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In this work we study canonical gravity in finite regions for which we introduce a generalization of the
Gibbons-Hawking boundary term including the Immirzi parameter. We study the canonical formulation on
a spacelike hypersurface with a boundary sphere and show how the presence of this term leads to an
unprecedented type of degrees of freedom coming from the restoration of the gauge and diffeomorphism
symmetry at the boundary. In the presence of a loop quantum gravity state, these boundary degrees of
freedom localize along a set of punctures on the boundary sphere. We demonstrate that these degrees of
freedom are effectively described by auxiliary strings with a three-dimensional internal target space
attached to each puncture. We show that the string currents represent the local frame field, that the string
angular momenta represent the area flux, and that the string stress tensor represents the two-dimensional
metric on the boundary of the region of interest. Finally, we show that the commutators of these broken
diffeomorphism charges of quantum geometry satisfy, at each puncture, a Virasoro algebra with central
charge c ¼ 3. This leads to a description of the boundary degrees of freedom in terms of a CFT structure
with central charge proportional to the number of loop punctures. The boundary SUð2Þ gauge symmetry is
recovered via the action of the Uð1Þ3 Kac-Moody generators (associated with the string current) in a way
that is the exact analog of an infinite dimensional generalization of the Schwinger spin representation. We
finally show that this symmetry is broken by the presence of background curvature.
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I. INTRODUCTION

In loop quantum gravity (LQG), quantum geometry is
discrete at the fundamental scale, and smooth geometry at
large scales is expected to be a consequence of the coarse
graining of Planckian discrete structures. In this paper we
focus on the presence of boundaries, and we show
explicitly that a new type of degrees of freedom is naturally
present when one considers the canonical structure of
general relativity on three-dimensional slices possessing
a two-dimensional boundary. Remarkably, these new exci-
tations, which are initially pure quantum-geometry boun-
dary degrees of freedom, behave, in some ways, as matter
degrees of freedom.
The appearance in gauge theories of new degrees of

freedom in the presence of a boundary was proposed a long
time ago [1–4], but only very recently has it been fully
expressed into a coherent picture. Not long ago, this
question was revisited with an emphasis on gravity, first
in some detail in [5] and taken to a more general level in [6],

where it was shown that the boundary degrees of freedom
are physical degrees of freedom that restore the gauge
symmetry under the presence of boundaries and organize
themselves as a representation of a boundary symmetry
group. Here we push the analysis further, by carefully
studying, in the presence of a generalized Gibbons-
Hawking term, the bulk and boundary components of
gauge symmetries. This unravels a Virasoro symmetry as
part of the boundary group.
It is important to understand that the choice of boundary

that decomposes the gravitational system into subsystems
corresponds to a choice of observer and that the degrees of
freedom described here are physical in a precise sense.
They represent the set of all possible boundary conditions
that need to be included in order to reconstruct the
expectation value of all gravity observables, including
the nonlocal ones that involve relations across the boun-
dary. They are needed in the reconstruction of the total
Hilbert space in terms of the Hilbert space for the
subsystems [6]. They also represent the degrees of freedom
that one needs in order to couple the subsystem to another
system in a gauge invariant manner [7]. These degrees of
freedom organize themselves under the representation of a
boundary symmetry group. Understanding this symmetry
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group and its representation at the quantum level is at the
core of our paper. This is a necessary step towards the
understanding of the decomposition of a gravitational
system into subsystems and the definition of sensible
observables in quantum gravity.
At a general level the previous question is completely

open at this stage. In this work we make the simplifying
assumption that the background geometry in which these
degrees of freedom exist is of a loopy nature. Let us recall
that initially the loop vacuum [8] was assumed to be such
that the fluxes of quantum geometry piercing the boundary
vanish outside the flux lines. In recent years another dual
vacuum has been proposed [9–13] in which it is the gauge
curvature that is assumed to vanish outside the punctures.
This vacuum possesses a natural geometrical interpretation
[14,15], and it is in agreement with the spin foam
interpretation of quantum gravity [16]. The importance
of such a state is clear in the context of modeling black hole
horizons via the Chern-Simons formulation [17–19], and it
becomes even more explicit in the loop quantum gravity
treatment of [20]. We confirm here that it is this new dual
vacuum that admits a boundary interpretation. In this work
we assume that the gauge curvature vanishes outside the
punctures.
Under these conditions we are able to find a realization of

the boundary symmetry group that lends itself to quantiza-
tion in a direct manner. We find that the boundary degrees of
freedom of pure gravity naturally localize on the punctures at
the intersection of the flux lines with the boundary. This
corresponds to a generalization of the mechanism first
proposed in [18]. Our implementation is more general
since it includes all possible boundary conditions compatible
with the extended Gibbons-Hawking term and does not
involve an auxiliary (or effective) Chern-Simons theory.
Remarkably, we show that each puncture carries a repre-
sentation of a three-dimensionalKac-Moody algebra andof a
Virasoro algebra of central charge c ¼ 3. Thus, the boundary
degrees of freedom naturally provide a representation of the
Virasoro algebraVir with (an eventually large) central charge
c ¼ 3N, where N is the number of punctures or elementary
geometrical fluxes going through the boundary.
The conjecture that CFT degrees of freedom should

appear around loop punctures was first made in [3]. The
evidence that CFT degrees of freedom effectively appear in
the quantization of the loop gravity state was first found in
[21]. This idea has also been explored in the context of LQG
in [22]. Herewe give, for the first time, a full derivation from
first principles that two-dimensional conformal symmetry
encodes these so-far elusive excitations.We also find that the
nature of these boundary symmetries is related in an intimate
way to the presence of the (generalized) Gibbons-Hawking
term that renders the action differentiable.
The paper is organized as follows. In Sec. II we introduce

the action principle and describe in detail the nature of the
generalized Gibbons-Hawking boundary term. We also

describe the nature of the variational principle and derive
the symplectic structure shown to be preserved by our
boundary conditions. In Sec. III we study the constraints of
gravity in the presence of the boundary and compute the
constraint algebra. This analysis sets the basis for the rest of
the paper and makes apparent the possibility of having
extra degrees of freedom at punctures. In Sec. IV we define
the puncture charges, and we show that they satisfy aUð1Þ3
Kac-Moody algebra. We also construct the associated
Virasoro algebra via the standard Sugawara construction.
In Sec. V we derive these results again by identifying the
degrees of freedom as scalar fields that define a string with
three-dimensional target space, given by the internal SUð2Þ
representation space. In Sec. VI we discuss in more detail
the relation of our degrees of freedom with the standard
ones in LQG, in the case where the curvature takes integer
values, and comment on the nature of a CFT/loops duality
that was put forward in the past. The noninteger case is
briefly presented in Sec. VII. In Sec. VIII we clarify the link
between the present complete formulation and the partial
results found in [5] which, a posteriori, can be regarded as
its obvious precursor; we also elucidate the link with the
analysis in [21], and we comment on how our finding leads
to a new proposal for the loop gravity vacuum state. We
conclude with a discussion of our results in Sec. IX.

II. ACTION PRINCIPLE

We consider a formulation of four-dimensional pure
gravity on a manifold M ×R, where M represents
the three-dimensional spacelike hypersurface, with a boun-
dary two-sphere S. We denote the spacetime boundary
Δ ¼ S ×R. We start with an action formulation of vacuum
gravity which includes a boundary term:

S ¼ 1

γκ

�Z
M×R

EIJ ∧ FIJðωÞ þ
1

2

Z
S×R

eI ∧ dBeI
�
; ð1Þ

where κ ¼ 8πG and γ is the Barbero-Immirzi parameter, eI

is a frame field and ωIJ is a Lorentz connection; the field
EIJ denotes

EIJ ¼ ðeI ∧ eJÞ þ γ � ðeI ∧ eJÞ; ð2Þ

while BIJ ¼ ωIJ þ γ � ωIJ (where � is the two-form dual-
ity). Even though BIJ is not a Lorentz connection, the
quantity dBeI ¼ deI þ BIJ ∧ eJ denotes an object with the
tensor structure of a covariant derivative. Aside from
the boundary term (whose geometry we describe below)
this action coincides with the usual Holst formulation of
first-order gravity.
The boundary densities integrated in (1) can be decom-

posed as the sum of two terms: �ωIJ ∧ ðeI ∧ eJÞ plus
γ−1eI ∧ dωeI. It is easy to see, by choosing a Lorentz gauge
where one of the tetrads is fixed to be the normal to the
boundary, that the first component is simply given by the
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integral of the well-known Gibbons-Hawking-York boun-
dary density 2

ffiffiffi
h

p
K, where h denotes the determinant of the

induced metric on the boundary and K the trace of its
extrinsic curvature. The second one is a new addition to the
standard boundary term of the metric formulation. The
quantity γ−1eI ∧ dωeI is a natural complement to the Holst
term in the bulk action γ−1FIJðωÞ ∧ eI ∧ eJ that had
already been discussed in [23]. Notice that, like the
Holst term, this additional boundary term also vanishes
on shell due to the torsion-free condition. The formal limit
γ ¼ ∞ corresponds to the usual Cartan-Weyl formulation.
The rationale for the choice of boundary term becomes

clear when we look at the equation of motion obtained from
variations of the connection ω. On the one hand, the bulk
component of this equation is the usual torsion constraint.
On the other hand, the boundary equation of motion is
quite remarkably given by the simplicity constraint (2).
Interestingly, one can reverse the logic and conclude that
the simplicity constraint defining the flux form follows
from demanding the validity of the boundary equation of
motion for an arbitrary boundary. This gives an equivalent
point of view and justification for the choice of boundary
term in the action.
The other boundary equation of motion, obtained by

varying the boundary co-frame e, necessitates extra care.
As the entire Hamiltonian treatment that will follow makes
use of the Ashtekar-Barbero connection formulation, we
need to appeal to the availability of the extra structure that
allows for the introduction of such variables. Such extra
structure is the time gauge—naturally provided by the
necessary 3þ 1 decomposition of the Hamiltonian formu-
lation of gravity via a foliation of spacetime in terms of
spacial surfaces M—where e0 is chosen so that e0 ¼ n,
where n is the normal toM. We assume that such foliation is
available and demand the boundary condition δe0 ¼ 0 onΔ.
It is very important to understand that we do not demand, on
the other hand, the spacelike frame ei to be fixed. We let the
boundary geometry fluctuate at will, and this turns out to be
the source of the boundary degrees of freedom. The set of all
admissible boundary frames can be thought of as labeling
the set of possible (fluctuating at the quantum level)
boundary geometries. These geometries are not arbitrary:
They need to satisfy the boundary equation of motion given
by the variations of the co-frame at Δ, namely,

dAei ¼ 0; ð3Þ

where Ai
a is the Ashtekar-Barbero connection

Ai
a ¼ Γi

a þ γKi
a, with Γi

a the 3d spin connection, and Ki ¼
ωi0 is a one-form related to the extrinsic curvature ofM.1 It

is understood that the previous two-form is pulled back to
Δ. As a summary, we see that the boundary equations of
motion are encoded in the simplicity constraint (2) and what
we refer to as the (generalized) staticity constraint2 [Eq. (3)].
It can be shown, via the standard covariant phase-space

procedure [25–27], that the symplectic form Ω ¼ ΩM þ
ΩS2 (a two-form in field space) is, in the present theory, the
sum of a bulk plus a boundary contribution. It reads

Ω ¼ 1

κγ

Z
M
ðδAi ∧ δΣiÞ þ

1

2κγ

Z
S
ðδei ∧ δeiÞ; ð5Þ

where δ denotes the field variation, and the wedge product
involves skew symmetrization of forms both in space and
field space.3 The bulk configuration variable is an SUð2Þ
connection Ai, and the variable conjugate to this connection
is the flux form Σi, a Lie algebra valued two-form. From this
we get the Poisson bracket of the bulk phase space, which is
given as usual by fAi

aðxÞ;Σj
bcðyÞg ¼ κγδijϵabcδ

3ðx; yÞ. We
can also read the boundary phase-space structure [5],

feiaðxÞ; ejbðyÞg ¼ κγδijϵabδ
2ðx; yÞ: ð6Þ

In summary, we have that the bulk fields are given by an
SUð2Þ valued flux two-form Σi and an SUð2Þ valued
connection Ai satisfying the scalar constraint ei ∧FiðAÞþ
�� � ¼ 0 [the dots here refer to a term involving the extrinsic
curvature and proportional to ðγ2 þ 1Þ], the Gauss law
dAΣi¼0, and the diffeomorphism constraintFiðAÞ∧½φ;e�i ¼
0, with φ̂ a vector field4 tangent to the slice M. Bulk fields
ðΣi; AiÞ can be seen as background fields that commute
with the boundary field ei. Finally, the preservation of the
gauge and diffeomorphism symmetry in the presence of
the boundary imposes the validity of additional boundary
constraints. In agreement with [5], we find that the

1One can expand Ki ¼ Ki
jej. The symmetric component KðijÞ

gives the components Kabeai e
b
j of the extrinsic curvature tensor

to M. The skew symmetric part vanishes due to the torsion
constraint.

2When pulled back to the two-sphere S ¼ Δ∩M (which
will be relevant for the Hamiltonian treatment), this equation
translates into restrictions of the extrinsic curvature. For instance,

in the gauge e3¼S 0 (in other words, e3 is normal to the sphere S)
we get

K3 ∧ e1 ¼S 0; K3 ∧ e2¼S 0; K1 ∧ e2−K2 ∧ e1 ¼S 0: ð4Þ

The first two equations imply the staticity constraint K3¼S 0 (see
[24]). The residual nonzero components areKAB, withA; B ¼ 1, 2.
The last equation demands that the trace of that tensor vanishes,
K11 þ K22 ¼ 0. This justifies the term “generalized” staticity
constraint.

3Here we take the convention explained in [6] that δ is a
differential in field space, so, in particular, we have that δ2 ¼ 0 and
δϕ∧δψ¼−δψ∧δϕ, and the product is such that ðδϕ∧δψÞ
ðV;WÞ¼δVϕδWψ−δWϕδVψ for fields variations ðV;WÞ.

4The diffeomorphism constraint is usually written in terms of a
vector φ̂ ¼ φa∂a tangent to M as ½φ̂ ⅃FiðAÞ� ∧ Σi ¼ 0. Using
that ½φ̂ ⅃F� ∧ Σþ F ∧ ½φ̂ ⅃Σ� ¼ 0 and defining φi ≡ ½φ̂ ⅃ ei�,
we obtain the expression in the main text.
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boundary diffeomorphism constraint is associated with the
generalized staticity constraint (3), while the boundary
gauge constraint is given by5

Σi ¼
1

2
½e; e�i: ð7Þ

The previous constraint is the boundary Gauss law, a
boundary condition which identifies the bulk flux form with
its boundary counterpart. This is essentially the simplicity
constraint (2) pulled back on a slice and written in terms of
canonical variables. In thisway the simplicity constraint is the
condition enabling the preservation of SUð2Þ symmetry in
the presence of a boundary. It is important to understand that
one treats Σ and e as independent fields. In particular, e
commutes initially with all the bulk fields A and Σ as follows
from (5), and Σ commutes with itself.
Thus, the relationship between the bulk variables ðΣ; AÞ

and the boundary variables e is encoded into two con-
straints: the boundary Gauss constraint (7) which relates the
pull-back of Σ on S with e, and the staticity constraint (3)
which relates the pull-back of A with e on the boundary S.
In particular, we see that it is the boundary Gauss constraint
that implies that the boundary fluxes do not commute,
while their bulk version does.
Our goal now is to study the quantization of this

boundary system in the presence of the background fields.
In order to understand this point, it is crucial to appreciate
that the pull-back Σi

zz̄ of the flux form on S and the
components of the connection ðAj

z; A
j
z̄Þ tangential to S

commute with each other. Here we have denoted by ðz; z̄Þ
the complex directions tangential to S. From now on we
assume that a particular complex structure on the sphere has
been chosen. Because these components commute, we can
a priori fix them to any value on the boundary and study the
boundary Hilbert space in the presence of these boundary
fields. Once we implement the simplicity constraint (7), we
can determine the value of the boundary flux Σi

zz̄ in terms of
the boundary frames ðeiz; eiz̄Þ. We are still free to choose, at
will, the value of the boundary connection ðAi

z; Ai
z̄Þ and

study the implications of the staticity constraint. As we
have seen, this boundary phase space represents the set of
admissible boundary conditions encoded into the frames ei.
We make the key assumption—motivated by the new

developments [10–13] in quantum gravity—that the tan-
gential curvature of A vanishes everywhere on the sphere
except at the location of a given set of N punctures P≡
fxp ∈ Sjp ¼ 1;…; Ng defined by the end point of spin-
network links. This is possible due to the fact that the
tangential connection commutes with the flux Σ which is
fixed by the simplicity constraint (7). Let us recall that
given a disk D embedded in S, we can define the flux and
holonomy associated with D as Σi

D ≡ R
D Σi and

gD ≡ P exp
H
∂D A, respectively. Our assumption therefore

means that we impose the conditions

gD ¼ 1; ð8Þ

for disks D in D̄ ¼ SnP. We do not impose any restrictions
on the value of the fluxes outside the punctures since
this value is now controlled by the boundary condition (7).
In the following we will impose the condition on the
curvature at the puncture by demanding that we have
gDp

¼ exp 2πKp, for a diskDp around the puncture xp. The
location of the punctures xp and the SUð2Þ Lie algebra6

elements Ki
p parametrize the background curvature of the

boundary. In other words, we impose that the curvature’s
connection is such that

FiðAÞðxÞ ¼ 2π
X
p

Ki
pδ

ð2Þðx; xpÞ: ð9Þ

This condition is natural from the point of view of the
bulk constraints since the vanishing of the curvature also
implies the vanishing of the bulk diffeomorphism con-
straint, which is a condition on curvature. Dual spin-
network links piercing the boundary are thus labeled by
Kp, which expresses the fact that, from the perspective of S,
they are a source of tangential curvature.

III. ALGEBRA OF BOUNDARY CONSTRAINTS

We now assume that the two-sphere S ¼ D̄ ∪p Dp can
be decomposed into a union of infinitesimal disks Dp

surrounding the puncture p and its complement denoted D̄.
The two generators associated with the two constraints (3)
and (7) are obtained from the symplectic structure through7

Ωðδα; δÞ ¼ δGDðαÞ; Ωðδφ; δÞ ¼ δSDðφÞ; ð10Þ

and they read

GDðαÞ≡ 1

κγ

�
1

2

Z
D
αi½e; e�i −

Z
M
dAαi ∧ Σi

�
;

SDðφÞ≡ 1

κγ

�Z
D
dAφiei þ

Z
M
FiðAÞ ∧ ½e;φ�i

�
: ð11Þ

We see that the constraintGDðαÞ is a boundary extension
of the Gauss constraint generating gauge transformations
for the bulk variables. By integrating the bulk term by parts,
we see that it imposes the Gauss law dAΣi ¼ 0 and the
boundary simplicity constraint (7). It is also the generator

5The SUð2Þ bracket is taken to be ½X; Y�i ¼ ϵijkXjYk.

6We parametrize SUð2Þ Lie algebra elements by anti-
Hermitian operators.

7The Poisson bracket is related to the symplectic structure
via fF;Gg ¼ ΩðδF; δGÞ, where δF is the Hamiltonian variation
generated by F, ΩðδF; δÞ ¼ δF.
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of internal rotations δαei ¼ ½α; e�i for the boundary varia-
bles. The subscript D refers to the condition that the
parameter α vanishes outside of D and is extended inside
M. The constraint SDðφÞ is a boundary extension of the
diffeomorphism constraint for the bulk variables when
φi ¼ φ̂aeia for a vector field φ̂ tangent to M. There is a
subtlety with the “staticity” constraint SDðφÞ: It is differ-
entiable only in the form written here. When ∂D ¼ ∅ we
can integrate by parts, and the boundary term is propor-
tional to

R
D φidAei, which imposes the staticity constraint.

In the general case where φ does not necessarily vanish on
∂D, we need to add a corner term to the staticity constraint
and write it as

R
D dAφiei so that its variation is well defined.

Computing this variation we conclude that SDðφÞ generates
diffeomorphism in the bulk, and for the boundary variables,
the transformations δφei ¼ dAφi, with φ supported on D.
By a straightforward but lengthy calculation, it can be

verified that the constraint generators satisfy the following
algebra:

fGDðαÞ; GDðβÞg ¼ GDð½α; β�Þ;

fGDðαÞ; SDðφÞg ¼
Z
∂D
ð½φ; α�ieiÞ þ SDð½α;φ�Þ;

fSDðφÞ; SDðφ0Þg ¼̂
Z
∂D
ðφidAφ0

iÞ −
Z
D
Fi½φ;φ0�i; ð12Þ

where the ¼̂ means that we have imposed, in the last
equality, the constraintsGD ¼ SD ¼ 0. The structure of this
algebra is one of the key results of this paper, and it is of
central importance. One sees that, in general, the boundary
diffeomorphism algebra is of second class, with the appear-
ance of central extension terms supported on the boundary of
the domain ∂D. In the case when F ≠ 0 there exists
additional second-class constraints supported entirely on
the domain D. We are witnessing here the mechanism
behind the generation of degrees of freedom: At the location
of the punctures where boundaries appear (and where
F ≠ 0), the constraints become second class and, since a
first-class constraint removes 2 degrees of freedom while a
second class only removes 1, thismeans that at the punctures
some of the previous gauge degrees of freedom now become
physical. This analysis is valid only classically. What we are
going to see at the quantum level is that this phenomenon is
accentuated by the appearance of anomalies in the diffeo-
morphism algebra.

IV. BOUNDARY CHARGES

Here we show explicitly how a Uð1Þ3 Kac-Moody
algebra—whose generators are closely related to those of
singular diffeomorphims at punctures—is associated with
punctures. In order to do so we introduce boundary charges

QDðφÞ≡ 1ffiffiffiffiffiffiffiffiffiffi
2πκγ

p
Z
D
dAφi ∧ ei; ð13Þ

where φ ¼ φiτi is an su(2) valued field that enters only
through its covariant derivative. Hence, without loss of
generality, we assume that it vanishes at the puncture
φðpÞ ¼ 0. After integration by parts this becomes

QDðφÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2πκγ

p
I
∂D

φiei −
1ffiffiffiffiffiffiffiffiffiffi
2πκγ

p
Z
D
φiðdAeiÞ: ð14Þ

We therefore see that the charge QDðφÞ depends only on
the boundary value of the field, once the staticity constraint
(3) is imposed. Moreover, from (14) we see that the
canonical charges QD̄ðφÞ can be decomposed as a sum
around each puncture QD̄ðφÞ ¼̂ −

P
pQpðφÞ, where the

hatted equality means that we have imposed the staticity
constraint. Concretely, when we focus on a single puncture
p, its contribution can be expressed as a circle integral

QpðφÞ ¼̂
1ffiffiffiffiffiffiffiffiffiffi
2πκγ

p
I
Cp

φiei; ð15Þ

where Cp is an infinitesimal circle around the given
puncture with the orientation induced by that on Dp.
From the expression (13) and using (6), we can directly
compute the commutator of the charges QpðφÞ. We get

fQpðφÞ; Qp0 ðψÞg

¼ δpp0

�
Ki

p½φ;ψ �iðpÞ þ
1

2π

I
Cp

φidAψ i

�
: ð16Þ

Since the fields are assumed to vanish at p, the first term
vanishes. Next, in order to evaluate the integral we can
choose a gauge around punctures. More precisely, the
condition FiðAÞ ¼ KiδðxÞ can be solved in the neighbor-
hood of the puncture in terms of A ¼ ðg−1KgÞdθ þ g−1dg,
where we chose polar coordinates ðr; θÞ around the
puncture and denoted g a group element which is the
identity at the puncture. We can fix the gauge g ¼ 1. In this
gauge the gauge field is constant with A ¼ Kpdθ, the fields
are periodic, and we discover a twisted Uð1Þ3 Kac-Moody
algebra per puncture, namely,

fQpðφÞ; Qp0 ðψÞg ¼ δpp0

2π

I
Cp

ðφidψ i − Ki
p½φ;ψ �idθÞ: ð17Þ

An important property of QpðφÞ is that, even though they
are defined by an integral involving the bulk of Dp, their
commutation relations depend only on the values of the
smearing field φ on the boundary of Dp.
We define the modes of the charges (15) as8

Qj
n ≡QðτjeiθnÞ; ð18Þ

8We work in an anti-Hermitian basis τi where ½τi; τj� ¼ ϵijkτk.
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where θ is an angular coordinate around Cp, and τi are
suð2Þ basis vectors. From (17) we get that the algebra
becomes

fQi
n;Q

j
mg ¼ δnþmðimδij þ τi½K; τj�Þ

¼ −iðnδij þ KijÞδnþm; ð19Þ

where we have defined9 Kij ≔ iϵikjKk. In the case where
the curvature vanishes, we simply get fQi

n;Q
j
mg ¼

−inδijδnþm, which corresponds to three Abelian Kac-
Moody algebras, each with central extension equal to 1.
In the presence of curvature, we obtain a three-dimensional
Abelian Kac-Moody algebra twisted by K. It will be
convenient to work in a basis τa ¼ ðτ3; τþ; τ−Þ10 where

K ¼ kτ3; ð20Þ

and Kab̄ is diagonal. In this basis the nontrivial commu-
tators of the twisted algebra are given by

fQ3
n; Q3

mg ¼ −inδnþm;

fQþ
n ; Q−

mg ¼ −iðnþ kÞδnþm: ð21Þ

We will mostly work in this complex diagonal basis in the
following, and we will denote ka ≔ ð0;þk;−kÞ, where
ða ¼ 3;þ;−Þ and ā ¼ ð3;−;þÞ denote the conjugate
basis; in this basis the metric is δab̄. It is relevant thatP

aka ¼ 0. The Poisson bracket can be promoted to
commutator ½·; ·� ¼ if·; ·g. The twisted Kac-Moody algebra
can then be written compactly as

½Qa
n;Qb

m� ¼ δab̄ðnþ kaÞδnþm: ð22Þ

In the following we will restrict ourselves to k being in
Z=N for some integer N (such a restriction will be clarified
below). We will also see that the theories associated with k
and with kþ 1 are in fact equivalent. This equivalence
corresponds to the fact that at the quantum level the
connection is compactified. This fact usually follows from
loopy assumptions but here is derived completely naturally
in the continuum. The appearance of ka in the previous
equation will be rederived in Sec. V.

A. Sugawara construction

Up to now we have focused on the Kac-Moody charges
conjugate to an internal vector. However, it is also inter-
esting to focus on the generators of boundary diffeo-
morphisms that generate covariant diffeomorphism along
a vector field va∂a tangent to S. The covariant version of
the Lie derivative is defined to be

Lvei ≔ v ⅃ dAei þ dAðv ⅃ eiÞ; ð23Þ

and the corresponding boundary charge is

TD ¼ 1

2κγ

Z
D
Lvei ∧ ei; ð24Þ

as can be checked from the relation ΩDðLv; δÞ ¼ δTD
for variations that preserve A. When the staticity constraint
(3) is satisfied, the previous expression can be simply
written as

TDp
ðvÞ ¼ 1

2κγ

I
∂Dp

ðv ⅃ eiÞei: ð25Þ

We can introduce the modes LðpÞ
n ≡ TDp

ðexpðiθnÞ∂θÞ
explicitly as

Ln ¼
1

2π

I
eiθnTθθdθ; ð26Þ

where the integrand is the θθ component of the energy-
momentum tensor

Tθθ ¼
πeiθeθi
κγ

: ð27Þ

It is straightforward to show that the modes (26) can be
obtained from the Kac-Moody modes Qa

n, defined in (18),
through the Sugawara construction [28], and that they
satisfy a Virasoro algebra with central charge c ¼ 3. More
precisely, following the classical analog of the standard
Sugawara construction applied to the Kac-Moody currents,
one defines

Ln ¼
1

2

X
a

X
m∈Z

Qa
mQā

n−m: ð28Þ

Equivalence between (26) and (28) can be easily checked
by means of (18). At the quantum level we introduce

Ln ¼
1

2

X
a

X
m∈Z

∶Qa
mQā

n−m∶; ð29Þ

where we omit hats to denote quantum operators as the
context clarifies their quantum nature, and ∶∶ stands for the
normal ordering defined by

∶Qa
nQb

m ≔
�
Qb

mQa
n if nþ ka > 0

Qa
nQb

m if nþ ka ≤ 0:
ð30Þ

From the quantization of the algebra (19) we get

½Qa
n;Qb

m� ¼ δab̄ðnþ kaÞδnþm: ð31Þ
9In other words, ½K;φ�i ¼ −iKijφj.
10We define τ�¼ðτ1∓iτ2Þ= ffiffiffi

2
p

, ½τ3;τ��¼�iτ�, ½τþ; τ−� ¼ iτ3.
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It follows from standard considerations [29,30], and it can
be checked through a straightforward but lengthy calcu-
lation, that the generators Ln satisfy the Virasoro algebra

½Ln; Lm� ¼ ðn −mÞLnþm þ c
12

nðn2 − 1Þδnþm;0; ð32Þ

with c ¼ 3. It is also convenient to write the algebra of the
Kac-Moody with the Virasoro modes

½Ln;Qa
m� ¼ −ðmþ kaÞQa

nþm: ð33Þ

This shows that the currents are primary fields11 of weight 1
twisted by k. The Virasoro algebra can be represented
by applying standard two-dimensional CFT techniques,
namely, by means of primary fields, annihilated by the
positive Virasoro generators, and the family of descendants
associated with each of them and generated by the action of
the negative Virasoro generators. However, the full boun-
dary Hilbert space construction will be presented elsewhere.

B. Intertwiner

At this point we can also recover the SUð2Þ local
symmetry algebra generated by the l.h.s. of (7). Here we
simply give an algebraic construction, while we postpone
the derivation of its relation with (7) to Sec. VI C. Of course
we have seen in Eq. (12) that the generatorGDðαÞ associated
with a regionD generates SUð2Þ transformations. However,
in Sec. III we included in the transformations the variation of
the background fields, namely, the connection A. What we
are now looking for is a transformation that affects only the
boundary modes Qn while leaving the background fields
invariant. Such transformations are symmetries of the
boundary theory that interchange different boundary con-
ditions without affecting the solutions in the bulk.
The properties of these symmetries thus depend on the

bulk variables. In the previous section we have seen that the
tangential diffeomorphisms forming a Virasoro algebra act
on the boundary variables Qa

n. If we assume first that the
curvature vanishes at the punctures, then we find that there
also exists an SUð2Þ generator acting on the boundary
variable. Concretely, when ka ¼ 0, we define

Mi ¼ ϵijk
X
n≠0

Qj
nQk

−n

2n
: ð34Þ

It is then straightforward to verify, using (31) and the
vanishing of ka, that

½Mi;Mj� ¼ ϵijkMk: ð35Þ
Notice that the expression (34) can be viewed as an infinite-
dimensional analog of the Schwinger representation of the

generators of rotations. This provides a new representation
of the suð2Þ Lie algebra generators in terms of the Uð1Þ3
Kac-Moody ones. These generators represent the quanta of
flux at each puncture, given by

Ma
p ¼

Z
Dp

Σa: ð36Þ

As such, they are therefore the generalization of the loopy
flux variable. We will show later that these generators are
associated with the angular momentum of the puncture in
their stringy interpretation. Finally, from (33) we get that

½Ln;Mi� ¼ 0: ð37Þ

Therefore, in the case K ¼ 0 we are exhibiting, in an
explicit way, the existence of a Virasoro algebra with
central charge c ¼ 3 at each individual puncture associated
with residual diffeomorphisms times the well-known suð2Þ
local algebra (35) of LQG that is preserved by the Virasoro
generators. The relationship of these generators and the
presence of CFT degrees of freedom are the main results of
this paper.
When K ≠ 0 (and not integer) the SUð2Þ symmetry is

broken down to a Uð1Þ symmetry that preserves the
connection. The unbroken generator of Uð1Þ symmetry
is given by

M3 ¼ −i
X
n∈Z

Qþ
n Q−

−n

nþ k
: ð38Þ

In the case when K takes integer values, there is still a
residual SUð2Þ symmetry that leaves the background
connection invariant, and the angular momentum gener-
ators satisfy an suð2Þ algebra. The explicit construction
will be presented in Sec. VI C.
To summarize, we have seen that each puncture p carries

a representation of the product of Virasoro Lp
n times an

SUð2Þ orUð1Þ generated byMp, depending on whether the
curvature takes integer values or not. This can be under-
stood as a thickening of the spin-network links in terms of
cylinders in the spirit of [3,31] (see Fig. 1).

FIG. 1. The thickening of dual spin-network links into Virasoro
spin tubes.

11Let us recall that an untwisted primary field of weight Δ
satisfies ½Ln;OΔ

m� ¼ ðnðΔ − 1Þ −mÞOΔ
mþn.
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It is interesting to note that, in general, the naive
conservation law for these generators is not satisfied.
Indeed, we have that

X
p

Lp
n ¼ −LD̄

n ;
X
p

Mp ¼ −MD̄: ð39Þ

The violation of the closure constraint is encoded into
the value of the generator MD̄ with support outside the
puncture. There is a way to read the previous equations in
which Lp is a symmetry generator associated with each
puncture, coming from the intersection of the dual spin-
network edge with S, and LD̄ represents the intertwiner—or
vertex, in the loop language—linking together the different
spin-network edges.
In usual loop gravity it is assumed that the flux vanishes

outside the punctures. This would translate into the state-
ment thatMD̄ ¼ 0 or, in other words, that the intertwiner is
assumed to be uncharged. Here we see that we can relax this
hypothesis. This fact is important since it was understood by
Livine [32] that, under coarse graining, curvature is gen-
erated, and this implies that the naive closure constraint
expressed as MD̄ ¼ 0 is then violated. This vividly shows
that the original loop vacuum containing vanishing flux is
not stable under renormalization [33]. In our construction
the fact that the generatorsMD̄ do not vanish but take values
determined by the puncture data suggests strongly that we
have a description that the vacuum is stable under coarse
graining. In order to understand the nature of the symmetry
“intertwiners” ðLD̄

n ; QD̄a
n ;MD̄Þ associated with the comple-

mentary region, we now study the solution space outside the
punctures, and we establish that the intertwiner is a three-
dimensional auxiliary string.

V. STRING TARGET SPACE

In this section we will recover previous results in an
alternative way. Concretely, we will resolve the staticity
constraint (3) outside punctures via a gauge fixing. This
will allow us to establish a direct link between the algebraic
structures found and the currents arising from a two-
dimensional CFT on the boundary, and thus provide a
stringy interpretation of the new degrees of freedom.
Let us first understand the nature of the first-class

constraints outside the punctures. On D̄ we have

dAei ¼ 0; FðAÞ ¼ 0: ð40Þ

The zero curvature equation can be easily solved by
A ¼ g−1dg, while the normalization condition on the
curvature imposes that around each puncture p, blown
up to the circle Cp of radius r, we have that the group
element is quasiperiodic:

gðzp þ re2iπÞ ¼ e2πKpgðzp þ rÞ: ð41Þ

Using this group element we can redefine the frame and
internal vector as ei ¼ ðg−1êigÞ and φi ¼ ðg−1φ̂igÞ. The
unhatted quantities are periodic, while the hatted ones are
only quasiperiodic. In the hatted frame the connection A
vanishes. The only effect to keep in mind is the quasiper-
iodicity of the fields around the punctures êðzp þ re2iπÞ ¼
e2πKpêðzp þ rÞ.
We assume that this gauge is chosen, and we can

therefore neglect the connection A in the following equa-
tions, as it is assumed to be flat on D̄. As previously stated,
the Hamiltonian action of (13) on ei generates the trans-
lational gauge transformation, which we can now write as

êi → êi þ dφ̂i: ð42Þ

We concentrate on those transformations with φ̂i ¼ 0 on
the boundaries ∂D̄ ¼∪p Cp. These correspond to the
transformations generated by the staticity constraint (3)
SD̄ðφÞ and are linked via SD̄ðφ ⅃ eiÞ to the tangent bulk
diffeomorphisms that move punctures around but are trivial
at the circles around them. We can define a natural gauge
fixing for them by choosing a background metric ηab and
imposing the gauge condition

Gi ≡ ηab∂aêib ¼ 0: ð43Þ

That this is a good gauge-fixing condition for the above
subclass of transformations on the boundary two-sphere
follows from the fact that the only solution to the equation

0 ¼ δφG ¼ fG; SD̄ðφ̂Þg ¼ Δφ̂i; ð44Þ

satisfying the boundary condition φ̂i ¼ 0 on the punctures
Cp, is the trivial solution φ̂i ¼ 0 everywhere on D̄ (Δ
above is the Laplace operator). Only trivial transformations
generated by (3) leave the gauge condition invariant.
Notice now that the general solution of the staticity

constraint dêi ¼ 0 can be written as

êi ¼
ffiffiffiffiffiffi
κγ

2π

r
dXi; ð45Þ

where Xi are scalar fields whose normalization is chosen
for later convenience. After plugging (45) into the gauge
condition Gi ¼ d � êi ¼ 0, we obtain

ΔXi ¼ 0: ð46Þ

In fact the introduction of ηab in (43) amounts to a choice of
a complex structure on S: Concretely, it defines complex
coordinates z such that η ¼ dzdz̄. The result of introducing
the gauge fixing of the staticity constraint and solving these
two conditions requires the parametrization of the remain-
ing degrees of freedom in terms of holomorphic and
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antiholomorphic solutions of (46). In terms of complex
variables, the gauge fixing takes the form

G≡ ∂zêiz̄ þ ∂ z̄êiz ¼ 0; ð47Þ

and the staticity constraint dAei ¼ 0 becomes

∂ z̄êiz − ∂ z̄êiz ¼ 0: ð48Þ

The solution of the staticity constraint and the gauge
fixing is therefore given in terms of the value of three
scalar fields Xi which are solutions of the Laplace equation
on the sphere,

ΔXi ¼ 0: ð49Þ
If we use conformal coordinates ðz; z̄Þ on D̄, this solution
can be factorized into the sum of left and right movers:
Xi ¼ XiþðzÞ þ Xi

−ðz̄Þ, where ∂ z̄Xiþ ¼ 0, ∂zXi
− ¼ 0. The

value of such a field on D̄ is entirely determined by its
value on the circles Cp that compose the boundary ∂D̄. The
frame fields are proportional to the conserved currents:
êiz ¼

ffiffiffiffiκγ
2π

p
Ji and êiz̄ ¼

ffiffiffiffiκγ
2π

p
J̄, where

Ji ≔ ∂zXi; J̄i ≔ ∂ z̄Xi: ð50Þ
These two copies are not independent, as they are linked
together by the reality condition

ðêaz Þ� ¼ êāz̄ : ð51Þ
The equations of motion imply that Ji is a holomorphic
current while J̄i is an antiholomorphic one, and they
satisfy, around the puncture p, the quasiperiodic
conditions Jðzpe2iπÞ ¼ e2πKpJðzpÞe−2πKp and J̄ðz̄pe2iπÞ ¼
e−2πKpJ̄ðz̄pÞe2πKp . As we have already seen, it is conven-
ient to work in an internal frame where Kp ¼ kpτ3 and to
work in a complex basis τa ¼ ðτ3; τ�Þ, which diagonalizes
the adjoint action, instead of the real basis τi. In the
complex basis ðτaÞ† ¼ −τā, τā ¼ τa and ½Kp; τa� ¼ −ikapτa
with kāp ¼ −kap, and the currents satisfy the quasiperiodicity
condition

Jaðzpe2iπÞ¼ e−2iπk
a
pJaðzpÞ; J̄aðz̄pe2iπÞ¼ e2iπk

a
p J̄aðz̄pÞ:

We can now pull back the symplectic structure (5) to the
solutions of Gi ¼ dêi ¼ 0 parametrized by the scalar fields
Xi. Concretely, starting from (5) and using (45), we have
ΩD̄ ¼ −

P
pΩp, where

Ωp ¼ 1

2κγ

Z
Dp

δea ∧ δea ¼ 1

4π

Z
Cp

δXadδXa: ð52Þ

It is important to note that the integrand in (52) is periodic
because it contains the contraction of two fields and can be
written in the original or the hatted quasiperiodic frame.

We are now ready to rederive (19) in terms of the current
algebra. The idea is to express the symplectic form (52) in
terms of the modes of the individual currents Ji and J̄i.
From now on we will always work around a given puncture
and therefore drop the label p. We will also work in the
complex frame introduced above that diagonalizes Kij.
First, let us recall that the holomorphicity of the currents
and quasiperiodicity condition (52) imply that the currents
admit the expansion

zJaðzÞ ¼
X
n∈Z

Janz−n−k
a
; z̄J̄aðz̄Þ ¼

X
n∈Z

J̄anz̄−nþka : ð53Þ

Note that in order to make sense of such expansions, we
have to restrict ourselves to curvatures that satisfy the
condition that ka ∈ Z=N for some integer N12 The reality
condition (51) gives the identification

ðJanÞ† ¼ J̄ān: ð54Þ
Before proceeding let us point out that the reality

conditions (54) are indeed very different from the usual
ones appearing, for instance, in string theory. The difference
comes from the fact that usually one quantizes a scalar
field Y, the solution of a Lorentzian wave equation
□Y ¼ 0. Then the reality condition is that the field is real,
½Yðτ; θÞ�† ¼ Yðτ; θÞ, and therefore, it implies that ðJinÞ† ¼
Ji−n and ðJ̄inÞ† ¼ J̄i−n. This Lorentzian reality condition does
not imply that the Wick rotated field Yðz; z̄Þ with z ¼ ereiσ,
where r ¼ iτ, is a real field. Instead, it implies that
½Yðz; z̄Þ�† ¼ Y½z̄−1; z−1�, which involves time reversal.
This CPT reality condition descends directly from having
a Lorentzian field even if one works in a Euclidean
framework. In our case the field X is a real solution of
the Laplace equation; it does not descend from a Lorentzian
equation, but it satisfies, from the onset, a Euclidean
equation of motion. The reality condition is ½Xðz; z̄Þ�† ¼
Xðz; z̄Þ instead. This is the correct reality condition for a
Euclidean scalar field.

VI. MODE EXPANSION: THE k INTEGER CASE

The goal now is to complete our analysis in the k integer
case. Holomorphicity implies that the scalar fields them-
selves decompose as a sum Xaðz; z̄Þ ¼ XaþðzÞ þ Xa

−ðz̄Þ. As
we are about to see, the structure of the zero modes depends
drastically on whether the curvature is integer valued or not.
Therefore, for the reader’s convenience, we distinguish the
two cases. In this section we consider the case where k ∈ Z,
which includes the flat (k ¼ 0) case and which is in fact,
and quite remarkably, equivalent to the case k ¼ 0. Then,
we can introduce the mode expansion

12This is a prequantization condition on the distributional
curvature at punctures of a form that is familiar to other more
restrictive formulations of boundary conditions (see [34] and
references therein).
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Xaðz; z̄Þ ¼ xaðz; z̄Þ −
X

nþka≠0

Janz−n−k
a

ðnþ kaÞ −
X

n−ka≠0

J̄anz̄−nþka

ðn − kaÞ ;

ð55Þ

where we have denoted the zero mode operator

xaðz; z̄Þ ¼ xa þ Ja−ka ln zþ J̄aka ln z̄

¼ ~xa þ θPa; ð56Þ

and we have defined the zero mode “position” and
“momentum”

~xa ≔ xa þ ðJa−ka þ J̄akaÞ ln r; ð57Þ

Pa ≔ iðJa−ka − J̄akaÞ: ð58Þ

From this expansion it is clear that the map J → ~J, where
~Jan ¼ Jan−ka and

~̄J
a
n ¼ J̄anþka , identifies the sector where k is

an integer with the sector in which k ¼ 0. This is the reason
behind the compactification of the connection space at the
quantum level.

A. Symplectic structure

We assume that the puncture boundary Cp is defined at
constant radial coordinate r. This assumption does not
affect the generality of our construction because, given any
contour Cp, we can always choose the background metric η
entering the gauge fixing (43) so that Cp is constant r. Let
us also introduce the modes

Qa
n ¼ iðr−n−kaJan − rnþka J̄a−nÞ; ð59Þ

which represent the expansion of eaθ in terms of the Jan; J̄an,
namely,

eaθ ¼
ffiffiffiffiffiffi
κγ

2π

r �X
n

e−iθðnþkaÞQa
n

�
: ð60Þ

The unusual reality condition on J translates into a familiar
one for these modes,

ðQa
nÞ† ¼ Qā

−n: ð61Þ

Direct replacement of the expansion (55) in the symplectic
form (52) shows that

Ω ¼
X
a

�
1

2
δχa ∧ δPā þ i

X
nþka≠0

δQa
n ∧ δQā

−n

2ðnþ kaÞ
�
; ð62Þ

where we have defined the variable χa as

χa ≔ ~xa þ
X
n≠0

ðJan−ka þ J̄anþkaÞ
r−n

n
; ð63Þ

which is conjugate to the momentum (58). From the
previous expression we obtain the Poisson brackets

fQa
n;Qb

mg¼−iδab̄ðnþkaÞδnþm; fχa;Pbg¼ 2δab̄: ð64Þ

We thus recover the Uð1Þ3 Kac-Moody algebra (19) plus a
zero mode algebra. It is interesting to see that here the
curvature appears as a twisting of the angular variables and
that we also have, in general, a position variable χā

conjugate to Pa ¼ Qa
−ka .

B. Gauge and Dirichlet vs Neumann
boundary conditions

Here we show that there is a relationship between
the previous construction and the imposition of boundary
conditions at the punctures. Indeed no question about
boundary conditions at Cp arises if one deals with the
symplectic structure in terms of the currents Qa

n. However,
if we decide to express the results of the previous
subsection in terms of the currents Jan and J̄an—more simply
related via (50) to the scalar fields Xa on D̄—then there is a
direct link between boundary conditions for the Xa and the
parametrization of commutation relations.
First notice from (55) that the imposition of Dirichlet

boundary conditions ∂θXa ¼ 0 at fixed r (assumed to
denote the value of the polar coordinate r at a given
puncture Cp) corresponds to the condition

δQa
n ¼ 0: ð65Þ

Therefore, imposing Dirichlet boundary conditions results
in killing all the degrees of freedom at the puncture.
This remark tells us that the symplectic structure just

constructed admits degenerate directions. According to the
standard theory, the latter must be considered as defining a
gauge symmetry. These gauge transformations can be
written in terms of parameters αan as follows:

δαJan ¼ rnþkaαan; δαJ̄an ¼ rn−k
a
αa−n: ð66Þ

These transformations preserve the reality condition
as long as ðαanÞ† ¼ αā−n. Notice that this “Dirichlet gauge
symmetry” can be written in terms of the frames as

zδeaz ðzÞ ¼ αaðz=rÞ; z̄δeaz̄ ðz̄Þ ¼ αaðr=z̄Þ; ð67Þ

where αaðxÞ ¼ P
n∈Zα

a
nx−n. It is immediate to identify a

complete set of gauge invariant observables under (66):
They are given precisely by the currentsQa

n defined in (13),
i.e., the currents in the mode expansion of eaθ . Therefore,
the diagonalization of Ω achieved in (62) corresponds to
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expressing the symplectic structure in terms of the physical
degrees of freedom Qa

n obtained by modding out the
symmetry (66).
Another possibility to recover (64) is to gauge fix the

gauge symmetry (66) by imposing a good gauge-fixing
condition. It turns out that this can be naturally achieved by
imposing Neumann boundary conditions ∂rXa ¼ 0 at Cp.
Indeed, Neumann boundary conditions on (55) imply that

δðJan þ J̄a−nr2ðnþkaÞÞ ¼ 0: ð68Þ

One can then show from (59) that in this gauge we have

2iJan ¼ rnþkaQa
n; ð69Þ

from which (64) follows again. Therefore, the physical
degrees of freedom Qa

n can be conveniently identified with
those encoded in the fields Xa if Neumann boundary
conditions are imposed at punctures. We can thus think
of the loop strings at the punctures as Neumann strings.

C. Loop gravity fluxes and spin networks

The main object of interest in loop gravity is the
integrated flux

ΣDðαÞ ¼
1

2κγ

Z
D
½e; e�aαa; ð70Þ

where α ¼ αaτa is a periodic
13 Lie algebra valued element.

We have seen in (11) that, when supplemented with the
bulk term − 1

κγ

R
M dAαi ∧ Σi, Eq. (70) yields the Gauss

constraint GDðαÞ and satisfies an SUð2Þ algebra. In this
section we investigate whether the flux itself, without the
addition of the bulk term, satisfies a nontrivial algebra. As
we can see from the computation of the gauge algebra, this
is possible only when the SUð2Þ rotation labeled by α
leaves the connection fixed, that is, only when dAα ¼ 0.
This leaves two cases: Either the curvature K ¼ kτ3 is such
that k ∈ Z is an integer, in which case the solutions of
dAα ¼ 0 are simply that αa ¼ aae−ik

aθ, where aa are
constants, or k is not an integer, in which case the only
solution satisfying the periodicity and covariant constancy
condition is given by αa ¼ a3δa3. In the case where the
curvature is an integer, we get SUð2Þ as a symmetry
algebra, while in the case where the curvature is not integer
valued, the symmetry is broken down to Uð1Þ.
Notice that α such that dAα ¼ 0 is exactly the choice that

ensures that the fluxes (70) can be written entirely in terms
of the boundary components Qa

n once we use (45). This is
not entirely obvious since the expression (70) is written as a
bulk integral involving both er and eθ. In other words, for

the choices of α such that dAα ¼ 0, the flux operator is
gauge invariant under Dirichlet gauge symmetry. We now
explicitly show how the SUð2Þ symmetry is recovered in
the case k ∈ Z.
When the curvature is integer valued, the zero mode

sector consists of three positions ~xa given in (56) and three
momenta Pa given in (58), while the oscillator modes are
labeled by Qa

n for nþ ka ≠ 0. In the following we define
~QaðθÞ ≔ P

n≠0
~Qa
n
n e−inθ, where we denoted ~Qa

n ¼ Qa
n−ka If

we assume that dAα ¼ 0 and for k ∈ Z, we can evaluate
these flux generators on the kernel of the staticity con-
straint. We introduce the spin angular momenta

Ma ¼ 1

4π

I
∂D
½ ~Q; d ~Q�adθ; ð71Þ

and we can check that the integrand is periodic. The flux
operator then simply reads as a sum of orbital plus spin
angular momenta (see [15] for a similar calculation),

ΣDðαÞ ¼ κγ

�
1

2
½~x; P�a þMa

�
aa; ð72Þ

where aa was introduced above when parametrizing the
solutions of dAα ¼ 0. The generators Ma are given as an
infinite dimensional generalization of the Schwinger rep-

resentation Ma ¼ −ϵabc
P

n≠0∶
~Qb
n
~Qc
−n

2n ∶. More explicitly,

M3 ¼ −i
X
n≠0

∶ ~Qþ
n
~Q−
−n∶

n
; ð73Þ

M� ¼∓ i
X
m

∶ ~Q3
m
~Q�
−m∶

m
; ð74Þ

and it can be shown that they satisfy the complex basis
SUð2Þ algebra

½M3;M�� ¼ �iM�; ½Mþ;M−� ¼ iM3: ð75Þ

This, together with (72), establishes the link between the
flux Σa and the string angular momentum along ∂D. Notice
that the noncommutativity of the loop gravity fluxes at the
boundary is consistent with the boundary constraint (7),
which can therefore be implemented in the context of the
LQG bulk quantization. This shows how the original SUð2Þ
gauge symmetry of loop gravity is implicitly hidden in the
Uð1Þ3 twisted Kac-Moody symmetry and is finally recov-
ered upon the implementation of the boundary Gauss
constraint.

D. Energy-momentum tensor

Notice that (25) can be expanded in terms of the
components ðTzz; Tzz̄; Tz̄ z̄Þ of a symmetric stress tensor as

13Because we are in the untwisted frame e and not in the hatted
frame ê.
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TDðvÞ ¼
1

2π

I
∂D

½dzðvzTzz þ vz̄Tz̄zÞ þ dz̄ðvzTzz̄ þ vz̄Tz̄ z̄Þ�;

where the components of the energy-momentum tensor
are quadratic in the frame field. This corresponds to the
usual expression for the Hamiltonian generator as
HðvÞ ¼ R

Tμνξ
μdΣν, with components

Tzz ¼
πeizezi
κγ

; Tz̄ z̄ ¼
πeiz̄ez̄i
κγ

; Tzz̄ ¼
πeizez̄i
κγ

: ð76Þ

Since gAB ¼ ηijeiAe
j
B is the two-dimensional metric of S,

we see that the previous construction equates the two-
dimensional metric with the energy-momentum tensor:

TAB ¼ π

κγ
gAB: ð77Þ

VII. MODE EXPANSION: THE k
NONINTEGER CASE

In the case where k is not an integer, the mode expansion
for the scalar fields reads

X3ðz; z̄Þ ¼ x3ðz; z̄Þ −
X
n≠0

�
J3n
nzn

þ J̄3n
nz̄n

�
; ð78Þ

X�ðz; z̄Þ ¼ −
X
n∈Z

�
J�n

ðn� kÞzn�k þ
J̄�n

ðn ∓ kÞz̄n∓k

�
; ð79Þ

where the zero mode position is now only in the direction of
the curvature:

x3ðz; z̄Þ ¼ x3 þ J30 ln zþ J̄30 ln z̄

¼ ~x3 þ θP3; ð80Þ

where we have defined

~x3 ≔ x3 þ ðJ30 þ J̄30Þ ln r; ð81Þ

P3 ≔ iðJ30 − J̄30Þ ¼ Q3
0: ð82Þ

The symplectic form now reads

Ω ¼ δχ3 ∧ δP3

2
þ
X
a

X
nþka≠0

i
δQa

n ∧ δQā
−n

2ðnþ kaÞ ; ð83Þ

where the effective position is

χ3 ≔ ~x3 þ
X
n≠0

ðJ3n þ J̄3nÞ
r−n

n
: ð84Þ

The SUð2Þ symmetry is broken down to Uð1Þ in this case,
with the Uð1Þ generator being simply given by

M3 ¼ −i
X
n

∶Qþ
n Q−

−n∶
nþ k

: ð85Þ

VIII. RELATIONSHIP WITH PREVIOUS RESULTS

In this section we explain that some of the results we just
established herewere implicitly suggested in previouswork.

A. Quantum gravity at the corner

Our present results shed light on and provide clarity for
the previous work [5]. In fact, now we see that the former
paper was actually scratching the surface of the present
results. In that paper it was understood that the tangential
frames eiA ¼ ðeiz; eiz̄Þ represent two types of data on S.
Using these frames one can reconstruct the metric gAB and
the fluxes Σi, which are given by

gAB ¼ eiAeBi; Σi ¼ 1

2
ϵAB½eA; eB�i: ð86Þ

The previous two sets of observables reproduce—from
(6)—an algebra that is isomorphic to SLð2;RÞ and SUð2Þ,
respectively. We now see that the SLð2;RÞ algebra is
nothing but the (anomaly free) symmetry algebra con-
structed from the Virasoro generators L1, L0, and L−1 in
(32) at every puncture, while the SUð2Þ algebra is the one
explicitly recovered in (35). Moreover, we have shown that
all these quantities have an interpretation in terms of a
three-dimensional string target field Xi [see, for instance,
Eqs. (29) and (34)]. We have seen that the frames represent
the holomorphic and antiholomorphic string currents
ðJi; J̄iÞ, and that the tangential metric represents the string
energy-momentum tensor TAB. The full richness of the
algebra found here was missed in that first investigation,
but we appreciate now that the analysis uncovered the right
underlying structures.

B. From spin networks to Virasoro states

Let us first explain, in the light of the present paper, the
nature of the results found in [21], where a very natural
question was investigated. Given a spin-network state
Ψ ∈ H{⃗, where {⃗¼ðj1;…jNÞ and H{⃗ ¼ ðVj1 ⊗ � � � ⊗
VjN ÞSUð2Þ is the space of SUð2Þ invariant vectors, with Vj

denoting the spin-j representation, one can express this
vector in the coherent state polarization as a holomorphic
functional

Ψ{⃗ðz1; z2;…; zjN Þ: ð87Þ

It was shown that the natural invariant scalar product on that
space can be represented as an integral,

kΨ{⃗k2 ¼
Z Y

d2ziK{⃗ðzi; z̄iÞjΨ{⃗ðziÞj2: ð88Þ
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Now the main results of [21] concern the properties of the
kernel K{⃗. The remarkable fact proven there is that the
integration kernel K{⃗ can be understood as the correlation
function of an auxiliary CFT, namely,

K{⃗ ¼ hφj1ðz1; z̄1Þ � � �φjN ðzN; z̄NÞiCFT; ð89Þ

where φj is a primary field of conformal dimension Δj ¼
2ðjþ 1Þ and of spin 0. Moreover, it was shown that this
correlation function can bewritten as aWitten diagram [35].
In other words, it is given as the correlation function of a 3d
AdS-CFT:

K{⃗ðzi; z̄iÞ ¼
Z
H3

d3xGΔj
ðzi; z̄i; xÞ: ð90Þ

The integral here is over the three-dimensional hyperbolic
space H3. Note that GΔðz; z̄; xÞ is the bulk-to-boundary
propagator of conformal weight ðΔ;ΔÞ, x is a point in the
bulk, and ðz; z̄Þ represents a point on the boundary of H3.
Here, Δj ¼ 2ðjþ 1Þ is the conformal weight associated
with the spin j. What this formula expresses is the fact that
changes of coherent state labels z → fðzÞ can be interpreted
as a conformal transformation which is a symmetry of the
spin-network amplitude. In other words, this result shows
that the kernel of integration for spin networks carries a
representation of the Virasoro algebra, a result which is now
clear from the perspective developed here.
What we now understand with the results presented here

is that the label z of the coherent states has a geometrical
interpretation. It is not just a state label that one can choose
arbitrarily. It represents a choice of the frame ez around the
puncture of spin j, and it determines the shape of the
metric. This means that we expect coherent state labels to
now be acted upon by boundary operators like ez and ez̄,
representing the tangential frame geometry. If confirmed,
this picture opens the way towards a new understanding of
the dynamics of spin-network states since one of the main
roadblocks in defining the Hamiltonian constraint was the
fundamental ambiguity in the determination of the frame
field. This ambiguity is encoded, as we now understand, in
the determination of the boundary operators, which is
related to the choice of the coherent state label.

C. Loops or no loops?

Our analysis of boundary conditions has been deeply
inspired by the approach developed in loop gravity in the
sense that we have focused our analysis on background
geometries that are concentrated around punctures.
However, it should be clear by now that our analysis
departs drastically from the traditional loop approach [36].
In the traditional approach the flux operator is assumed to
be vanishing away from the puncture, while here only the
integrated flux—coming from (39)—satisfies

ΣD̄ ¼ κγ
X
p

Mi
p; ð91Þ

where Mi
p are the string angular momenta attached to

each puncture. This is so because in our case the flux
density is determined by the simplicity constraint and reads
Σi ¼ 1

2
½dX; dX�i; it does not vanish outside the punctures.

The field which is taken to have a singular behavior and to
vanish outside the punctures is the curvature instead, which
satisfies

FiðAÞðxÞ ¼S 2π
X
p

Ki
pδ

ð2Þðx; xpÞ: ð92Þ

The fact that loop gravity admits another representation
was first hinted by Bianchi in [10] (for an earlier consid-
eration see [9]). This point was established at the semi-
classical level in [11], where it was shown that the phase
space of loop gravity labels piecewise flat continuum
geometry [15] and that there exists two dual diffeomor-
phism invariant “vacuum” configurations: the loop vacuum
Σ ¼ 0 or the spin foam vacuum F ¼ 0. Then, in [12,13]
Dittrich et al. proposed a quantization in which the dual
vacuum F̂j0i ¼ 0 is implemented. The success of loop
gravity initially rests on the fact that the connection, which
is the variable conjugate to Σ, is compactified at the
quantum level in terms of holonomies, and that the vacuum
state implementing Σ̂ ¼ 0 is therefore normalizable. This is
not the case a priori for the dual vacuum: the variable Σ is
not compactified in a natural manner, and the dual vacuum
is not naturally normalizable. In the work by Dittrich et al.
this fundamental problem was resolved either by resorting
to a discretization of space or in the continuum by
considering a discrete topology on the gauge group that
induces a Bohr quantization and forces us to consider only
exponentiated fluxes.14

In our work we see that, on the one hand, the natural
vacuum that follows from the study of gravity in the
presence of boundaries is indeed the one implementing
F̂j0i ¼ 0 as postulated in those works. On the other hand,
we can infer that this vacuum is a normalizable Fock
vacuum carrying a representation of the Virasoro algebra.
So the resolution of the loop gravity conundrum of having a
vacuum annihilating the curvature but still being normal-
izable is obtained here organically, without having to resort
to the exotic Bohr compactification [39]. The resolution lies
in the presence of central charges, creating anomalies that
allow the definition of a normalizable Fock-like vacuum.
These are compatible from the onset with a continuum

14Coarse-graining techniques for excitations on top of the
dual spin foam vacuum developed in [37,38] might be relevant
for the study of the symmetry generators associated with the
boundary complementary region (see the discussion at the end of
Sec. IV B).
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formulation. This reconciles, in spirit, both standard field
approaches, with the loop gravity determination of describ-
ing gravity in terms of nonperturbative gauge-invariant
observables. The points sketched in this section deserve to
be developed further, yet we consider this possible reso-
lution an important aspect of our work.

IX. DISCUSSION

The results presented here are threefold: first, we have
identified a natural boundary term for first-order gravity
that generalizes the Gibbons-Hawking term and leads to a
natural implementation of the simplicity constraint as a
boundary equation of motion (see [40] for a very recent
implementation of the same idea in the context of a null
boundary). Second, we have shown that in the presence of a
locally flat geometry, there exists nontrivial degrees of
freedom that can be attached to the punctures and whose
origin is due to the second-class nature of the residual
tangent diffeomorphisms. We have also shown that these
degrees of freedom carry a representation of a twisted
Uð1Þ3 Kac-Moody symmetry, encoding a Virasoro algebra
and an SUð2Þ or broken Uð1Þ symmetry. These sym-
metries, attached at each puncture, generalize the SUð2Þ
algebra attached to each link in loop gravity into an infinite
dimensional algebra with central charge 3. Third, we have
shown that we can now represent, at the quantum level and
in terms of a Fock vacuum, not only the flux operator Σp

but also the triad ðez; ez̄Þ itself. We have seen that the triad
can be understood as the component of a current associated
with stringlike excitations living in a three-dimensional
internal target space.
The possibility to represent the triad is one of the most

exciting outcomes of this work, since it may finally open up
the possibility to define the Hamiltonian constraint of GR at
the quantum level, at least on a subset of states, in an
ambiguity-free manner. Indeed, it is well known that the
Hamiltonian constraint depends explicitly on the triad—not
on the flux—and that within standard loop gravity, where
the flux vanishes outside the punctures, the geometry of the
triad is totally ambiguous at best. This is the reason behind
the huge quantization ambiguity that challenges the con-
struction of an anomaly-free dynamics in loop gravity
[41,42]. The infinite dimensional Virasoro representations
attached to the tubular neighborhood of the punctures label
the sets of possible frames around them and act on the sets
of admissible triads. It is now possible to think that we have
enough control on the local degrees of freedom to more
precisely construct the Hamiltonian constraint.
Another exciting opportunity that our work opens is the

possibility to accurately describe the boundary states
corresponding to a black hole in the semiclassical regime.
Indeed, the CFT degrees of freedom discovered here could
naturally account for the Bekenstein-Hawking area law in
the context of LQG. The central feature that makes this
possible, in principle, is the fact that the central charge of

the CFT describing boundary degrees of freedom is
proportional to the number of punctures that grow with
the BH area. This is a feature that resembles, in spirit,
previous descriptions [4]. However, an important advantage
of the present treatment is the precise identification of the
underlying microscopic degrees of freedom. A precise
account of this is work in progress and will be reported
elsewhere [43].
In our work the presence of Virasoro symmetries

attached to punctures is related to the necessity of thicken-
ing the spin-network graph into a tubular neighborhood
(see Fig. 1). Such thickening appeared first in the necessity
of framing the Chern-Simons observables and is shown to
be related to the presence of quantum group symmetries. It
was postulated a long time ago [3,44] that such a structure
should appear in loop gravity and might be related to the
presence of a nonzero cosmological constant. This idea
resurfaced recently and more precisely in the context of the
computation of spin foam amplitudes in the presence of a
background cosmological constant [31,45]. It would be
interesting to relate these developments, as well as the
recent emergence of quantum group structures in 2þ 1

LQG [46–48], to the new framework presented here.
Our results have another important implication. They tell

us that there exists a very natural candidate for non-
geometric (matter) excitations that can naturally be coupled
to the CFT degrees of freedom. The discovery of nontrivial
degrees of freedom on boundaries strongly suggests that we
could add extra degrees of freedom to the quantum
geometry framework, not only at a boundary but also on
the tip of open spin networks in the bulk. In the second
scenario, these new degrees of freedom will be necessary to
restore diff-invariance at the tip of open links in a way that
is the analog of the standard Stueckelberg procedure [49].
This is how spinning particles (and fermion fields) are
coupled to spin networks in LQG. Our results suggest that,
in addition to these familiar degrees of freedom, CFT
excitations could live on the stringlike defects defined by
open spin-network links.
Finally, one of the most ramified aspects of our work is

that it sheds new light on the nature of boundary degrees of
freedom in the gravitational context. First, one sees that we
have a precise realization of the idea firmly established in
[6] that gauge theories, in general, and gravity, in particular,
possess physical boundary degrees of freedom that organ-
ize themselves under a representation of an infinite dimen-
sional symmetry group. We have identified here, in a
particular context, the degrees of freedom as punctures and
the algebra as containing a finite number of copies of the
Virasoro algebra. From the general perspective of building
a formulation of a generally covariant theory of finite
regions [50], our results show that CFT excitations around
pointlike defects are natural and, hence, expected to be an
important part of the boundary data at the quantum level.
These boundary degrees of freedom are relevant when
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describing interactions (measurements) with finite space-
time regions, as the gauge-dependent vector potential is
essential in describing the coupling of electromagnetism
with charged particles, which could represent detectors on a
boundary or physical boundary conditions such as having a
box made of conducting (free charges) plates [51]. The
possible advantage of this perspective was put forward
some time ago [3,4,7,52]. However, until recently it has
been unclear how to encode boundary degrees of freedom
on timelike or null surfaces in the quantum theory (espe-
cially when the quantum theory is defined in terms of
Ashtekar-Barbero variables). Our work shows, on the one
hand, the importance of adding the appropriate boundary
term to the action (1) which, in the case where the staticity
constraint is satisfied, grants the conservation of the
symplectic structure evaluated on the spacelike component
of the boundary, where the usual construction of the LQG
variables can be done. On the other hand, our work makes
explicit the nature of the boundary degrees of freedom.
These are two important features of the present work,
which appear to be a step in the right direction in the
definition of the quantum theory in open finite spacetime
regions.
More broadly, it would be interesting to understand how

the precise construction presented here of boundary degrees
of freedom carrying representations of the Virasoro group
relates to the appearance of conformal symmetries at the

asymptotic boundary of AdS space [53]. The appearance of
the Witten diagram entering the AdS3/CFT2 correspon-
dence in the spin-network evaluation is particularly striking
in that respect. It is also tempting to conjecture, in the light
of [6], that the degrees of freedom revealed here, under
the assumption that the boundary curvature is localized
around punctures, are related, in general, to a deeper
understanding of the nature of soft modes in gravitational
background [54].
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