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We calculate the gauge invariant Drell-Yan-like hadron tensors. In connection with new COMPASS
results, we predict the new single spin asymmetry which probes gluon poles together with chiral-odd and
time-odd functions. The relevant pion production as a particular case of the Drell-Yan-like process has been
discussed. For the meson-induced Drell-Yan (DY) process, we model an analog of the twist-3 distribution
function, which is a collinear function in inclusive channel, by means of two noncollinear distribution
amplitudes which are associated with exclusive channel. This modeling demonstrates the fundamental
duality between different factorization regimes.

DOI: 10.1103/PhysRevD.95.111501

The current studies of hadron structure involve both
semi-inclusive and exclusive processes. They are described
by transverse momentum dependent (TMDs) and general-
ized parton distributions (GPDs), respectively. The tran-
sitions, duality and matching between these regimes are of
much importance for the coherent QCD description of
hadron structure. Here we concentrate on the manifestation
of such effects in the pion-nucleon Drell-Yan process at
large xF, when pion is described by wave functions and
distribution amplitudes rather than parton distributions.
It has been shown long ago that the specific effects

related to the high-twist corrections lead to the sizable
nonscaling and nonfactorizing contributions to the unpo-
larized cross sections for the Drell-Yan-like processes in the
well-defined kinematic regimes of a large fraction x [1,2].
Also, the inclusive production of dimuons from the hard
scattering of pions on an unpolarized nuclear target and the
similar process with longitudinally polarized protons have
been analyzed in [3]. In both cases, it has demonstrated the
role played by the pion bound state in terms of the pion
distribution amplitudes. Moreover, in [4] it is shown that
the angular distribution is rather sensitive to the shape
of the pion distribution amplitude in the kinematic region
where one of the pion constituents is off shell. In the
kinematic regime where the photon has a large longitudinal
momentum fraction, the cross section and the single spin
asymmetry for the dimuon production with taking into
account pion bound state effects are calculated in [5]. The
predictions of [5] are directly proportional to the pion
distribution amplitude. Therefore, the measurement of the
polarized Drell-Yan cross section can determine the shape
of the pion distribution amplitude.
To the present day the study of hadron (in particular

nucleon) composite structure is the most important subject
of hadron physics. From the experimental viewpoint, one of

the widespread and useful instruments for such investiga-
tions is the single spin asymmetry (SSA). Especially, the
single transverse spin asymmetry opens the access to the
three-dimensional nucleon structure owing to the nontrivial
connection between the transverse spin and the parton
transverse momentum dependence (see, for example,
[6–11]). There are several experimental programs which
pursue the measurements with Drell-Yan-like processes,
RHIC [12], COMPASS [13,14] and future NICA [15,16].
In the paper, we study the Drell-Yan and pion production

hadron tensors related to the meson-baryon processes with
the essential spin transversity and “primordial” transverse
momenta. The main attention has been paid for the gluon
poles which are manifested in the corresponding distribu-
tion functions or/and amplitudes.
Inspired by the recent experimental studies byCOMPASS

[14], we propose an approach to calculate the gauge
invariant meson-induced Drell-Yan hadron tensor which
finally gives a prediction for the single transverse spin
asymmetry. We focus on the case where one of the pion (or
meson) distribution amplitudes has been projected onto the
chiral-odd combination. In turn, the pion chiral-odd dis-
tribution amplitudes also separate the chiral-odd tensor
combination in the nucleon matrix element. The access to
the single spin asymmetries, in particular the angular
dependence, induced by chiral-odd and time-odd distribu-
tion functions/amplitudes has been opened only owing to the
gluon pole presence. In otherwords, the angular dependence
of SSA predicted in the paper can give implicit evidence for
the gluon pole observation in COMPASS experiments.
Moreover, even in the collinear collision of hadron

beams it is possible to get experimentally some evidence
for the leading role of the transverse parton movements
inside hadrons. Indeed, thanks for the frame independency,
within the so-called Collins-Soper frame we can study the
angular dependence of SSA as a function of φ ∼ S⃗⊥ ∧ P⃗⊥
provided the gluon poles presence. The nontrivial angular
dependence of SSA can be treated as a signal for the*anikin@theor.jinr.ru

PHYSICAL REVIEW D 95, 111501(R) (2017)

2470-0010=2017=95(11)=111501(6) 111501-1 © 2017 American Physical Society

RAPID COMMUNICATIONS

https://doi.org/10.1103/PhysRevD.95.111501
https://doi.org/10.1103/PhysRevD.95.111501
https://doi.org/10.1103/PhysRevD.95.111501
https://doi.org/10.1103/PhysRevD.95.111501


transverse primordial momentum dependence. Thus, we
impose the single spin asymmetries which are reachable in
COMPASS and can probe simultaneously gluon poles,
duality, chiral-odd and time-odd functions.
Further, let us go over to kinematics, we study the

meson-induced Drell-Yan process and semi-inclusive deep-
inelastic scattering with pion production where baryons
are transversely polarized:MðP1Þ þ Nð↑↓ÞðP2Þ → γ�ðqÞ þ
q̄ðKÞ þ XðPXÞ → q̄ðKÞ þ lðl1Þ þ l̄ðl2Þ þ XðPXÞ and
Nð↑↓ÞðP2Þþlðl1Þ→MðP1Þþlðl2Þþ q̄ðKÞþXðPXÞ. The
virtual photon producing the lepton pair (l1 þ l2 ¼ q) has a
large mass squared (q2¼Q2) while the transverse momenta
are small and integrated out.
The Sudakov decompositions take the forms (for the

sake of shortness, we omit the four-dimension indices)

P1 ≈
Q

xB
ffiffiffi
2

p n� þ P1⊥; P2 ≈
Q

yB
ffiffiffi
2

p nþ P2⊥; ð1Þ

S ≈
λ

M2

P2 þ S⊥ ð2Þ

for the hadron momenta and spin vector;

q ¼ Qffiffiffi
2

p n� þ Qffiffiffi
2

p nþ q⊥; q2⊥ ≪ Q2; ð3Þ

for the photon momentum. The hadron momenta P1 and P2

have the plus and minus dominant light-cone components,
respectively. Accordingly, the dominant quark and gluon
momenta k1 and l lie along the plus direction while the
dominant antiquark momentum k2 is along the minus
direction.
We also define the Collins-Soper (CS) frame as [17]

t̂μ ¼ qμ

Q
; x̂μ ¼ qμ⊥

Q⊥
; ẑμ ¼ xB

Q
~Pμ
1 −

yB
Q

~Pμ
2; ð4Þ

where ~P1 ¼ P1 − q=ð2xBÞ and ~P2 ¼ P2 − q=ð2yBÞ. In
what follows we are not so precise about writing the
covariant and contravariant vectors in any kinds of defi-
nitions and summations over the four-dimensional vectors,
except the cases where this notation may lead to mis-
understanding. We can also write down that

ffiffiffi
2

p
n� ¼ t̂þ ẑ −

Q⊥
Q

x̂;
ffiffiffi
2

p
n ¼ t̂ − ẑ −

Q⊥
Q

x̂: ð5Þ

With minor modifications this reference frame is suitable
for the direct pion production as well.
For the processes we consider, we deal with a large Q2

and, therefore, we apply the factorization theorem to get the
corresponding hadron tensor factorized in the form of
convolution:

Hadron tensor ¼ fHard ðpQCDÞg ⊗ fSoft ðnpQCDÞg:
ð6Þ

Based on DY kind of processes, it is natural to study the
role of twist-3 by exploring of different kinds of asymme-
tries. In particular, the left-right asymmetry which means
that the transverse momenta of the leptons or/and hadrons

are correlated with the directions S⃗⊥ ∧ ẑ and S⃗⊥ ∧ x̂,
see Eq. (4).
The single spin asymmetries (SSAs) under our consid-

eration is given by

A ¼ ðdσð↑Þ − dσð↓ÞÞ=ðdσð↑Þ þ dσð↓ÞÞ; ð7Þ

with (see [11])

dσð↑↓Þ

d4qdΩ
¼ α2em

2jq4
LμνHμν; ð8Þ

where j is the standard flux factor, dΩ specifies the frame
angle orientations. In Eq. (8), Lμν implies the unpolarized
lepton tensor and Hμν stands for the hadronic tensor. Since
we dwell on the unpolarized lepton case which leads to the
real lepton tensor, the hadron tensorHμν has to be a real one
as well. Moreover, as a rule, the hadron tensor includes at
least two nonperturbative blobs which are associated with
two different dominant (the light-cone plus and minus)
directions.
Following [18–20], we continue to study the gluon pole

influence on the different asymmetries.We now focus on the
cases where the upper nonperturbative blob depicted in
Figs. 1 and 2 corresponds to the matrix elements, first, with
the spin transversity and, second,with the primordial hadron
transverse momentum. The corresponding matrix elements
can be parametrized by either the chiral-odd or time-odd
twist-2 functions, i.e. [see below Eqs. (16) and (18)]

hP2; S⊥jψ̄σ−⊥ψ jS⊥; P2i∼F ε−⊥S⊥P2 h̄1ðyÞ;
hP2; S⊥jψ̄γ−ψ jS⊥; P2i∼F iε−þS⊥P⊥

2 f̄TðyÞ: ð9Þ

FIG. 1. The Feynman diagrams which contribute to the polar-
ized Drell-Yan hadron tensor: the standard diagram.
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We remind that for the upper blob the dominant light-cone
direction is a minus direction.
On the other hand, for the lower nonperturbative blob we

replace the twist-3 BV-function of [18] with two distribu-
tion amplitudes with twist-2 and -3, see Figs. 1 and 2.
Schematically, this can be demonstrated as

hP1; Sj½ψ̄Aα⊥ψ �tw-3jS; P1ij½18�
⇒ Dαβh0j½ψ̄ψ �tw-2jS; P1iγβhP1; Sj½ψ̄ψ �tw-3j0ijthis work;

ð10Þ

where Dαβ stands for the gluon propagator. Here, all spinor
indices in the corresponding matrix element combinations
are open. Notice that the replacement shown in Eq. (10)
gives us the possibility to study the so-called gluon poles in
the most explicit form. Indeed, as it is shown below [see
Eq. (22)], the longitudinal dominant part of the gluon
propagator finally generates the gluon pole with the certain
complex prescription (arisen from the contour gauge)
which compensates the complexity of (9).
We are now in position to discuss the derivation of the

hadron tensor. We begin with the hadron tensor that relates
to the standard diagram, see Fig. 1. Throughout the paper,
we adhere the terminology and the collinear factorization
procedure as described in [18–20]. The so-called standard
diagram (which exists even if the BV-function in [18] is
real) implies the diagram depicted in Fig. 1.
Before factorization, the standard diagram gives the

hadron tensor (all prefactors are included in the integration
measures)

WðstandÞ
μν ¼

Z
ðd4k1Þðd4k2Þδð4Þðk1 þ k2 − qÞ

×
Z

ðd4lÞDαβðlÞtr½γνΓγαSðl − k2ÞγμΓ1γβΓ2�

× Φ̄½Γ�ðk2ÞΦ½Γ1�
ð2Þ ðk1;lÞΦ½Γ2�

ð1Þ ðk1ÞδððP1 − k1Þ2Þ;
ð11Þ

where

Φ̄½Γ�ðk2Þ ¼
XZ

X

Z
ðd4η2Þe−ik2η2

× hP2; S⊥jtr½ψð0ÞjPXihPXjψ̄ðη2ÞΓ�jS⊥; P2i
ð12Þ

and

Φ½Γ1�
ð2Þ ðk1;lÞ ¼

Z
ðd4η1ÞeiðP1−l−k1Þη1h0jψ̄ðη1ÞΓ1ψð0ÞjP1i;

ð13Þ

Φ½Γ2�
ð1Þ ðk1Þ ¼

Z
ðd4ξÞe−ik1ξhP1jψ̄ðξÞΓ2ψð0Þj0i: ð14Þ

In Eq. (11), we write explicitly the δ-function which shows
that the quark operator with P1 − k1 corresponds to the
on-shell fermion.
For the cases under our consideration, we choose the

γ-structure in Eqs. (11), (13), and (14) to be

Γ ⊗ Φ̄½Γ� ⇒ γþ ⊗ Φ̄½γ−� ⊕ σþ⊥ ⊗ Φ̄½σ−⊥�;

Γ1 ⊗ Φ½Γ1�
ð2Þ ⇒ γ−ðγ5Þ ⊗ Φ½γþðγ5Þ�

ð2Þ ;

Γ2 ⊗ Φ½Γ2�
ð1Þ ⇒ γ⊥ρ ðγ5Þ ⊗ Φ½γ⊥ρ ðγ5Þ�

ð1Þ ⊕ σþ−ðγ5Þ ⊗ Φ½σ−þðγ5Þ�
ð1Þ

ð15Þ

which correspond to the nucleon parton distribution
of twist-2 and the pion or/and rho-meson distribution
amplitudes of twist-2 and -3, respectively. However, the
concrete type of hadrons do not play a crucial role in our
consideration.
The next item is to perform the factorization procedure

for the hadron tensor. We are not going to stop on all of
the factorization stages (the comprehensive description of
factorization can be found in many papers, see, for
example, [21–24]). Instead, we dwell on the corresponding
parton functions parametrizing the nonperturbative matrix
elements which appear after the collinear factorization
procedure. For the twist-2 distribution function which
characterizes the upper blob, we have

Φ̄½σ−⊥�ðyÞ ¼def
Z

ðd4k2Þδðy − k−2 =P
−
2 ÞΦ̄½σ−⊥�ðk2Þ

¼ ε−⊥S⊥P2 h̄1ðyÞ; ð16Þ

Φ̄½γ−�ðyÞ ¼def
Z

ðd4k2Þδðy − k−2 =P
−
2 ÞΦ̄½γ−�ðk2Þ

¼ iε−þS⊥P⊥
2 f̄TðyÞ: ð17Þ

The other object is an analog of BV-function expressed
through the gluon propagator and functions Φð1Þ, Φð2Þ. We
have (here, x21 ¼ x2 − x1)

FIG. 2. The Feynman diagrams which contribute to the polar-
ized Drell-Yan hadron tensor: the nonstandard diagram.

DRELL-YAN-LIKE PROCESSES AND DUALITY PHYSICAL REVIEW D 95, 111501(R) (2017)

111501-3

RAPID COMMUNICATIONS



B½Γ2;Γ1�
αβ ðx1;x2Þ

¼def
Z

ðd4k1Þδðx1−kþ1 =P
þ
1 Þ

Z
ðd4lÞδðx21−lþ=Pþ

1 Þ

×
dαβðlÞ

2lþl−− l⃗2
⊥þ i0

Φ½Γ1�
ð2Þ ðk1;lÞΦ½Γ2�

ð1Þ ðk1ÞδððP1−k1Þ2Þ;

ð18Þ

where the gluon propagator has been written in the explicit
form with the causal prescription and dαβðlÞ given by the
axial (contour) gauge Aþ ¼ 0 (see [25]).
Since we are interested in the gluon pole decoded in

Eq. (18) we have to keep only the transverse gluon
contributions to the gluon propagator. Indeed, the gluon
propagator generated by hAi⊥A−i is associated with the
essential transverse component of gluon momentum li⊥.
This leads to the case where there are not any sources for
the gluon pole at x1 ¼ x2 [20,26]. On the other hand, the
hAi⊥A−i part of the gluon propagator is gauge dependent
and disappears ultimately in the physical observables and
hadron tensor.
Therefore, Eq. (18) can be rewritten in the following

form:

B½Γ2;Γ1�
αβ ðx1; x2Þ ¼

g⊥αβ
2Pþ

1 ðx2 − x1Þ
Φ½Γ2�

ð1Þ ðx1Þ⊛
k⃗⊥
1

Φ½Γ1�
ð2Þ ðx̄2Þ; ð19Þ

where integration over dk−1 with δððP1 − k1Þ2Þ has been
done and we introduce the notations

F⊛k⃗
⊥
1

G¼
Z

ðd2k⃗⊥
1 ÞFðk⃗⊥

1 Þ

×
Z

ðdl−d2l⃗⊥ÞΔðl−; l⃗⊥ÞGðk⃗⊥
1 ;l−l⃗⊥Þ; ð20Þ

Δðl−; l⃗⊥Þ¼
1

l−− l⃗2
⊥=ð2x21Pþ

1 Þþ isignðx21Þ0
: ð21Þ

In Eq. (19), the function B½Γ2;Γ1�
αβ ðx1; x2Þ (which is

expressed, generally speaking, through two noncollinear
pion distribution amplitudes) is an analog of the function
BVðx1; x2Þ appeared in the inclusive channel [18]. The
similarity of these two functions takes place provided the
small invariant mass of spectators in the pion sector. In
other words, the mentioned similarity can be understood as
the manifestation of duality between exclusive and inclu-
sive channels. Besides, if we have the restriction somewhat
of jl⃗⊥j ≫ jk⃗⊥

1 j, the approximation can be implemented by
two collinear distribution amplitudes.
Let us discuss the pole at x1 ¼ x2 which is factorized as a

prefactor in Eq. (19). This is exactly the gluon pole which
has to be treated within the contour gauge frame as
described in [18–20], i.e.

1

x2 − x1
⇒
c:g: 1

x2 − x1 − iε
: ð22Þ

Notice that the complex prescription emanates from the
corresponding integral representation of the theta function
(see [19] for details).
Having performed the Lorentz decomposition in the

corresponding matrix elements, in the case we consider the
BV- function analog takes the form

B½Γ2�
αβ ðx1; x2Þ ¼

1

2

g⊥αβV ½Γ2�

x2 − x1 − iε
Φtw-3

ð1Þ ðx1Þ⊛
k⃗⊥
1

Φtw-2
ð2Þ ðx2Þ; ð23Þ

where the Lorentz tensor V ½Γ2� means P⊥
1 or ~n½−Pþ�

1 for the
pion-to-vacuum matrix elements and e⊥ for the rho-meson-
to-vacuummatrix element. In Eq. (23), Pþ

1 in the numerator

which originates from the parametrization of Φ½Γ1�
ð2Þ cancels

the same component coming from the denominator of the
gluon propagator [see Eq. (19)].
With these, after factorization the standard diagram

hadron tensor reads

WðstandÞ
μν ¼ i

Z
ðdx1ÞðdyÞδð4Þðx1Pþ yP2 − qÞΦ̄½Γ�ðyÞ

×
Z

ðdx2Þtr
�
γνΓγα

x21P̂
þ
1

−x21ysþ i0
γμγ

−γβΓ2

�

×
1

2

g⊥αβV ½Γ2�

x2 − x1 − iε
Φtw−3

ð1Þ ðx1Þ⊛
k⃗⊥
1

Φtw-2
ð2Þ ðx2Þ: ð24Þ

Here and below, for the sake of convenience, we single
out the complex i which emanates from either the para-
metrization of the upper blob, Eq. (16), or from the
parametrization of the pion-to-vacuum matrix element of
the twist-2 operator in the lower blob.
The next object of our discussion is the additional

diagram, see Fig. 2, which contributes to the hadron tensor.
According to [18], this is the so-called nonstandard dia-
gram which does not exist if the BV-function is real.
In principle, derivation of this part of the hadron tensor is

similar to what we present for the standard diagram
contribution. Before factorization, we have

WðnonstandÞ
μν ¼

Z
ðd4k1Þðd4k2Þδð4Þðk1 þ k2 − qÞ

×
Z

ðd4lÞDαβðlÞtr½γνΓγμSðk1ÞγαΓ1γβΓ2�

× Φ̄½Γ�ðk2ÞΦ½Γ1�
ð2Þ ðk1;lÞΦ½Γ2�

ð1Þ ðk1ÞδððP1 − k1Þ2Þ:
ð25Þ

Then, we again perform the factorization procedure and,
finally, the nonstandard diagram hadron tensor is given by
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WðnonstandÞ
μν ¼ i

Z
ðdx1ÞðdyÞδð4Þðx1P1 þ yP2 − qÞΦ̄½Γ�ðyÞ

× tr

�
γνΓγμ

γþ

2x1P
þ
1 þ i0

γαγ
−γβΓ2

�
1

2

Z
ðdx2Þ

×
g⊥αβV ½Γ2�

x2 − x1 − iε
Φtw-3

ð1Þ ðx1Þ⊛
k⃗⊥
1

Φtw-2
ð2Þ ðx2Þ: ð26Þ

Last but not least, to get the gauge invariant expression
for the hadron tensor we sum the contributions of Eqs. (24)
and (26). The sum reads

Wμν ¼
Z

d2q⃗⊥Wμν

¼ i
Z

ðdx1ÞðdyÞδðx1Pþ
1 − qþÞδðyP−

2 − q−Þ

× F̄ðyÞ
Z

ðdx2Þ ~Bðx1; x2Þ
Tν

P1 · P2

�
Pμ
1

y
−
Pμ
2

x1

�
; ð27Þ

where

F̄ðyÞ ¼
�
f̄TðyÞ
h̄1ðyÞ

�
Tν ¼

�
εP1þS⊥P⊥

2 Vν⊥
ενS⊥P2P1⊥

�
ð28Þ

and

~Bðx1; x2Þ ¼
1

2

Φtw-3
ð1Þ ðx1Þ⊛

k⃗⊥
1

Φtw-2
ð2Þ ðx2Þ

x2 − x1 − iε
: ð29Þ

In Eq. (29), the pion distribution amplitudes of twist-2
and -3 include the different dimensionful prefactors. Notice
that the derived gauge invariant hadron tensor, see Eq. (27),
coincides formally with the results obtained in [18] for the
usual Drell-Yan process.
We now calculate the single spin asymmetry, see Eq. (7).

Within the CS frame [11,17], calculating the imaginary
part of ~Bðx1; x2Þ and contracting the leptonic and hadron
tensors, we obtain (here, Lμν implies the unpolarized lepton
tensor)

LμνℑmWμν ¼ F̄ðyBÞΦtw-3
ð1Þ ðxBÞ⊛

k⃗⊥
1

Φtw-2
ð2Þ ðxBÞ

×
2

xByB
ðl1 · ẑÞ

� ðl⊥
1 · V⊥ÞS⃗⊥ ∧ P⃗2⊥

εl1S⊥P2P1

�
;

ð30Þ

where ðl1 · ẑÞ¼−Q2

2
cosθ, εl1S

⊥P1P2 ¼ − sQ
4
jS⃗⊥j sin θ sinϕS.

Therefore, for the chiral-odd contributions, we predict a
new asymmetry which, in terms of [14], reads

AT ¼ S⊥
Q

D½sin 2θ� sinϕSB
sinϕS
UT

f̄1ðyBÞH1ðxBÞ
; D½sin 2θ� ¼

sin 2θ
1þ cos2θ

;

ð31Þ

where BsinϕS
UT ¼ 2h̄1ðyBÞΦtw-3

ð1Þ ðxBÞ⊛
k⃗⊥
1

Φtw-2
ð2Þ ðxBÞ; f̄1ðyBÞ and

H1ðxBÞ stem from the unpolarized cross section and they
parametrize the following matrix elements:

hP2jψ̄γ−ψ jP2i∼F P−
2 f̄1ðyÞ;

hP1jψ̄þjqðKÞihqðKÞjψþjP1i∼F Pþ
1 H1ðxÞ; ð32Þ

where

H1ðxÞ ¼
1

2x̄1P
þ
1

Z
ðd2k⃗⊥

1 ÞΦ½γþðγ5Þ�
ð2Þ ðx̄1; k⃗⊥

1 ÞΦ½Iðγ5Þ�
ð1Þ ðx1; k⃗⊥

1 Þ:

ð33Þ

Indeed, the leading twist Sivers asymmetry AsinϕS
UT ,

which formally stands at the similar tensor combination
εl

⊥
1
S⊥P1P2 , appears only together with the depolarization

factor D½1þcos2θ�. In its turn, the higher twist asymmetries

AsinðϕS�ϕÞ
UT at D½sin 2θ� correspond to the different tensor

structures, εqS
⊥P⊥

1
P2 ∼ sinðϕS � ϕÞ.

In conclusion, we derive the gauge invariant meson-
induced DY hadron tensor with the essential spin trans-
versity and primordial transverse momenta. Our calculation
includes both the standard-like, which is well known, and
nonstandard-like diagram, which is first found in [18],
contributions. The latter contribution plays a crucial role for
the gauge invariance.
In the paper, we focus on the case where one of the pion

distribution amplitudes has been projected onto the chiral-
odd combination. The latter singles out the chiral-odd
parton distribution inside nucleons. The chiral-odd tensor
combinations are very relevant for the future experiments
implemented by COMPASS [14]. We predict new single
transverse spin asymmetries to be measured experimentally
which are associated with the spin transversity and with the
nontrivial φ-angular dependence. The latter asymmetry can
eventually be treated as a signal for the transverse primor-
dial momentum dependence which probes both gluon poles
and time-odd functions. In contrast to [4], our SSA is given
by the interference of two amplitudes rather than the square
of a given amplitude. We emphasize that the possibility to
study different SSAs reachable in COMPASS experiments
and induced by chiral-odd and time-odd distribution
functions/amplitudes appears only thanks for the gluon
pole presence. Thus, the proposed angular dependence of
SSA can give implicit evidences for the gluon pole
observation in COMPASS experiments.
We model the analog of the collinear parton distribution

function BVðx1; x2Þ-function of [18] determined in the
inclusive channel by means of the gluon propagator and
two noncollinear exclusive meson distribution amplitudes
of twist-2 and -3. For this modeling, the invariant masses of
undetected spectators in the pion sector have to be
considered as relatively small. Our model demonstrates
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the manifestation of duality between different factorization
regimes in exclusive and inclusive channels (see [27]).
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