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In this work we study the decay constants of B and B, mesons based on the wave function obtained in the
relativistic potential model. Our results are in good agreement with experimental data which enables us to
apply this method to the investigation of B-meson distribution amplitudes. A very compact form of the
distribution amplitude is obtained. We also investigate the one-loop QCD corrections to the pure leptonic
decays of B mesons. We find that, after subtracting the infrared divergence in the one-loop corrections
using the factorization method, the QCD one-loop corrections to the hard amplitude of leptonic decay will

be zero.
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I. INTRODUCTION

The study of B-meson decays, especially the exclusive
semileptonic and two-body nonleptonic decays, presents
rich information for testing and understanding the standard
model (SM). In the past two decades, as the running and
upgrading of B-factories, a great amount of experimental
data has been accumulated. Although a lot of models and/or
approaches have been developed in theory, the poor knowl-
edge of nonperturbative quantum chromodynamics (QCD)
effects still limits theoretical predictions severely. In two-
body nonleptonic decays of B-meson, QCD factorization
[1-4] and perturbative QCD approaches [5-9] have been
developed, which allow us to separate the nonperturbative
effect out as universal quantities, such as, the light-cone
distribution amplitudes (LCDA) and/or form factors.
The B-meson LCDA has been studied extensively.
Several forms of the distribution amplitudes are proposed
or obtained by some theoretical methods such as solving
the equations of motion in the literature [10-18].

Inspired by the construction of initial bound state in
Ref. [19] and based on our previous works on the mass
spectrum and wave functions of B-meson [20-22], we try an
alternate way to study the distribution amplitudes with the
help of wave functions obtained in the relativistic potential
model [21,22]. Considering the recent experimental data on
the pure leptonic decays of B mesons, we focus on a careful
investigation about the decay constants and the distribution
amplitudes (DAs) of B-mesons in this paper.

In general, the decay constants of charged heavy-light
mesons are related directly to the pure leptonic decay widths
and thus measuring decay constants can provide a chance to
check different theoretical models and may also give some
hints for physics beyond the standard model (SM). During
the past decades, many methods have been applied to
the study of the decay constants, such as, QCD sum rules
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[23-29], the Bethe-Salpeter equation [30,31], the field
correlator method [32], the soft-wall holographic approach
[33], the potential models [20,34—-37], and the lattice QCD
simulations [38—45], etc. Up to now there are still large
uncertainties for the value of |V,,;,| [46], and only the pure
leptonic decay mode of B meson with z lepton in the final
state has been measured in experiment [47-50] (also with
large uncertainties). Our result for the branching ratio of
B — 7v decay is well located in the experimental error bars
[47-51]. Further tests from experiments are needed in the
future with enhanced precision (most possibly come from
the Belle II/SuperKEKB collaboration [52,53]).

We study the B-meson distribution amplitudes in this work.
The analytical forms both in coordinate and momentum space
are obtained. When they are transformed to the commonly
used form of LCDA, the figures show that they obey the
model-independent limitations [13]. We also consider the
pure leptonic decays of B-meson up to one-loop level in QCD
corrections. We find that one-loop corrections to the hard-
scattering kernel in QCD will be zero after subtracting the
infrared divergence by using the factorization method.

The paper is organized as followings. In Sec. II, we
calculate the decay constants of the B and B, mesons. The
branching ratios of leptonic decays of B meson are also
calculated and compared with experimental data. In Sec. III,
the matrix element between B meson and vacuum state,
which defines the distribution amplitudes (DAs), is studied.
The analytical form of the matrix element and DAs are
obtained and figures are shown as illustrations. We finally
obtain a compact expression for the matrix element.
Section IV is devoted to the study of the pure leptonic decay
of the B-mesons up to one-loop level in QCD and Sec. Vis for
the conclusion and discussion.

II. DECAY CONSTANTS OF B AND B; MESONS

Recently, the spectra of heavy-light quark-antiquark
system have been studied in the relativistic potential model

© 2017 American Physical Society
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in our previous works [20-22], where hyperfine inter-
actions are included [21,22]. The whole spectra of B and D
system are in well agreement with experimental measure-
ments. Hence in this work, we extend our previous works
[21,22] by studying the decay properties of B meson with
the wave functions obtained in the relativistic potential
model. We study the decay constants of B and B, mesons at
first, and then give a compact form of distribution ampli-
tudes of B-meson, which shall be useful for studying B
decays.

The decay constant of a pseudoscalar meson is defined
by the matrix element of the axial current between the
meson and the vacuum state

(Olgy"y>Q|P) = if pP* (1)

where the axial current is composed of a light antiquark
field g and a heavy quark field Q.

The pseudoscalar meson as a bound state of a quark and
antiquark system can be described by [19,20],

P(P) _\/LN_L%Z / Bk, P ks (F—k, — ko) (k)
<l (o 1B (1)

= (ko )b (kg 1)][0) 2)

where N is the normalization factor, and the normalization
conditions will be shown explicitly below. i stands for the
QCD color index and % is the corresponding normalization

factor. The factor \/Li is the normalization factor for the

quark spin states which are indexed by up or down arrows.
Inside the square parenthesis, b'" and ¢'" are the creation
operators of the light antiquark g and the heavy quark Q,
respectively. R

The function ¥, (k,) is the normalized wave function of
the pseudoscalar meson at ground state in the momentum
space, which describes the wave function of the quark and
antiquark constituents in a meson. It is noted here that these
quark constituents are the effective quarks carrying a gluon
cloud and therefore the quarks have constituent masses [54].

The wave function can be obtained by solving the
Schrodinger type wave equation with relativistic dynamics

(Ho + H')¥(F) = E¥(7), (3)

where Hy + H' is the effective Hamiltonian (its explicit
expression can be found in Ref. [22]) and E is the energy of
the meson. The first term H contains the kinetic part and
the effective potential which is taken as a combination of a
Coulomb term and a linear confining term inspired by QCD
[34,55,56].

The second term H’ is the spin-dependent part of the
Hamiltonian including contributions of one-gluon-exchange
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diagram in the nonrelativistic approximation [34,57] and
new terms which account for contributions of nonperturba-
tive dynamics in the bound state system and relativistic
corrections for the light quark in the heavy meson [21,22].
The normalization conditions for wave function are

[ eRw@r =1, (4a)
{c(k.s),cT (K, s} = 8,80k - k), (4b)
(P(P)|P(P)) = 2n)2Es)(P - F).  (4c)

Note that we omit the color index of the operator ¢ and use
s, s’ to denote the spin states. Substituting Eq. (2) into
Eq. (4c) and using Eq. (4a) and Eq. (4b), we can obtain the
normalization factor

1

NL= G (5)

The wave function has been solved numerically in our
previous work [22]. For B meson, the wave function can be
expressed by

- gollk))
lIl()(k) - |/€|

where ¢0(|£|) is the reduced wave function. The numerical

Yoo (0. ¢) (6)

result of fﬂo(|£|) can be shown in Fig. 1.

Since it is convenient to have an analytical form of the
wave function W, (k) for the numerical calculation, we fit
the wave function obtained in our previous work [22] with
an exponential function and finally obtain the fitted form
for the B(;) meson wave function with combined theoretical
uncertainties as

lPO(]_(') — aleaz\lz|2+(l3|/:\+a4, (7)

1.0F
[ —— B Meson
‘= 08pk % e B Meson
= 06 ——— the cut lines
0.4
0.2
0 1 2 3 4 5 6
| k] (GeV)
FIG. 1. Reduced wave functions for B-meson.
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fitted W.F. of B, Meson
with uncertainties

original W.F. of B, Meson

the cut line

k| (GeV)
(a)

FIG. 2. The wave functions (W.F.) of B-meson.

where the parameters including uncertainties for B
meson are

a, = 4557030 GeV=32, a4y = -0.397015 GeV2;

ay = —1.55+0.20 GeV™!, ay=-1.107542, (8)
and for B; meson:

a, = 1.607012 GeV73/2, g, = —0.437015 GeV~2;

az = —1.287018 Gev~!,  a, =-0.22700%. 9)

The uncertainties for the parameters ensure that the
deviation of the wave function from its central value is
approximately about 8%. The illustrations for the fit of the
wave functions are shown in Fig. 2, where the grey bands
denote the relevant uncertainties for the wave functions of
B and B, mesons.

In the -calculation of the decay constants, four-

momentum conservation should hold

ky+ ko =P, (10)
where k, ; and P are the momenta of the quark constituents
and the meson, respectively.

With the restriction above, we consider the Altarelli-
Cabibbo-Corbo-Maiani-Martinelli (ACCMM) scenario
[58,59], where the light quark is kept on-shell, while the
heavy quark off-shell,

E,+Ey = mp, (11a)
E2 = m2 + |k, (11b)
m3 (k) = E — |k (11c)

Equation (11a) is the energy conservation in the meson rest
frame. We assume that the running mass of the heavy quark

-

must be positive my(k) > 0. Thus the actual range of the

momentum |l€ | is restricted under a particular value, which
is shown as the cut lines in Figs. 1 and 2.

Substituting Eq. (2) into Eq. (1) in the rest frame and
contracting the quark (antiquark) creation operators with
the annihilation operators in the quark field of the axial
current gy*y>Q, we obtain

fp—,/(zﬂ)%mp / R (E)

where the integral over the variable k should be limited in
the finite range according to Egs. (11a)—(11c).
The parameters used in this work are [22]

(E,+my)(Eg+mg)—|k?
\/EqEQ(Eq +mq)(EQ+mQ)’
(12)

mg = 0.32 GeV, m, = my; = 0.06 GeV,
my, = 4.99 GeV, (13)
and the mesons’ masses are taken from PDG [46]

mp =5.28 GeV  mp = 5.37 GeV. (14)

The errors are estimated by varying the parameters in the
allowed ranges. The total errors are around 7% for the
decay constants of B and B, mesons. We also calculate
the ratio of the decay constants of B and B, mesons f /f.
The final results obtained are

fp =219+ 15 MeV,
f./fp=121+0.09.

fp, =266+ 19 MeV,
(15)
During past decades, many theoretical methods or models

have been developed for the calculation of the B-meson
decay constants. In this paper, we list some of the results for
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TABLE I. Theoretical results of the decay constants of B-mesons.

Reference Method g (MeV) fr, Mev) f8,/fB

this work RPM* 219+ 15 266 + 19 1.21 £0.09

Colangelo 91 [35] RPM 230+ 35 245 + 37 1.07 £0.17

Cveti¢ 04 [31] QM BS* 196 + 29 216+ 32 1.10£0.18

Badalian 07 [32] FCM' 182 +£8 216 £8 1.19£0.03

Hwang 09 [60] LFQM® 204 + 31 270.0 +42.8 1.32 +£0.08

HPQCD 11 [41] LQCD (2 + 1) - 225£3+3 -
FNAL/MILC 11 [42] LQCD 2+1) 196.9 £5.5+7.0 242.0+£5.1£8.0 1.229 £0.013 £ 0.023
HPQCD 12 [44] LQCD 2+1) 191 +£1+8 2283+ 10 1.188 £0.012 £ 0.013
Narison 12 [27] QCD SR” 206 £7 234+5 1.14 +£0.03
Gelhausen 13 [28] QCD SR 20717 24277 L17550;

HPQCD 13 [45] LQCD 2+1+1) 184 +4 224 £5 1.217 £ 0.008

ETM 13 [61] LQCD 2+1+1) 196 £ 9 235+£9 1.201 +£25

Aoki 14 [62] LQCD 2+ 1) 218.8 £ 6.4 £30.8 263.5 £4.8 +36.7 1.193 £0.020 £ 0.044
RBC/UKQCD 14 [63] LQCD 2+ 1) 195.6 £6.4+13.3 2354+£52+11.1 1.223 £0.014 £ 0.070
Wang 15 [64] QCD SR 194 £+ 15 231 £ 16 1.19£0.10

Relathlstlc potential model.

QCD sum rules.

Quark model based on Bethe-Salpeter equation.

Yattice-QCD with dynamical quark flavors N in the parentheses.

nght -front quark model.

"Field correlator method.
comparison in Table I, where one can see that our results are V| = (4.09 £ 0.39) x 1073, (18)

consistent with most of the theoretical predictions.
The branching ratio of the leptonic decay of B meson can
be calculated by the following formula

Grm?m m?\ 2
Goenn (1= 20) BV, (16)

B

B(B* = I*v) =

where G is the Fermi constant, V,, the Cabibbo-
Kobayashi-Maskawa (CKM) matrix element, mp and m;
the masses of B* meson and lepton, respectively, and 7 is
the life time of B* meson.

In this work, we obtain

B(B* = ety,) = (1.17+£0.18) x 10711, (17a)

B(B* = u*u,) = (5.01 £0.78) x 107, (17b)

B(B* = tv,) = (141 £0.22) x 1074, (17¢)

where the errors mainly come from the uncertainties of the
decay constants fz and the CKM matrix element |V ;| [46]

TABLE II.  Experimental results for B(B* — ttu,).
Experiment Tag B (units of 10™%)
Belle [47] Hadronic 0.721021 £0.11
Belle [48] Semileptonic 1.25 £0.28 +0.27
BABAR [49] Hadronic 1,g3jg‘~j§ +0.24
BABAR [50] Semileptonic 1.7+£0.8+0.2

The branching ratio of B — t7v, channel has been
measured by Belle and BABAR collaborations [47-50].
The results are shown in Table II.

Taking the large uncertainties of the experimental data
into consideration, our predicted branching ratio of the
decay channel BT — t7v, [Eq. (17¢)] is consistent with the
experimental results.

As an upgrade of the Belle/KEKB experiment, the Belle
[I/SuperKEKB will start taking data from 2018. With a
designed luminosity 8 x 10* ¢cm™2s~!, which is about 40
times larger than its predecessor, data sample correspond-
ing to 50 ab~! will be accumulated within five years of
operation [53]. It is expected to reduce both the statistical
and systematic errors of the BT — t7v, decay mode by a
factor about 7 [65].

III. B-MESONS DISTRIBUTION AMPLITUDES

Based on the success of our predictions on the mass
spectra [20-22] and the decay constants of B-mesons, we
continue to study of the matrix element of B meson which
defines the DAs. The matrix element and DAs are generally
used in studying hadronic decays of B meson.

Generalizing the current in the definition of the decay
constant in Eq. (1) from local to nonlocal operators
and making use of Fierz identity, we obtain the matrix
element between the B meson and the vacuum state in
coordinate space

113001-4
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b,4(0) = 07010, OIBP)  (19)
=%<0|71( JO(0) By + 3 0127 Q(0)|B) (),
+4 000" 0(0)|B) (0,7°)
430000 B) (1,
~ L0l 00) B) (1) (19b)

where ¢ = L [y#, y*], and [z, 0] stands for the path-ordered
exponential, which is called Wilson line that connects the
point 0 and z. The definition of Wilson line is

[2,0] = Pexp (i A “dvA, (x)). (20)

According to discrete symmetries of C, P and T, the
matrix elements in the right-hand side of Eq. (19b) are
related to four DAs g;Sl- (i=P,T,Al1,A2) as defined in
Ref. [10]

(012(2)0(0)|B) =0, (21a)
(01(2)° Q(0)|B) = ~if smpbp. (21b)
(0la()0"7° Q(0)|B) = —if spr(P'z* = P*z#), (2lc)
(01g(z)rQ(0)|B) = 0. (21d)
(01a(2)r"7° Q(0)[B) = f(iparP" = mppir?), (21e)

where the DAs g])i are functions of the coordinate z. In our
scenario, we calculate these five matrix elements in the B-
meson rest frame by using the B meson state defined in
Eq. (2). We confirmed that the matrix elements in Eq. (21a)
and Eq. (21c) are indeed zero

(0g(2)Q(0)|B) = (0lg(2)r*Q(0)|B) = 0. (22)

For the pseudoscalar DA in Eq. (21b), we obtain

br(2) = Ny [ Prto(l
—[(E, + my)(Eg + mg) + |k[’] ok (23)
where kj = (Eq,lz) is the four-momentum of the light

quark in the meson rest frame, and
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Np=t] 2 (24)

It should be understood that the wave function W (k) may
have an arbitrary phase which can be adjusted to obtain a
positive real decay constant according to the definition
in Eq. (1).

For the other DAs in Egs. (21c) and (21e) (the detailed
derivation can be found in Appendix A), we introduce two
functions Ay and A at first,

EQ + mQ + Eq + mq
VEEQE, +mg)(Eg+mg)
(25a)

Ap(k!, K2, K3) = By (k)

EQ + mQ - Eq - mq
VEEQE, +m,)(Eg+mgy)’
(25b)

A, K2, K3) = Wo (k)

where k', k?, k* are the components of the light quark

momentum &, ie., k = (k',k*,k*). Then we obtain the
DAs as

br(z) = NB/cPk[Z/AT

ndn] iz (26a)

Dral) = NB/d%[ Z/

ndn} “ikz - (26D)

b (2) = —1\’19/(13"‘6_%"'Z

. [ (l‘{’) (Eq =+ mq)(EQ + mQ) - |£|2
VEGE(E,+my)(Eg + mg)

+ EAK K2, k3)] . (26¢)

For the details of the summation in the square parentheses
containing the ellipsis, see Eq. (A3).

Now, with Egs. (21a)—(21le), the matrix element for
B-meson in Eq. (19a) can be rewritten as

&)aﬂ(z) = _ZB { |:th}13 +%(ZT(PMZD - PDZ”)O'ﬂ
+ (par P* + imB&AZZ”)y;A:| 75} ; (27)

where the DAs are given in Eqgs. (23) and (26a)—(26c).
In order to obtain the expressions of the DAs in

momentum space, we make use of the amplitude of a

decay process which can be expressed as a convolution [11]

113001-5



HAO-KAI SUN and MAO-ZHI YANG
F / 42,5 (2)T al2). (28)

Substituting Eq. (27) into Eq. (28) and with a few steps of
calculation (see Appendix B for details), we obtain

@) = {72 o)+ 5810 (5= v 57 )
+ (¢A1(l)1f— a2 (D7, %)}YS}W (29)

and
- / 1Dy (DT (D) o (30)

It is understood that the derivative % ()l in Eq. (29) (which is
called the momentum space projector [11,66]) acts on the
hard-scattering kernel T, ([) before [ = k,, is taken. For the
DAs in the momentum space, we obtajn

(E, +my)(Eg + mgp) + k]

R
(31a)
$r (k) NBZ / Ar(n. . Jndn. (31b)
o (K NBZ / Ondn. (31¢)

(Eq+mg)(Eg +mg) — |k?
VEGEQ(E, +my)(Eg +mg)

dar(Ky) = =Ny [%(l?)

+EA(K, K, k3)], (31d)

In general, these DAs play an important role in the study of
the B-meson decays [13]. Thus it is necessary and useful to
give an numerical illustration of them.

For simplicity, we take k = (0,0, %) and the DAs as
functions of |k*| are shown in Fig. 3. The grey bands are the
possible uncertainties caused by the uncertainty of the wave
function. In the heavy-quark limit, one can obtain that one
of the axial-vector DA ¢,, is equal to the axial-tensor DA
¢7 [10]. For our results, as shown in Figs. 3(c) and (e), (3d)
and (3f), these two DAs are indeed very close, which
indicate that our scenario is reasonable and their difference
reflects the influence of the finite heavy-quark mass.

One can also see that the figures for B and B, mesons are
very similar, but in detail, for the same values of |k*|, the
absolute values of the DAs of B meson are always a bit
larger than that of B; meson. This is consistent with the fact
that the DAs are inversely proportional to the square root of
the decay constants and masses.

PHYSICAL REVIEW D 95, 113001 (2017)

In addition, the light-cone coordinate is widely used
in the study of the DAs, for example, the works in
Refs. [11,13,18,66—69] and references therein, where the
DAs depend on a single variable k, or k_, which are the light-
cone projections of the momentum of the light antiquark in
the rest frame of the meson. The definitions of the light-cone
projections of the momentum of the light antiquark are

E, £k

A

Performing the integration over the transverse momentum
k|, we can obtain the light-cone distribution amplitudes
(LCDAs) in our scenario. Usually, the &k -integral is
restricted by a scale y, i.e., [k | < g [2,70]. In our model,
the wave function is spherically symmetric with respect to k!,
k?, and k3. The integral region of the k| has an upper limit,
which is determined by Egs. (11a)—(11c). The upper limits
are shown clearly by the cut lines in Fig. 1.

The distribution amplitude ¢,; as a function of k, is
shown in Fig. 4. ¢4, is relevant to the LCDA ¢} in the
heavy quark limit, which is generally used in the study of B
decays. Our results are consistent with the general analysis
given in Ref. [13].

Next we try to give a compact form of the matrix element
@,5(z) = (0|g5(2)[z. 0]Q,(0)| B(P)). Substituting Eq. (23)
and Egs. (26a)—(26¢) into Eq. (19b) and after a few steps of
simplification, we obtain

ki:

K= (0.k" k%,0)  (32)

—1 3my / o(k)eika
Pz (27)° VE, EQ E +my)(Eg + mg)

x Ca} (D.R.)

:_ﬁ/

\PO(]_C')e—ikq-z
VEGE(E,+my)(Eg + mg)

x{<Z:;>(c—a c+a>}aﬂ (WR.). (33b)

where a, b, and ¢ are three 2 x 2 matrices, which are
defined as

a:(Eq~|-mq)12X2, b:(EQ+mQ)12x2, C:kg
and & is the Pauli matrix. These two expressions in Egs. (33a)
and (33b) are derived with different representations of the
gamma matrix y*. The label D. R. denotes Dirac representa-
tion, and W. R. Weyl representation.

113001-6
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FIG. 3.

For simplicity, we define

-,

_ —Np'¥(k)
K(k) = VEEQE, +my)(Eg+mg)
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Distribution amplitudes as functions of |k3|, where the grey bands are uncertainties caused by the wave function.

Then the convolution formula of Eq. (30) can be rewritten as

-
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FIG. 4. Distribution amplitudes as functions of k,, where the grey bands are uncertainties caused by the wave function.

where the spinor matrices are given in Dirac representa-
tion (D.R.).

Next we introduce two light-like vectors n’, =(1,0,0,F 1)
and define »w, =nly, = (%), w.=n'y, = (179
With these two vectors ', the matrix element ®,;(kf)
can be expressed in another form

D5 (kL) :_if:mBK(E){ <b> (¢ a)}aﬁ

C

:_imeB 1+17/

1 K(E)'{(EQ+mQ)2Kf/+§+n;1>W+

k. m
+ <_2+7q>ﬂ— _k!i}’u] 7’5

k. m
+(—_——q>rr_—k”y ]}/5} .
\/5 2 e aff

Compared with the commonly used results (for instance, see
Eq. (109) in Ref. [11] and Eq. (2.48) in Ref. [18]), this new
form includes the whole spinor structure of the momentum
projector. The part containing # is proportional to the
heavy quark’s mass and is the only term in the heavy quark
limit. Since when the heavy-quark mass m, goes infinity,
the contribution of other part in Eq. (36) will be relatively
very small and can be ignored. Therefore, as we take the
finite heavy-quark mass, the part with (E, + m,) will give
extra contribution and may be an important correction in the
study of B-meson decays.

(36)

IV. QCD ONE-LOOP CORRECTIONS TO
LEPTONIC DECAYS OF B-MESON

In Sec. II, we study the leptonic decays of B meson at tree
level. In this section, we extend this study by including QCD
one-loop corrections. When considering one-loop correc-
tions in QCD, if one naively calculate the loop diagrams, one
will encounter not only ultraviolet divergence, but also

infrared divergence. Factorization method can be applied to
obtain the infrared-safe amplitude at the quark level. To
obtain the infrared-safe transition amplitude at quark level,
let us consider the free quark state " (k)b*(p — k)) as the
initial state at first. Factorization means that the matrix
element of a physics transition process F* can be expressed
as the convolution of the wave function of the initial state and
the hard transition amplitude T

FF=0QT (37)
where the circle-time @ denotes the convolution in Eq. (28),
and p denotes the Lorentz index that may appear in the
physical transition matrix element. All the infrared contri-
butions are absorbed into the wave function ®, while the
hard amplitude 7 is infrared safe.

In perturbation theory, the matrix element F*, which
relevant to the quark transition process, the wave function
@ and the hard-scattering kernel 7' can all be expanded by
the power of a,. Therefore the factorization formula takes
the form [71]

Fr=FOu y FMu 4 ... —®d QT
=00 @TO] + [0 @ TV 4 ) @ TO] + ...,
(38)

where the superscripts (n)’s indicate the perturbation levels.
After calculating both the matrix element F()#* and the
wave function ®(!) at one-loop order, one can extract the
hard amplitude 7" by using Eq. (38), that is

®0 @ 7() = FOrn — @(1) @ T() (39)
At one-loop level, both the matrix element F()# and the
wave function ®(!) are infrared divergent. Through the
subtraction in the right-hand side of Eq. (39), the infrared

divergence can be cancelled. Then the hard amplitude 7(")
we get through Eq. (39) is infrared safe.
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FIG. 5. Factorization at tree level.

At tree level, the factorization can be achieved straight-
forwardly and we show the results briefly at first. The
matrix element F* at tree level, as shown in Fig. 5, can be
obtained as

Fi¥ = (0las blar (k)b* (p — k))

N (2717.')3 \/mﬁr(k%u‘(p —k) (40)

where the coefficient =L , /-2«™ s from our convention,
(2z)° \/ K°(p—k)

and » and u are the spinors of the quarks # and b,
respectively. The superscripts r and s are the spin labels.

The wave function of the free quark state
|a" (k)b (p — k)) at tree level is

¢$”w%:/ﬁ%éhwmA@kﬁwamm%mwuww»

1 m,my,
~ V(=)
x (2m)*6 ) (k — k) vy (k)us, (p — k). (41)

Matching the matrix element in Eq. (40) and the wave
function in Eq. (41) into the factorization formula

.
© d*k )i 7y (0) 7
P = [ G BT

- (23;)3 mﬁﬁ(’cﬁfﬁ (Kyus(p— k). (42)

PHYSICAL REVIEW D 95, 113001 (2017)

we can obtain the hard-scattering kernel at tree level

T (k) = (7)o (43)

This tree-level result is independent of the quark momen-
tum k. It plays an important role in the calculation of the
hard amplitude at one-loop level.

Next we shall establish the factorization at one-loop
level. The Feynman diagram for the matrix element (% at
one-loop level is shown as Fig. 6(a). The renormalization

factor Z;’Zé’ must appear in the contribution of Fig. 6(a)

due to the renormalization of the external quark fields,
where \/Z% and 4/ Z} are the renormalization constants of
the external quark fields # and b, respectively. Since the
factor 1/Z’27 and /Z4 correspond to the self-energy
diagrams of the external quark b and #, the factor

\/Z3Z5 can be represented by the contributions of

Fig. 6(b) and (c).
The contribution of Fig. 6(a) is

(Du 1 m,my ) _r
F = —ig;)C k
V= Gy \ B — R

/d“l , 1 p
Q) m, = =)t

1 I

where g, is the strong coupling constant, and all the
momenta of quarks and gluon are labelled in Fig. 6(a).
The explicit result after the loop integration is given in
Appendix C.

The contributions of Fig. 6(b) and (c) are

1 0 1 a 0
Fid' =5 (Z5 = 1)FRY, Fi' =5 (Z5—DFR". (45)

NS
N =

The renormalization constants (the explicit expressions are
listed in Appendix C) are defined in terms of the one-
particle irreducible (1PI) diagrams X by

FIG. 6. Feynman diagrams at one-loop level for F.
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p—k
bh‘ bs ? 0

=
[ 3
IS
=L

— 2 Fol-k E
(a) (b) (c)
FIG. 7. Feynman diagrams at one-loop level for WF (1).
p—k 0 p—k p—k—i—l-o . p—k 0

b . b

(b)

(c)

FIG. 8. Feynman diagrams at one-loop level for WF (2).

dz
p=m

Z5t =1 4i— (46)

The corrections for the wave functions at one-loop order
contain 6 Feynman diagrams which have been divided into
|

@) (k) = 2n)*6W (1 -k + k)

two groups. They are shown in Figs. 7 and 8. It will be
shown later that, when the contribution of the diagrams in
Fig. 8 is convoluted with the hard-transition kernel at tree
level, the result will be zero.

The contribution of the diagram Fig. 7(a) to the wave
function is

(2ﬂ)3
1
@/k+b”ﬂ

u'(p - k]u

and the contributions of the wave function renormalization
of the heavy quark field [Fig. 7(b)] and the light quark field
[Fig. 7(c)] are

0)bit Da i 0)bit
- D@, o) = (78 - ol (48)

M| —

Then it is straightforward to obtain the results after the
convolution with the hard-scattering kernel at tree level

T},(;) = (7)o and we find that

" =0l @ Ty, (492)
FUW = q)&}}” ® Ty, (49b)

1 m,n, . / a1 [ 1
—i®)C Avrteyyp ———
k()(p_k)()( lgs) F (27[)4 v ( )y m, — (l/_kj p
(47)
[
1 1) 0
Fipt = o) @ T (49¢)

It is noted that there are two scales in the above equations,
i.e., the factorization scale yy in the wave functions dJ((l;,)b'”
and the renormalization scale up in the matrix element

Fé LR Here we take pp = pp.

Atlast, we turn to the contributions of Feynman diagrams
in Fig. 8. The contribution of Fig. 8(a) contains a gluon
propagator both the starting and ending points being on the
Wilson-line. In the light-cone approximation and working in
the Feynman gauge, this propagator vanishes [71] since zis a
null vector on the light-cone (z> = 0). As for our case, the
result is still zero. First, we obtain
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4

(1)0a (7 1 MMy o\~ =r d*l / 4, ,ik /l /x U —ikz ixlz i uw
@ k) = / (ig?)Cro" (k d*ze*=.2 [ dxzt | dyzte ikzeirlzei(=1)e k
ap (k) (2r)> k0<p—k)0\lg) FU'( )/;/(2”)4 ze ; Z A yzle e e B u'(p —k),

o _IZQ%CF m,nmy

d4l le k—yl)-z 82
d4 / dx/ d |: lk z:| k
/ T ot |C PP

(50a)

(50b)

In Eq. (50a) we make the substitution x* = xz* and y* = yz" in the Wilson-line.
Next, we can substitute Eq. (50b) into the convolution formula, and perform the partial integration. By noting that the
hard-scattering kernel is a constant Dirac matrix, we can demonstrate

47 92 4 x pilxl—k=yl)z 2
0a (0) d'k i2g;Cr m,my / d’ / 4 /1 / ¢ ik- 2 0)] s
T, = —— [ d dx [ d H—=—-=T -k
® L / (27)* 00" O |y | Yy B Sy Y oicow [P Ja
=0. (51)
For the other two diagrams in Fig. 8, the contribution of Fig. 8(b) is
ob 7, 129:Cp m,my / d*l / 4 / ~h { 9 k-:| { 1 s ]
o k) = d k — ¢!t u'(p—k 52
af ( ) (27_[)3 kO(p _ k ( )ﬁ 8kp my, — (p,_k,_f_h,yp (p ) " ( )
Then the convolution is
d4]; _in 2C d4l 1 i(xl-k)z
0b ®T(? _ . l gng Omumb 0/ 4/d4z/ dxe .
2n)* )" VE(p—k)") (27) 0 !
=10
o (k) ye®< | T S(p—k)| =o0. 53
X ¥ Bpe [akp ””‘] [mh—(ﬁ—kfﬂay”" ” )L >

Similarly, we can obtain that the contribution of Fig. 8(c) is

also zero.
Finally, combining Egs. (49a)—(49c), 1Eq (5%))band
u ®

Eq. (53) together, we can demonstrate that F (b” = @a;}
T},(;) and thus considering Eq. (39), the total contribution to
(1)

the hard-scattering kernel at one-loop level T, is zero.

Therefore the QCD one-loop corrections to the hard ampli-
tude of the leptonic decay of B meson are zero in the
factorization scheme.

A brief remark about this result should be given here. The
vanishing of QCD one-loop correction to the hard decay
amplitude of the pure leptonic decay of B meson does not
mean that the naive calculation of the QCD one-loop
correction diagrams in Fig. 6 will result in zero. The results
in Egs. (44), (45) and that given in Appendix C show that the
contributions of these diagrams are not zero. They include
both hard and infrared singularities. The infrared singular-
ities come from the limit that the mass of the light quark
approaches zero and/or the momentum of the gluon vanishes,
ie., my — 0and ! — 0. It has been known that a conserved
current requires no renormalization because of gauge invari-
ance [72]. Here the axial current gy*y s b inducing the leptonic
decay of B meson is partially conserved. Our calculation

|

shows that the axial current as a composite operator still does
not require renormalization. Only the external quark field
renormalization is needed. Although the naive contributions
of the diagrams in Fig. 6 are not zero, when QCD corrections
to the wave function are also considered up to one-loop order,
the infrared singularities and the hard contribution in the
short-distance amplitude are simultaneously subtracted by
that in the wave function by using Eq. (39). This implies that
the infrared contribution in the short-distance amplitude can
be absorbed into the wave function, and the hard terms are
also absorbed and they will contribute to the evolution of the
wave function.

The factorization and the result that the hard amplitude
receives no QCD correction are proved up to one-loop order
in this work. But we expect that this result may hold up to all
orders in QCD, because the gluons are always restricted
between the heavy quark and the light antiquark lines for both
the cases of the QCD corrections to the wave function and
that to the hard amplitude of the pure leptonic decay process.
Therefore the subtraction may happen up to all orders in
perturbative expansions. Then the formula that expresses the
decay rate of the leptonic decay in Eq. (16) holds in all orders
in perturbation theory. QCD corrections can only change the
theoretical prediction to the decay constant.
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V. DISCUSSION AND CONCLUSION

Using the wave function that is obtained in the relativ-
istic potential model in our previous work [22], where the
hyperfine interactions are included, the decay constants and
pure leptonic decays of B meson are studied in this work.
To keep the four-momentum conservation between the
quark-antiquark pair and the meson, we use the ACCMM
scenario [58,59] to treat the constituent quarks, where the
heavy quark is taken to be off-shell, while the light
antiquark is kept on shell. Compared with our earlier work
[20], the difference is that the wave function used here is
obtained by considering the hyperfine interactions in the
wave equation, and the heavy quark is treated off-shell in
the decay process. The off-shellness of the heavy quark can
be explained as absorbing the effective effects of the gluon
cloud around the heavy quark. With such a treatment, the
branching ratios of leptonic decays of B meson obtained in
this work are consistent with experimental data.

Based on the success of studying the leptonic decays of
the B meson, we further obtain the distribution amplitudes
for B meson both in coordinate and momentum space. The
distribution amplitudes of B meson are widely used in the
study of B-meson decays. In addition, we obtain another
form of the nonlocal matrix element in Eq. (36). Considering
the success of the ACCMM scenario in studying the leptonic
decays, the heavy quark in the distribution amplitude needs
to be treated to be off-shell to maintain the momentum and
energy conservation. The new form of the nonlocal matrix
element obtained in this work, Eqgs. (33) or (33b) and
Eq. (36) should be useful in the study of the semileptonic
and nonleptonic B decays, where the longitudinal and
transverse components are automatically included.

We finally study the QCD one-loop corrections within
the frame work of the factorization approach. We find that,
after subtracting the infrared divergence, the QCD one-loop
corrections to the hard transition amplitude will be zero.
This implies that the infrared contributions in the hard
amplitude can be absorbed into the wave function and the
hard terms originated from one-loop diagrams are also
absorbed by the wave function and they will contribute to
the evolution of the wave function. The formula expressing
the leptonic decay rate of B meson in Eq. (16) is not
affected by QCD corrections.
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APPENDIX A: DERIVATION OF THE
DISTRIBUTION AMPLITUDES ¢ (z), $41(2),

AND (I~5A2 (z)
In this appendix, we give a brief derivation of the three

distribution amplitudes presented in Egs. (26a)—(26¢). The
direct result about ¢7(z) in Eq. (21c) is

PHYSICAL REVIEW D 95, 113001 (2017)

Fr(2)7 = iNg / B, (F)

kie—ikq~z (Al)

-

where k' stands for any components of momentum k
and Nz = (271) .- Note that z;e “kit = 0o~k and
make use of Ar(k', k*, k) defined in Eq. (25),

Ar(k' K2 K)k! (A2a)

0
= 5 / Ar(n, K2, I )ndn

= ¢r(2)z! = NB/d3k

k! .
x / Ap(n K2, K Ypdn (=2 e~
0

(A2b)

= ¢r(z) = Ny
oo
(A2)

where Eq. (A2b) is derived from Eq. (A2a) by partial
integration. The summation in the square parentheses is
short for the following form

Z / Ar(n. ... )ndn
k! k2
- / Ag(n, K2 k) ndny + / Ap(K' . K)ndy
0 0

k3
+ / Ar(k', K%, )ndn. (A3)
0

The situation is similar for the derivation of ¢A2( ).
For the DA ¢, (z), after substituting Eq. (26b) and
Eq. (25b) into the equation Eq. (21e), we obtain

(;SAI(Z) = —]\’Jf;/d%e_ik"'Z

(Eq +mg)(Eg +mg) — |k?
VEGEQ(E;+my)(Eg + mg)

+g2/kiA(n,...)ndn}

Using the same trick iz%¢ %% = — -0
q

x {\po(/?)
(A4)

e *¢7 and partial

— |k = m}

integration and noting that in our scenario E,217 7

we get the final expression
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hur(2) = =Ny [ Prete

(E, +my)(Eg 4+ mg) — |k|?
\/EqEQ(Eq +my)(Eg + my)

+ EqA(kl,k2,k3)]

X {TO(E)
(AS)

APPENDIX B: DERIVATION OF THE
AMPLITUDE F IN THE MOMENTUM SPACE

In this appendix, we show explicitly how to derive Eq. (30)
from Eq. (28). First, we perform the Fourier transformation
on the hard scattering kernel 7, (z) and obtain

F:/d“z&)aﬁ(z)/(;ﬁ; e T g (1)
- [ S5 @by @y

Performing Fourier transformation to the matrix element

&)aﬂ(z) in Eq. (27), and using z#e’"? = —i%e“‘z, we can

obtain
/d“ze”'Z(i),,ﬁ(z)
_~ifs 4 7 2 7 Mﬂ _ vi
= 4 /d Z{ |:m3¢p + 2 ¢T <P 8ly P (91” Oy

- ~ 0 .
+ <¢A1P” + mpdhar 6_l> J/[l:| el }’5} (B2)
u

PHYSICAL REVIEW D 95, 113001 (2017)

that in the four distribution amplitudes in Eq. (23) and
Egs. (26a)—(26b), only the exponential part e~*+ depends
on the variable z. Therefore the integration over z can be
easily worked out and the result is a delta function
2r)*sW (1 - k,).

d*l dold
F= [ G Qe o k) LTl

After taking P* = mpv* and k; = m; [Eq. (11b)] into
consideration, we obtain the final expression in Eq. (30).

(B3)

APPENDIX C: EXPLICIT EXPRESSIONS
OF EQ. (44) AND Z5*

We use the dimensional regularization for the ultraviolet
divergence and introduce a small mass A for gluons to
regularize the infrared divergence in Eq. (44). The naive
dimensional regularization is adopted, where y> anticom-
mutes with all other gamma matrices.

The conventions and notations we use are

2 2 .
gs N-—1 i
. C = HY —
% 4 F 2N “ 2

7],

v =7r"PL  Yi=7"Px.

With the help of the program Package-X [73,74], the
explicit result of Eq. (44) is

1 m,m;, a,C
p Fir = b _ZZF (k) - INT - u(p — k
’ Ve V- kp 4r W “(p =k
Substituting Eq. (B2) into Eq. (B1), and making use of (C1)
partial integration, the derivative % can be moved to act on
"
the hard scattering kernel T, (/). In addition, we observe  where
|
1 dmp® 1 2 21 1
INT=7 - |- —p+ I o™ b F(nxnm)| 4 T A
£ m,my, X — m,my, 2 x—1
[ - 1 [ 1
4 Logmwp, Pr 1702 [m)””c1 Cx ] Lgep, Pe XN {xg n " —1nx+—xl}
2 MmyX;—Xy| X—X x—1 2 My X; — Xy X — X=X
Hox — 3 2 3 1
+PLp_x Xy o4 _+x1+x2 lnx+x1+ 4x4ox lnx+
m, X; — X 2 X1 —X X — Xy X| — Xy 2 x—1
H 3 2 3 1
yp Xt [2+<——x‘+x2>1nx+x‘+( —|—x——x2>lnx+ } (C2)
My X| — X X| — Xy X — Xy X| — X 2 x—1

and the finite part F(x,x;,x,) is

F(x.x.3) =~ Ks oV D - 1>> il <1

2 x2=1 x—1

X1+1>2 <
n —(In
X+ X

1\2 12 1\2
a2l ) +(lnx1+ ) —I—(lnx2+ >
X1 — X3 X1 =X X1 —X2

)Cl"'l .X]+1
In +
X+ X

)C2+1 .X2+1
In
X1 —X

—2In 21n

X1 — X X=X

1. 2 1- 1-
S P B +4<Li2 le—Liz 2x2>} (C3)

Xo—1 x;1—x
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In Egs. (C2) and (C3), y is the Euler-Mascheroni constant,
Liy(z) is the polylogarithm function of order 2, and the
definitions of x, x;, x, are

2 2 2
_ mpt+my—p

T

k(mj, m%, p?)

2 2 2
my —my + p

X =
2 2 2
K(mb’mu’p )
2 2 2
mb —m,—-p
x2:—

k(mj, m%, p?)

PHYSICAL REVIEW D 95, 113001 (2017)

where «(m?,m%, p?) is the Killén function or triangle

function

k(mj.mi, p?) = (m3)? + (mi)? + (p?)* = 2mjp?

—2m2p* = 2mim?3.
The renormalization constant Z5" in Eq. (46) has been

computed in the virtial gluon-mass regularization scheme
and with the on-shell renormalization condition. The resultis

_ a,C 1 dmp® 2
Zht =1+ 2y —In—— —4-2In—— ).
2 + 4r < € tre—mn miﬁ nmlz,.ﬁ

(C4)
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