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In the framework of open quantum systems, we analyze data from KamLAND by using a model that
considers neutrino oscillation in a three-family approximation with the inclusion of the decoherence effect.
Using a χ2 test, we find new limits for the decoherence parameter, which we call γ, considering the most
recent data by KamLAND. Assuming an energy dependence of the type γ ¼ γ0ðE=E0Þn, at a 95% C.L.,
the limits found are 3.7 × 10−24 GeV for n ¼ −1, 6.8 × 10−22 GeV for n ¼ 0, and 1.5 × 10−19 GeV for
n ¼ 1 on the energy dependence.
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I. INTRODUCTION

In general, the study of vacuum neutrino oscillations is
made in the framework of usual quantummechanics, which
considers the neutrino system to be isolated. In this work,
we will do a different kind of analysis, in the framework of
open quantum systems, considering the neutrinos, which
will be our subsystem of interest, to have a coupling with
the environment.
The theory of open quantum systems was created to deal

with the case in which the system of interest is not
considered isolated [1–3]. Instead, it has a coupling with
the environment, and such coupling has important conse-
quences for its evolution.
As we will see, the coupling with the environment will

act to change the superposition of states, eliminating the
coherence, similarly to what we have when a measurement
is made in a quantum system, and generating a decoherence
effect. We can find in the literature studies of the
decoherence effect applied to neutrino oscillations [4–7].
Using this different approach to study neutrino oscil-

lations, we see that different forms of the survival prob-
ability are obtained [4]. The goal of this work is to test one
of these forms using data from the KamLAND experiment.
KamLAND [8–12] is a long baseline experiment, located

at the Kamioka mine in Gifu, Japan, and it detects electron
antineutrinoswhich come fromnuclear reactors at an average
distance of∼180 km from the detector. It was constructed to
test the so-called large mixing angle (LMA) solution to the
solar neutrino problem, and its results were found to have a
striking agreement with solar neutrino results [12].
The goal of this work is to obtain new limits for the

parameter γ which describes decoherence, considering the

most recentKamLANDdata.Wewill also stress its relevance
and the difference between the results found in this work and
others, such as those from Ref. [7]. In Sec. II, we review the
theory of open quantum systems, and we show how it can be
used to study neutrino oscillations. We present how the
decoherence effect arises, generating a different form of
the survival probability, which is tested using a χ2 test. The
simulation results and the limits of the parameters are
presented in Sec. III. We present our conclusions in Sec. IV.

II. FORMALISM

In this section, we will introduce the formalism used to
obtain probabilities with dissipation effects from the
Lindblad master equation. In this formalism, the neutrinos
are treated as an open quantum system, and it interacts with
the quantum environment. We assume that the quantum
environment works as a reservoir. These two quantum states
compose the global system, and from the interaction between
neutrinos and environment arise the dissipation effects [1,2].
In open quantum system theory, it is possible to show that if
the interaction between the subsystem of interest—which are
the neutrinos in this case—and the reservoir is weak, the
dynamic can be obtained by the Lindblad master equation
[1,2]. A review of the fundamentals of quantum open system
theory can be found in Refs. [1,2].
The Lindblad master equation can be written as [13,14]

d
dt

ρðtÞ ¼ −i½H; ρðtÞ� þD½ρðtÞ�; ð1Þ
with

D½ρðtÞ� ¼ 1

2

XN2−1

k¼1

ð½Vk; ρðtÞV†
k� þ ½VkρðtÞ; V†

k�Þ; ð2Þ

where N is the dimension of the Hilbert space of the
subsystem of interest and Vk describes the interaction
between the subsystem of interest and the environment.
In this equation, we see a term which is equal to the one we
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have in the Liouville equation, but we also have the term
D½ρðtÞ�, which appears because we are dealing with an
open system, different from what we have in usual quantum
mechanics, where the system is considered isolated.D½ρðtÞ�
must satisfy some mathematical constraint, and then it can
be phenomenologically parametrized.
We will impose on this equation the requirement that the

entropy increase with time, so that D½ρðtÞ� evolves from a
pure state asymptotically to a state of maximal mixing.
Using the Von Neumann entropy, it is possible to show that
this condition leads to restrictions on the operator Vk—in
particular, we see that it must be Hermitian [15].
The Lindblad equation in (1) can be expanded in the

basis of SUð3Þ matrices, since the three neutrino families
are considered in this work. In this form, each operator in
Eq. (1) can be expanded asO ¼ aμλμ, where λ are the Gell-
Mann matrices. Then, the evolution equation in Eq. (1) can
be written as

d
dx

ρkðxÞ ¼ 2ϵijkHiρjðxÞ þDklρlðxÞ; ð3Þ

and the probability conservation leads to Dμ0 ¼ D0ν ¼ 0.
It is important to note that _ρ0ðtÞ ¼ 0, and its solution is

given by ρ0ðtÞ ¼ 1=N, where N is the number of families.
For simplicity, we do not include this component in the
equation above.
There are many parameters in the dissipator matrix Dkl.

However, it is possible to reduce the number of these
parameters considerably if we impose some physical and
mathematical constraints.
In order to obtain a dissipator matrixDkl with parameters

that describe well-known effects, we can impose first that
½H;Vk� ¼ 0. From the physical point of view, this commu-
tation relation implies energy conservation in the neutrino
subsystem, and this constraint also includes the decoherence
effect in the evolution. This effect eliminates the quantum
coherence, and the oscillation probability is changed by
damping terms that aremultiplied byoscillation terms. In this
condition, the Dkl assumes the following form:

Dkl ¼ −diagfγ21; γ21; 0; γ31; γ31; γ32; γ32; 0g; ð4Þ
where each γij can describe the decoherence effect between
the families i and j [5].
Once the neutrinos are free to interact with the reservoir,

the energy in the neutrino sector can fluctuate, and hence the
energy conservation constraint may not be satisfied. We can
relax this constraint, adding two other new parameters inD,
D33, and D88, such that the dissipator in Eq. (4) becomes

Dkl ¼ −diagfγ21; γ21; γ33; γ31; γ31; γ32; γ32; γ88g; ð5Þ

where again γij can describe the decoherence effect between
the families i and j, while γ33 and γ88 describe the so-called
relaxation effect.

The relaxation effect is a phenomenon that dynamically
leads the states to their maximal mixing state. This phe-
nomenon appears in the oscillation probabilities through the
damping term multiplied by terms that depend only on
mixing parameters. Then, when the relaxation effect is taken
into account, the probabilities tend asymptotically to 1=N,
where N is the number of families initially considered.
In general, if a particular density matrix represents an

initial physical state, the density matrix evolved by Eq. (1)
maynot be awell-definedquantumstate.Complete positivity
is a constraint onDkl which always keeps the evolutionmade
by Eq. (1) physical [2,16]. From complete positivity, theDkl
needs to be a positive matrix, and this is satisfied if the
diagonal elements of Dkl are larger than the off-diagonal
elements. So, we are going to consider the dissipator matrix
obtained in Eq. (5) to evolve the neutrinos according to
complete positivity, which corresponds to the most effective
dissipator thatwe can obtain. Any other off-diagonal element
can be represented in function of themain diagonal elements,
since the γ33 and γ88 parameters are non-null.
The Hamiltonian in the effective mass basis can be

written as

~H ¼ 1

2E

0
BB@

~m2
1 0 0

0 ~m2
2 0

0 0 ~m2
3

1
CCA; ð6Þ

with

~m1 ¼ −
1

2
ððδ cos 2θ12 − A cos2 θ13Þ2 þ δ2 sin2 2θ12Þ12;

~m2 ¼
1

2
ððδ cos 2θ12 − A cos2 θ13Þ2 þ δ2 sin2 2θ12Þ12; ð7Þ

where δ ¼ m2
2 −m2

1, A ¼ 2
ffiffiffi
2

p
neE cos2 θ13, and

~m3 ¼
1

2
ð2m2

3 −m2
2 −m2

1 þ A sin2 θ13Þ: ð8Þ

The relation between the flavor state and the effective
mass basis is given by the following transformation:

ρα ¼ Uρ ~mU† ¼ U13
~U12ρ ~m

~U†
12U

†
13; ð9Þ

where the ρα is the flavor state and ρ ~m is the effective mass
state. The mixing matrix U is explicitly defined as

U¼

0
BB@

cosθ13 0 sinθ13
0 0 0

−sinθ13 0 cosθ13

1
CCA
0
BB@

cos ~θ12 sin ~θ12 0

−sin ~θ12 cos ~θ12 0

0 0 1

1
CCA;

ð10Þ

and the effective mixing angle has the usual form
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sin22~θ12 ¼
δ2sin22θ

ðδ cos 2θ12 − Acos2θ13Þ2 þ δ2sin22θ12
: ð11Þ

We have defined a diagonal form to the Hamiltonian in
Eq. (6). Hence, the dissipators in Eqs. (4) and (5) remain
diagonal as well.
The evolved density matrix in the effective mass basis is

given by

ρ ~mðxÞ ¼

0
BBB@

ρ11ðxÞ ρ12ð0Þe− ~Δ�
12x ρ13ð0Þe− ~Δ�

13x

ρ21ð0Þe− ~Δ12x ρ22ðxÞ ρ23ð0Þe− ~Δ23x

ρ31ð0Þe− ~Δ13x ρ32ð0Þe− ~Δ�
23x ρ33ðxÞ

1
CCCA;

ð12Þ
where ρijð0Þ are elements of the initial state obtained from
Eq. (10) and ~Δij ¼ γij þ ið ~m2

i − ~m2
jÞ=2E. While the ρii

elements are given by

ρ11ðxÞ ¼
1

3
þ 1

2
e−γ33x cos 2~θ12cos2θ13

−
1

12
e−γ88xð1 − 3 cos 2θ13Þ;

ρ22ðxÞ ¼
1

3
−
1

2
e−γ33x cos 2~θ12cos2θ13

−
1

12
e−γ88xð1 − 3 cos 2θ13Þ;

ρ33ðxÞ ¼
1

3
þ 1

6
e−γ88xð1 − 3 cos 2θ13Þ: ð13Þ

These damping terms in the diagonal elements describe the
relaxation effect through the parameters γ33 and γ88. Besides
that, they depend on themixing parameters θ12 and θ13 and the
distance between the source and the detection point. Themain
diagonal in state (12) can be interpreted as the probabilities to
find ~m1, ~m2, or ~m3 of the observable H in Eq. (6). In usual
quantum mechanics, these elements do not change within an
adiabatic propagation. So, by analyzing the state in (12), we
can see how the relaxation effect acts on the probabilities.
The state in (12) shows how the relaxation effect depends

on the propagation distance. Considering the Mikheyev-
Smirnov-Wolfenstein (MSW) solution for solar neutrinos,
which produces a specific relation between mass eigenstates
in the final neutrino flux, we expect that the relaxation effects
are strongly constrained. We will present this analysis
somewhere else, but the Sun-Earth distance is of the order
of 1017 eV−1, and a rough limit for both relaxation param-
eters is 10−18 eV, in order to have exp½−γiix� ∼ 1. Thus, the
analysis of reactor neutrinos can disregard the relaxation
effect because the larger baseline to this source is much
smaller than the Sun-Earth distance.
The off-diagonal elements are known as coherence

elements. In state (12), these elements tend to zero during
the propagation due to the damping terms. This is the exact
definition of the decoherence effect. But, in the solar

neutrino context, these elements are averaged out,
and any decoherence effect information is lost if we
consider a model-independent approach [17]. Besides,
since jΔm2

13j ∼ jΔm2
23j ≫ jΔm2

12j, experiments such as
KamLAND, that are tuned to test Δm2

12, are not sensible
to the coherence elements ρi3. These elements depend on
~Δi3x with i ≠ 3, which oscillate very fast, and hence are
averaged out.
So, disregarding the fast-oscillating terms and the

relaxation effects, the state is given by

ρ ~mðxÞ ¼

0
BB@

ρ11ð0Þ ρ12ð0Þe− ~Δ�
12x 0

ρ21ð0Þe− ~Δ12x ρ22ð0Þ 0

0 0 ρ33ð0Þ

1
CCA; ð14Þ

and using Eq. (10) to write the state above in the flavor
basis, the survival probability can be obtained by taking

Pνα→να ¼ Tr½ραð0ÞραðtÞ�; ð15Þ
where the initial state for ν̄e is ραð0Þ ¼ diagf1; 0; 0g. So,
the survival probability is given by [11]

P3ν
να→να ¼ cos4ðθ13Þ ~P2ν

να→να þ sin4ðθ13Þ; ð16Þ

where ~P2ν
να→να is written

~P2ν
να→να ¼ 1−

1

2
sin2ð2~θ12Þ

�
1−e−γx cos

ð ~m2
1− ~m2

2Þ
2E

x

�
; ð17Þ

which is the same probability obtained in a two-neutrino
approximation when the decoherence effect is taken into
account [17].
It is important to explain the difference between the

analysis made in this work and the one made in Ref. [7],
where they use a different set of data from KamLAND
(older than the one considered here), but also consider data
from solar neutrinos.
The first difference is that we are dealing with three

neutrino families. Moreover, as shown in Ref. [4] and
mentioned before, there are cases in which, besides the
decoherence effect, other effects arise from the couplingwith
the environment, such as the so-called relaxation effect [4].
Since in our case, as previously shown, decoherence is the
only relevant effect in the interaction with the environment,
including solar neutrinos in the analysis would not bring any
new information regarding the decoherence parameter. Solar
neutrinos cannot be used to bound decoherence, because the
fast-oscillating terms in ~Δijx average out all the coherence
terms [17,18]. Therefore, the effect studied here is different
from the one studied in Ref. [7]. According to Ref. [17], the
limits found inRef. [7] are combined limits on relaxation and
decoherence effects in a model-dependent approach. We use
a model-independent approach in this paper to analyze the
KamLAND data.
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III. RESULTS

We used the set of data presented in Ref. [11], where the
data is presented in 20 energy bins. For this set of data, we
tested the usual oscillation scenario, and found for the best-
fit point χ2min¼22.96, Δm2

12¼8.05×10−5 eV2, tan2ðθ12Þ ¼
0.40. We can see that χ2min is close to the number of degrees
of freedom, indicating a good agreement with the exper-
imental data.
We consider now the oscillation probability in Eq. (17)

with the three-family approximation [Eq. (21)] and the
three free parameters Δm2

12, tan
2ðθ12Þ, and γ, also consid-

ering a possible energetic dependence on γ:

γ ¼ γ0

�
E
E0

�
n
; ð18Þ

with E0 ¼ 1 GeV, such as the one done by Ref. [7]. We did
this test for n ¼ 0, n ¼ 1, and n ¼ −1. We also considered
the best-fit value for θ13 given by Ref. [19], sin2ð2θ13Þ ¼
9.3 × 10−2.
The best-fit results for these scenarios can be seen in

Table I for the three values of n, where again we see that the
value of χ2min is close to the number of degrees of freedom.
We can also see that including the third parameter γ

slightly improves the fit in comparison with the scenario
where γ ¼ 0, with a decrease in the value of χ2min.
We present confidence level curves for n ¼ 0 in the

energy dependence, which can be seen in Figs. 1, 2 and 3,
and in accordance with Ref. [19] we chose the values of

Δχ2 to get confidence levels of 68.27%, 90%, 95%, 99%,
and 99.73%.
For n ¼ 1 in the energy dependence, the confidence

level curves obtained are given in Figs. 4, 5, and 6, and for

TABLE I. Best-fit results For three free parameters.

n ¼ 0 n ¼ 1 n ¼ −1

χ2min 21.44 21.92 21.03
Δm2 8.05×10−5 eV2 8.05×10−5 eV2 8.05×10−5 eV2

tan2ðθÞ 0.44 0.42 0.47
γ0 2.37×10−22GeV 4.14×10−20GeV 1.17×10−24GeV

0111,0

tan
2θ

7,4e-05

7,6e-05

7,8e-05

8e-05

8,2e-05

8,4e-05

8,6e-05

Δm
2  (

eV
2 )

FIG. 1. Confidence level curves for n ¼ 0. The curves corre-
spond to 68.27%, 90%, 95%, 99%, and 99.73% C.L.

0111,0

tan
2θ

0

5e-22

1e-21

1,5e-21

2e-21

γ 0 (
G

eV
)

FIG. 2. Confidence level curves for n ¼ 0. The curves corre-
spond to 68.27%, 90%, 95%, 99%, and 99.73% C.L.
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FIG. 3. Confidence level curves for n ¼ 0. The curves corre-
spond to 68.27%, 90%, 95%, 99%, and 99.73% C.L.

0111,0
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FIG. 4. Confidence level curves for n ¼ 1. The curves corre-
spond to 68.27%, 90%, 95%, 99%, and 99.73% C.L.
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n ¼ −1 in the energy dependence, the confidence level
curves obtained are given in Figs. 7, 8, and 9.
We can see from Figs. 1–9 that the decoherence effect

does not alter the value of the best-fit point for Δm2, which

is consistent with our previous analysis, since the damping
term depending on γ acts only on the amplitude of the
survival probability.
From the confidence level curves of Figs. 1–9, we can

obtain limits for the oscillation parameters and for γ0, the
decoherence parameter. For 95% C.L., the upper limits on
γ0 are given in Table II.
In order to visualize the effect of the inclusion of

decoherence in our study of neutrino oscillations, we
can reproduce an important graph originally presented
by the KamLAND Collaboration.
Following the same procedure used by KamLAND, we

used our results to make Fig. 10, which is the result of
merging the original graph [11] and the graph we made for
oscillation with decoherence.

0111,0

tan
2θ

0

5e-17

1e-16

1,5e-16

2e-16

2,5e-16

3e-16

γ 0 (
G

eV
)

FIG. 5. Confidence level curves for n ¼ 1. The curves corre-
spond to 68.27%, 90%, 95%, 99%, and 99.73% C.L.
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FIG. 6. Confidence level curves for n ¼ 1. The curves corre-
spond to 68.27%, 90%, 95%, 99%, and 99.73% C.L.
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7,6e-05

7,8e-05
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8,4e-05
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eV
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FIG. 7. Confidence level curves for n ¼ −1. The curves
correspond to 68.27%, 90%, 95%, 99%, and 99.73% C.L.
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5e-27
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γ 0 (
G

eV
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FIG. 8. Confidence level curves for n ¼ −1. The curves
correspond to 68.27%, 90%, 95%, 99%, and 99.73% C.L.
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FIG. 9. Confidence level curves for n ¼ −1. The curves
correspond to 68.27%, 90%, 95%, 99%, and 99.73% C.L.

TABLE II. Upper limits for γ0 at a 95% C.L. with n ¼ 0, 1, −1.

n ¼ −1 3.7 × 10−24 GeV
n ¼ 0 6.8 × 10−22 GeV
n ¼ 1 1.5 × 10−19 GeV
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In Fig. 10, we can see that the fit of the data made from
our model of oscillation with decoherence is a good fit of
the data, showing a visual confirmation of the analysis
provided by the χ2 test.
We see that the inclusion of decoherence causes a

damping on the oscillation pattern, as we already expected
from our theoretical predictions. We can also see that this
damping is not too strong for the values of the decoherence
parameter best-fit points.

IV. CONCLUSION

In this work, we treated the appearance of the decoherence
effect on neutrino oscillations in a phenomenological

approach, studying first open quantum systems in
general, and then applying the results to the case of
neutrino oscillation in three families. We analyzed the
constraints in the model parameters coming from a fit to
KamLAND data.
The results were obtained when we considered the most

recent set of KamLAND data, provided by Ref. [11], where
the number of events were presented in 20 bins. Comparing
the value of χ2min with the number of degrees of freedom, we
saw that including the third parameter, γ, improves the fit of
the data. With γ ¼ 0, we obtained χ2min ¼ 22.96, and for γ
as a free parameter (hence 20 experimental points and 3
parameters), we obtained a decrease for χ2min of order
Δχ2 ∼ 1. These results are summarized in Table I. We also
found a best-fit value with γ ≠ 0.
To support the results of our analysis, giving a more

visual way of evaluating the results, we reproduced a
graph originally presented by the KamLAND Collabora-
tion, which showed the survival probability versus L0=E,
which shows clearly the oscillation pattern for the
neutrinos.
Comparing the original graph with our reproduction,

which was made using the best-fit values obtained in our
simulation, we saw that our model provided a fit of the data
which was indeed in agreement with the experiment
uncertainties, as can be seen in Fig. 10.
We also determined new limits for γ0 at a 95% C.L. The

limits are presented in Table II, and were determined based
on the confidence level curves made from the most recent
set of Kamland data [11].
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