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We study the smallest nontrivial matrix model that can be considered to be a (toy) model of a black hole.
The model consists of a pair of 2 × 2 traceless Hermitian matrices with a commutator squared potential and
an SUð2Þ gauge symmetry, plus an SOð2Þ rotation symmetry. We show that using the symmetries of the
system, all but two of the variables can be separated. The two variables that remain display chaos and a
transition from chaos to integrability when a parameter related to an SOð2Þ angular momentum is tuned to a
critical value. We compute the Lyapunov exponents near this transition and study the critical exponent of
the Lyapunov exponents near the critical point. We compare this transition to extremal rotating black holes.
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I. INTRODUCTION

Ever since the advent of the AdS/CFT correspondence
[1] it has become clear that many interesting quantum
field theories are equivalent to theories of quantum gravity
in higher dimensions. The correspondence usually entails
studying the field theories at large N. These can be theories
in low dimensions. Particularly interesting cases occur
in the Banks-Fischler-Shenker-Susskind (BFSS) matrix
model [2], which is a quantum mechanical theory of
finitely many variables. That theory also describes some
black holes in ten dimensions [3].
The BFSS matrix model has been subject to many

quantum Monte Carlo simulations, which have found a
match between the black hole phase and the field theory
computations [4–8]. The most recent analysis can be found
in [9]. It has also been understood that chaos plays an
important role in the real-time thermalization properties of
the “black hole” phase. The absence of a finite-temperature
phase transition suggests that many qualitative aspects of
the black hole dynamics can be understood from classical
simulations of the BFSS matrix model, which has been
carried out in [10,11] and more recently in [12], where a
spectrum of Lyapunov exponents was computed.
It is worthwhile to ask how much of the gravitational

structure remains at very low values of N. Also, the
computations so far have been done in the absence of
angular momentum, but adding angular momentum should
give rise to an interesting structure. This is because there
are spinning instabilities for black holes [13].
Also, calculations of D-brane scattering [14] suggest that

there is a critical impact parameter (at fixed energy) which
makes a scattering problem of D-branes turn into a bound
state. This usually depends on an adiabatic mode at large
distance separation between the branes becoming non-
adiabatic. These effects create strings stretching between
the branes and the branes become bound to each other. This
is an interesting problem in its own right. One can argue
that the nonadiabatic behavior can be obtained with small

classical perturbations for off-diagonal modes. These pro-
duce strings stretching between the D-branes that force a
rescattering event. Eventually they become large to the
point where they cause large backreaction and scramble
the dynamics completely (this is similar to the studies in
[15–17] for a similar collision problem between D-branes).
This is interpreted as the formation of a black hole.
Another advantage of working at small values of N is

that it becomes easier to scan over the possibilities. One
might also be able to compare these kinds of situations to a
direct computation of the wave functions (if the number of
dimensions of the quantum mechanical problem is small
enough). A simple example for the two-matrix model is
studied in [18] (see also [19]), wherein a list of energies of
states is obtained.
We will consider this example from the point of view of

classical physics. The example arises from studying the
dimensional reduction of YM2þ1 to 0þ 1 dimensions. We
will work also with the SUð2Þ model. The system only has
two dynamical matrices, each of them counting three real
dynamical variables (and their canonical conjugates).
Because of the gauge symmetry, three variables are gauged,
leaving us with a dynamical system with only three
dynamical variables. There is an extra SOð2Þ symmetry
that reduces the effective problem to only two dynamical
variables plus their conjugates, the minimal dimension for
the system to be nonintegrable. The parameter that controls
this reduction is the angular momentum of the SOð2Þ
symmetry. In this vein, subsectors of the Berenstein-
Maldacena-Nastase matrix model of small dimensionality
have been found to be chaotic [20]. In that case, it is the
strength of the mass deformation parameter that produces
islands of stability.
At fixed energy and large angular momentum we expect

the system to be characterized by D-branes that are well
separated from each other and that are orbiting each other
with a number of strings stretching between them. The
number of such strings is a variable, but the occupation
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number counting the strings is expected to be an adiabatic
invariant in these situations. On the other hand, at low
angular momentum we expect large parametric resonance
and nonintegrable dynamics characterized by chaos. What
is interesting for us is to understand how this varies as we
change the angular momentum.
The paper is organized as follows. Section II is devoted

to the derivation of the Hamiltonian we used in the
numerical simulation and in Sec. III we discuss the
properties of the chaotic behavior with Poincaré sections.
The result on the Lyapunov exponents are presented in
Sec. IV and we conclude in Sec. V.

II. THE LAGRANGIAN AND SEPARATION
OF VARIABLES

Consider the two-matrix model, where we have X1, X2

Hermitian traceless 2 × 2 matrices. They are each in a
triplet of SUð2Þ. We want to consider the dynamical system
with Lagrangian

L ¼ 1

2
Tr

�
DtX2

1 þDtX2
2 þ

1

2
½X1; X2�2

�
:

This arises from the reduction of SUð2Þ Yang Mills in
2þ 1 dimensions to 0þ 1 dimensions.
We can expand the X1, X2 in terms of Pauli matrices as

follows:

Xi ¼ ~xi · ~σ=
ffiffiffi
2

p
¼ xjiσj=

ffiffiffi
2

p
: ð1Þ

The normalization is chosen so that in the expression
1
2
Trð _X2

i Þ ¼ 1
2

P
j _x

2
ji has canonical kinetic terms. Any other

choice of normalization can be scaled out by a rescaling of
the time variable.
The collection of the two X1;2 can be thought of as a real

3 × 2 matrix. The gauge action is by multiplication on the
left by SUð2Þ≃ SOð3Þ group elements. The Lagrangian is
also symmetric under SOð2Þ rotations of X1 into X2; these
can be realized by multiplication on the right by an SOð2Þ
rotation. We write this as follows:0

B@
x11 x12
x21 x22
x31 x32

1
CA → RSOð3Þ ·

0
B@

x11 x12
x21 x22
x31 x32

1
CA

·

�
cosðθÞ sinðθÞ
− sinðθÞ cosðθÞ

�
: ð2Þ

Like in most holographic matrix models, the SOð3Þ
rotations are gauged. They can be written in terms of
Euler angles if we want to.
What is important for us now is that we can choose a

gauge where x21 ¼ x31 ¼ 0. This uses a rotation in SOð3Þ,
but the SOð2Þ rotation of the 23 components does not affect
the configuration. It is the little group associated to this

gauge choice. Similarly, we can use this freedom to choose
x32 ¼ 0. This effectively reduces the number of dynamical
variables from 6 to 3. We can still act with SOð2Þ trans-
formations on the right, and since they are a symmetry, we
expect one conserved quantity associated to these rotations.
These preserve the x31 ¼ x32 gauge condition, but not the
x21 ¼ 0 gauge. If we can separate the variables carefully in
the Hamiltonian formalism, this procedure should reduce
the number of degrees of freedom from 3 to 2, with an
additional external parameter that measures the SOð2Þ
angular momentum that mixes the two matrices. Any
further reduction and the system would become integrable.
Before we do that, however, let us establish some facts in

the A0 ¼ 0 gauge. For the system described above, the
Hamiltonian can be written as

1

2

X
j

~p2
j þ

1

2
ð~x1 × ~x2Þ2; ð3Þ

where the × symbol indicates the cross product of three
vectors. The generators of angular momentum SUð2Þ
rotations are given by

~L ¼ ~x1 × ~p1 þ ~x2 × ~p2 ¼ ~L1 þ ~L2 ¼ 0 ð4Þ

and correspond to the three constraints of the system that
we need to specify in the initial conditions. All the vectors
~x1; ~x2; ~p1; ~p2 are orthogonal to ~L1 ¼ −~L2. This is only true
if the constraints are satisfied.
We will now show that the time derivative of ~L1 lies in

the direction of ~L1 and therefore the motion of ~x1 is in the
orthogonal plane determined by this direction. The same
argument works for ~x2. The full motion will lie in the plane
determined by ~x1 and ~x2. To compute this time derivative,
we notice that

∂tð~L1Þ ¼ ∂t~x1 × ~p1 þ ~x1 × ∂t ~p1: ð5Þ
The first term vanishes identically by the equations of
motion ∂t~x1 ¼ ~p1. The second term is obviously orthogo-
nal to ~x1. The equation of motion of ~p1 is proportional to
~x2 × ð~x1 × ~x2Þ. This is also orthogonal to the ~L plane,
which can be determined by any two vectors in the plane, in
this case ~x1; ~x2. What we see is that the two terms in the
tensor product are orthogonal to the direction of ~L1. Hence
their cross product is aligned with ~L1.
Without loss of generality, we can reduce the problem to

motions where ~L1 is determined by the 12 plane. The gauge
x31 ¼ x32 ¼ 0 is preserved by the equations of motion. This
simplifies the analysis because we can avoid using the full
Euler angles in the SOð3Þ rotation and we can restrict
ourselves to a 2 × 2 problem.
We will now analyze the dynamics starting from this

simplification. It is convenient to write the two vectors in
the X, Y plane as a 2 × 2 matrix,
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U ¼
 
x11 x12
x21 x22

!
: ð6Þ

The SOð2Þ gauge transformation acts on column vectors
by left multiplication, while the SOð2Þ global symmetry
acts by right multiplication. It is easy to see that detðUÞ≃
~x1 × ~x2 and is left invariant by both such multiplications.
Also, the following is invariant under both SOð2Þ trans-
formations: TrðUTUÞ ¼PðxijÞ2 ¼ r2.
We will choose to write the general such matrix as

follows:

U ¼ 1ffiffiffi
2

p
�
cosðχÞ − sinðχÞ
sinðχÞ cosðχÞ

��
r r cos θ

0 r sin θ

�

×

�
cosðϕÞ − sinðϕÞ
sinðϕÞ cosðϕÞ

�
: ð7Þ

This defines our coordinate system.
It is easy to show that it is always possible to set up the

two vectors to have the same length r2=2 by an SOð2Þ
rotation acting on the right. The reason for this is that a
rotation by π=2 in ϕ exchanges the two vectors (with a sign
flip on one of them). Since the process is continuous, the
difference of the length of the two vectors will go from
positive to negative, so there must be a place where they are
the same.
We parametrize the misalignment by the angle θ. We

could have equally chosen the two vectors to be orthogonal,
which would occur at the maximum or minimum value of
~x21, as done in [21]. This produces similar results to our
formulation.
Now, we write the Lagrangian in terms of the ðr; θ;ϕ; χÞ

coordinate system. Since we choose to gauge the χ trans-
formation, when we write the Hamiltonian we will have
pχ ¼ 0; similarly, when we write the Hamiltonian we have
that pϕ is conserved, so we can set it to a constant.
After computing the Jacobian for the change of

variables, the metric in the new coordinates r; θ;ϕ; χ is
given by

gμν →

0
BBB@

2 0 0 0

0 r2 r2 sinðθÞ r2

0 r2 sinðθÞ 2r2 2r2 sinðθÞ
0 r2 2r2 sinðθÞ 2r2

1
CCCA ð8Þ

and its inverse is

0
BBBBB@

1 0 0 0

0 4
r2 0 − 2

r2

0 0
sec2ðθÞ

r2 − tanðθÞ secðθÞ
r2

0 − 2
r2 − tanðθÞ secðθÞ

r2
ð2−sin2ðθÞÞsec2ðθÞ

r2

1
CCCCCA ð9Þ

When we apply the constraint pχ ¼ 0, the kinetic term
reduces to

1

2
p2
r þ

2

r2
p2
θ þ

p2
ϕ

2r2 cosðθÞ2 ð10Þ

which is rather simple.
That is, the effective inverse metric is

g−1μν ¼

0
B@

1 0 0

0 4r−2 0

0 0 r−2cos−2ðθÞ

1
CA:

The full Hamiltonian in these coordinates is

H ¼ 1

2
p2
r þ

2

r2
p2
θ þ

p2
ϕ

2r2 cosðθÞ2 þ
1

4
r4 sin2 θ; ð11Þ

the same as the one found in [21].
Notice that once pθ ≠ 0, the potential becomes singular

at cos θ ¼ 0, so the motion in θ is constrained to the
−π=2; π=2 range. Similarly, the motion never reaches
r ¼ 0.
Because the equation of motion of pϕ is given by

_pϕ ¼ 0, we find that we can treat it as a constant and
we only need to evolve the two variables r, θ and their
conjugate variables, pr, pθ.
It is instructive at this stage to draw a map of the

potential. This is shown in Fig. 1. What is important for us
is the general structure of the potential. For low energy and
fixed angular momentum there is always a needle shape
region that extends to infinity at θ≃ 0. This is the region
where the commutator of the two matrices vanishes. This is
a flat direction in these kinds of matrix models.
From the point of view of numerics, trajectories that take

a long excursion in the needle region take a long time to
compute, but the motion in θ is expected to be adiabatic in

0.1 0.6

1.1 1.6

2.1

2.6

7

0 1 2 3 4 5

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

r

FIG. 1. Equipotential surfaces at pϕ ¼ 1 at values Vpot ¼ 0.1,
0.6, 1.1, 1.6, 2.1, 2.6, 7.
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this region. Therefore, nothing much happens during these
excursions.
More precisely, for small θ we can expand the

Hamiltonian to second order in θ to get

H ¼ 1

2
p2
r þ

2

r2
p2
θ þ

p2
ϕ

2r2
ð1þ θ2Þ þ 1

4
r4θ2: ð12Þ

The evolution on θ is like a harmonic oscillator with an
effective mass equal to r2=4 and a position-dependent
frequency

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

r2

�
p2
ϕ

r2
þ 1

2
r4
�s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2

ϕ

r4
þ 2r2

s
: ð13Þ

Notice that this only depends on r. We expect that the
motion will be adiabatic if

_ω

ω2
< 1 ð14Þ

and this evaluates to

_ω

ω2
¼ _r

2

ð4r − 16p2
ϕ=r

5Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2

ϕ

r4 þ 2r2
q

3
: ð15Þ

Notice that at fixed energy _r is bounded, j_rj < ffiffiffiffiffiffi
2E

p
,

so as we increase pϕ we reduce the value of the adiabatic
criterion, and we expect to get adiabatic behavior
everywhere. The lowest value of r also increases to
rmin ¼

ffiffiffiffiffiffi
2E

p
pϕ.

Quantum mechanically, we know that the needle direc-
tions will be lifted. At large r, we can treat the variable θ
as a harmonic oscillator. The term with r4 sin2ðθÞ≃ r4θ2

dominates the potential. The kinetic energy will be
2p2

θ=r
2. The effective frequency of the θ direction is

ω2
eff ≃ r4=r2 ¼ r2, so the effective correction to the

Hamiltonian will be δH ∝ ℏr. We choose to modify
the potential this way with a small ℏ. This correction
mostly affects the needle region, where r can become large.
In the numerics we set ℏ ≤ 0.1 at E ¼ 1.0.
The improved ℏ-corrected Hamiltonian in these coor-

dinates is

H ¼ 1

2
p2
r þ

2

r2
p2
θ þ

p2
ϕ

2r2 cosðθÞ2 þ
1

4
r4 sin2 θ þ ℏr; ð16Þ

where ℏ is a parameter.
Also, with this correction, the potential now has a

minimum at θ ¼ 0 and r ∝ p2=3
ϕ ℏ−1=3. This gives a bound

on the energy E > Oð1Þℏ2=3p2=3
ϕ that scales with a power

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Pr0.0

0.5

1.0

1.5

2.0

2.5

3.0
P

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Pr0.0

0.5

1.0

1.5

2.0

2.5

3.0
P

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Pr0.0

0.5

1.0

1.5

2.0

2.5

3.0
P

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Pr0.0

0.5

1.0

1.5

2.0

2.5

3.0
P

FIG. 2. Poincaré sections at pϕ ¼ 1, 1.5, 2, 2.5.
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of the angular momentum (for a spectrum of the quantum
model, see [18]).

III. CHAOS

It is well know that the Hamiltonian (11) is fully chaotic
for pϕ ¼ 0 (this means that there are no Kolmogorov-
Arnold-Mosser (KAM) tori [22–24]). This model and
related models have been studied in [25–28] where it
was shown that they are chaotic. This is the same dynamics
as the Hamiltonian given by

p2
x

2
þ p2

y

2
þ λx2y2 ð17Þ

with x ¼ r sinðθ=2Þ, y ¼ r cosðθ=2Þ. What we want to
understand is the presence or absence of chaos as we
modify the angular momentum pϕ at fixed energy. As we
modify pϕ we see that the system evolves from being
chaotic to a system that is not. From the arguments that led
to Eq. (15), we see that if all E; pϕ; r are of order 1, then
the adiabatic control parameter is also of order 1, and that
the transition to fully adiabatic and therefore integrable
behavior should be around pϕ ∼ 1.
This is easily visible in terms of a Poincaré section of the

solution of the dynamics by numerical methods. We choose
to take the Poincaré section at the crossings of θ ¼ 0 in the
pr, pθ plane. This is shown in Fig. 2.
As can be seen, KAM tori start forming as we increase

the angular momentum pϕ. Their area grows with pϕ until
it seems to take over the available phase space. Notice,
however, that the tori seem to intersect, an effect that is
especially noticeable in the bottom right corner. This is an
artifact of the projection to pr, pθ which ignores the fact
that r can have more than one solution when we fix pr, pθ

and the energy E at θ ¼ 0. This can be seen clearly in Fig. 3
where we see that different initial conditions (marked with
different colors) each gives rise to a pair of circles.

The presence of these topological circles indicates that in
principle there is an additional conserved quantity. That
quantity should be thought of as the adiabatic invariant
for motion in θ, at least for the small amplitude regime in θ.
Again, as is usual in transitions from integrability (large

pϕ) to chaos (small pϕ), the transition happens by destroy-
ing some of the KAM tori and then increasing the area of
the chaotic region. The important issue for us is that in the
classical setup one has to distinguish between different
initial conditions in the region of parameter space where
there is coexistence between integrable islands and chaos.
We can check that at pϕ ¼ 0.5, the chaotic region seems

to have swallowed the whole available phase space. This is
shown in Fig. 4.
We will label the different regions as phases. Since the

matrix model that we are analyzing is closely related to
matrix models that describe black holes, we will label the
chaotic phase as the black hole phase. Essentially, such a
phase thermalizes over its available phase space and in
larger matrix models has been argued to be related to black
holes. We will label the other phase the orbiting D-brane
phase, which can be thought of as a pair of D-branes
orbiting each other and having a fixed number of strings
stretched between them, with a force that depends on the
number of strings that have been excited. This number is
the “adiabatic invariant" for the orbits. The phases can
coexist for some values of E; pϕ but not others. From
Fig. 2, it seems that the coexistence phase disappears
somewhere between 2 < pϕ;crit < 2.5 at energy E ¼ 1.
Here we would get a pure orbiting D-brane phase. The
coexistence also appears somewhere between pϕ ¼ 0.5 and
pϕ ¼ 1. Below the corresponding value of pϕ, we would
call this a pure black hole phase.

IV. LYAPUNOV EXPONENTS AND THE BLACK
HOLE TO D-BRANE TRANSITION

Now that we have established that chaos can appear and
disappear at a particular value of the angular momentum (at
fixed energy), it makes sense to try to understand this
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FIG. 4. Poincaré sections at pϕ ¼ 0.5 showing that the chaotic
region seems to fill the available phase space.

FIG. 3. Poincaré sections at pϕ¼2.5 showing all three pr; pθ; r.
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transition in more detail. In particular, one might want to
understand to what extent the transition changes the
scrambling rate of the dynamics. In this case, the scram-
bling rate will be captured by the largest (and only) positive
Lyapunov exponent.
We are interested in understanding the chaotic region

(numerically) near where it disappears. The edge of chaos
in our dynamics is interpreted as the end of the black hole
phase. One can think of this limit as an extremal limit for a
family of black holes. Such extremal limits usually have
zero temperature and they lack a horizon, although they still
have a near horizon geometry. Recent studies suggest that
for black holes, the largest Lyapunov exponent is controlled
by the temperature of the black hole system [29,30]. Near
an extremal limit, the effective temperature should go to
zero and it is reasonable to assume that the corresponding
Lyapunov exponent goes to zero near such a transition. We
will present evidence of that effect and we will compute the
approach to criticality. Our findings are consistent with a
critical exponent of 1 for the Lyapunov exponent.
Our simulations are done at fixed energy (set to E ¼ 1),

and a small value of the Planck constant correction (set to
ℏ ¼ 0.1). Our results are displayed in Fig. 5 (the table of
values from which the plot is extracted can be found in
Table I in Appendix A).
To gauge the physics near the transition from chaos to

integrability we zoom into the region near pϕ ≃ 2 as shown
in Fig. 6.

A. Initial condition and systematics

The initial conditions for the data are chosen with the
following protocol. One first considers using pθ¼0, pr¼0
and E ¼ 1 in the Hamiltonian (16). One varies pϕ and for
each pϕ one selects a small value of θ. One then computes r
numerically. We pick the lowest value of r that is positive.
When we tried the other values of rwe found that they were

usually in the integrable portion of the dynamical system.
This would give us a starting initial condition that can be
characterized as a point on an equipotential of Fig. 1 with
zero velocity. The system is then left to evolve for a total
run time of t ¼ 5000. The Lyapunov exponent is computed
by following an infinitesimal fluctuation δv to the initial
conditions in the linearized approximation. For a general
Hamiltonian system we do this as follows:

_qi þ δ _qi ¼ ∂pi
Hðqþ δq; pþ δpÞ

¼ ∂pi
HðqÞ þ ∂pi

∂qjHðq; pÞδqj
þ ∂pi

∂pj
Hðq; pÞδpj ð18Þ

FIG. 5. Lyapunov exponents for various values of angular
momentum, and a linear fit. The bars indicate the statistical
uncertainty. Two sets of data were obtained from running the
same code with the same data on two different computers and are
superimposed. They are statistically consistent with each other.

TABLE I. Table of values of Lyapunov exponents used for
Fig. 5.

Pθ (Angular
momentum)

λ (Lyapunov
exponent)

Statistical
uncertainty

1.2 0.132007 0.0203839
1.2 0.164935 0.0066
1.5 0.091657 0.00895991
1.5 0.1 0.0099
1.8 0.052924 0.00332
1.85 0.0357303 0.00318009
1.85 0.0442096 0.00276756
1.9 0.02801 0.002478
1.98 0.0114 0.00336
1.98 0.0139 0.00322
1.99 0.00211186 0.00195237
2. 0.0139116 0.000959321
2. 0.0206 0.00275
2.01 0.0113189 0.00244926
2.02 0.0111035 0.00215886
2.03 0.0021285 0.00146813
2.04 0.00194419 0.0018921
2.05 0.00197842 0.00148593
2.1 0.001978 0.00148
2.25 0.00197842 0.00148593

FIG. 6. Zoom into the transition region. The error bars are
statistical: they do not indicate the possibility or the size of
systematic errors.
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so that

δ _qi ¼ ∂pi
∂qjHðq; pÞδqj þ ∂pi

∂pj
Hðq; pÞδpj ð19Þ

and similarly for δp. This is a linear equation for the
fluctuation, so we can take the δq; δp of order 1 in the
numerical simulation.
We evolve the system and record the stretching of

the fluctuation at intervals Δt, by computing λm ¼
logðjδqðmΔtÞj=jδqððm − 1ÞΔtÞjÞ=Δt. What choice of
norm we use matters little (see [32] and Appendix A in
[12]) We then rescale the δq at each such time to start with
unit norm. This process is done typically at Δt ¼ 500 and
in some cases we take Δt ¼ 250 near the transition in
points marked with x. The data shown in Fig. 5 gives the
average and the variance of different values (divided by

ffiffiffi
k

p
,

the number of time intervals), which gives the statistical
significance of the average result.
We still need to worry about systematics. In Figs. 5

and 6 there are points marked with x that are discarded
from the fit, but they seem to be consistent with it. Some
of these points seem to be in the integrable region. We test
this also by studying the power spectrum of the Fourier
transform of the solution. Integrable regions have a power
spectrum that consists of delta functions at the values of
the frequencies in the action-angle variables. Similarly,
chaotic regions display a continuous power spectrum
(such techniques were used to analyze the large-N limit of
matrix model dynamics in [11]). This is shown in Fig. 7.
The ones that are marked with diamonds are consistent
with zero and are safely beyond the transition, so they
should not be included as part of the fit to chaos close to
the transition.
It should be noted that once the Lyapunov exponents are

very close to zero, the chaotic region is also shrinking in
size, so it becomes harder to hit it with our initial condition
choice.

V. CONCLUSION

In this paper, we studied the transition from chaotic
behavior to integrable one in the 2 × 2 traceless Hermitian
matrices. Thanks to the SUð2Þ gauge symmetry and SOð2Þ
global symmetry, this model can be reduced to two
dynamical variables and their conjugate momenta. The
plot of the Lyapunov exponent clearly shows that the
intensity of chaos drops as a control parameter increases
and goes to zero on the critical point of the transition. This
coincidence of the point Lyapunov spectrum reaching zero
and the critical point of the transition from chaos to
integrability is confirmed by power spectrum.
This is also consistent with the claim in the works

[29,30] about Lyapunov exponents in black holes. When a
black hole becomes extremal the Lyapunov exponent that is
given exactly by the temperature of the black hole goes to
zero smoothly. The transition we find is consistent with this
phenomenon.
Namely, the (toy) model we studied shares a black-hole-

like property with more complex matrix models in spite of
the minimality of the number of effective degrees of
freedom: only two dynamical variables and their conjugate
momenta. This simplicity makes the model a desirable
laboratory for the study of the relation between matrix
models and gravity.
The next step toward the understanding of the relation

between matrix models and gravity will be the study of
chaos including quantum effects. It is particularly interest-
ing that because the system is low dimensional, one can
directly access the wave functions of the system [18].
Obviously, it is interesting to understand the relationship
between the classical phase diagram and the properties of
the quantum wave functions of the system. It is also
interesting to try to compare the classical Lyapunov
exponents and their corresponding quantum version to
understand better the bounds [30] in an extreme setup that
can still be argued to be a holographic model (see also [31]
for arguments that such types of bounds should be generic).

200 400 600 800 1000
w

0.1

1

10

100

1000

P(w)

200 400 600 800 1000
w
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1

10

100

1000
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FIG. 7. Power spectrum for trajectories at pϕ ¼ 2.02 and pϕ ¼ 2.03 on a logarithmic scale. On the left is the chaotic power spectrum,
and on the right is the integrable spectrum. The main difference is the smoothness of the curves and the small addition of small very
sharp peaks on the integrable side.

SMALLEST MATRIX BLACK HOLE MODEL IN THE … PHYSICAL REVIEW D 95, 106004 (2017)

106004-7



ACKNOWLEDGMENTS

D. B.’sWork supported in part by the U.S. Department of
Energy under Grant No. DE-SC0011702. D. B. is very
grateful to the Galileo Galilei Institute for their support
where part of this work took place. D. K. is supported by
the Japan Society for the Promotion of Science (JSPS).
D. K. is very grateful to the grant for the development of
international cooperations from the Department of Physics

in Kyoto University. D. K. is supported in part by the JSPS
Japan-Hungary Research Cooperative Program and the
JSPS Japan-Russia Research Cooperative Program.

APPENDIX: TABLES OF VALUES

Here we present the data of the two data sets joined.
Values where Pϕ appears twice indicate that those two
values were run with the same code on different computers.

[1] J. M. Maldacena, The large N limit of superconformal field
theories and supergravity, Int. J. Theor. Phys. 38, 1113
(1999); The large N limit of superconformal field theories
and supergravity, Adv. Theor. Math. Phys. 2, 231 (1998).

[2] T.Banks,W.Fischler, S. H.Shenker, andL. Susskind,M theory
as amatrixmodel: A conjecture, Phys. Rev. D 55, 5112 (1997).

[3] N. Itzhaki, J. M. Maldacena, J. Sonnenschein, and S.
Yankielowicz, Supergravity and the large N limit of theories
with sixteen supercharges, Phys. Rev. D 58, 046004 (1998).

[4] K. N. Anagnostopoulos, M. Hanada, J. Nishimura, and S.
Takeuchi, Monte Carlo Studies of Supersymmetric Matrix
Quantum Mechanics with Sixteen Supercharges at Finite
Temperature, Phys. Rev. Lett. 100, 021601 (2008).

[5] S. Catterall and T. Wiseman, Black hole thermodynamics
from simulations of lattice Yang-Mills theory, Phys. Rev. D
78, 041502 (2008).

[6] M. Hanada, A. Miwa, J. Nishimura, and S. Takeuchi,
Schwarzschild Radius from Monte Carlo Calculation of
the Wilson Loop in Supersymmetric Matrix Quantum
Mechanics, Phys. Rev. Lett. 102, 181602 (2009).

[7] M. Hanada, Y. Hyakutake, J. Nishimura, and S. Takeuchi,
Higher Derivative Corrections to Black Hole Thermody-
namics from Supersymmetric Matrix Quantum Mechanics,
Phys. Rev. Lett. 102, 191602 (2009).

[8] S. Catterall and T. Wiseman, Extracting black hole physics
from the lattice, J. High Energy Phys. 04 (2010) 077.

[9] V. G. Filev and D. O’Connor, The BFSS model on the
lattice, J. High Energy Phys. 05 (2016) 167.

[10] C. Asplund, D. Berenstein, and D. Trancanelli, Evidence
for Fast Thermalization in the Plane-Wave Matrix Model,
Phys. Rev. Lett. 107, 171602 (2011).

[11] C. T. Asplund, D. Berenstein, and E. Dzienkowski, Large
N classical dynamics of holographic matrix models,
Phys. Rev. D 87, 084044 (2013).

[12] G. Gur-Ari, M. Hanada, and S. H. Shenker, Chaos in classical
D0-brane mechanics, J. High Energy Phys. 02 (2016) 091.

[13] R. Emparan and R. C. Myers, Instability of ultra-spinning
black holes, J. High Energy Phys. 09 (2003) 025.

[14] M. R. Douglas, D. N. Kabat, P. Pouliot, and S. H. Shenker,
D-branes and short distances in string theory, Nucl. Phys.
B485, 85 (1997).

[15] D. Berenstein and D. Trancanelli, Dynamical tachyons on
fuzzy spheres, Phys. Rev. D 83, 106001 (2011).

[16] N. Iizuka, D. Kabat, S. Roy, and D. Sarkar, Black hole
formation at the correspondence point, Phys. Rev. D 87,
126010 (2013).

[17] N. Iizuka, D. Kabat, S. Roy, and D. Sarkar, Black hole
formation in fuzzy sphere collapse, Phys. Rev. D 88, 044019
(2013).

[18] R. Hübener, Y. Sekino, and J. Eisert, Equilibration in low-
dimensional quantum matrix models, J. High Energy Phys.
04 (2015) 166.

[19] A. H. Fatollahi, Regge trajectories by 0-brane matrix
dynamics, J. Geom. Symm. Phys. 405, 231 (2016).

[20] Y. Asano, D. Kawai, and K. Yoshida, Chaos in the BMN
matrix model, J. High Energy Phys. 06 (2015) 191.

[21] V. Kares, 0-brane quantum chemistry, Nucl. Phys. B689, 53
(2004).

[22] V. I. Arnol’d, Small denominators and problems of stability
of motion in classical and celestial mechanics, Russ. Math.
Surv. 18, 85 (1963).

[23] V. I. Arnold, Small denominators and problems of
stability of motion in classical and celestial mechanics,
Usp. Mat. Nauk 18, 91 (1963); Proof of a theorem of A. N.
Kolmogorov on the invariance of quasi-periodic motions
under small perturbations of the hamiltonian, Russ. Math.
Surv. 18, 9 (1963).

[24] J. Moser, On invariant curves of area-preserving mappings
of an annulus, Nachr. Akad. Wiss. Gottingen Math. Phys. Kl
II 25, 1 (1961).

[25] G. Z. Baseyan, S. G. Matinyan, and G. K. Savvidi, JETP
Lett. 29, 585 (1979).

[26] B. V. Chirikov and D. L. Shepelyansky, Stochastic oscilla-
tion of classical Yang-Mills fields, Pis’ma Zh. Eksp. Teor.
Fiz. 34, 171 (1981) [JETP Lett. 34, 163 (1981)].

[27] I. Y. Aref’eva, P. B. Medvedev, O. A. Rytchkov, and I. V.
Volovich, Chaos in M(atrix) theory, Chaos Solitons Fractals
10, 213 (1999).

[28] S. G. Matinyan, G. K. Savvidy, and N. G. Ter-Arutunian
Savvidy, Stochasticity of classical Yang-Mills mechanics
and its elimination by Higgs mechanism, Pis’ma Zh. Eksp.
Teor. Fiz. 34, 613 (1981) [JETP Lett. 34, 590 (1981)].

[29] S. H. Shenker and D. Stanford, Black holes and the butterfly
effect, J. High Energy Phys. 03 (2014) 067.

[30] J. Maldacena, S. H. Shenker, and D. Stanford, A bound on
chaos, J. High Energy Phys. 08 (2016) 106.

[31] D. Berenstein and A. M. Garcia-Garcia, Universal quantum
constraints on the butterfly effect, arXiv:1510.08870.

[32] R. Eichhorn, S. J. Linz, and P. Hänggi, Transformation
invariance of Lyapunov exponents, Chaos Solitons Fractals
12, 1377 (2001).

DAVID BERENSTEIN and DAISUKE KAWAI PHYSICAL REVIEW D 95, 106004 (2017)

106004-8

https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.1103/PhysRevD.55.5112
https://doi.org/10.1103/PhysRevD.58.046004
https://doi.org/10.1103/PhysRevLett.100.021601
https://doi.org/10.1103/PhysRevD.78.041502
https://doi.org/10.1103/PhysRevD.78.041502
https://doi.org/10.1103/PhysRevLett.102.181602
https://doi.org/10.1103/PhysRevLett.102.191602
https://doi.org/10.1007/JHEP04(2010)077
https://doi.org/10.1007/JHEP05(2016)167
https://doi.org/10.1103/PhysRevLett.107.171602
https://doi.org/10.1103/PhysRevD.87.084044
https://doi.org/10.1007/JHEP02(2016)091
https://doi.org/10.1088/1126-6708/2003/09/025
https://doi.org/10.1016/S0550-3213(96)00619-0
https://doi.org/10.1016/S0550-3213(96)00619-0
https://doi.org/10.1103/PhysRevD.83.106001
https://doi.org/10.1103/PhysRevD.87.126010
https://doi.org/10.1103/PhysRevD.87.126010
https://doi.org/10.1103/PhysRevD.88.044019
https://doi.org/10.1103/PhysRevD.88.044019
https://doi.org/10.1007/JHEP04(2015)166
https://doi.org/10.1007/JHEP04(2015)166
https://doi.org/10.1007/JHEP06(2015)191
https://doi.org/10.1016/j.nuclphysb.2004.04.008
https://doi.org/10.1016/j.nuclphysb.2004.04.008
https://doi.org/10.1070/RM1963v018n06ABEH001143
https://doi.org/10.1070/RM1963v018n06ABEH001143
https://doi.org/10.1070/RM1963v018n05ABEH004130
https://doi.org/10.1070/RM1963v018n05ABEH004130
https://doi.org/10.1016/S0960-0779(98)00159-3
https://doi.org/10.1016/S0960-0779(98)00159-3
https://doi.org/10.1007/JHEP03(2014)067
https://doi.org/10.1007/JHEP08(2016)106
http://arXiv.org/abs/1510.08870
https://doi.org/10.1016/S0960-0779(00)00120-X
https://doi.org/10.1016/S0960-0779(00)00120-X

