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We discuss some aspects of soft hairy black holes and a new kind of “soft hairy cosmologies,” including
a detailed derivation of the metric formulation, results on flat space, and novel observations concerning the
entropy. Remarkably, like in the case with negative cosmological constant, we find that the asymptotic
symmetries for locally flat spacetimes with a horizon are governed by infinite copies of the Heisenberg
algebra that generate soft hair descendants. It is also shown that the generators of the three-dimensional
Bondi-Metzner-Sachs algebra arise from composite operators of the affine ûð1Þ currents through a twisted
Sugawara-like construction. We then discuss entropy macroscopically and microscopically and discover
that a microscopic formula derived recently for boundary conditions associated with the Korteweg–de
Vries hierarchy fits perfectly our results for entropy and ground state energy. We conclude with a
comparison to related approaches.
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I. INTRODUCTION

Black holes and cosmological spacetimes exhibit generi-
cally nonextremal horizons. In the near-horizon limit such
spacetimes universally are approximated by Rindler space
[1]. Whenever one is interested in asking conditional
questions, like “given a black hole, what are the scattering
amplitudes in a given channel?” or “given a cosmological
horizon, what are the allowed states that remain in the
physical Hilbert space and how could they be related
through symmetries?” or “given a black hole or cosmo-
logical horizon, can we microscopically account for the
Bekenstein–Hawking entropy?”, it is crucial to impose
boundary conditions that make sure that the condition in
the question is met [2]. In other words, we are searching for
a consistent set of boundary conditions that guarantees the
existence of a (regular, nonextremal) horizon. This moti-
vates the invention of suitable near-horizon boundary
conditions.
Recently, near-horizon-inspired boundary conditions

were proposed for three-dimensional spacetimes with
negative cosmological constant [3], which allowed one
to discuss novel aspects of soft hair (in the sense of
Hawking, Perry and Strominger [4,5]), black hole entropy
and black hole complementarity.
In the present work we give more details on the

metric formulation, and generalize the discussion to

cosmological spacetimes in the absence of a cosmological
constant.
One of the main results of our flat space analysis is that

the asymptotic symmetry algebra turns out to be precisely
the same as in anti-de Sitter (AdS) space [3], namely
infinite copies of the Heisenberg algebra supplemented by
two Casimirs, one of which is the Hamiltonian. This
supports the interpretation that our symmetry algebra can
be naturally considered from a near-horizon perspective,
since the near-horizon physics is expected to be insensitive
to the presence or absence of a cosmological constant, as
opposed to the usual expectation in the asymptotic region.
For this reason hereafter we shall refer to this algebra
sometimes as “near-horizon symmetry algebra” (NHSA).
However, we stress that our boundary conditions and all
results based upon them can be interpreted also from an
asymptotic observer’s perspective, which sometimes is
more useful than the near-horizon perspective.
Remarkably, the Bekenstein-Hawking entropy

SBH ¼ A
4G

¼ 2πðJþ0 þ J−0 Þ; ð1Þ

once expressed in terms of our global charges, also acquires
a unique expression that depends only on the zero modes
J�0 and turns out to be insensitive to the value of the
cosmological constant.
This work is organized as follows. In Sec. II we

recapitulate key results of [3], recast in Gaussian normal
coordinates. In Sec. III we address in more detail aspects of
the metric formulation, in particular the asymptotic Killing
vectors, the Regge-Teitelboim charges and the boundary
conditions on metric fluctuations near the horizon and in
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the asymptotic region. In Sec. IV we formulate suitable
boundary conditions in flat space and derive the asymptotic
symmetry algebra, which turns out to be isomorphic to the
one in AdS; we generalize the soft hairy discussion to flat
space cosmologies. In Sec. V we focus on algebraic aspects
and various Sugawara-like constructions based on our near-
horizon symmetry algebra, as well as algebraic general-
izations to higher spins and higher dimensions. In Sec. VI
we discuss the entropy from various perspectives; first, we
recover the macroscopic Bekenstein-Hawking result in the
Chern-Simons formulation; second, we address microstate
counting and observe that a special case of a microscopic
entropy formula fits perfectly our results, which was
originally derived for boundary conditions on AdS3 where
the boundary gravitons obey the equations of some
representative of the Korteweg–de Vries (KdV) hierarchy.
In Sec. VII we compare with various related approaches, in
particular with the one in [6]. In Sec. VIII we conclude with
a brief summary and an outlook to future research
directions.
Before starting we mention some of our conventions. We

work in 2þ 1 dimensional spacetimes of signature
ð−;þ;þÞ and use the following sign convention for the
Ricci tensor Rμν ¼ ∂αΓα

μν þ � � �.

II. SUMMARY OF ANTI-DE SITTER RESULTS

In this section we summarize, and partly make more
explicit, the results of [3]. We start by presenting a special
class of metrics that solves the three-dimensional Einstein
equations with negative cosmological constant,

Rμν −
1

2
gμνRþ Λgμν ¼ 0 ð2Þ

and that approaches Rindler spacetime near the horizon in
Sec. II A, focusing first on Gaussian normal coordinates
and then on Eddington-Finkelstein coordinates. In Sec. II B
we recapitulate the Chern-Simons formulation, in which
the boundary conditions appear naturally in diagonal
gauge; see Sec. II C. Section II D displays the canonical
charges and their asymptotic symmetry algebra. In Sec. II E
we recall the definition of soft hair descendants.

A. Soft hairy black hole metric

The near-horizon metric in a co-rotating frame acquires
the form

ds2 ¼ −a2r2dt2 þ dr2 þ γ2dφ2 þ � � � ð3Þ

where a is the Rindler acceleration, and r ¼ 0 stands for the
location of the (Rindler) horizon. The angular coordinate is
assumed to be periodic, φ ∼ φþ 2π, so that the horizon
area is given by

A ¼
I

dφγ: ð4Þ

The ellipsis in (3) corresponds to higher order terms in the
radial coordinate r.
In [3] we continued the analysis in Eddington-

Finkelstein coordinates. We summarize (and generalize)
these results in Appendix A. Here we proceed instead in
Gaussian normal coordinates, following the higher spin
discussion [7].
Parametrizing the cosmological constant in terms of the

AdS radius, Λ ¼ −l−2, the full metric that approaches (3)
in the near-horizon limit for a generic rotating frame and
solves the Einstein equations (2) in Gaussian normal
coordinates is given by

ds2 ¼ dr2 − ðða2l2 −Ω2Þcosh2ðr=lÞ − a2l2Þdt2
þ 2ðγΩcosh2ðr=lÞ þ aωl2sinh2ðr=lÞÞdtdφ
þ ðγ2cosh2ðr=lÞ − ω2l2sinh2ðr=lÞÞdφ2: ð5Þ

The line-element (5) depends on four functions a, Ω, γ, ω
of time and the angular coordinate, subject to the on-shell
conditions

_γ ¼ Ω0 _ω ¼ −a0 ð6Þ

where prime denotes ∂φ and dot denotes ∂t.
This patch of coordinates covers the region outside the

event horizon, r ≥ 0. Since the generic solution is not
spherically symmetric, its geometry describes a sort of
“black flower” (see e.g. [8]). As explained in Sec. II D and
further elaborated in Sec. III, the state-dependent functions
ω and γ cannot be gauged away because they correspond to
the global charges. The quantities a andΩ are interpreted as
chemical potentials, meaning that they are arbitrary but
fixed functions of φ and t. For consistency we assume that
the function determining the surface area is positive every-
where, i.e., γ > 0, with no loss of generality.
In order to make explicit contact with the expression for

the metric in [3], for simplicity we choose a to be constant
and adopt a corotating frame (Ω ¼ 0). Then, in (ingoing)
Eddington-Finkelstein coordinates with advanced time v,

v ¼ t −
1

2
a−1 log

�
fðρÞ
ρ

�
ρ ¼ al2

�
cosh

�
r
l

�
− 1

�
ð7Þ

the line element (5) reduces to

ds2 ¼ −2aρfðρÞdv2 þ 2dvdρþ 4ωρfðρÞdvdφ

− 2
ω

a
dφdρþ

�
γ2 þ 2ρ

al2
ðγ2 − l2ω2ÞfðρÞ

�
dφ2 ð8Þ
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where fðρÞ ¼ 1þ ρ=ð2al2Þ. The functions ω and γ now
depend on φ, only. Note that in the case of constant values
of ω and γ the solution is spherically symmetric and
reduces to the BTZ black hole [9,10].
To facilitate comparison with literature we translate now

into standard BTZ variables. The BTZ black hole with
outer and inner horizon radii rBTZ� (in the Schwarzschild
type of coordinates introduced in [9]) is recovered by
identifying

rBTZþ ¼ γ rBTZ− ¼ jωjl ð9Þ
with constant γ > 0 and constant ω. The sign of ω
determines the direction of the rotation, and the following
BPS-like inequality holds

γ > jωjl: ð10Þ

This can be seen either directly from the line element (5)
in the limit of large r or from the usual BTZ-inequality
rþ ≥ r− together with (9).
We continue in the metric formulation in Sec. III. In the

remainder of this section we switch to the Chern-Simons
formulation, which is technically more convenient.

B. Chern-Simons formulation

In the Chern-Simons formulation the bulk action for
Einstein gravity reads [11,12]

ICS ¼
k
4π

Z �
A ∧ dAþ 2

3
A ∧ A ∧ A

�
: ð11Þ

In the presence of a negative cosmological constant the
Chern-Simons level is given by k ¼ l=ð4GÞ. The gauge
field A splits into two independent slð2;RÞ connections
A�. The generators then fulfill

½Ln; Lm� ¼ ðn −mÞLnþm ð12Þ

with n;m ¼ 0;�1, and the bilinear form h; i corresponds to
the standard one for each copy of slð2;RÞ, given by

hL1; L−1i ¼ −1; hL�1; L0i ¼ 0; hL0; L0i ¼
1

2

ð13Þ

once one includes a relative minus sign in one of the
sectors, which most conveniently is put into the action.
Explicitly, in the AdS case the action (11) then splits into
left (þ) and right (−) chiral parts

ICS ¼
l

16πG

Z �
Aþ ∧ dAþ þ 2

3
Aþ ∧ Aþ ∧ Aþ

�

−
l

16πG

Z �
A− ∧ dA− þ 2

3
A− ∧ A− ∧ A−

�
ð14Þ

and the spacetime metric is recovered from the gauge fields
A� according to

gμν ¼
l2

2
hðAþ

μ − A−
μ ÞðAþ

ν − A−
ν Þi: ð15Þ

In our conventions, t; r; γ;l; G have length dimension
one, φ;ω;Ω; k; A�; Ln are dimensionless, while the length
dimension of the Rindler acceleration a is minus one.

C. Boundary conditions

The crucial role of boundary conditions in field theories
and particularly in gravitational theories is well appreciated
by now. In three spacetime dimensions the asymptotic
AdS boundary conditions by Brown and Henneaux [13]
provided an important precursor of AdS3=CFT2. Since
then, these boundary conditions were modified (see e.g.
[3,14–17]) and generalized (see e.g. [18–25]) in numer-
ous ways.
Let us now describe the boundary conditions proposed in

[3]. The gauge fields compatible with these boundary
conditions can be written as

A� ¼ b−1� ðdþ a�Þb� ð16Þ

where the gauge group elements b� depend on the radial
coordinate. In [3], the remaining analysis was carried out in
Eddington-Finkelstein coordinates. Hereafter, we prefer to
continue with the development in Gaussian normal coor-
dinates, since they provide certain advantages once dealing
with the metric formulation (see Sec. III).
A suitable choice of b� is then given by

b� ¼ exp

�
� r
2l

ðL1 − L−1Þ
�

ð17Þ

so that the auxiliary connections a� can be expressed
through

a� ¼ L0ð�J �dφþ ζ�dtÞ ð18Þ

which depend only on time and the angular coordinate.
Here we have used the following definitions:

J � ¼ γl−1 � ω ζ� ¼ −a� Ωl−1: ð19Þ

The field equations then imply the vanishing of the field
strength

F ¼ dAþA ∧ A ¼ 0 ð20Þ

which exactly hold provided

_J � ¼ �ζ�0 ð21Þ
in agreement with (6).
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As explained in [26,27], the components of the gauge
fields along time turn out to be Lagrange multipliers, so
that ζ� can be naturally interpreted as chemical poten-
tials and assumed to be fixed at the boundary. The
remaining functions J � then correspond to the dynami-
cal fields.
Having formulated our boundary conditions in terms

of the diagonal Chern-Simons connections (18), it
becomes very simple to check the regularity of the fields
along a contractible cycle in the Euclidean continua-
tion. Since the Lagrange multipliers are switched on, the
range of the coordinates can be fixed so that the torus
possesses a trivial modular parameter, i.e., 0 ≤ φ < 2π,
0 ≤ τ < β ¼ T−1, where T stands for the Hawking tem-
perature. Noteworthy, requiring the holonomy along the
Euclidean time cycle to be trivial does not impose any
restriction on the state-dependent functions J �. This
regularity condition instead tells us that the (now complex)
chemical potentials are constrained to be

ζ� ≡ −2π=β� ¼ −a� iΩl−1 ¼ −2π=β ð22Þ

where 2=T ¼ βþ þ β− and 2Ω=T ¼ βþ − β−.
From a geometrical point of view this means that

all the solutions satisfying the boundary conditions have
a regular horizon, regardless of the value of J �, as long
as a=ð2πÞ is identified with the Unruh temperature
and Ω ¼ 0.

D. Canonical charges and their algebra

The canonical charges associated with the theory defined
by our boundary conditions (16)–(18) turn out to be finite
and conserved in time, given by [3]

Q�½η�� ¼∓ k
4π

I
dφη�J �: ð23Þ

The algebra of the global charges captures all boundary
condition preserving transformations

δϵ�a
� ¼ dϵ� þ ½a�; ϵ�� ð24Þ

modulo trivial gauge transformations, where

ϵ� ¼ η�L0 ð25Þ

and

δJ � ¼ �η0� ð26Þ

with _η ¼ 0.
Expanding in Fourier modes

J�n ¼ k
4π

Z
dφe�inφJ � ð27Þ

we found that their commutators are given by1

½J�n ; J�m� ¼
1

2
knδnþm;0 ½Jþn ; J−m� ¼ 0 ð28Þ

which consist of two ûð1Þ current algebras with the same
levels (k=2).
Linearly combining the generators as P0 ¼ Jþ0 þ J−0 ,

Pn ¼ i
kn ðJþ−n þ J−n Þ if n ≠ 0, Xn ¼ Jþn − J−−n, the algebra

(28) reads

½Xn; Xm� ¼ ½Pn; Pm� ¼ ½X0; Pn� ¼ ½P0; Xn� ¼ 0 ð29Þ

½Xn; Pm� ¼ iδn;m if n ≠ 0 ð30Þ

which corresponds to the commutation relations for
Casimir-Darboux coordinates, where X0, P0 stand for
the Casimirs and the remaining Xn, Pn form canonical
pairs. Note that (30) is the Heisenberg algebra.
It is worth highlighting that the global charges (23) are

manifestly independent of the radial coordinate, and there-
fore the analysis holds for an arbitrary fixed value of it,
regardless whether the boundary is chosen to be near the
horizon or at infinity.

E. Soft hair descendants

Some consequences of these results were discussed in
[3]. A striking one is the existence of “soft hair” excitations

jψ sðfn�i gÞi ∝
Y
n�i >0

Jþ−nþi
J−−n−i jψi ð31Þ

of some arbitrary state jψi, which can e.g. be a black hole
state. Due to the facts that the Hamiltonian is proportional
to P0 ¼ Jþ0 þ J−0 and that P0 is a Casimir operator, all soft
hair descendants jψ sðfn�i gÞi have the same energy as the
original state jψi, for any set of positive integers fn�i g. In
accordance with the nomenclature introduced by Hawking,
Perry and Strominger [4] we call the zero energy excita-
tions generated by raising operators J�−n�i

“soft hair.”

We shall generalize this discussion to the case of locally
flat spacetimes in Sec. IV. Before doing this we recover the
key results above in the metric formulation, spelled out in
Sec. III.

III. METRIC FORMULATION

We show now that the results reviewed in the previous
section can also be directly obtained in the metric formu-
lation. This is hardly surprising, as the Chern-Simons
formulation (11) is classically equivalent to the metric
formulation. However, it is still useful to perform this

1Poisson brackets are replaced by commutators according to
if; g → ½; �.
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exercise in order to get some physical intuition into the
meaning of our boundary conditions from a purely metric
perspective.
Indeed, since we have already shown that the analysis

does not depend on the precise choice of the fixed value of
the radial coordinate where the boundary is located, for
simplicity in Sec. III A we first proceed within the phase
space defined through the family of metrics defined in
Eq. (5); where a and Ω (or equivalently ζ�) are assumed
to be arbitrary fixed functions of t, φ, without functional
variation. Nonetheless, the results are also explicitly carried
out for relaxed boundary conditions that allow sub-
subleading fluctuations either near the horizon or in the
asymptotic region in Secs. III B and III C, respectively.

A. Asymptotic Killing vectors and charges

The asymptotic Killing vectors can be seen to corre-
spond to the diffeomorphisms that maintain the form of the
metric (5) within the same family. Hence, we look for
diffeomorphisms spanned by ξ ¼ ξμ∂μ, whose action on
the spacetime metric coincides with its functional varia-
tion, i.e.,

δξgμν ¼ Lξgμν: ð32Þ

Taking into account the compatibility of these symmetries
with the time evolution of the dynamical fields, given by
Eq. (21), the relation in (32) then implies that the
components of ξ are given by

ξt ¼ ηþJ − þ η−J þ

ζþJ − þ ζ−J þ ð33aÞ

ξφ ¼ ηþζ− − η−ζþ

ζþJ − þ ζ−J þ ð33bÞ

ξr ¼ 0 ð33cÞ

where η� stand for arbitrary functions of φ, while the
transformation law of the dynamical fields J � is found to
precisely agree with (26).
Note that the result in (33) naturally agrees with the one

previously derived in terms of gauge fields in Sec. II D.
Indeed, diffeomorphisms acting on gauge-flat connections
are equivalent to gauge transformations spanned by
Lie-algebra-valued parameters fulfilling (see e.g. [12])

ϵ� ¼ a�μ ξμ; ð34Þ

which is certainly so for ϵ� and a�μ given by (25) and (18),
respectively, provided (33) holds.
Following the Regge-Teitelboim approach [28], the

variation of the canonical generators associated with the
symmetries spanned by ξ, are given by the following
surface integrals:

δQ½ξ� ¼
Z

dSl½Gijklðε⊥∇kδgij −∇kε
⊥δgijÞ

þ 2εjδðgjkπklÞ − εlπjkδgjk�; ð35Þ

where Gijkl ¼ 1
32πG g

1=2ðgikgjl þ gilgjk − 2gijgklÞ, and

ε⊥ ¼ N⊥ξt εi ¼ ξi þ Niξt:

These surface integrals can be directly evaluated in terms of
the metric in (5), and the symmetries spanned by (33), so
that they reduce to

δQ½ηþ; η−� ¼ l
16πG

Z
dφðηþδJ þ þ η−δJ −Þ; ð36Þ

which readily integrate as

Q½ηþ; η−� ¼ Qþ½ηþ� −Q−½η−�; ð37Þ

withQ�½η�� given by (23). It is then clear that their Poisson
bracket algebra is given by two copies of the affine ûð1Þ
currents, coinciding with (28).
Note that, as expected, the global charges obtained in the

metric formalism do not depend on the radial coordinate,
which implies that the same results have to be recovered
from an asymptotic analysis performed for a wider class of
metrics, either in the near-horizon region or close to the
asymptotic boundary.

B. Near-horizon behavior

One of the advantages of dealing with Gaussian normal
coordinates is that the analysis of the spacetime structure,
despite of being performed in the horizon neighborhood,
can be suitably carried out following the canonical
approach, as it is the case in [28] for the asymptotic
region. The leading terms of the metric around the horizon,
located at r ¼ 0, are then specified according to

gtt ¼ Ω2 þ ðΩ2 − l2a2Þ r
2

l2
þOðr3Þ ð38aÞ

gφφ ¼ γ2 þ ðγ2 − l2ω2Þ r
2

l2
þOðr3Þ ð38bÞ

gtφ ¼ γΩþ ðγΩþ aωl2Þ r
2

l2
þOðr3Þ ð38cÞ

grr ¼ 1þOðr2Þ ð38dÞ

grt ¼ Oðr2Þ ð38eÞ

grφ ¼ Oðr2Þ: ð38fÞ

The near-horizon symmetries are then found through
solving Eq. (32) up to the subleading orders in (38), which
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implies that the asymptotic Killing vectors are given by
(33) modulo subleading corrections of Oðr3Þ, i.e.,

ξt ¼ ηþJ − þ η−J þ

ζþJ − þ ζ−J þ þOðr3Þ ð39aÞ

ξφ ¼ ηþζ− − η−ζþ

ζþJ − þ ζ−J þ þOðr3Þ ð39bÞ

ξr ¼ Oðr3Þ ð39cÞ

provided that the fields J � transform as in (26).
The global charges associated with these near-horizon

symmetries can then be readily obtained from (35), and
they are found to agree with (37). Hence, the canonical
realization of the NHSA is described by two ûð1Þ currents,
given by (28).

C. Asymptotic behavior

Analogously, when the radial coordinate approaches
infinity (r → ∞) it is convenient to make the change
r
l → logðrlÞ, so that the asymptotic behavior of the space-
time metric reads

gtt ¼ ðΩ2 − l2a2Þ r2

4l2
þ 1

2
ðΩ2 þ l2a2Þ þO

�
1

r

�
ð40aÞ

gφφ ¼ ðγ2 − l2ω2Þ r2

4l2
þ 1

2
ðγ2 þ l2ω2Þ þO

�
1

r

�
ð40bÞ

gtφ ¼ ðγΩþaωl2Þ r2

4l2
þ 1

2
ðγΩ−aωl2ÞþO

�
1

r

�
ð40cÞ

grr ¼
l2

r2
þO

�
1

r3

�
ð40dÞ

grt ¼ O
�
1

r

�
ð40eÞ

grφ ¼ O
�
1

r

�
: ð40fÞ

The asymptotic symmetries are then found to be
spanned by

ξt ¼ ηþJ − þ η−J þ

ζþJ − þ ζ−J þ þO
�
1

r3

�
ð41aÞ

ξφ ¼ ηþζ− − η−ζþ

ζþJ − þ ζ−J þ þO
�
1

r3

�
ð41bÞ

ξr ¼ O
�
1

r2

�
ð41cÞ

provided that the dynamical fields transform according
to (26).
It is then simple to verify that the corresponding

canonical generators reduce to (37), which means that
the asymptotic symmetry algebra coincides with the
NHSA, both spanned by the affine ûð1Þ currents with
the same levels as in (28).

IV. FLAT SPACE GENERALIZATION

For the standard choices of boundary conditions, recov-
ering the asymptotically flat structure of three-dimensional
spacetimes in [29] from the vanishing cosmological con-
stant limit of asymptotically AdS3 spacetimes with Brown-
Henneaux boundary conditions [13] is known to be a subtle
issue. Indeed, as explained in [30], the limit of vanishing
cosmological constant cannot be naively taken with the
standard choice of coordinates. However, they have shown
that a different set of coordinates can be chosen so that,
after a suitably modified Penrose limit, both asymptotic
regimes turn out to be connected. Remarkably, for the new
set of boundary conditions in [3], our coordinates in (5)
and (8) have been suitably chosen in order to possess a
noticeable property: the flat limit can be taken directly, so
that no subtleties are involved at all. This is shown below.
Besides, here we also show that the asymptotic symmetry
algebra is precisely the same in both cases, i.e., it is described
by two independent affine ûð1Þk algebras in both cases, with
or without (negative) cosmological constant. It is worth
emphasizing that this interesting result becomes counterin-
tuitive from the point of view of the asymptotic structure at
infinity. Indeed, in the case of Brown-Henneaux boundary
conditions, the flat limit of both copies of the centrally
extended Virasoro algebra merge into a single three-
dimensional Bondi-Metzner-Sachs (BMS3) algebra. In this
case the asymptotic AdS3 and flat space algebras are clearly
not isomorphic to each other. Nonetheless, from the point of
view of an observer located near the horizon, our result
appears to be natural, since the near-horizon structure is not
expected to be affected by the value of the cosmological
constant. The calculations in this section prove this expect-
ation to be correct.
In summary, in this section we extend the results in [3]

for the case of vanishing cosmological constant. In Sec. IV
A we introduce soft hairy cosmology line elements. In
Sec. IV B we present near-horizon boundary conditions in
the Chern-Simons formulation. In Sec. IV C we derive the
associated canonical charges, whose symmetry algebra we
study in Sec. IV D. In Sec. IV E we construct flat space soft
hair. In Sec. IV F we compare with standard asymptotically
flat results and recover BMS3 as a composite algebra
through a Sugawara-like construction. In Sec. IVG
we summarize the metric formulation in flat space. In
Sec. IV H we solve the regularity conditions of relevance
for thermodynamics of cosmological spacetimes endowed
with soft hair, and explore some aspects of their entropy.
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A. Soft hairy cosmologies

The class of locally flat spacetimes endowed with
nonextremal horizons we look for can be readily obtained
from the limit of large AdS radius, l → ∞, of the line
element of the soft hairy black holes in (5). The metric is
then found to be given by

ds2 ¼ dr2 þ ðΩ2 − a2r2Þdt2 þ 2ðΩγ þ aωr2Þdtdφ
þ ðγ2 − ω2r2Þdφ2: ð42Þ

In this patch of coordinates, the geometry generically
describes the inner region of a class of spacetimes with
a cosmological horizon located at r ¼ 0, and a chrono-
logical singularity at r2s ¼ γ2=ω2, so that the region that
corresponds to r > rs can be excised in order to avoid
closed timelike curves. The Lagrange multipliers a and Ω
turn out to be arbitrary fixed functions of t, φ, and as shown
below, the functions ω and γ are related to the global
charges so that they cannot be gauged away. Local flatness
implies that time evolution of the dynamical fields is
determined by the spatial derivative of the Lagrange
multipliers, precisely as in Eq. (6). It is then worth
emphasizing that the reduced phase space obtained from
requiring the class of metrics in (5) to be of negative
constant curvature, exactly coincides with the one obtained
from demanding (42) to be locally flat. Note that generic
configurations are not spherically symmetric, possessing
ripples that cannot be gauged away because they are
characterized by global soft hair charges. Hence, these
geometries are analogues of black flowers in AdS3 dis-
cussed in Sec. II A and therefore we shall refer to them as
“cosmological flowers.”
In order to cover a wider spacetime region that includes

the cosmological horizon, it is useful to express the
spacetime metric (42) in ingoing Eddington-Finkelstein
coordinates, according to

r2 ¼ 2

a
ρ t ¼ v −

1

2a
logðρÞ ð43Þ

so that in a corotating frame (Ω ¼ 0) and for constant a, the
line element reads

ds2 ¼ −2aρdv2 þ 2dvdρþ 4ωρdvdφ

−
2ω

a
dφdρþ

�
γ2 −

2ω2

a
ρ

�
dφ2: ð44Þ

The radial coordinate now ranges as −∞ < ρ < ρs ¼ a
2
r2s .

It is simple to verify that the change of coordinates (43)
as well as the metric in (44) are directly recovered in the
l → ∞ limit from (7) and (8), respectively.
Remarkably, the spectrum of solutions in (44) is regular

for arbitrary functions ωðφÞ and γðφÞ (see Sec. IV H).
Indeed, this can be directly seen for the case of constant ω

and γ, which for ω ≠ 0 describes the class of stationary
spherically symmetric cosmological spacetimes discussed
in [31,32], while for ω ¼ 0 our static solution does not
become singular, but it is instead given by the product of
Rindler spacetime times a circle of radius γ.
In the next section we construct a suitable set of

boundary conditions that accommodates the family of
locally flat solutions described here, even in the case
of a generic choice of Ω and a.

B. Chern-Simons formulation

We use again the Chern-Simons action (11), now with a
dimensionful Chern-Simons level k ¼ 1=ð4GÞ. In the
absence of a cosmological constant the connection A
can be decomposed into components as

A ¼ An
LLn þ An

MMn; ð45Þ

with respect to the isl(2) generators obeying the algebra

½Ln; Lm� ¼ ðn −mÞLnþm ð46Þ

½Ln;Mm� ¼ ðn −mÞmnþm ð47Þ

½Mn;Mm� ¼ 0 ð48Þ

where n;m ¼ 0;�1. From a geometric perspective the
components AM correspond to the dreibein and the com-
ponents AL to the (dualized) spin connection, so that
following the conventions in [33–35], the line element
reads

ds2 ¼ gμνdxμdxν ¼ −4Aþ
MA

−
M þ ðA0

MÞ2; ð49Þ

and the nonvanishing components of the invariant bilinear
form are given by

hL1;M−1i ¼ hL−1;M1i ¼ −2 hL0;M0i ¼ 1: ð50Þ

Here, the quantities v; ρ; γ; G; AM have length dimensions
one, φ;ω;Ω;A; Ln; AL are dimensionless, and a; k;Mn
have length dimensions minus one.
The boundary conditions we propose are realized for

connections of the form

A ¼ b−1ðdþ aÞb; ð51Þ

with the ISL(2) group element

b ¼ exp

�
−
1

a
M1

�
exp

�
ρ

2
M−1

�
ð52Þ

and the auxiliary connection

a ¼ ð−advþ ωdφÞL0 þ ðΩdvþ γdφÞM0: ð53Þ
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Following [26], the arbitrary functions of v, φ, given by ω
and γ are identified with the dynamical fields, while Ω and
a correspond to the Lagrange multipliers which can be
assumed to be arbitrary functions of v, φ that are held fixed
at the boundary without variation (δΩ ¼ δa ¼ 0). The
vanishing of the field strength implies (prime denotes
again ∂φ and dot ∂v)

_γ ¼ Ω0 _ω ¼ −a0: ð54Þ

Note that in the particular case of Ω ¼ 0 and a constant,
from Eqs. (51) and (49), one recovers the line element
in (44).

C. Canonical charges

In the Hamiltonian approach [28], the surface integrals
associated with the variation of the canonical generators are
found to be given by

δQ½ϵ� ¼ −
k
2π

Z
dφhϵδaφi ð55Þ

where

ϵ ¼ ϵnLLn þ ϵnMMn ð56Þ

is an arbitrary Lie-algebra-valued parameter. Taking into
account the expression for the bilinear form in (50), as well
as the asymptotic form of the auxiliary gauge field in (53),
the surface integrals in (55) readily evaluate as

δQ ¼ −
k
2π

Z
dφðϵ0Lδγ þ ϵ0MδωÞ: ð57Þ

These surface integrals turn out to be nontrivial for the
asymptotic symmetries, which correspond to the ones that
maintain the asymptotic form of a in (53), i.e., those that
fulfill

δϵa ¼ dϵþ ½a; ϵ� ð58Þ

up to trivial gauge transformations. The asymptotic sym-
metries are found to be spanned by

ϵ0L ¼ ηL ϵ0M ¼ ηM ð59Þ

where ηL and ηM are arbitrary functions of φ. The free
functions ϵ�L;M do not appear in the canonical charges nor in
the transformation rules

δω ¼ η0L δγ ¼ η0M ð60Þ

and hence they generate trivial gauge transformations.

The canonical generators are then given by

Q½ηL; ηM� ¼ −
k
2π

Z
dφðηLγ þ ηMωÞ; ð61Þ

being manifestly finite and conserved in advanced time.

D. Symmetry algebra

Having established the canonical charges we determine
now their symmetry algebra. Since their Poisson brackets
fulfill fQðξ1Þ; Qðξ2Þg ¼ δξ2Qðξ1Þ, it is straightforward to
obtain the algebra of the canonical generators from the
transformation law in (60), which is found to coincide
exactly with the one in the case of negative cosmological
constant (28). Indeed, expanding in Fourier modes

Jn ¼
k
2π

Z
dφeinφω Kn ¼

k
2π

Z
dφeinφγ; ð62Þ

the commutators fulfill

½Jn; Jm� ¼ ½Kn; Km� ¼ 0 ð63aÞ

½Jn; Km� ¼ knδnþm; 0 ð63bÞ

so that if one changes the basis according to

P0 ¼ K0; Pn ¼ −i
K−n

kn
if n ≠ 0; Xn ¼ Jn; ð64Þ

the canonical commutators in Casimir-Darboux coordi-
nates in (29), (30) are recovered, precisely as in the
asymptotically AdS case. As mentioned in Sec. II D, the
asymptotic symmetries are then described by two affine
ûð1Þ current algebras with the same levels as in (28).

E. Flat space soft hair

We generalize now the discussion of Sec. II E to flat
space. For simplicity let us assume a corotating frame
(Ω ¼ 0) and constant a. The surface integral associated
with the generator of translations in advanced time is
given by

H ¼ Q½ϵj∂v �; ð65Þ

where ϵj∂v stands for the Lie-algebra-valued parameter
associated with ∂v, given by (see e.g. [12])

ϵj∂v ¼ av ¼ −aL0: ð66Þ

The Hamiltonian is then given by H ¼ −aP0, being
identical to the result on AdS3 [3] and again commutes
with all canonical coordinates Xn, Pn.
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We consider now all descendants jψ sðfn�i gÞi

jψ sðfn�i gÞi ∝
Y
n�i >0

J−nþi K−n−i jψi ð67Þ

of some state jψi (e.g. the vacuum state).2 Since H
commutes with all of the generators, one finds again that
the energy of any soft hair descendant jψ sðfn�i gÞi coin-
cides with the one of the original state jψi.
Hence, not only on AdS3, but also in the flat space

case, all descendants of some state turn out to possess
the same energy as that state, so that this kind of
excitations can be regarded again as “soft hair” in the
sense of [4].

F. Emergence of composite BMS3 generators

Here we show how the BMS3 algebra, with the precise
central extension found in [29], naturally emerges from
composite operators of the affine ûð1Þ currents (63) in a
unique way, through an analogue of the twisted Sugawara
construction.
In order to do that, it is useful to compare the new set

of boundary conditions described by (51), (52), (53)
with the standard ones in [29]. This task can be
successfully achieved only once the standard set of
boundary conditions is enhanced so as to accommodate
a generic choice of Lagrange multipliers as in [40,41],
which here are allowed to depend on the dynamical
fields. The comparison can then be explicitly carried out
provided that the asymptotic behavior in Eqs. (51), (52),
(53) is expressed in terms of the same gauge choice as
in [40,41]. For a generic choice of Lagrange multipliers,
which are not yet specified, the asymptotic form of the
connection is then given by

Â ¼ b̂−1ðdþ âÞb̂ b̂ ¼ exp

�
ρ

2
M−1

�
ð68Þ

âφ ¼ L1 −
M
2

L−1 −
L
2
M−1 ð69Þ

âv ¼ μMM1 þ μLL1 − μ0MM0 − μ0LL0 þ
1

2
ðμ00M

−MμM − LμLÞM−1 þ
1

2
ðμ00L −MμLÞL−1; ð70Þ

where M, L, μM, μL are arbitrary functions of v, φ.

We then look for a permissible gauge transformation3

spanned by a group element g, that relates the auxiliary
connections a in (53) with the auxiliary gauge field â given
by (69), (70), i.e.,

â ¼ g−1ðdþ aÞg: ð71Þ

The group element g is found to be given by

g ¼ eyðv;φÞM1exðv;φÞL1e−
1
2
γM−1e−

1
2
ωL−1 ð72Þ

with

x0 ¼ 1þ ωx y0 ¼ γxþ ωy ð73aÞ

∂vx ¼ μL − ax ∂vy ¼ μM − ayþ xΩ ð73bÞ

On-shell consistency of Eqs. (73) then implies

μ0L − ωμL ¼ a ð74aÞ

μ0M − ωμM − γμL ¼ −Ω ð74bÞ

so that μM and μL not only depend on the functions a andΩ
that are held fixed at the boundary, but also posses a
nonlocal dependence on the dynamical fields γ, ω.
The gauge fields â and a are then related through a

permissible gauge transformation spanned by g in (72),
provided

M ¼ 1

2
ω2 þ ω0 ð75aÞ

L ¼ ωγ þ γ0: ð75bÞ

Summarizing, the boundary conditions in (51), (52), (53),
once expressed in the gauge choice of [40,41], are
described by Lagrange multipliers μM, μL that depend
nonlocally on the dynamical variables γ, ω according to
(74), where a, Ω turn out to be fixed at the boundary
without variation (δa ¼ δΩ ¼ 0). The functionsM, L then
depend on the global charges γ, ω according to (75).
It is amusing to verify that the field equations that

correspond to the local flatness of (68), given by

_M ¼ 2Mμ0L þM0μL − μ000L ð76aÞ

_L ¼ 2Lμ0L þ L0μL þ 2Mμ0M þM0μM − μ000M ð76bÞ

by virtue of our boundary conditions, which in this gauge
choice are expressed by (74), (75), reduce to _γ ¼ Ω0,

2Even though the condition n�i > 0 suggests that the states jψi
are highest weight descendants of a given vacuum state our main
result that all states have the same energy eigenvalue also holds
for other representations discussed in the context of flat space
holography such as e.g. induced representations [36–39]. We
thank Glenn Barnich, Blaza Oblak, and Max Riegler for
discussions on induced representations.

3In the sense of [27], a gauge transformation is dubbed
permissible if it does not interfere with the asymptotic symmetry
algebra.
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_ω ¼ −a0, in full agreement with (54), which were readily
obtained in the gauge choice of Sec. IV B.
It should also be highlighted that (75) corresponds to a

“flat analogue” of the twisted Sugawara construction.
Indeed, one can verify that the currents M, L actually
obey the BMS3 algebra with the central extension found in
[29]. This can be seen as follows. According to (60), the
transformation law of the dynamical fields under the affine
asymptotic symmetries is given by δω ¼ η0L, δγ ¼ η0M, and
by virtue of (74), the relationship between the functions that
span the asymptotic symmetries in both gauge choices
reads

ϵ0L − ωϵL ¼ −ηL ð77aÞ

ϵ0M − ωϵM − γϵL ¼ −ηM: ð77bÞ

Hence, the transformation law of M and L can be directly
obtained from (75)

δM ¼ 2Mϵ0L þM0ϵL − ϵ000L ; ð78aÞ

δL ¼ 2Lϵ0L þ L0ϵL þ 2Mϵ0M þM0ϵM − ϵ000M; ð78bÞ

which implies that the currents spanned byM, L fulfill the
centrally extended BMS3 algebra.
In other words, expanding in Fourier modes, Eq. (75)

reads

Mn ¼
1

2k

X
p∈Z

Jn−pJp þ inJn ð79aÞ

Ln ¼
1

k

X
p∈Z

Jn−pKp þ inKn ð79bÞ

so that the generators Mn, Ln fulfill the centrally extended
BMS3 algebra

½Ln; Lm� ¼ ðn −mÞLnþm ð80Þ

½Ln;Mm� ¼ ðn −mÞMnþm þ kn3δnþm;0 ð81Þ

½Mn;Mm� ¼ 0. ð82Þ

It is then remarkable that the standard asymptotic BMS3
algebra, which is obtained from a different set of boundary
conditions, that is defined through keeping μM and μL to be
fixed at the boundary without variation [μM ¼ μ̄Mðv;φÞ,
μL ¼ μ̄Lðv;φÞ] [40,41], naturally emerges as a composite
one in terms of the ûð1Þ currents that correspond to the
asymptotic symmetries of our boundary conditions,
described by (74) and (75).
We would like to emphasize that, although the currents

M, L fulfill the BMS3 algebra, their corresponding global
charges actually generate the affine algebra in (63). Indeed,

by virtue of (75) and (77), the variation of the global
charges reads

δQ ¼ −
k
2π

Z
dφðϵMδMþ ϵLδLÞ

¼ −
k
2π

Z
dφðηLδγ þ ηMδωÞ: ð83Þ

Hence, they manifestly fulfill the ûð1Þ current algebra (63).

G. Metric formulation

The family of locally flat soft hairy spacetimes, once
written in Gaussian normal coordinates (42), opens up the
interesting possibility of performing a fully fledged stan-
dard canonical analysis in the inner patch, even for a
generic choice of Lagrange multipliers. As in Sec. III A, the
asymptotic Killing vectors can be obtained from (32),
which are found to be given by

ξt ¼ ηMω − γηL
aγ þ Ωω

ð84aÞ

ξφ ¼ ηMaþ ΩηL
aγ þ Ωω

ð84bÞ

ξr ¼ 0 ð84cÞ

so that the minisuperspace is preserved provided that the
dynamical fields, γ and ω, transform precisely as in (60).
It is worth pointing out that the form of the asymptotic

Killing vectors in (84) agrees with the ones for the soft
hairy black holes in (33b) provided J � ¼ γ � ω, and
η�M ¼ −a� Ω. Therefore, the corresponding canonical
generators are directly recovered from (35), which are
found to precisely agree with (61). Consequently, in terms
of J �, their algebra manifestly acquires the form of the
ûð1Þ currents in (28) with levels k ¼ 1=ð4GÞ.

H. Thermodynamics

In order to explore the thermodynamical properties of the
cosmological flowers, it is useful to consider the Euclidean
continuation of the line element in the inner patch (42), so
that the horizon is located at the origin (r ¼ 0) and the
boundary is chosen to be at r ¼ r0 < rs. Following [27],
one takes advantage of the fact that the chemical potentials
manifestly appear in the metric, so that the range of the
coordinates can be fixed according to the ones of a straight
solid torus, being characterized by a trivial modular
parameter, i.e., 0 ≤ φ < 2π, 0 ≤ τ < β, where T ¼ β−1 is
the Hawking temperature. Thus, requiring regularity of the
geometry around the cosmological horizon fixes the tem-
perature and angular chemical potential according to
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a2 ¼ 4π2

β2
Ω ¼ 0 ð85Þ

in full analogy with the black flowers (22). It is worth
emphasizing that regularity again holds independently of
the value of the global charges.
Alternatively, regularity of the Euclidean configuration

can be directly implemented through requiring the holon-
omy of the gauge fields along the thermal cycle to be trivial.
One of the advantages of this procedure is that it can be
carried out directly in terms of the auxiliary connections,
and hence it does not depend on the radial coordinate.
Therefore, the procedure holds for the inner and the outer
patch provided that the orientation is suitably taken into
account.
As pointed out in [41], ISLð2;RÞ does not admit a

suitable standard matrix representation from which the
Casimir operators, and hence the invariant bilinear form
(50), could be recovered from the trace of a product of the
generators. Therefore, regularity of the Euclidean configu-
ration cannot be straightforwardly implemented through
the diagonalization of the holonomy matrix, though it is
possible to do so along the lines of [40] using a 3þ 1
dimensional representation of ISLð2;RÞ. Here we imple-
ment the regularity conditions following [41]:

(i) One first finds a proper group element of the form
h ¼ exp ðλnMnÞ that permits to gauge away the
temporal components of the connection along Mn,
so that one can consistently set the components of
the dreibein along time to vanish (AMτ ¼ 0). Thus,
the chemical potential of electric type becomes
fixed, and generically can be expressed in terms
of the magnetic type one and the global charges.

(ii) The remaining conditions can then be fulfilled
through diagonalizing the holonomy matrix associ-
ated with the spin connection (ALτ) along the
thermal circle, in the fundamental representation
of SLð2;RÞ.

For the auxiliary connection a with the gauge choice in
(53) the group element h becomes trivial, so that condition
(i) readily implies that Ω ¼ 0. Condition (ii) then implies
that exp ð−iβaL0Þ ¼ −1, so that

a2 ¼ 4π2

β2
ð2nþ 1Þ2; ð86Þ

where n is an integer. The branch that is continuously
connected to the cosmological flower (without conical
surpluses) then corresponds to n ¼ 0.
Alternatively, if one considers the auxiliary connection

for the gauge choice as in (70), the group element can be
chosen to be given by

h ¼ exp

�
−

1

2μL
ð2μMM0 − μ0MM−1Þ

�
; ð87Þ

and thus, condition (i) is fulfilled provided

μ0Mμ
0
L − μMμ

00
L − μLðμ00M − 2MμM − LμLÞ ¼ 0: ð88Þ

Condition (ii) then reads exp ðiβâLvÞ ¼ −1, which is
equivalent to

trðâ2LvÞ ¼
2π2

β2
ð2nþ 1Þ2; ð89Þ

and evaluates as

μ02L − 2μLðμ00L −MμLÞ ¼
�
2π

β
ð2nþ 1Þ

�
2

: ð90Þ

Making use of the expressions that define our boundary
conditions in this gauge, given by (74), (75), the condition
in (88) yields Ω ¼ 0, while the remaining condition (90)
reduces to (86).
As an additional remark of this subsection, it is worth

pointing out that the regularity conditions in (88), (90) can
also be used for a wider set of boundary conditions than the
ones defined through (74), (75). Indeed, for the standard set
of boundary conditions that can be described by fixing μM
and μL to be constants at infinity, the conditions (88), (90)
reduce to the ones found in [40,41].
Cosmological flowers are also found to possess an

entropy that depends only on the zero modes of the
ûð1Þ currents, since

S ¼ A
4G

¼ 2πK0: ð91Þ

We postpone a more thorough discussion of thermody-
namical aspects, particularly of entropy, to Sec. VI.

V. ALGEBRAIC ASPECTS

In this section we summarize for convenience and future
reference the various Sugawara-like constructions that start
with some number of ûð1Þ current algebras and construct
various composite algebras of interest. We start with the
most prominent one, the Virasoro algebra, then continue
with the BMS construction from the present paper, and
finally list further similar constructions of interest in three
dimensions (twisted warped and higher spin algebras) and
four dimensions.
Before starting we make a couple of comments on

conventions. In our discussion we shall freely rescale the
ûð1Þ levels according to convenience by rescaling the
corresponding generators. All commutators not displayed
vanish. Finally, with the exception of the first Virasoro
algebra presented below, all algebras refer to field theories
defined on the plane, with standard consequences for the
central terms.
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A. Virasoro algebra

From a near-horizon perspective the central charge of the
symmetry algebra should be independent of the AdS radius
and any asymptotic behavior of the solution. This amounts
to an Oð1Þ level for the ûð1Þ currents

½J �
n ;J �

m� ¼
n
2
δnþm;0: ð92Þ

The (untwisted) Sugawara construction

L�
n ¼

X
p∈Z

∶J �
n−pJ �

p∶ ð93Þ

where ∶∶ denotes normal ordering, leads to a (near-
horizon) Virasoro algebra of central charge 1

½Ln;Lm� ¼ ðn −mÞLnþm þ 1

12
ðn3 − nÞδnþm;0: ð94Þ

Note that the current algebra remains untwisted here,

½L�
n ;J �

m� ¼ −mJ nþm: ð95Þ

The near-horizon algebra above appeared in the construc-
tion of BTZ microstates, dubbed “near-horizon fluffs” in
[42]; see the end of Sec. VI B for a brief discussion of these
microstates.
From an asymptotically AdS3 perspective the most

natural Sugawara construction of two ûð1Þ current
algebras,

½J�n ; J�m� ¼
1

2
knδnþm;0 ð96Þ

is given by a twisted one,

L�
n ¼ 1

k

X
p∈Z

J�n−pJ�p þ inJ�n : ð97Þ

We assumed here implicitly a large k limit where normal
ordering can be neglected. The associated algebra is a
Virasoro algebra with the Brown-Henneaux central charge
c ¼ 6k

½Ln; Lm� ¼ ðn −mÞLnþm þ c
12

n3δnþm;0: ð98Þ

Note that the current algebra now is twisted

½L�
n ; J�m� ¼ −mJnþm þ i

2
kn2δnþm;0: ð99Þ

The algebra above appeared in the mapping from quantities
in diagonal gauge to highest weight gauge, i.e., in the
mapping from “near-horizon” variables to “asymptotic
variables”; see [3].

B. BMS3 algebra

As we have shown in this work, in locally flat space the
two current algebras appear naturally in algebraically off-
diagonal form (62)

½Jn; Km� ¼ knδnþm;0: ð100Þ

The algebra diagonalizes by linearly combining the gen-
erators as

J��n ¼
1

2
ðKn � JnÞ; ð101Þ

but since the Fourier modes Jn, Kn arise naturally in the
analysis of the flat space canonical charges it is convenient
to use them.
From an asymptotically flat perspective the most natural

Sugawara-like constructions are given by

Ln ¼
1

k

X
p∈Z

Jn−pKp þ inKn ð102Þ

and

Mn ¼
1

2k

X
p∈Z

Jn−pJp þ inJn ð103Þ

where again we refrain from introducing normal ordering
since we assume large k. [Note, however, that the expres-
sion (103) is already normal-ordered since the generators
Jn commute among themselves.] The composite generators
Ln and Mn then obey the BMS3 algebra [43] with off-
diagonal central extension [29],

½Ln; Lm� ¼ ðn −mÞLnþm ð104Þ

½Ln;Mm� ¼ ðn −mÞMnþm þ kn3δnþm;0: ð105Þ

The nonvanishing commutators of the BMS3 generators
with the current algebra generators are given by

½Ln; Jm� ¼ −mJnþm þ ikn2δnþm;0 ð106Þ

½Mn;Km� ¼ −mJnþm þ ikn2δnþm;0 ð107Þ

½Ln;Km� ¼ −mKnþm: ð108Þ

The algebra above appeared in the analogue of the mapping
from quantities in diagonal gauge to highest weight gauge,
i.e., in the mapping from “near-horizon” variables to
“asymptotic variables”; see Sec. IV F.
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C. (Twisted) warped conformal algebra

Previous constructions of NHSAs yielded either the
centerless warped conformal algebra [6] or the twisted
warped conformal algebra [35]. We display now the
Sugawara construction that yields the latter algebra from
two ûð1Þ current algebras. It turns out to be convenient to
employ their off-diagonal version (100).
The twisted warped conformal algebra follows from the

Sugawara-like construction

Ln ¼
1

k

X
p∈Z

Jn−pKp þ inKn ð109Þ

yielding

½Ln; Lm� ¼ ðn −mÞLnþm ð110aÞ

½Ln; Jm� ¼ −mJnþm þ ikn2δnþm;0 ð110bÞ

exactly as in the BMS3 case. (The remaining part remains
untwisted, ½Ln; Km� ¼ −mKnþm.)
We close with three comments. Dropping the last term in

the Virasoro generators (109) yields the centerless version
of that algebra. Introducing normal ordering in (109) leads
to a Virasoro central charge c ¼ 2, which is natural given
that we have two ûð1Þ current algebras.4 The twisted
centerless warped conformal algebra appears as a sector
in the BMS construction above.

D. Higher spin algebras

Asymptotic symmetry algebras analogous to the spin-2
case were discovered in slðnÞ ⊕ slðnÞ higher spin theories
in the principal embedding [7]. These boundary conditions
yield as many ûð1Þ current algebras as there are elements in
the Cartan subalgebra of the gauge algebra.
For concreteness we display here the spin-3 case. The

asymptotic symmetries are then spanned by four ûð1Þ cur-
rent algebras, whose levels are conveniently normalized as

½J�n ; J�m� ¼
1

2
knδnþm0 ð111Þ

½Jð3Þ�n ; Jð3Þ�m � ¼ 2

3
knδnþm;0: ð112Þ

The twisted Sugawara construction that appears in the
mapping between near-horizon and asymptotic variables
[7] (again ignoring normal ordering)

L�
n ¼ 1

k

X
p∈Z

�
J�n−pJ�p þ 3

4
Jð3Þ�n−p J

ð3Þ�
p

�
þ inJ�n ð113Þ

W�
n ¼ 1

k2
X
p;q∈Z

ðJð3Þ�n−p−qJ
ð3Þ�
p − 4J�n−p−qJ�p ÞJð3Þ�q

−
i
k

X
p∈Z

ð3n − 2pÞJð3Þ�n−p J�p þ 1

2
n2Jð3Þ�n ð114Þ

then yields the (semiclassical) W3 algebra

½L�
n ; L�

m� ¼ ðn −mÞL�
nþm þ 1

2
kn3δnþm;0 ð115Þ

½L�
n ;W�

m� ¼ ð2n −mÞW�
nþm ð116Þ

½W�
n ;W�

m� ¼
1

3
ðn −mÞð2n2 þ 2m2 − nmÞL�

nþm

þ 16

3k
ðn −mÞ

X
p∈Z

L�
nþm−pL

�
p þ 1

6
kn5δnþm;0

ð117Þ

whose generators have the following commutations relations
with the ûð1Þ currents:

½L�
n ; J�m� ¼ −mJ�nþm þ i

2
kn2δnþm;0 ð118Þ

½L�
n ; J

ð3Þ�
m � ¼ −mJð3Þ�nþm ð119Þ

½W�
n ; J�m� ¼

4m
k

X
p∈Z

J�nþm−pJ
ð3Þ�
p

þ i
2
mð3nþ 2mÞJð3Þ�nþm ð120Þ

½W�
n ; J

ð3Þ�
m � ¼ 8m

3k

X
p∈Z

�
J�nþm−pJ

�
p −

3

4
Jð3Þ�nþm−pJ

ð3Þ�
p

�

þ 2i
3
mðn − 2mÞJ�nþm þ 1

3
kn3δnþm;0: ð121Þ

Constructions analogous to the spin-3 case reviewed
above work also for higher spins; see [7] for more details.

E. Kerr near-horizon algebra

All the algebraic constructions above were attached to
three-dimensional theories of gravity or higher spin theo-
ries. It is physically interesting to inquire about similar
algebraic constructions in higher dimensions. We summa-
rize here the construction in four-dimensional flat space
discovered recently [42], with possible applications to
nonextremal Kerr black holes.
Starting with four ûð1Þ current algebras

½J�n ; J�m� ¼ −½K�
n ; K�

m� ¼
1

2
nδnþm;0 ð122Þ4We thank Max Riegler for discussions about this case.

SOFT HAIRY HORIZONS IN THREE SPACETIME DIMENSIONS PHYSICAL REVIEW D 95, 106005 (2017)

106005-13



the Sugawara-like constructions

Y�
n ¼

X
p∈Z

ðJ�n−p þ K�
n−pÞðJ�p − K�

p Þ ð123Þ

Tðn;mÞ ¼ ðJþn þ Kþ
n ÞðJ−m þ K−

mÞ ð124Þ

yield the four-dimensional near-horizon algebra of [6]

½Y�
n ; Y�

m� ¼ ðn −mÞY�
nþm ð125Þ

½Yþ
l ; Tðn;mÞ� ¼ −nTðnþl;mÞ ð126Þ

½Y−
l ; Tðn;mÞ� ¼ −mTðn;mþlÞ: ð127Þ

This is a strong algebraic hint that our soft Heisenberg hair
discussion generalizes to four dimensional (nonextremal)
Kerr black holes.

VI. ENTROPY

The entropy associated with our near-horizon metrics
can be calculated in numerous ways, which we shall do in
this section. We broadly classify the calculations into
macroscopic and microscopic calculations. All our results
turn out to agree with each other. Both for the locally AdS
and the locally flat case entropy is given by

S ¼ A
4G

¼ βjEj ¼ 2πðJþ0 þ J−0 Þ ð128Þ

where the first equality gives the macroscopic result (with
A ¼ H

γdφ and G is Newton’s constant), the second the
thermodynamic result [with β ¼ 1=T ¼ 2π=a and
jEj ¼ aðJþ0 þ J−0 Þ] and the last the microscopic result.
We review first the macroscopic derivation of entropy in

Sec. VI A and then address microscopic derivations in
Sec. VI B. In Sec. VI C we generalize our results to flat
space cosmological flowers.

A. Macroscopic entropy

In this subsection we determine the entropy macroscop-
ically. The Bekenstein-Hawking formula

SBH ¼ A
4G

ð129Þ

can be obtained by a number of methods, like Wald’s
[44,45] or Solodukhin’s [46]. We do not display these
standard derivations and instead derive macroscopic
entropy here in the Chern-Simons formulation.
The general result for the entropy for gravity theories in

the Chern-Simons formulation yields

SCS ¼
k
2π

Z
dφ ∧ dτhAτAφi

¼ −
k
2π

βσ

I
dφhAτAφi

¼ −βσðJþ0 ζþ þ J−0 ζ
−Þ ¼ 2πðJþ0 þ J−0 Þ: ð130Þ

The first equality follows from the general discussion
reviewed e.g. in [27] (see also Refs. [47–49]). The second
equality follows from our definitions and results in Secs. II
and IV. As explained in [41], σ stands for the orientation of
the torus, which for black flowers on AdS3 (σ ¼ 1) turns
out to be the opposite of soft hairy cosmologies on flat
space (σ ¼ −1). The last equality is a consequence of the
regularity conditions that dictate ζ� ¼ −2πσβ−1. The result
(130) coincides with the last expression in (128).

B. Microscopic entropy

For zero-mode solutions like the BTZ black hole there is
a number of different microstate countings that yield the
correct result for the entropy. Each is based on a different
symmetry algebra that is composite in terms of our
asymptotic symmetry generators J�n fulfilling the ûð1Þ
currents algebras in (28). However, a naive standard
microstate counting does not work for generic black
flowers. We show now why this is the case.
Even though black flowers are generically endowed with

all of the possible ûð1Þ global charges, according to (130),
their entropy only depends on the zero modes. Besides, in
the spherically symmetric case (BTZ black hole), by virtue
of the (twisted) Sugawara construction given by (97) [3],
the Virasoro generators L�

n can be obtained from the ûð1Þ
ones J�n , so that (130) reduces to the known result for the
black hole entropy5 [50–52]

S ¼ SCardy ¼ 2π

ffiffiffiffiffiffiffiffiffiffi
c
6
Lþ
0

r
þ 2π

ffiffiffiffiffiffiffiffiffi
c
6
L−
0

r
: ð131Þ

However, as it can be directly seen from the map in (97), a
naive direct application of (131) to the case of a generic soft
hairy black hole, for which J�n ≠ 0, clearly does not lead to
the right result because the entropy would manifestly
acquire an explicit dependence on soft hair charges. To
pinpoint the problematic issue with these states we consider
a specific one defined by

jBi ¼ Jþ−1jBTZi ð132Þ

where the state jBTZi obeys the highest weight conditions
J�n jBTZi ¼ 0 for all positive n. Algebraically, this seems to
make sense since BTZ black holes could be defined by the

5In the following quantities like L0 or J�0 often refer to vacuum
expectation values and not to the corresponding operators; the
meaning should always be clear from the context.
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conditions [53] hBTZjJnjBTZi ¼ 0, for all n ≠ 0, while the
vacuum expectation values of J�0 are related to mass and
angular momentum, through L�

0 ¼ k−1ðJ�0 Þ2. The key
observation is that the state jBi does not obey all the
highest weight conditions since particularly Jþ1 jBi ≠ 0. As
a consequence, it does neither obey all the Virasoro highest
weight conditions since particularly Lþ

1 jBi ≠ 0. This pre-
vents us from doing the usual Cardy counting for generic
black flowers. Similar remarks apply to countings based on
other compositions of uð1Þk current algebras, like the
BMS3 algebra or the warped conformal algebra
(see Sec. V).
One may then wonder how the Cardy formula could be

suitably modified or extended so as to reproduce the right
semiclassical result for the black flower entropy in (130).
Indeed, such a possibility exists and invokes a microstate
counting that relies on an anisotropic extension of S
modular invariance, without the need of explicitly identi-
fying any microstates. It is based on recent results for
theories with anisotropic Lifshitz scaling in two spacetime
dimensions, t → λzt, φ → λφ, whose left and right movers
are assumed to be decoupled and characterized by the same
dynamical exponent z [15,54]. At fixed values of left and
right energies Δ� ≫ Δ�

0 ½z�, the asymptotic growth of the
number of states is given by

S ¼ 2πð1þ zÞ
X
�
Δ1=ð1þzÞ

� exp

�
z

1þ z
ln jΔ�

0 ½1=z�=zj
�
;

ð133Þ

where the spectrum is assumed to possess a gap and−Δ�
0 ½z�

stand for the ground state energy of left and right movers.
Note that for the isotropic case z ¼ 1 the Cardy for-
mula (131) is recovered, upon identifying L�

0 ¼ Δ� and
Δ�

0 ¼ c=24. As we shall see in the next paragraph, our case
corresponds to z ¼ 0.
The reason why we can apply (133) to black flowers is

that the boundary conditions in [3] containing soft hairy
black holes belong to a class of boundary conditions on
AdS3, for which the “boundary gravitons” obey the field
equations of the nth KdV hierarchy, extended to fractional
n, for the special case n ¼ − 1

2
[15]. For a generic value of

n, left and right movers then possess a dynamical exponent
given by z ¼ 2nþ 1, and the ground state energies that
correspond to the ones of global AdS3 were found to be
given by

−Δ�
0 ½z� ¼

k
2

1

1þ z
ð−1Þð1þzÞ=2: ð134Þ

Remarkably, the asymptotic growth of the number of states
for the set of boundary conditions in [3] can then be
obtained from (133) and (134) in the limit z → 0, so that the
entropy reduces to

Sjz¼0 ¼ 2πΔþ þ 2πΔ−; ð135Þ

which precisely agrees with the last expression in (128) for
a generic soft hairy black hole upon identifying Δ� ¼ J�0 .
Although the left and right energies −Δ�

0 of global AdS3
drop out in our entropy formula (135), it is still of interest to
compare the general result (134) for z ¼ 0 with the
corresponding result within the theory specified by the
boundary conditions reviewed in Sec. II. At first glance this
is problematic, since for fixed (real, positive) Rindler
acceleration none of our states is maximally symmetric.
However, by analytic continuation to complex values we
obtain a maximally symmetric line element (A3) with the
choices6

a ¼ �i Ω ¼ 0 Jþ0 ¼ J−0 ¼ �i
k
2
; ð136Þ

so that left and right ground state energies −Δ�
0 ½z� in (134)

exactly coincide with J�0 in (136) for z ¼ 0. Thus, we have
the curious situation that our physical spectrum (real,
positive values of a and J�0 ) is gapped from the ground
state by an imaginary amount. The same feature was found
previously in Rindleresque holography [35].
Besides a traditional microstate counting, which we have

achieved above, it is also of interest to explicitly identify the
black hole microstates. Exploiting the near-horizon sym-
metry algebra and both Sugawara constructions for asymp-
totic (L�

n ) and near-horizon (L�
n ) Virasoro algebras

summarized in Sec. VA, as well as the working hypothesis
L0 ¼ cL0, a proposal for these microstates was presented
recently in [42]. It was found that soft hair descendants fall
into two classes, the “horizon fluffs,” which obey all
Virasoro highest weight conditions, and the remaining
ones, which violate some of the Virasoro highest weight
conditions. In terms of near-horizon generators J �

n the
microstates jBi of a BTZ black hole with energies L�

0 are
given by all states of the form

jBi ∼
Y

J þ
−nþi

J −
−n−i j0i ð137Þ

subject to the conditions hBjðJ �
0 Þ2jBi ¼ cL�

0 and
hBjJ cnjBi ¼ 0 for all n ≠ 0. Our soft hair generators J�n
are related to these near-horizon generators through
J�n ¼ J �

cn=
ffiffiffi
6

p
, where the central charge c ¼ 6k is assumed

to be a (large) integer. This means that the microstates (137)
are highest weight states with respect to soft hair

6This is perhaps seen most easily by comparing with the near-
horizon line element for Ω ¼ 0, ds2nh ¼ −r2a2dt2 þ dr2 þ
γ2dφ2 þ � � � Then it is evident that choosing imaginary a and
γ as in (136) effectively exchanges φ and t. At the “self-dual
point” where φ and t are 2π periodic regularity at the horizon
requires a ¼ �i, while the Killing vector analysis in Appendix B
leads to the result Jþ0 ¼ J−0 ¼ �ik=2.
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generators, J�n jBi ¼ 0 for n > 0, but they are not highest
weight states with respect to the near-horizon generators
J �

n . As shown in [42], the degeneracy of the microstates
(137) in the classical (large c) limit correctly accounts for
the Bekenstein-Hawking entropy of BTZ black holes. By
the same arguments it works also for arbitrary black flowers
generated by acting with arbitrary combinations of J�−n�
on BTZ.

C. Flat space entropy

It is known that the entropy of flat space cosmologies
[55,56] can be obtained from the inner horizon AdS
entropy by suitable rescalings with the AdS radius
[57,58]. In terms of Cardy-like formulas the main change
between outer and inner horizon entropies is a relative sign
change between the two additive terms in the correspond-
ing entropy formula. As explained in [41] this is because
the solid torus possesses a reversed orientation as compared
with the black hole. In our case this would change the last
expression in (128) to Sinner ¼ 2πðJþ0 − J−0 Þ. Note also that
the automorphism J−n → −J−n of our NHSA allows us to
redefine the generators such that our result (128) still holds
for inner horizons. Thus, we shall always assume that the
ûð1Þ current algebra generators are defined with suitable
signs so that the last expression in (128) is valid.
An alternative way to obtain the entropy of cosmological

flowers, as described above, is performing the usual İnönü-
Wigner contraction from AdS to flat space by rescaling
suitably some generators with the AdS radius l,

Ln ¼ Lþ
n − L−

−n ð138aÞ

Mn ¼
1

l
ðLþ

n þ L−
−nÞ ð138bÞ

Kn ¼ Jþn þ J−−n ð138cÞ

Jn ¼
1

l
ðJþn − J−−nÞ: ð138dÞ

Note that the relative signs chosen in Kn and Jn are in
accordance with the automorphism mentioned above.
These definitions are compatible with all the algebras
in our paper and with the respective Sugawara-like
constructions.
To see this explicitly it is important to recall the

differences between the flat space Chern-Simons level
kflat ¼ 1=ð4GÞ ≕ k and the AdS Chern-Simons level
kAdS ¼ lk. The NHSAs (28) and (63) are then compatible
with the contraction (138). At finite (but large) l the twisted
Sugawara construction (100) and the relations above
[together with their inversion, J��n ¼ ðKn � lJnÞ=2] yield

Ln ¼
1

lk

X
p∈Z

ðJþn−pJþp − J−−n−pJ−pÞ þ inðJþn þ J−−nÞ

¼ 1

k

X
p∈Z

Jn−pKp þ inKn ð139Þ

Mn ¼
1

l2k

X
p∈Z

ðJþn−pJþp þ J−−n−pJ−pÞ þ
in
l
ðJþn − J−−nÞ

¼ 1

2k

X
p∈Z

Jn−pJp þ inJn þOð1=lÞ: ð140Þ

In the l → ∞ limit the results above coincide precisely
with (79).
This means that the entropy of soft hairy cosmological

spacetime can be obtained purely algebraically as

S ¼ 2πðJþ0 þ J−0 Þ ¼ 2πK0 ¼
A
4G

¼ −βE ð141Þ

in agreement with (130). The first equality is the inner
horizon entropy in AdS, taking into account our auto-
morphism above. The second equality is the flat space
entropy and follows from the definitions (138). The third
equality follows from the relation (62). The final equality
follows from the discussion in Sec. IV E. The sign concurs
with a corresponding sign flip in inner horizon thermody-
namics [59,60].
As a consequence of our contraction procedure above all

macroscopic and microscopic formulas obtained for the
entropy in AdS can be used to recover the corresponding
flat space results. As an example let us quote the flat space
Cardy formula [55,56] for flat space cosmologies,

SFSC ¼ 2πjL0j
ffiffiffiffiffiffiffiffiffi
cM
2M0

r
: ð142Þ

Here L0 and M0 are the vacuum expectation values of the
BMS zero-mode generators and cM is the coefficient in the
anomalous term of the mixed BMS3 commutator (105),
cM ¼ k. Inserting into (142) our results for the contraction
above then yields

SFSC ¼ 2π
1

k
jJ0jK0

ffiffiffiffiffi
k2

J20

s
¼ 2πK0 ð143Þ

which agrees with our general result (141). However, it
should be highlighted that, as in the case of soft hairy black
holes on AdS3, a naive direct application of (142) to the
case of cosmological flowers does not yield the correct
result (see Sec. VI A). In this sense, we expect that there is
an analogous flat space contraction of the microscopic
entropy formula (133).
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VII. COMPARISON TO OTHER APPROACHES

A. General remarks

In the past year, three different near-horizon boundary
conditions were proposed [3,6,35], some of which can be
interpreted as modified asymptotically AdS boundary
conditions. However, these boundary conditions appear
more natural when expanding the metric in a near-horizon
approximation like (3). While imposing boundary condi-
tions at some arbitrary locus inside the manifold may lack
physical motivation, as discussed in the Introduction, the
imposition of the existence of a horizon (and some smooth
neighborhood around it) has a clear physical motivation,
namely to ensure that the state space considered by a theory
subject to these boundary conditions has exclusively states
with a horizon. Even under these premises and restricting to
Einstein gravity in three spacetime dimensions (for the time
being with negative cosmological constant) there is still a
number of choices one can make.
The most important choice is to fix the Rindler accel-

eration a in (3) either as a state-independent quantity (or,
equivalently, as chemical potential/source from a holo-
graphic view point) or as a state-dependent quantity
(depending on the charges or vacuum expectation values
from a holographic view point). We mentioned already that
we make the former choice, which implies that all states in
the theory have the same temperature

T ¼ a
2π

: ð144Þ

Since typically different states have different temperatures
—for instance, the BTZ black holes for different masses
and angular momenta have different temperatures—we
elaborate now why we make this choice.
First of all, the alternative is difficult to implement. One

obstacle is that the near-horizon line element (3) is invariant
under rescalings of Rindler acceleration with a simulta-
neous rescaling of the coordinates,

a → λa ρ → λρ v → v=λ ð145Þ

which means that there is no operational meaning to a
statement like “the Rindler acceleration is 42” since we can
always rescale Rindler acceleration to unity using (145).
Therefore, we need to break the scaling symmetry (145) if
we want to make sense of a state-dependent Rindler
acceleration. A previous work [35] achieved this through
periodically identifying advanced/retarded time, v → vþ
2πL, with some length scale L that breaks the invariance
(145). While this compactification of a lightlike direction
had some additional advantages, the physical interpretation
of this setup and the dual field theory (if there is any) is
difficult. Another difficulty is that solving the Einstein
equations in the near-horizon approximation with an
arbitrary function aðv;φÞ leads to the conditions that a

can depend on v only, which means that either a is pure
gauge (and hence state-independent) or that the associated
charges are not conserved in advanced time.
The second reason to opt for fixed Rindler acceleration is

that it automatically fixes the scale invariance (145).
Finally, and perhaps most importantly, a good physical
reason to fix the temperature for all states to be the same is
that the type of questions one would like to ask in the near-
horizon setup are questions about one fixed macrostate—a
black hole or cosmological spacetime—with fixed temper-
ature. For instance, the type of question we want our
near-horizon theory to be able to answer is “given a BTZ
black hole with temperature T, what is the number of
microstates that contribute to the ensemble that describes
this macrostate.”
We address now in more detail relations and differences

to previous approaches.

B. Comparison with [6]

Donnay, Giribet, González, and Pino [6] formulated
near-horizon boundary conditions in three-dimensional
AdS and flat space, as well as in four-dimensional flat
space. Their NHSA differs from ours, though it is also
possible to obtain it as a composite algebra through a
Sugawara-like construction; see Sec. V. More precisely,
they obtained in three dimensions an untwisted version of
the warped CFT algebra (110).
Since their paper uses Gaussian null coordinates like in

(8) we employ these coordinates for comparison. Both their
boundary conditions and ours are preserved by asymptotic
Killing vectors of the form

ξv ¼ TðφÞ þ � � � ξφ ¼ YðφÞ þ � � � ξρ ¼ � � � ð146Þ

where the ellipsis refers to subleading terms that do not
contribute to the canonical boundary charges.
The key difference between their boundary conditions

and ours is that in their case T and Y are state independent,
whereas in our case the variations of γ, ω are state
independent,

δξγ ¼
l
2
ðηþ − η−Þ0 δξω ¼ 1

2
ðηþ þ η−Þ0: ð147Þ

This implies that the state-dependent functions γ and ω
transform under the symmetry generators (146) as

δξγ ¼ ðγYÞ0 þ ΩT 0; δξω ¼ ðωYÞ0 − aT 0: ð148Þ

and that the functions T and Y can be expressed as

T ¼ J þη− þ J −ηþ

J þζ− þ J −ζþ
Y ¼ ζ−ηþ − ζþη−

J þζ− þ J −ζþ
: ð149Þ

As it must be, the results (149) concur with (33).
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C. Relationship to other work

The soft hair proposal by Hawking, Perry, and
Strominger [4] and related work [61–63] has engendered
a lot of research in the past year; see [53,63–82] for some
selected references and [5] for their most recent work.
Our boundary conditions in [3] provide a concrete

realization of their proposal for soft hairy black holes in
three-dimensional general relativity with negative cosmo-
logical constant, albeit with a symmetry algebra that was
not anticipated in [4], namely two ûð1Þ current algebras. It
is then fair to ask how sensitive to the chosen model are our
conclusions about the symmetry algebra, soft Heisenberg
hair, entropy, etc.
In fact, we are convinced that our conclusions are fairly

universal, in particular that the near-horizon symmetries are
governed by ûð1Þk current algebras. In the present work we
have provided evidence for this universality by showing
that also horizons in flat space lead to the same symmetry
algebra in three-dimensional general relativity. There is,
however, already substantial additional evidence for uni-
versality that has appeared while this paper was in progress.
It has been shown that ûð1Þk arise also as NHSAs for

BTZ black holes in Chern-Simons like theories of gravity,
i.e., in theories that go beyond general relativity by
including higher derivative corrections [83]. Our conclu-
sions were extended in [7] to a specific class of higher spin
theories. Perhaps the most remarkable aspect of these
results is that the entropy law S ¼ 2πðJþ0 þ J−0 Þ remains
true in higher spin theories and reproduces the (fairly
complicated) known results for entropy expressed in terms
of the global charges. This provides further evidence for the
expectation that the near-horizon theory is extremely
simple, far simpler than the asymptotic one. It was
algebraically shown in [42] that ûð1Þk arise also in the
near-horizon approach to general relativity in four space-
time dimensions; see Sec. V E.
While there are certainly more generalizations one could

envisage (we mention some of them in the concluding
Sec. VIII), in our opinion the diverse generalizations
obtained so far—higher derivative interactions, higher
spins, higher dimension—together with the results of the
present work provide strong evidence for the universality of
asymptotic or near-horizon symmetry algebras in terms of
ûð1Þk algebras.
Let us finally point out that our boundary conditions are

a special case of the recently proposed general boundary
conditions in AdS3 [17]. Our symmetry algebra is a
subalgebra of the general asymptotic symmetry algebra
found therein, which consists of two slð2Þ current algebras
with nonvanishing levels.

VIII. CONCLUSIONS

In this work we summarized and expanded upon the
boundary conditions in three-dimensional Einstein gravity

of [3]. We have presented and discussed the metric
formulation of the boundary conditions and generalized
the asymptotically AdS result to asymptotically flat space-
times. We have found that the asymptotic/near-horizon
symmetry algebra is independent from the curvature radius
of the spacetime and hence equivalent in both asymptoti-
cally AdS and flat spacetimes. It consists of infinite copies
of the Heisenberg algebra and two Casimirs, X0, P0,

½Xn; Xm� ¼ ½Pn; Pm� ¼ ½X0; Pn� ¼ ½P0; Xn� ¼ 0

½Xn; Pm� ¼ iδn;m if n ≠ 0: ð150Þ

Our results, in particular the independence of the symmetry
algebra from the cosmological constant, support the inter-
pretation that our boundary conditions describe near-
horizon physics.
In Sec. VI we derived entropy macroscopically and

microscopically, and found

S ¼ 2πðJþ0 þ J−0 Þ; ð151Þ

compatible with the Bekenstein-Hawking law. Remarkably,
the result for entropy (151) remains true in generalizations
to higher spin theories [7] and is thus fairly universal.
What is still missing in the present work is a microstate

construction in locally flat space that directly uses the ûð1Þ
current algebras (63) plus suitable additional information
that provides a controlled cutoff on the soft hair spectrum.
Recently, a proposal for such a counting was performed in
locally AdS3 [42] by using the observation of [84] that the
Virasoro algebra with (integer) central charge c can be
understood as a subalgebra of the Virasoro algebra with
central charge equal to unity. The c ¼ 1 Virasoro algebra
naturally arises from the normal ordered Sugawara con-
struction of the ûð1Þ NHSAs (see Sec. VA). It was then
proposed that the black hole microstates correspond to all
the ûð1Þ descendants of the vacuum which lead to the same
expectation value of the asymptotic c ¼ 3l=ð2GÞ Virasoro
charges. A counting of states in this proposal was found to
agree with the Bekenstein-Hawking entropy. It would be
very interesting to generalize those results to the case of
asymptotically flat spacetimes and, beyond Einstein grav-
ity, to flat space chiral gravity [85], and to other higher
derivative or higher spin theories of gravity.
Further generalizations of our approach are possible and

would be useful to pursue in order to check the (possible
limits of) universality of our results for the NHSA and the
entropy (151). For instance, one could consider black hole
solutions in higher derivative theories of gravity that are not
locally maximally symmetric and check whether again the
near-horizon symmetries turn out to be governed by ûð1Þ
current algebras, and also if entropy again is given by the
simple result (151). Another interesting generalization is to
consider supersymmetry or flat space higher spin gravity
[86,87]. Moreover, it would also be of interest to try to
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extract the extremal limit from our nonextremal boundary
conditions and to compare with the vast literature on
microscopic state counting for extremal black holes.
A potentially highly rewarding direction of future

research is to generalize the construction presented here
to higher dimensions and specifically to four dimensions.
Although the use of Chern-Simons theory is limited to three
dimensions, we expect the appearance of soft conserved
charges in the near-horizon limit to hold in higher dimen-
sions as well, given the algebraic observations in Sec. V E.
This might provide a fruitful new direction to elucidate the
peculiar properties of black hole physics, in particular of
nonextremal Kerr black holes in general relativity.
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APPENDIX A: METRIC IN EDDINGTON-FINKELSTEIN GAUGE

In [3] we presented the locally AdS3 metric in Eddington-Finkelstein gauge for constant Rindler acceleration, a and
vanishing rotation parameter Ω ¼ 0. Here we generalize these results in the same gauge to arbitrary functions
aðv;φÞ, Ωðv;φÞ.
We start with the connection (16) with the group element

b� ¼ exp

�
� 1

lζ�
L1

�
exp

�
� ρ

2l
L−1

�
ðA1Þ

and the same choice for a� as in the main text; see (18) but with t replaced with v. The full connection then is given by

A� ¼ a� �
�
dρ
2l

L−1 −
dζ�

lζ�2
L1

�
−
�
� dv

l
þ J �
lζ�

dφ

�
L1 þ

ρ

2l
ð�ζ�dvþ J �dφÞL−1 −

ρ

l

�
dv
l

� J �
lζ�

dφþ dζ�

lζ�2

�
L0

−
ρ2

4l2

�
� dv

l
þ J �
lζ�

dφ� dζ�

lζ�2

�
L−1 ðA2Þ

where the second term comes from b−1� db� and the rest from applying the Baker-Campbell-Hausdorff formula,
b−1� a�b� ¼ a� þ � � �, and the ellipsis denotes single and double commutator terms (after two commutators the otherwise
infinite series truncates).
The most general solution of the Einstein equations (2) obeying our boundary conditions in Eddington-Finkelstein gauge

reads

ds2 ¼ ðΩ2 − 2aρf1Þdv2 þ 2f2dvdρþ 2ðΩγ þ 2 ~ωρh2Þdvdφ − 2
~ω

a
h1dφdρþ

�
γ2 þ 2ρ

a
ðγ

2

l2
− ~ω2

�
1 −

Ω
al

Þ2
�
h3

�
dφ2:

ðA3Þ

We display below the functions f1, f2 and h1, h2, h3 appearing in the locally AdS3 line element (A3),
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f1 ¼ f2 þ
Ω
al

_W þ FþF−
ρ

2al2
ðA4Þ

f2 ¼
Fþ þ F−

2
ðA5Þ

h1 ¼ 1 −
a
~ω
A0 ðA6Þ

h2 ¼
h1 þ f2

2
−

Ω
2 ~ωl

�
W0 þ aγ þ ~ωΩ

a2l
_A −

γ

Ω
_W

�

þ
�
h1f2 þ

a
~ω
_W
�
W0 −

aγ þ ~ωΩ
a2l

��
ρ

2al2
ðA7Þ

h3 ¼
Hþ þH−

2
−
ΩðHþ −H−Þ

2al
þ ðHþH−Þ

ρ

2al2
: ðA8Þ

Additionally we have defined

~ω ¼ ωa2 þ γaΩl−2

a2 − Ω2l−2 ðA9Þ

F� ¼ 1 −
_a� _Ωl−1

ða� Ωl−1Þ2 ðA10Þ

A ¼ a
a2 −Ω2l−2 ðA11Þ

W ¼ Ωl−1

a2 −Ω2l−2 ðA12Þ

H� ¼ 1þ ð�a0 −Ω0l−1Þa2
ða ∓ Ωl−1Þ2½ð�aþΩl−1Þ ~ωþ aγl−1� :

ðA13Þ

The quantities fi depend only on a, Ω, while hi
depends additionally on γ and ω. Prime (dot) denotes
∂φ (∂v).
The chemical potential Ω generates a rotating frame. If it

vanishes, Ω ¼ 0, we get considerable simplifications in the
functions appearing in the line element (A3),

f1jΩ¼0 ¼ f2 þ f22
ρ

2al2
ðA14Þ

f2jΩ¼0 ¼ 1 −
_a
a2

ðA15Þ

h1jΩ¼0 ¼ 1þ a0

aω
ðA16Þ

h2jΩ¼0 ¼
h1 þ f2

2
þ h1f2

ρ

2al2
ðA17Þ

h3jΩ¼0 ¼
1

2
ðHþ þH−Þ þ ðHþH−Þ

ρ

2al2
ðA18Þ

where H� ¼ 1þ a0=½aðω� γl−1Þ�.
If a is constant it can be interpreted as Rindler accel-

eration. For constant chemical potentials the line-element
(A3) with (A9) and (A4) simplifies to

ds2jΩ;a¼const

¼ ðΩ2 − 2aρfÞdv2 þ 2dvdρþ 2½Ωγ þ 2 ~ωρf�dvdφ

− 2
~ω

a
dφdρþ

�
γ2 þ 2ρ

al2
ðγ2 − ~ω2ð1 −Ω=ðalÞÞ2Þf

�
dφ2

ðA19Þ

where γ and ω depend now on φ, only, and all functions fi
and hi above simplify, either to f2 ¼ h1 ¼ 1 or to the single
function f1 ¼ h2 ¼ h3 ¼ 1þ ρ=ð2al2Þ. If additionally
Ω ¼ 0 then we recover the result displayed in the main
text; see (8).

APPENDIX B: KILLING VECTORS

We consider here the six local Killing vectors for simple
solutions with constant γ, a and vanishing ω ¼ Ω ¼ 0,
describing static BTZ black holes in Eddington-Finkelstein
coordinates (8). The main goal of this appendix is to find
conditions for which these local Killing vectors remain well
defined globally.
We obtain the six local Killing vectors

ξ1 ¼ ∂v ðB1Þ

ξ2 ¼ ∂φ ðB2Þ

ξ3;4 ¼ eav�A

�
∂v �

2a3l3 þ a2lρ
γða2l2 þ aρÞ ∂φ − ð2a2l2 þ aρÞ∂ρ

�
ðB3Þ

ξ5;6 ¼ e−av�A

�
∂v ∓ a2lρ

γða2l2 þ aρÞ ∂φ þ aρ∂ρ

�
ðB4Þ

where A ¼ φγ=l.
If v has an imaginary periodicity then these Killing

vectors can be globally regular only if v ∼ vþ i2π=a,
which is indeed the identification induced by (22).
Moreover, periodicity in the angular coordinate,
φ ∼ φþ 2π, means that the Killing vectors above are
globally regular only for

γ ¼ �inl n ∈ Zþ : ðB5Þ

For n ¼ 1 we obtain the ground state solution; see the
discussion in Sec. VI B. Therefore, the ground state
solution is maximally symmetric, as may be expected on
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general grounds. The fact that our ground state solution is
gapped from the physical spectrum by an imaginary
amount is interesting and has been seen already in a
previous Rindleresque construction [35].

Interestingly, only the local Killing vectors ξ1 and ξ2 are
compatible with the falloff conditions of asymptotic Killing
vectors (146). They correspond precisely to the generators
of the “wedge subalgebra” of our symmetry algebra (28).
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