to the rate of the neutron radiative β− decay,
caused by pure quantum electrodynamics (QED), where
photons couple to the pointlike proton and electron with a
contribution of strong low-energy interactions defined by
the axial coupling constant λ only.
A complete set of Feynman diagrams, describing the

amplitude of the neutron radiative β− decay in the tree and
one-loop approximation, are shown in Figs. 1–5. In Figs. 1–4
the states of real and virtual photons with 4-momenta
k and q, respectively, are described by the polarization vector
ε�λ0 ðkÞ with λ0 ¼ 1, 2 and a Green functionDαβðqÞ ¼ ðηαβ −
ð1 − ξÞqαqβ=q2Þ=ðq2 þ i0Þ [10], where the polarization
vector obeys the constraint ε�λ0 ðkÞ · k ¼ 0 with k2 ¼ 0 and
ξ is a gauge parameter. The Feynman diagrams in Fig. 5
describe a neutron radiative β− decay with two real photons
in the final state. Integrating over degrees of freedom of one
of the photons one obtains the contribution of order
Oðα2=π2Þ to the rate of the neutron radiative β− decay with
one real photon in the final state. The contributions of strong
low-energy hadronic interactions in the Feynman diagrams
Figs. 1–5 (see also Fig. [6]) are denoted by shaded regions.
The contributions of pure QED are given by the Feynman

diagrams in Figs. 1(a), 1(b), 2, and 5, where real and virtual
photons couple to the pointlike proton and electron and
strong low-energy hadronic and electromagnetic interactions
are factorized. The contribution of strong low-energy

interactions is described by the axial coupling constant λ
only. In the diagram Fig. 1(c) a real photon is emitted by a
hadronic block. In spite of a possible dependence of the
contribution of this diagram on electron and photon energies
it has been neglected in the first calculations of the neutron
radiative β− decay by Gaponov and Khafizov [8] and in the
subsequent calculations byBernard et al. [9] and Ivanov et al.
[10,15]. In this paper we also accept such an approximation.
Weneglect the contributions of all Feynmandiagrams,where
even if one photon (real or virtual) is emitted or absorbed by a
hadronic block. In Sec. IV we propose a justification of the
neglect of the contribution of the diagram in Fig. 1(c).
However, an analysis of contributions of strong low-energy
hadronic interactions in the diagrams in Figs. 3 and 4
demands a special consideration and goes beyond the scope
of this paper.
It is well known that the amplitude of the neutron

radiative β− decay should be gauge invariant. This means
that when making a gauge transformation of a real photon
wave function, i.e., replacing the photon polarization vector
ε�λ0 ðkÞ by ε�λ0 ðkÞ → ε�λ0 ðkÞ þ ck, where c is an arbitrary
constant, the contribution proportional to ck should vanish
[18] (see also [19]). In Appendixes A and B of the
Supplemental Material [20] we investigate the properties
of Feynman diagrams in Figs. 1 and 2 with respect to a
gauge transformation ε�λ0 ðkÞ → ε�λ0 ðkÞ þ ck. By means of a
direct calculation we show that in Fig. 1 the sum of the
diagrams Figs. 1(a) and 1(b) is gauge invariant. This
implies that the diagram Fig. 1(c) should be gauge invariant

(a) (b) (c)

FIG. 1. The Feynman diagrams, defining the contribution to the amplitude of the neutron radiative β− decay in the tree approximation
to order e.

(a) (b) (c)

(d) (e) (f)

FIG. 2. The Feynman diagrams, defining the contribution to the amplitude of the neutron radiative β− decay of order e3, caused by
pure QCD.
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by itself. In turn, in Fig. 2 the diagrams with photons
coupled to the proton [Figs. 2(a)–2(c)] and electron
[Figs. 2(d)–2(f)] are invariant under a gauge transformation
ε�λ0 ðkÞ → ε�λ0 ðkÞ þ ck separately. We show that invariance of
the diagrams in Fig. 2 with respect to a gauge trans-
formation ε�λ0 ðkÞ → ε�λ0 ðkÞ þ ck leads to Ward identities,
which impose well-known constraints on the renormaliza-
tion parameters [18] and certain constraints on the structure
functions (see Appendix B of the Supplemental Material
[20]). It is important to emphasize that to leading order in
the large proton mass expansion the contribution of the
diagram in Fig. 1(a) is proportional to the time component
of the photon polarization vector ε0�λ0 ðkÞ, which vanishes in

the physical gauge ε�λ0 ðkÞ ¼ ð0; ε⃗�λ0 ðk⃗ÞÞ, where the polari-

zation vector ε⃗�λ0 ðk⃗Þ obeys the constraint k⃗ · ε⃗�λ0 ðk⃗Þ ¼ 0 [21]
(see also [10,15,22]). As has been shown in [8–10,15] the
contribution of the diagrams in Fig. 1, taken to leading
order in the large proton mass expansion with a real photon
in the physical gauge ε�λ0 ðkÞ ¼ ð0; ε⃗�λ0 ðk⃗ÞÞ, describes well

the main part of the branching ratio of the neutron radiative
β− decay (see Table I).
As regards the diagrams in Fig. 2, to leading order in the

large proton mass expansion the contribution of the dia-
grams Figs. 2(a)–2(c) becomes proportional to ε0�λ0 ðkÞ and
vanishes in the physical gauge ε�λ0 ðkÞ ¼ ð0; ε⃗�λ0 ðk⃗ÞÞ. As a
result, only the diagrams Figs. 2(d)–2(f) give a contribution
to the amplitude of the neutron radiativeβ− decay, calculated
to leading order in the large proton mass expansion with a
real photon in the physical gauge ε�λ0 ðkÞ ¼ ð0; ε⃗�λ0 ðk⃗ÞÞ (see
Appendix B of the Supplemental Material [20]).
According to Sirlin [5], the contributions of the Feynman

diagrams with one-loop corrections, which are shown in
Figs. 2–4, should be also invariant under a gauge trans-
formation of a virtual photon, which reduces to a redefinition
of a longitudinal part of a photon Green function
DαβðqÞ → DαβðqÞ þ cðq2Þqαqβ, where cðq2Þ is an arbitrary
function of q2 [5]. In Appendix B of the Supplemental
Material [20] we show that the contributions of the diagrams
in Fig. 2 are invariant also under a gauge transforma-
tion DαβðqÞ → DαβðqÞ þ cðq2Þqαqβ.
Unlike the Feynman diagrams in Fig. 2 the properties

and calculation of the set of Feynman diagrams in

(a) (b)

(c) (d)

FIG. 3. The Feynman diagrams, defining the main contribution
to the amplitude of the neutron radiative β− decay of order e3.

(a) (b) (c)

(d)

(g) (h)

(e) (f)

FIG. 4. The Feynman diagrams, responsible for restoration of the gauge invariance of the Feynman diagrams Figs. 3(c) and 3(d).

FIG. 5. The Feynmandiagrams, defining themain contribution of
order Oðα2=π2Þ to the rate of the neutron radiative β− decay n→
pþe−þ ν̄eþγþγ with one detected and one undetected photon.

PRECISION THEORETICAL ANALYSIS OF NEUTRON … PHYSICAL REVIEW D 95, 113006 (2017)

113006-3



Figs. 3 and 4 are not so simple and transparent. In
Appendix C of the Supplemental Material [20] we show
that the contributions of the diagrams Figs. 3(a) and 3(b),
where strong low-energy and electromagnetic interactions
are factorized, vanish after renormalization of masses
and wave functions of the proton and electron. In turn,
the diagrams Figs. 3(c) and 3(d) cannot be treated sepa-
rately from the diagrams in Fig. 4, since by themselves they
are not invariant under gauge transformations ε�λ0 ðkÞ →
ε�λ0 ðkÞ þ ck andDαβðqÞ → DαβðqÞ þ cðq2Þqαqβ. Following
Sirlin [5] we assume that required gauge invariance can be
fulfilled only for a sum of the Feynman diagrams Figs. 3(c),
3(d), and 4, where strong low-energy hadronic and electro-
magnetic interactions are overlapped and photons (real and
virtual) are emitted or absorbed by a hadronic block.
Such an assertion is not proved but based on the

following observation. After a removal of the lines of a
real photon emission the diagrams Figs. 3(c) and 3(d)
reduce themselves to the diagram Fig. 6(a), which, as has
been shown by Sirlin [5], gives the main contribution of the
radiative corrections of order Oðα=πÞ to the rate of the
neutron β− decay. However, the diagram Fig. 6(a) by itself
is not invariant under a gauge transformation DαβðqÞ →
DαβðqÞ þ cðq2Þqαqβ. As has been pointed out by Sirlin [5],
only a sum of the diagrams in Fig. 6 should be gauge
invariant. However, an exact calculation of the diagrams
Figs. 6(b) and 6(c) demands a certain model of strong low-
energy interactions of hadrons coupled to photons at low
energies. Nevertheless, Sirlin, using the current algebra
approach [5,23], has succeeded in showing that the con-
tributions of the diagrams Figs. 6(b) and 6(c) do not depend
on the electron energy Ee. Such a remarkable property of
these diagrams has allowed Sirlin to decompose the
contribution of the diagram Fig. 6(a) into invariant and

noninvariant parts with respect to a gauge transformation
DαβðqÞ → DαβðqÞ þ cðq2Þqαqβ in such a way that a gauge-
noninvariant part does not depend on the electron energy.
Then, a constant gauge-noninvariant part has been merely
absorbed by formal renormalization of the Fermi weak
coupling constantGF and the axial coupling constant λ. We
would like to emphasize that, unfortunately, the diagrams
Figs. 3(c) and 3(d) do not possess such a remarkable
property. Nevertheless, it is obvious that different insertions
of real photon lines transform the diagrams in Fig. 6 into a
set of Feynman diagrams Figs. 3(c), 3(d), and 4 and should
not destroy gauge invariance of these diagrams with respect
to a gauge transformation DαβðqÞ → DαβðqÞ þ cðq2Þqαqβ.
As a result, the analytical analysis of the diagrams
Figs. 3(c), 3(d), and 4, which is performed in
Appendixes C and D of the Supplemental Material [20],
runs as follows. Firstly, we show that to leading order in the
large proton mass expansion the diagram Fig. 3(d), calcu-
lated with the contribution of strong low-energy hadronic
interactions given by the axial coupling constant λ only,
vanishes in the physical gauge of a real photon
ε�λ0 ðkÞ ¼ ð0; ε⃗�λ0 ðk⃗ÞÞ. Secondly, we calculate the diagram
Fig. 3(c) to leading order in the large proton mass
expansion and in the physical gauge of a real photon.
After that we decompose the contribution of the diagram
Fig. 3(c) into invariant and noninvariant parts with respect
to a gauge transformation DαβðqÞ → DαβðqÞ þ cðq2Þqαqβ.
Keeping only the part that is invariant under a gauge
transformation DαβðqÞ → DαβðqÞ þ cðq2Þqαqβ, and
removing from it a part independent of the electron Ee
and photon ω energy by renormalization of the Fermi weak
coupling and axial coupling constant, we obtain a con-
tribution, which can be accepted as a physical contribution
of the diagram Fig. 3(c) to the amplitude and rate of the

TABLE I. Branching ratios of the neutron radiative β− decay for three photon-energy regions, calculated for the lifetime of the neutron

τn ¼ 879.6ð1.1Þ s [10]. The branching ratio BRðFig:1Þ
βγ takes into account the contributions of the weak magnetism and proton recoil,

calculated in [15] to next-to-leading order in the large proton mass expansion.

ω (keV) BRβγ (experiment) BRðFig:1Þ
βγ BRðFig:2Þ

βγ BRðFig:3Þ
βγ BRðFig:5Þ

βγ BRβγ (theory)

15 ≤ ω ≤ 340 ð3.09� 0.32Þ × 10−3 [13] 2.89 × 10−3 0.95 × 10−7 0.65 × 10−4 0.52 × 10−5 2.960 × 10−3

14 ≤ ω ≤ 782 ð3.35� 0.05½stat� � 0.15½syst�Þ × 10−3 [14] 3.04 × 10−3 1.23 × 10−7 0.68 × 10−4 0.55 × 10−5 3.114 × 10−3

0.4 ≤ ω ≤ 14 ð5.82� 0.23½stat� � 0.62½syst�Þ × 10−3 [14] 5.08 × 10−3 0.03 × 10−7 1.54 × 10−4 3.23 × 10−5 5.266 × 10−3

(a) (b) (c)

FIG. 6. The Feynman diagrams, defining the main contribution of the radiative corrections of order Oðα=πÞ, caused by one-virtual-
photon exchanges, to the neutron β− decay (see Sirlin [5]).
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neutron radiative β− decay to orderOðα2=π2Þ. What then is
the role of the Feynman diagrams in Fig. 4?
As regards the diagrams in Fig. 4, since the contribution

of them cannot be calculated in a model-independent way,
we follow Sirlin [5] and assume that the diagrams in
Fig. 4 (i) cancel a gauge-noninvariant part of the diagram
Fig. 3(c), determined relative to a gauge transformation
DαβðqÞ → DαβðqÞ þ cðq2Þqαqβ, and the rest (ii) either
vanishes to leading order in the proton mass expansion
in the physical gauge of a real photon ε�λ0 ðkÞ ¼ ð0; ε⃗�λ0 ðk⃗ÞÞ
(see Appendix D of the Supplemental Material [20]) or
(iii) is a constant, which can be absorbed by renormaliza-
tion of the Fermi coupling constant GF and the axial
coupling constant λ. This agrees also well with an
assumption that different insertions of real photons’ lines
into the diagrams in Fig. 6 do not corrupt the properties of
the Feynman diagrams in Figs. 3(c), 3(d), and 4 under a
gauge transformation of a photon Green function
DαβðqÞ → DαβðqÞ þ cðq2Þqαqβ even if to leading order
in the large proton mass expansion. In Appendix D of the
Supplemental Material [20] we analyze the contributions of
the diagrams Figs. 4(f) and 4(g), where strong low-energy
interactions are given by the axial coupling constant λ only.
We show that to leading order in the large proton mass
expansion the contributions of these diagrams vanish.
Hence, an important contribution, which may cancel a
gauge-noninvariant part of the diagram Fig. 3(c), is able to
come only from the diagrams, where a real or virtual
photon couple to a hadronic block.
The diagram in Fig. 5 defines one of a set of Feynman

diagrams of the neutron radiative β− decay with emission of
two real photons. Such a process with one undetected
photon can imitate a contribution of order Oðα2=π2Þ to the
rate of the neutron radiative β− decay. All diagrams of the
neutron radiative β− decay with emission of one or two
photons by the proton, calculated to leading order in the
large proton mass expansion, do not contribute to the rate of
the neutron radiative β− decay in the physical gauge of real
photons. Then, the contributions of the diagrams with
emission of photons from the hadronic blocks are neglected
(see a discussion in Sec. IV). Thus, in the accepted
approximation the main contribution to the rate of the
neutron radiative β− decay is defined by the Feynman
diagrams in Fig. 5 with the account for the contributions,
caused by symmetry of the final state with respect to
symmetry properties of the two photons in the final state of
the decay. For the analytical calculation of the diagram in
Fig. 5 the contribution of strong low-energy interactions is
defined by the axial coupling only. The analytical calcu-
lation of the diagrams in Fig. 5 is given in Appendix E of
the Supplemental Material [20].
The paper is organized as follows. In Sec. II we give a

short description of the renormalization procedure of
effective low-energy electroweak interactions for the neu-
tron radiative β− decay. In Sec. III we adduce the

contributions of the Feynman diagrams in Figs. 1–5 to
the rate of the neutron radiative β− decay. The numerical
values of the branching ratio of the neutron radiative β−

decay for the three regions of photon energies
(i) 15 keV ≤ ω ≤ 350 keV, (ii) 14 keV ≤ ω ≤ 782 keV
and (iii) 0.4 keV ≤ ω ≤ 14 keV are given in Table I. In
Sec. IV we discuss the obtained results. In the
Supplemental Material [20] we give detailed analytical
calculations and analysis of the contributions of Feynman
diagrams in Figs. 1–5 to the amplitude and rate of the
neutron radiative β− decay.
Of course, we have to confess that themain problem of our

analysis of the radiative corrections to order Oðα=πÞ, defin-
ing corrections to order Oðα2=π2Þ to the rate of the neutron
radiative β− decay, concerns the contributions of diagrams
with real or virtual photons coupled to a hadronic block. A
justification of our assumption concerning the properties of
these diagrams within a certain model of strong low-energy
interactions of hadrons coupled to photons should be
important for a confirmation of the approximation accepted
in this paper and the results obtained therein. We would like
to accentuate that unlike a passive role of strong low-energy
hadronic interactions in the radiative corrections of order
Oðα=πÞ to the rate of the neutron β− decay, strong low-
energy interactions of hadrons coupled to real and virtual
photons in the diagrams in Fig. 4 should play a more
important role, going beyond a formal renormalization of
the Fermi weak coupling and axial coupling constant, but
give some contributions, which depend on the electron and
photon energies and momenta, and should cancel a gauge-
noninvariant part of the diagram Fig. 3(c). The observed
peculiarities of the Feynman diagrams Figs. 3 and 4 agree
well with an important role of strong low-energy hadronic
interactions in decay processes that have been already
pointed out by Weinberg [24]. Thus, the problem of strong
low-energy hadronic interactions in the neutron radiative β−

decay to orderOðα2=π2Þ demands a special analysis and we
are planning to perform such a model-dependent analysis of
the neutron radiative β− decay to order Oðα2=π2Þ in our
forthcoming publication.

II. RENORMALIZATION PROCEDURE OF
EFFECTIVE LOW-ENERGY ELECTROWEAK

INTERACTIONS FOR THE NEUTRON
RADIATIVE β− DECAY

In the Standard Model of electroweak interactions the
neutron radiative β− decay, defined in the one-loop approxi-
mation with one-virtual-photon exchanges, is described by
the following interactions,

LintðxÞ ¼ LWðxÞ þ LemðxÞ; ð1Þ

where LWðxÞ is the effective Lagrangian of low-energy
V − A interactions with a real axial coupling constant
λ ¼ −1.2750ð9Þ [25] (see also [10,15]),
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LWðxÞ ¼ −
GFffiffiffi
2

p Vud½ψ̄pðxÞγμð1þ λγ5ÞψnðxÞ�

× ½ψ̄eðxÞγμð1 − γ5ÞψνðxÞ�; ð2Þ

where GF ¼ 1.1664 × 10−11 MeV−2 is the Fermi coupling
constant, and jVudj ¼ 0.97417ð21Þ is the Cabibbo-
Kobayashi-Maskawa matrix element [26]. Then, ψpðxÞ,
ψnðxÞ, ψeðxÞ and ψνðxÞ are the field operators of the
proton, neutron, electron and antineutrino, respectively,
and γμ and γ5 are the Dirac matrices [18]. Since we calculate
the radiative corrections of order Oðα=πÞ to the neutron
radiative β− decay to leading order in the large proton mass
expansion, in the effective LagrangianLWðxÞwe do not take
into account the contribution of the weak magnetism
proportional to 1=M, where 2M ¼ mn þmp is an averaged
nucleon mass [15].
For the calculation of the radiative corrections to order

Oðα=πÞ of the Lagrangian of the electromagnetic inter-
action LemðxÞ we take in the following form,

LemðxÞ ¼ −
1

4
Fð0Þ
μν ðxÞFð0ÞμνðxÞ − 1

2ξ0
ð∂μAð0ÞμðxÞÞ2

þ ψ̄0eðxÞðiγμ∂μ −m0eÞψ0eðxÞ
− ð−e0Þψ̄0eðxÞγμψ0eðxÞAð0Þ

μ ðxÞ
þ ψ̄0pðxÞðiγμ∂μ −m0pÞψ0pðxÞ
− ðþe0Þψ̄0pðxÞγμψ0pðxÞAð0Þ

μ ðxÞ; ð3Þ

where Fð0Þ
μν ðxÞ ¼ ∂μA

ð0Þ
ν ðxÞ − ∂νA

ð0Þ
μ ðxÞ is the electromag-

netic field strength tensor of the bare (unrenormalized)

electromagnetic field operator Að0Þ
μ ðxÞ; ψ0eðxÞ and ψ0pðxÞ

are bare operators of the electron and proton fields with
bare masses m0e and m0p, respectively; and −e0 and þe0
are bare electric charges of the electron and proton,
respectively. Then, ξ0 is a bare gauge parameter. After
the calculation of the one-loop corrections of orderOðα=πÞ
a transition to the renormalized field operators, masses and
electric charges is defined by the Lagrangian

LemðxÞ ¼ −
1

4
FμνðxÞFμνðxÞ − 1

2ξ
ð∂μAμðxÞÞ2

þ ψ̄eðxÞðiγμ∂μ −meÞψeðxÞ
− ð−eÞψ̄eðxÞγμψeðxÞAμðxÞ
þ ψ̄pðxÞðiγμ∂μ −mpÞψpðxÞ
− ðþeÞψ̄pðxÞγμψpðxÞAμðxÞ þ δLemðxÞ; ð4Þ

where AμðxÞ, ψeðxÞ and ϕpðxÞ are the renormalized
operators of the electromagnetic, electron and proton fields,
respectively;me and mp are the renormalized masses of the
electron and proton; e is the renormalized electric charge;
and ξ is the renormalized gauge parameter. The Lagrangian
δLemðxÞ contains a complete set of the counterterms [27],

δLemðxÞ¼−
1

4
ðZ3−1ÞFμνðxÞFμνðxÞ−Z3−1

Zξ

1

2ξ
ð∂μAμðxÞÞ2

þðZðeÞ
2 −1Þψ̄eðxÞðiγμ∂μ−meÞψeðxÞ

− ðZðeÞ
1 −1Þð−eÞψ̄eðxÞγμψeðxÞAμðxÞ

−ZðeÞ
2 δmeψ̄eðxÞψeðxÞ

þðZðpÞ
2 −1Þψ̄pðxÞðiγμ∂μ−mpÞψpðxÞ

− ðZðpÞ
1 −1ÞðþeÞψ̄pðxÞγμψpðxÞAμðxÞ

−ZðpÞ
2 δmpψ̄pðxÞψpðxÞ; ð5Þ

where Z3, ZðeÞ
2 , ZðeÞ

1 , ZðpÞ
2 , ZðpÞ

1 , δme and δmp are the
counterterms. Here Z3 is the renormalization constant of

the electromagnetic field operator Aμ, Z
ðeÞ
2 and ZðeÞ

1 are the
renormalization constants of the electron field operator ψe
and the electron-electron-photon (e−e−γ) vertex, respec-

tively; ZðpÞ
2 and ZðpÞ

1 are the renormalization constants of
the proton field operator ψp and the proton-proton-photon
(ppγ) vertex, respectively. Then, ð−eÞ and ðþeÞ, me and
mp, and δme and δmp are the renormalized electric charges
and masses and the mass counterterms of the electron and
proton, respectively. Rescaling the field operators [27,28]

ffiffiffiffiffi
Z3

p
AμðxÞ ¼ Að0Þ

μ ðxÞ;ffiffiffiffiffiffiffiffi
ZðeÞ
2

q
ψeðxÞ ¼ ψ0eðxÞ;ffiffiffiffiffiffiffiffi

ZðpÞ
2

q
ψpðxÞ ¼ ψ0pðxÞ ð6Þ

and denoting me þ δme ¼ m0e, mp þ δmp ¼ m0p and
Zξξ ¼ ξ0 we arrive at the Lagrangian

LemðxÞ¼−
1

4
Fð0Þ
μν ðxÞFð0ÞμνðxÞ− 1

2ξ0
ð∂μAð0ÞμðxÞÞ2

þ ψ̄0eðxÞðiγμ∂μ−m0eÞψ0eðxÞ
− ð−eÞZðeÞ

1 ðZðeÞ
2 Þ−1Z−1=2

3 ψ̄0eðxÞγμψ0eðxÞAð0Þ
μ ðxÞ

þ ψ̄0pðxÞðiγμ∂μ−m0pÞψ0pðxÞ
− ðþeÞZðpÞ

1 ðZðpÞ
2 Þ−1Z−1=2

3 ψ̄0pðxÞγμψ0pðxÞAð0Þ
μ ðxÞ:

ð7Þ

Because of the Ward identities ZðeÞ
1 ¼ ZðeÞ

2 and ZðpÞ
1 ¼ ZðpÞ

2

[18,27,28], we may replace ð−eÞZ−1=2
3 ¼ −e0 and

ðþeÞZ−1=2
3 ¼ þe0. This brings Eq. (7) to the form of

Eq. (3). We would like to emphasize that to order
Oðα=πÞ the renormalization constant Z3 is equal to unity,
i.e., Z3 ¼ 1. This is because of the absence of closed
fermion loops, giving contributions of order Oðα2=π2Þ to
the amplitude of the neutron radiative β− decay that goes
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beyond the accepted approximation Oðα=πÞ for the ampli-
tude and Oðα2=π2Þ for the rate of the neutron radiative
β− decay. Hence, to order Oðα=πÞ the bare e0 and
renormalized e electric charges are equal, i.e., e0 ¼ e.
Now we may proceed to the discussion of the contributions
of the radiative corrections of order Oðα=πÞ, where α ¼
e2=4π ¼ 1=137.036 is the fine-structure constant [26], to
the amplitude and rate of the neutron radiative β− decay.
The detailed calculations and analysis of the Feynman
diagrams in Figs. 2–5, defining a complete set of radiative
corrections of order Oðα=πÞ, we give in the Supplemental
Material [20]. In Sec. III we adduce the analytical expres-
sions for the contributions of the diagrams in Figs. 2–5 to
the rate of the neutron radiative β− decay. The numerical
values are collected in Table I. For completeness we take
into account the tree-level contribution, given by the
Feynman diagrams in Fig. 1 and calculated in [15] to

order 1=M, including corrections of the weak magnetism
and proton recoil.

III. RATE OF NEUTRON RADIATIVE β−
DECAY WITH ONE DETECTED PHOTON

The rate of the neutron radiative β− decay with a photon,
detected in the photon-energy region ωmin ≤ ω ≤ ωmax, is
given by

λβγðωmax;ωminÞ ¼
X5
j¼1

λðFig jÞβγ ðωmax;ωminÞ; ð8Þ

where λðFig jÞβγ ðωmax;ωminÞ are the rates, caused by the
contributions of the diagrams in Fig. j for j ¼ 1; 2;…; 5.
They are calculated in the Supplemental Material [20]. To
leading order in the large proton mass expansion the
contribution of the diagrams in Fig. 1 is equal to [10]

λðFig:1Þβγ ðωmax;ωminÞ ¼ ð1þ 3λ2Þ α
π

G2
FjVudj2
2π3

Z
ωmax

ωmin

dω
ω

Z
E0−ω

me

dEe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e −m2

e

q
EeFðEe; Z ¼ 1ÞðE0 − Ee − ωÞ2

×

��
1þ ω

Ee
þ 1

2

ω2

E2
e

��
1

β
ln

�
1þ β

1 − β

�
− 2

�
þ ω2

E2
e

�
; ð9Þ

where E0 ¼ ðm2
n −m2

p þm2
eÞ=2mn is the end-point energy of the electron energy spectrum of the neutron β− decay [10]; ω

is a photon energy; β ¼ ke=Ee ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e −m2

e

p
=Ee is a velocity of the electron with a momentum ke; and FðEe; Z ¼ 1Þ is the

relativistic Fermi function, describing the Coulomb proton-electron interaction in the final state of the decay. It is equal to

FðEe; Z ¼ 1Þ ¼
�
1þ 1

2
γ

�
4ð2rpmeβÞ2γ
Γ2ð3þ 2γÞ

eπα=β

ð1 − β2Þγ
				Γ
�
1þ γ þ i

α

β

�				
2

; ð10Þ

where γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
− 1, rp is the electric radius of the proton and α ¼ 1=137.036 is the fine-structure constant. In

numerical calculations we shall use rp ¼ 0.841 fm [29]. The rate of the neutron radiative β− decay, calculated to next-to-
leading order in the large proton mass expansion, taking into account the contributions of the weak magnetism and proton
recoil to order 1=M, where 2M ¼ mn þmp is the averaged nucleon mass, has been calculated in [15]. The result is

λðFig:1Þβγ ðωmax;ωminÞ ¼ ð1þ 3λ2Þ α
π

G2
FjVudj2
2π3

Z
ωmax

ωmin

dω
ω

Z
E0−ω

me

dEeEe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e −m2

e

q
ðE0 − Ee − ωÞ2

× FðEe; Z ¼ 1ÞρðFig:1Þβγ ðEe;ωÞ: ð11Þ

The function ρðFig:1Þβγ ðEe;ωÞ is given by the integral [15]

ρðFig:1Þβγ ðEe;ωÞ ¼
Z

dΩeγ

4π

��
1þ 2

ω

M

Ee − k⃗e · n⃗k⃗
E0 −Ee −ω

þ 3

M

�
Ee þω−

1

3
E0

�
þ λ2 − 2ðκþ 1Þλþ 1

1þ 3λ2
E0 −Ee −ω

M

�

×

��
1þ ω

Ee

�
k2e − ðk⃗e · n⃗k⃗Þ2
ðEe − k⃗e · n⃗k⃗Þ2

þω2

Ee

1

Ee − k⃗e · n⃗k⃗

�
þ 3λ2 − 1

1þ 3λ2
1

M

�
k2e þωk⃗e · n⃗k⃗

Ee

�
k2e − ðk⃗e · n⃗k⃗Þ2
ðEe − k⃗e · n⃗k⃗Þ2

þ ω

Ee − k⃗e · n⃗k⃗

�

þðωþ k⃗e · n⃗k⃗Þ
��

1þ ω

Ee

�
ω

Ee − k⃗e · n⃗k⃗
−
m2

e

Ee

ω

ðEe − k⃗e · n⃗k⃗Þ2
��

−
λ2þ 2ðκþ 1Þλ− 1

1þ 3λ2
1

M

�
k2e þω2þ 2ωk⃗e · n⃗k⃗

Ee

×
k2e − ðk⃗e · n⃗k⃗Þ2
ðEe − k⃗e · n⃗k⃗Þ2

þ ω

Ee

k2e − ðk⃗e · n⃗k⃗Þ2
Ee − k⃗e · n⃗k⃗

þω2

Ee

ωþ k⃗e · n⃗k⃗
Ee − k⃗e · n⃗k⃗

�
−
λðλ− 1Þ
1þ 3λ2

1

M

�
ω

Ee

k2e − ðk⃗e · n⃗k⃗Þ2
Ee − k⃗e · n⃗k⃗

þ 3
ω2

Ee

��
; ð12Þ
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where κ ¼ κp − κn ¼ 3.70589 is the isovector anomalous magnetic moment of the nucleon [10,15], dΩeγ is an infinitesimal

solid angle of the electron-photon momentum correlations k⃗e · n⃗k⃗ ¼ ke cos θeγ and n⃗k⃗ ¼ k⃗=ω is a unit vector along the
photon 3-momentum [10,11,15]. The contribution of the diagrams in Fig. 2 is equal to (see Appendix B of the Supplemental
Material [20])

λðFig:2Þβγ ðωmax;ωminÞ ¼ ð1þ 3λ2Þ α
2

π2
G2

FVudj2
4π3

Z
ωmax

ωmin

dω
Z

E0−ω

me

dEeðE0 − Ee − ωÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e −m2

e

q

× FðEe; Z ¼ 1Þ
Z

dΩeγ

4π

�
k2e − ðk⃗e · n⃗k⃗Þ2
ðEe − k⃗e · n⃗k⃗Þ2

ReF4 þ
ω

Ee − k⃗e · n⃗k⃗
Reð2F2 − F3 − 2F4Þ

�
; ð13Þ

where F2, F3 and F4 are given in Eq. (B-71) of the Supplemental Material [20] as functions of ke · k ¼ ωðEe − k⃗e · n⃗k⃗Þ. The
contribution of the diagrams in Figs. 3 and 4 we define as (see Appendix C of the Supplemental Material [20])

λðFig:3Þβγ ðωmax;ωÞ¼ ð1þ3λ2Þα
2

π2
G2

FjVudj2
4π3

Z
ωmax

ωmin

dω
ω

Z
E0−ω

me

dEeFðEe;Z¼ 1ÞðE0−Ee−ωÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e−m2

e

q

×
Z

dΩeγ

4π

�
f1ðEe; k⃗e;ω; k⃗Þ

�
ðEeþωÞ k

2
e− ðk⃗e · n⃗k⃗Þ2

ðEe− k⃗e · n⃗k⃗Þ2
þ ω2

Ee− k⃗e · n⃗k⃗

�
þf2ðEe; k⃗e;ω; k⃗Þ

�
ð2ðEeþωÞ2−m2

e

−ωðEe− k⃗e · n⃗k⃗ÞÞ
k2e− ðk⃗e · n⃗k⃗Þ2
ðEe− k⃗e · n⃗k⃗Þ2

þ2ðEeþωÞ ω2

Ee− k⃗e · n⃗k⃗
−ω2

��
; ð14Þ

where the functions f1ðEe; k⃗e;ω; k⃗Þ and f2ðEe; k⃗e;ω; k⃗Þ are
given in Eq. (C-33) of the Supplemental Material [20].
They are defined by the contribution of the diagram
Fig. 3(c), since to leading order in the large proton mass
expansion and in the physical gauge of a real photon the
contribution of the diagram in Fig. 3(d) vanishes. Then, the
rate λðFig:3Þβγ ðωmax;ωminÞ is defined by a part of the diagram
Fig. 3(c), which is invariant under a gauge transformation
DαβðqÞ → DαβðqÞ þ cðq2Þqαqβ. A noninvariant part of the
diagram Fig. 3(c) is absorbed by the diagrams in Fig. 4. We
assume that the contribution of the diagrams in Fig. 4,
calculated to leading order in the large proton mass
expansion and in the physical gauge of a real photon,
contains only (i) an electron-photon-energy-dependent
part, canceling a part of the diagram Fig. 3(c) that is

noninvariant under the gauge transformation DαβðqÞ →
DαβðqÞ þ cðq2Þqαqβ, and (ii) a constant, which can be
absorbed by renormalization of the Fermi weak coupling
constant GF and the axial coupling constant λ similar to
Sirlin’s analysis of the radiative corrections to the rate of the
neutron β− decay [5]. Of course, our assumption is much
stronger than Sirlin’s one. Nevertheless, we believe that it is
correct and it might be confirmed by a model-dependent
way within a model of strong interactions of hadrons
coupled to photons at low energies (see a discussion
in Sec. IV).
The contribution of the diagrams in Fig. 5 of the neutron

radiative β− decay with two real photons and only one
detected photon is equal to (see Appendix E of the
Supplemental Material [20])

λðFig:5Þβγ ðωmax;ωminÞ ¼ ð1þ 3λ2Þ α
2

π2
G2

FjVudj2
16π3

Z
ωmax

ωmin

dω
Z

E0−ω

me

dEe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e −m2

e

q Z
E0−Ee−ω

0

dq0ðE0 − Ee − ω − q0Þ2

× FðEe; Z ¼ 1Þ
Z

dΩeγ

4π

Z
dΩeγ0

4π
ðρð1Þeγγ0 ðEe; k⃗e;ω; n⃗k⃗; q0; n⃗q⃗Þ þ ρð2Þeγγ0 ðEe; k⃗e;ω; n⃗k⃗; q0; n⃗q⃗Þ

þ ρð2Þeγγ0 ðEe; k⃗e; q0; n⃗q⃗;ω; n⃗k⃗ÞÞ; ð15Þ

where q0 is the energy of an undetected photon and n⃗q⃗ ¼ q⃗=q0 is a unit vector along its 3-momentum q⃗. The functions

ρð1Þeγγ0 ðEe; k⃗e;ω; n⃗k⃗; q0; n⃗q⃗Þ; ρ
ð2Þ
eγγ0 ðEe; k⃗e;ω; n⃗k⃗; q0; n⃗q⃗Þ; and ρð2Þeγγ0 ðEe; k⃗e; q0; n⃗q⃗;ω; n⃗k⃗Þ are given by Eqs. (E-14), (E-15) and

(E-16) in the Supplemental Material [20].
The numerical values of the branching ratios BRðFig:jÞ

βγ ¼ τnλβγðωmax;ωminÞFig j for j ¼ 1; 2;…; 5 and their total contribution
are given in Table I for the three photon-energy regions (i) 15 keV ≤ ω ≤ 340 keV, (ii) 14 keV ≤ ω ≤ 782 keV and
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(iii) 0.4 keV ≤ ω ≤ 14 keV. The branching ratios BRðFig:jÞ
βγ

are obtained relative to the neutron lifetime τn ¼
879.6ð1.1Þ s, calculated in [10] and agreeing well with the
world-averaged value τn ¼ 880.2ð1.0Þ s [26].

IV. CONCLUSION

We have proposed a precision analysis of the rate of the
neutron radiative β− decay n → pþ e− þ ν̄e þ γ to order
Oðα2=π2Þ, defined by the 1=M corrections, caused by the
weak magnetism and proton recoil [15], and radiative
corrections of order Oðα=πÞ in the one-virtual-photon
approximation, and the contribution of the neutron
radiative β− decay with two real photons n → pþ
e− þ ν̄e þ γ þ γ. Integrating over degrees of freedom of
one of two photons one arrives at the contribution of order
Oðα2=π2Þ to the rate of the neutron radiative β− decay
n → pþ e− þ ν̄e þ γ. The contributions of the one-virtual-
photon exchanges we have classified by the Feynman
diagrams in Figs. 2, 3 and 4. In the diagrams in Fig. 2
the contributions of strong low-energy and electromagnetic
interactions are factorized, and both the real and virtual
photons couple to the pointlike proton and electron. The
contribution of strong low-energy interactions of hadrons is
given by the axial coupling constant λ only. All divergen-
ces, caused by virtual photon exchanges, are absorbed by
renormalization of masses and wave functions of the proton
and electron, the proton-proton-photon ðppγÞ and electron-
electron-photon ðe−e−γÞ vertices. Therewith, the counter-
terms of renormalization of the wave functions and vertices
obey standard Ward identities [18,27,28]. The diagrams in
Fig. 2 are invariant under gauge transformations
ε�λ0 ðkÞ → ε�λ0 ðkÞ þ ck of a real photon wave function and
DαβðqÞ → DαβðqÞ þ cðq2Þqαqβ of a photon Green func-
tion, respectively. The structure functions, defining the
renormalized contribution of the Feynman diagrams in
Fig. 2 to the amplitude of the neutron radiative β− decay of
orderOðα=πÞ, obeyWard identities. The contribution of the
Feynman diagrams in Fig. 2 to the branching ratio is of
order 10−7 (see Table I).
The dominant but most problematic contribution comes

from the Feynman diagrams in Figs. 3 and 4. For the
calculation of the contribution of these diagrams we follow
Sirlin’s assumption for the calculation of the radiative
corrections of order Oðα=πÞ to the rate of the neutron
β− decay [5]. This means that we assume that the
contribution of the diagrams in Fig. 4, which survives to
leading order in the large proton mass expansion in the
physical gauge of a real photon, contains (i) a part of the
diagram Fig. 3(c), which is not invariant under gauge
transformations of a real photon wave function ε�λ0 ðkÞ →
ε�λ0 ðkÞ þ ck and of a photon Green function DαβðqÞ →
DαβðqÞ þ cðq2Þqαqβ, respectively, and (ii) a part indepen-
dent of the electron and photon energies, which can be
absorbed by renormalization of the Fermi weak coupling

constant GF and the axial coupling constant λ. This is, of
course, an extended interpretation of Sirlin’s assumption,
since in the neutron β− decay the Feynman diagrams similar
to the diagrams in Fig. 4 [see Figs. 6(b) and 6(c)] have been
found independent of the electron energy, the contribution of
which has been absorbed by renormalization of the Fermi
weak and axial coupling constants. A confirmation of our
assumption, concerning the properties of the Feynman
diagrams in Figs. 3 and 4, might be supported by the fact
that all possible insertions of real photon external lines
transform the Feynman diagrams in Fig. 6 to the Feynman
diagrams Figs. 3(c), 3(d) and 4. It is obvious that all possible
insertions of real photon external lines should not change
the properties of the diagrams with respect to a gauge
transformationDαβðqÞ → Dαβ þ cðq2Þqαqβ. Hence, all dia-
grams in Fig. 4 should play an auxiliary role for the diagram
Fig. 3(c) to leading order in the large proton mass expansion.
Thus, such an extended Sirlin’s assumption, applied to the
calculationof the Feynmandiagrams inFigs. 3(c), 3(d) and 4,
we have realized as follows. Firstly, we have shown that in
Fig. 3 only the diagram Fig. 3(c) survives to leading order in
the large proton mass expansion in the physical gauge of a
real photon. Secondly, we have decomposed the contribution
of the diagram Fig. 3(c) into invariant and noninvariant parts
with respect to a gauge transformation of a photon Green
function DαβðqÞ → DαβðqÞ þ cðq2Þqαqβ. Finally, we have
omitted a gauge-noninvariant part and the contributions,
independent of the electron and photon energies, we have
removed by renormalization of the Fermi weak coupling
constant GF and the axial coupling constant λ, respectively.
The contribution of the diagrams in Figs. 3 and 4 to the
branching ratio of the neutron radiative β−–decay, obtained
in such a way, is of order 10−4 (see Table I).
It is important to emphasize that the renormalized

contribution of the diagram Fig. 3(c), which we have
defined in terms of the functions f1ðEe; k⃗e;ω; k⃗Þ and
f2ðEe; k⃗e;ω; k⃗Þ [see Eq. (C-33) of the Supplemental
Material [20]], does not depend on the infrared cutoff μ,
which is introduced as a photon mass [5]. This is unlike the
contribution of the diagram Fig. 6(a) to the rate of the
neutron β− decay, which has been found as a function of
the infrared cutoff μ [5]. A μ dependence of the radiative
corrections, caused by the diagram Fig. 6(a), has been
canceled only by the diagram Fig. 1(b) (see [5]).
We would like to accentuate that the contribution

of the diagrams in Fig. 5, describing a neutron radiative
β− decay with two real photons in the final state, is also
infrared stable. Having integrated over the momentum and
energy of one of two photons we have obtained the
contribution of order Oðα2=π2Þ to the rate of the neutron
radiative β− decay with a photon, detected in the energy
region ωmin ≤ ω ≤ ωmax. The contribution of the neutron
radiative β− decay with two real photons in the final
state, described by the diagrams in Fig. 5, is of order
10−5 (see Table I).
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Total contributions of the radiative corrections of order
Oðα=πÞ to the rate of the neutron radiative β− decay are
about 2.42%, 2.44% and 3.66% for three photon-energy
regions 15 keV ≤ ω ≤ 340 keV, 14 keV ≤ ω ≤ 782 keV
and 0.4 keV ≤ ω ≤ 14 keV, respectively. They are com-
mensurable with the radiative correction 3.75% to the rate
of the neutron β− decay [5,10]. However, they are not
enhanced with respect to the contribution of the radiative
corrections to the rate of the neutron β− decay as we have
expected because of an enhancement of the corrections of
order 1=M, caused by the weak magnetism and proton
recoil [15]. The theoretical values of the branching ratios
(see Table I) do not contradict the experimental data within
the experimental error bars. Nevertheless, deviations of
about 4.21%, 7.05% and 9.52% of the mean values of the
experimental data from the theoretical values for three
photon-energy regions 15 keV ≤ ω ≤ 340 keV, 14 keV ≤
ω ≤ 782 keV and 0.4 keV ≤ ω ≤ 14 keV, respectively,
might only imply that such a distinction cannot be covered
by the contributions of interactions beyond the Standard
Model. Therefore, apart from the experimental error bars
one may expect a better agreement between theory and
experiment only from the contributions of strong low–
energy interactions of hadrons beyond the axial coupling
constant λ. One may expect that they might be caused by
the contributions of diagrams in Fig. 4, where real and
virtual photons couple to a hadronic block.

In this connection we may confess that there are two
problems in our precision analysis of the rate of the neutron
radiative β− decay to order Oðα2=π2Þ. They are (i) a
justification of a neglect of the diagrams with photons
coupled to hadronic blocks such as the diagram Fig. 1(c)
and so on and (ii) a justification of Sirlin’s assumption for
an extraction of a physical contribution from the Feynman
diagrams in Figs. 3 and 4. As we have mentioned above
both of these problems can be investigated only by a model-
dependent way within certain models of strong low-energy
interactions of hadrons coupled to photons.
However, it is very likely that the contribution of the

diagram Fig. 1(c) is really not important. One may show
this at the tree level using the following effective low-
energy electromagnetic interactions of the neutron and
proton [18]

δLemðxÞ ¼
κne
4M

ψ̄nðxÞσμνψnðxÞFμνðxÞ

þ κpe

4M
ψ̄pðxÞσμνψpðxÞFμνðxÞ; ð16Þ

where κn ¼ −1.91304 and κp ¼ 1.79285 are anomalous
magnetic moments of the neutron and proton [26], respec-
tively, and σμν ¼ ði=2Þðγμγν − γνγμÞ are Dirac matrices
[18]. The contribution of the diagram Fig. 1(c) to the
amplitude of the neutron radiative β− decay is equal to

MFig:1cðn → pe−ν̄eγÞλ0 ¼ −
κn
2M

�
ūpðk⃗p; σpÞγμð1þ λγ5Þ 1

mn − k̂n þ k̂ − i0
iσαβkαε

β�
λ0 unðk⃗n; σnÞ

�

×

�
ūeðk⃗e; σeÞγμð1 − γ5Þvν

�
k⃗ν;þ

1

2

��
þ κp
2M

�
ūpðk⃗p; σpÞiσαβkαεβ�λ0 γμð1þ λγ5Þ

×
1

mn − k̂p − k̂ − i0
unðk⃗n; σnÞ

��
ūeðk⃗e; σeÞγμð1 − γ5Þvν

�
k⃗ν;þ

1

2

��
: ð17Þ

Onemay see that the amplitudeEq. (17) is invariant under a gauge transformation ε�λ0 ðkÞ → ε�λ0 ðkÞ þ ck. The contribution of the
diagram Fig. 1(c) to the branching ratio is given by

BðFig:1cÞ
βγ ðωmax;ωminÞ ¼

α

π

G2
FjVudj2
2π3M

ð2λ2ðκp þ κnÞ − λðκp − κnÞÞ

×
Z

ωmax

ωmin

dωω
Z

E0−ω

me

dEe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e −m2

e

q
ðE0 − Ee − ωÞ2FðEe; Z ¼ 1Þ: ð18Þ

For the three photon-energy regions (see Table I) the

branching ratio is equal toBðFig:1cÞ
βγ ¼0.97×10−10,BðFig:1cÞ

βγ ¼
1.25 × 10−10 and BðFig:1cÞ

βγ ¼ 4.90 × 10−13, respectively.
This may testify that the diagram Fig. 1(c) can actually be
neglected. Such a neglect does not violate invariance
of the diagrams Figs. 1(a) and 1(b) with respect to a gauge
transformation ε�λ0 ðkÞ → ε�λ0 ðkÞ þ ck. Our justification of a

possible neglect of the contribution of the diagram
Fig. 1(c) confirms also a neglect of all diagrams with
emission of a real photon by a hadronic block in the radiative
neutron β− decay with two real photons in the final state,
given by the diagram in Fig. 5.
Hence, the main contribution of strong low-energy

interactions we may expect only from the diagrams in
Figs. 3 and 4. As a first step on the way of the analysis of
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these diagrams we are planning to use the Standard Model
of electroweak interactions supplemented by the linear σ
model of strong low-energy nucleon-pion interactions by
Gell-Mann and Levy [30] (see also [31]). It is well known
that a linear σ model is a renormalizable one [32–34].
Renormalization of an extended version of a linear σ model
has been investigated in [35,36]. The observed peculiar
properties of strong low-energy hadronic interactions in the
neutron radiative β− decay to order of Oðα2=π2Þ agree well
with the assertion, pointed out by Weinberg [24], about the
important role of strong low-energy hadronic interactions
in decay processes.
We would like to emphasize that analysis of the rate of

the neutron radiative β− decay to order Oðα2=π2Þ is a first
step toward the analysis of the neutron β− decay to order
Oðα2=π2Þ. One of the most intriguing theoretical features
of this analysis, which we anticipate, is a cancellation
of the infrared dependences in the sum of the contribu-
tions of the diagrams with only virtual photon exchanges
and the diagrams of the neutron radiative β− decay with one
and two photons in the final state. For the analytical
investigation of this problem the results, obtained in this
paper, are of great importance. The calculation of the
neutron β− decay to order α2=π2 ∼ 10−5 together with the
contributions of order ðα=πÞðEe=MÞ ∼ 3 × 10−6 and
E2
e=M2 ∼ 10−6 should give a new level of theoretical

precision for the experimental search of interactions
beyond the Standard Model [10].

It is well known that in the limit mσ → ∞, where mσ is a
scalar σ–meson mass, a linear σ–model is equivalent to
current algebra [37,38]. This means that the results,
obtained in a linear σ–model and taken in the limit
mσ → ∞, should reproduce the results, obtained in current
algebra [37,38], i.e. in a model–independent approach. This
bridges between the results, which we are planning to
obtain for the contributions of strong low–energy inter-
actions to the radiative corrections of order Oðα2=π2Þ for
the neutron radiative and neutron β− decays, and the
results, obtained by Sirlin [5,23] for the contributions of
strong low–energy interactions to the radiative corrections
of order Oðα=πÞ for the neutron β− decay.
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