
Inhomogeneous charged pion condensation in chiral asymmetric dense
quark matter in the framework of a NJL2 model

T. G. Khunjua,1 K. G. Klimenko,2 R. N. Zhokhov,2 and V. C. Zhukovsky1
1Faculty of Physics, Moscow State University, Moscow 119991, Russia

2State Research Center of Russian Federation—Institute for High Energy Physics,
NRC “Kurchatov Institute,” Protvino, Moscow Region 142281, Russia

(Received 8 April 2017; published 31 May 2017)

In this paper we investigate the phase structure of a (1þ 1)-dimensional quark model with four-quark
interaction and in the presence of baryon (μB), isospin (μI), and chiral isospin (μI5) chemical potentials.
Spatially inhomogeneous chiral density wave (for chiral condensate) and single wave (for charged pion
condensate) approaches are used. It is established that in the large-Nc limit (Nc is the number of colored
quarks) there exists a duality correspondence between the chiral symmetry breaking phase and the charged
pion condensation (PC) one. Moreover, it is shown that inhomogeneous charged PC phase with nonzero
baryon density is induced in the model by arbitrary small values of the chemical potential μI5 (for a rather
large region of μB and μI).
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I. INTRODUCTION

QCD at nonzero temperature and baryon chemical
potential plays a fundamental role in the description of a
number of various physical systems. Two important ones
are neutron stars, which probe the low temperature and
intermediate baryon chemical potential domain, and heavy
ion collision experiments, which explore the region of the
high temperature and low baryon chemical potential
domain. However, the consideration of these systems is
not possible in the framework of perturbative weak cou-
pling QCD. Calculations with nonzero baryonic chemical
potential μB is very hard to be performed on the lattice as
well. Standard Monte-Carlo simulations are only possible
for zero or small values of μB because an evaluation of the
QCD partition function requires taking a path integral with
a measure which includes a complex fermion determinant
(it is called sign problem). These are the main reasons why
our understanding of QCD at finite baryon density is still
rudimentary. Many interesting phenomena, such as color
superconductivity and color-flavor locking, etc., might
occur at finite baryon density, i.e., beyond the reach of
current lattice and perturbative QCD techniques.
To describe physical situations, when the baryonic

density is nonzero but is comparatively low, usually
different effective theories are employed. Among them,
we especially would like to mention the Nambu–Jona-
Lasinio (NJL) type models [1]. In this way, QCD phase
diagrams including chiral symmetry restoration [2–5],
color superconductivity [6–8], and charged pion conden-
sation (PC) phenomena [9–16] were investigated under
heavy-ion experimental and/or compact star conditions,
i.e., in the presence of finite temperature T, different
chemical potentials and possible external (chromo)mag-
netic fields. There are other low-energy effective theories
for QCD alternative to NJL model. One of them is the

quark-meson model, or linear sigma model with quarks,
which shares many features with the NJL model, but is
renormalizable. More details about the properties of the
quark-meson model can be found, e.g., in the reviews
[17,18] and recent papers [19]. Also worth mentioning is
the NJL model extended by Polyakov loop. In contrast to
the usual NJL model, it mimics the features of confinement
by coupling a nontrivial background gauge field to quarks
(see, e.g., the review [18]). However, consideration of the
QCD phase diagram in terms of the quark-meson and
Polyakov-loop NJL models is beyond the scope of our
paper. We restrict ourselves to discussing only the proper-
ties of NJL models. They are nonrenormalizable in (3þ 1)-
dimensional spacetime and can be considered only as
effective field theories. This means that in the framework
of NJL4 models one can describe only phenomena at
comparatively low energies, temperatures and densities
(chemical potentials).
But there exist also low-dimensional theories, such

as (1þ 1)-dimensional chiral Gross–Neveu (GN) type
models [20,21],1 that possess a lot of common features with
QCD. For example, renormalizability, asymptotic freedom,
dimensional transmutation, the spontaneous breaking of
chiral symmetry (in vacuum) are the properties of the QCD
and NJL2 models [22–25]. In addition, they have the similar
μB − T phase diagrams. Hence, NJL2 type models can be
used as a laboratory for the qualitative simulation of specific
properties of QCD at arbitrary energies. It is currently well
understood (see, e.g., the discussion in [24–26]) that the

1Below we shall use the notation “NJL2 model” instead of
“chiral GN model” for (1þ 1)-dimensional models with con-
tinuous chiral and/or isotopic, etc., symmetries, since the chiral
structure of the Lagrangian is the same as that of the correspond-
ing (3þ 1)-dimensional NJL model.
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usual no-go theorem [27], which generally forbids the
spontaneous breaking of any continuous symmetry in
two-dimensional spacetime, does not work in the limit
Nc → ∞, where Nc is the number of colored quarks. This
follows directly from the fact that in the limit of largeNc the
quantum fluctuations, which would otherwise destroy a
long-range order corresponding to a spontaneous symmetry
breaking, are suppressed by 1=Nc factors. Thus, the effects
inherent for real dense quarkmatter, such as chiral symmetry
breaking phenomenon [spontaneous breaking of the con-
tinuous axialUð1Þ symmetry] or charged pion condensation
(spontaneous breaking of the continuous isospin sym-
metry) might be simulated in terms of a simpler (1þ 1)-
dimensional NJL-type model, though only in the leading
order of the large-Nc approximation (see, e.g., Refs. [26] and
[28–33], respectively).
Besides the temperature and the baryon density, there are

additional parameters, which may be relevant for the above
mentioned QCD systems. Such an important parameter is,
for instance, an isotopic chemical potential μI . It allows us
to consider systems with isospin imbalance (different
numbers of u and d quarks). It is realized, e.g., in neutron
stars, heavy-ion experiments, etc. So QCD phase diagram
in the presence of both baryonic and isotopic chemical
potentials has been recently a subject of intensive research
in the framework of some effective theories [9–11], where
the possibility of the charged PC phase just at μI ≠ 0 was
predicted. However, the existence of the charged PC phase
is established there without sufficient certainty. Indeed, for
some values of model parameters (the coupling constant
G, cutoff parameter Λ, etc.) the charged PC phase with
nonzero baryon density is allowed by NJL4 models.
However, it is forbidden in the framework of the NJL4

models for other physically interesting values of G and Λ
[10]. Moreover, if the electric charge neutrality constraint is
imposed, the charged pion condensation phenomenon
depends strongly on the bare (current) quark mass values.
In particular, it turns out that the charged PC phase with
nonzero baryonic density is forbidden in the framework of
NJL4 models if the bare quark masses reach the physically
acceptable values of 5 ÷ 10 MeV (see in Ref. [13]). Due to
these circumstances, the question arises whether there exist
any factors promoting the appearance of charged PC
phenomenon in dense baryonic matter.
A positive answer to this question was obtained in papers

[32,34,35]. Indeed, it was shown in Refs. [32,34] that a
charged PC phase might be realized in a dense baryonic
system with finite size or in the case of a spatially
inhomogeneous condensate of charged pions. These con-
clusions are demonstrated in [32,34] in the large-Nc limit,
using a (1þ 1)-dimensional toy model with four-quark
interactions and containing baryon and isospin chemical
potentials. Moreover, it was shown in [35] in the framework
of the same toy NJL2 model that this phase can be realized if
we take into account a nonzero chiral isotopic potential

in addition. Thismeans that there should be chiral imbalance
in the system. Recall that chiral imbalance, i.e., a nonzero
difference between densities of left- and right-handed
fermions, may arise from the chiral anomaly in the quark-
gluon-plasma phase of QCD and possibly leads to the chiral
magnetic effect [36] in heavy-ion collisions. It might be
realized also in compact stars or condensed matter systems
[37] (see also the review [38]). Note also that phenomena,
connected with a chiral imbalance, are usually described in
the framework of NJL models with a chiral chemical
potential [37]. It was also shown in [35] that in order to
realize charged PC phase in dense quark matter, this chiral
asymmetry should be rather large. However in [35] only the
case of homogeneous condensates was considered.
In contrast, in this paper we study the phase structure of

the same (1þ 1)-dimensional NJL model with an addi-
tional assumption of the presence of spatially inhomo-
geneous condensates. For simplicity, we take into account
the condensate inhomogeneity in the form of the chiral
density wave for chiral condensate and the single plane
wave for charged pion condensate.
The existence of spatially inhomogeneous phases in

dense systems is certainly not a new idea. In condensed
matter physics charge and spin density waves are com-
monly found (for a review see, e.g., [39]), and inhomo-
geneous crystalline phases have also been discussed long
time ago for superconductors by Fulde and Ferrell, as well
as by Larkin and Ovchinnikov [40,41] (this phase is often
called the LOFF phase). More recently the crystalline phase
for color superconductors was considered in [42] (see also
reviews [43,44]). Deryagin, Grigoriev, and Rubakov have
shown that at high densities in the limit of an infinite
number of colors Nc the QCD ground state might be
inhomogeneous and anisotropic so that the ground state has
the structure of the standing wave [45]. It is very chal-
lenging to find inhomogeneous condensate as a solution
and find its form analytically. However, more often one just
assumes some ansatz with several parameters and then
solve a minimax problem with respect to these parameters.
With this idea in mind, the simplest possible ansatz is given
by a single plane wave in some sense. In analogy with the
spin-density waves in condensed matter systems [46], this
ansatz is called “chiral density wave” (CDW) or “dual
chiral density wave”, where “dual” refers to the presence of
two (scalar and pseudoscalar) standing waves [47]. The
ansatz is also sometimes called “chiral spiral” because it
describes a spiral. The last term is often used for the
(1þ 1)-dimensional case, for which it was originally
introduced in [26], but we will rather use CDW. Being
an analytically treatable case, CDW ansatz has been the
object of intense investigations during the course of the last
25 years and provides us with an excellent prototype for
many generic features of inhomogeneous condensation in
quark matter. There can be a more favorable form of
condensate that minimizes thermodynamic potential even
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more effectively, but investigating CDW we can at least
conclude that system favours inhomogeneity in some
regions. Then one can try another ansatz and find a deeper
vacuum. Sometimes one can find many inhomogeneous
condensates and then find the most favorable. In some
models the phase structure with inhomogeneous conden-
sates can be very rich. The modern state of investigations of
dense baryonic matter in the framework of inhomogeneous
condensate approach is presented in the recent reviews
[48,49] (see also, e.g., the recent papers [50–52]).
In this paper we investigate the possibility of formation

of inhomogeneous condensates in the system and its
influence on the phase diagram and charged PC phenome-
non in the framework of an extended (1þ 1)-dimensional
NJL model with two quark flavors and in the presence of
the baryon (μB), isospin (μI) as well as chiral isospin (μI5)
chemical potentials. Note that earlier the phase structure of
this model both in the framework of homogeneous
approach for condensates and with inhomogeneous one
(using CDW ansatz for quark condensate and LOFF single
plane wave ansatz for charged pion condensate) was
investigated in [28–33] at μI5 ¼ 0, i.e., at zero chiral
asymmetry of quark matter. We now consider the extension
of this model to the case of μI5 ≠ 0. We will see that
inhomogeneity is quite favored and is realized in almost the
whole range of parameters in the considered model. We
will show that inhomogeneity of condensates does not
change the fact that a chiral imbalance of dense and
isotopically asymmetric baryon matter is a factor, which
can induce there a charged PC phase. Moreover, this
generation in the inhomogeneous case is even enhanced.
It will be shown that in the inhomogeneous case charged
PC phase is realized, in comparison with the results of the
paper [35], even at small chiral asymmetry.
Moreover, it has been shown in the framework of the

NJL2 model under consideration that in the leading order of
the large-Nc approximation there arises a duality between
chiral symmetry breaking (CSB) and charged PC phenom-
ena. It means that if at μI ¼ A and μI5 ¼ B (at arbitrary
fixed chemical potential μB), e.g., the CSB (or the charged
PC) phase is realized in the model, then at the permuted
values of these chemical potentials, i.e., at μI ¼ B and
μI5 ¼ A, the charged PC (or the CSB) phase is arranged.
So, it is enough to know the phase structure of the model at
μI < μI5, in order to establish the phase structure at
μI > μI5. Knowing condensates and other dynamical and
thermodynamical quantities of the system, e.g., in the CSB
phase, one can then obtain the corresponding quantities in
the dually conjugated charged PC phase of the model, by
simply performing there the duality transformation,
μI ↔ μI5.

2 This feature of the model does not depend on

whether the condensate is homogeneous or inhomo-
geneous. This duality was noted in the paper [35], where
homogeneous condensates were considered.
The paper is organized as follows. In Sec. II a toy (1þ 1)-

dimensional NJL-type model with two quark flavors (u and
d quarks) and including three kinds of chemical potentials,
μB, μI, μI5, is presented. Next, the symmetries of the model
are discussed and the unrenormalized thermodynamic
potential (TDP) of themodel under consideration is obtained
in the leading order of the large-Nc expansion in the case of
inhomogeneous condensates. Here the dual symmetry of the
model TDP is established. It means that it is invariant under
the simultaneous interchange of μI , μI5 chemical potentials
aswell as chiral and charged pion condensates. In Sec. III the
renormalization of the TDP is performed in the case of
homogeneous ansatz for condensates. In Sec. IV the
inhomogeneous case is considered. In Sec. IVA it is
explained how to obtain thermodynamic potential for
inhomogeneous case from the one for homogeneous case
and it is argued that in order to get physical thermodynamic
potential, the subtraction procedure has to be applied. In
Sec. IV B different phase portraits of themodel are obtained.
Moreover, here the role of duality between chiral symmetry
breaking and charged pion condensation phenomenon
and its influence on the phase diagram are established.
Section VI contains summary and conclusions. Some
technical details are relegated to Appendix.

II. THE MODEL AND ITS THERMODYNAMIC
POTENTIAL

We consider a two-dimensional model which is intended
for simulation of the properties of real dense quark matter
with two massless quark flavors (u and d quarks). Its
Lagrangian, which is symmetrical under global color
SUðNcÞ group, has the form

L ¼ q̄

�
γνi∂ν þ

μB
3
γ0 þ μI

2
τ3γ

0 þ μI5
2

τ3γ
0γ5

�
q

þ G
Nc

�
ðq̄qÞ2 þ ðq̄iγ5τ⃗qÞ2

�
; ð1Þ

where the quark field qðxÞ≡ qiαðxÞ is a flavor doublet
(i ¼ 1, 2 or i ¼ u, d) and color Nc-plet (α ¼ 1;…; Nc) as
well as a two-component Dirac spinor (the summation in
(1) over flavor, color, and spinor indices is implied); τk
(k ¼ 1, 2, 3) are Pauli matrices. The quantities γν (ν ¼ 0, 1)
and γ5 in Eq. (1) are matrices in the two-dimensional spinor
space,

γ0 ¼
�
0 1

1 0

�
; γ1 ¼

�
0 −1
1 0

�
;

γ5 ¼ γ0γ1 ¼
�
1 0

0 −1

�
: ð2Þ

2Note that another kind of duality correspondence, the duality
between CSB and superconductivity, was demonstrated both in
(1þ 1)- and (2þ 1)-dimensional NJL models [53,54].
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It is evident that the model (1) is a generalization of the
(1þ 1)-dimensional Gross-Neveu model [20] with a single
massless quark color Nc-plet to the case of two quark
flavors and additional baryon μB, isospin μI, and axial
isospin μI5 chemical potentials. These parameters are
introduced in order to describe in the framework of the
model (1) quark matter with nonzero baryon nB, isospin nI ,
and axial isospin nI5 densities, respectively. The quantities
nB, nI, and nI5 are densities of conserved charges, which
correspond to the invariance of Lagrangian (1) with respect
to the abelian UBð1Þ, UI3ð1Þ, and UAI3ð1Þ groups, where3

UBð1Þ ∶ q → expðiα=3Þq;
UI3ð1Þ ∶ q → expðiατ3=2Þq;
UAI3ð1Þ ∶ q → expðiαγ5τ3=2Þq: ð3Þ

So we have from Eq. (3) that nB ¼ q̄γ0q=3, nI ¼ q̄γ0τ3q=2
and nI5 ¼ q̄γ0γ5τ3q=2. We would like also to remark that,
in addition to Eq. (3), Lagrangian (1) is invariant with
respect to the electromagnetic UQð1Þ group,

UQð1Þ ∶ q → expðiQαÞq; ð4Þ

where Q ¼ diagð2=3;−1=3Þ is the matrix of electric
charges of u and d quarks. The goal of the present paper
is investigating the properties of the ground state (the state
of thermodynamic equilibrium) of the system (1), i.e., the
phase structure of the model and its dependence on the
chemical potentials μB, μI , and μI5. (Note that at μI5 ¼ 0
the phase structure of this model was already investigated
in details, e.g., in Refs [28–33].) So, we should (i) find the
TDP of the system, (ii) determine its global minimum point
(GMP), and (iii) investigate the GMP dependence vs
chemical potentials μB, μI , and μI5. The ground state
expectation values of nB, nI , and nI5 can be found by
differentiating the TDP of the system (1) with respect to the
corresponding chemical potential.
To find the thermodynamic potential of the system, we

use a semibosonized version of the Lagrangian (1), which
contains composite bosonic fields σðxÞ and πaðxÞ (a ¼ 1,
2, 3) (in what follows, we use the notations μ≡ μB=3,
ν ¼ μI=2 and ν5 ¼ μI5=2):

~L ¼ q̄½γρi∂ρ þ μγ0 þ ντ3γ
0 þ ν5τ3γ

1 − σ − iγ5πaτa�q

−
Nc

4G
½σσ þ πaπa�: ð5Þ

In Eq. (5) the summation over repeated indices is implied.
In addition,we take into account there the relation γ0γ5 ¼ γ1,
which follows from Eq. (2). From the Lagrangian (5) one
gets the equations for the bosonic fields

σðxÞ ¼ −2
G
Nc

ðq̄qÞ; πaðxÞ ¼ −2
G
Nc

ðq̄iγ5τaqÞ: ð6Þ

Note that the composite bosonic field π3ðxÞ can be
identified with the physical π0 meson, whereas the
physical π�ðxÞ-meson fields are the following combinations
of the composite fields, π�ðxÞ ¼ ðπ1ðxÞ � iπ2ðxÞÞ=

ffiffiffi
2

p
.

Obviously, the semibosonized Lagrangian ~L is equivalent
to the initial Lagrangian (1) when using Eq. (6).
Furthermore, it is clear from (3), (6), and footnote 3 that
the bosonic fields transform under the isospin UI3ð1Þ and
axial isospin UAI3ð1Þ groups in the following manner:

UI3ð1Þ ∶ σ → σ; π3 → π3;

π1 → cosðαÞπ1 þ sinðαÞπ2;
π2 → cosðαÞπ2 − sinðαÞπ1:

UAI3ð1Þ ∶ π1 → π1; π2 → π2;

σ → cosðαÞσ þ sinðαÞπ3;
π3 → cosðαÞπ3 − sinðαÞσ: ð7Þ

Starting from the theory (5), one obtains in the leading order
of the large-Nc expansion (i.e., in the one-fermion loop
approximation) the following path integral expression for
the effective actionSeffðσ; πaÞ of the bosonic σðxÞ and πaðxÞ
fields:

expðiSeffðσ; πaÞÞ ¼ N0
Z

½dq̄�½dq� exp
�
i
Z

~Ld2x

�
;

where

Seffðσ; πaÞ ¼ −Nc

Z
d2x

�
σ2 þ π2a
4G

�
þ ~Seff ð8Þ

andN0 is a normalization constant. The quark contribution to
the effective action, i.e., the term ~Seff in Eq. (8), is given by:

expði ~SeffÞ ¼N0
Z

½dq̄�½dq�exp
�
i
Z

q̄½γρi∂ρþ μγ0

þ ντ3γ
0þ ν5τ3γ

1− σ− iγ5πaτa�qd2x
�
: ð9Þ

The ground state expectation values hσðxÞi and hπaðxÞi of
the composite bosonic fields are determined by the saddle
point equations,

δSeff

δσðxÞ ¼ 0;
δSeff

δπaðxÞ
¼ 0; ð10Þ

where a ¼ 1, 2, 3. It is clear from Eq. (7) that if hσðxÞi ≠ 0
and/or hπ3ðxÞi ≠ 0, then the axial isospinUAI3ð1Þ symmetry
of the model is spontaneously broken down, whereas at

3Recall for the following that expðiατ3Þ ¼ cos αþ iτ3 sin α,
expðiαγ5τ3Þ ¼ cos αþ iγ5τ3 sin α.
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hπ1ðxÞi ≠ 0 and/or hπ2ðxÞi ≠ 0 we have a spontaneous
breaking of the isospin UI3ð1Þ symmetry. Since in the last
case the ground state expectation values, or condensates,
both of the fieldπþðxÞ andof the fieldπ−ðxÞ are nonzero, this
phase is usually called the charged pion condensation (PC)
phase. It is easy to see from Eq. (6) that the nonzero
condensates hπ1;2ðxÞi (or hπ�ðxÞi) are not invariant with
respect to the electromagneticUQð1Þ transformations (4) of
the flavor quark doublet. Hence in the charged PC phase the
electromagnetic UQð1Þ invariance of the model (1) is also
broken spontaneously, so superconductivity is an unavoid-
able property of the charged PC phase.
In vacuum, i.e., in the state corresponding to an empty

space with zero particle density and zero values of the
chemical potentials μ, ν, and ν5, the quantities hσðxÞi and
hπaðxÞi do not depend on space coordinate x. However, in a
dense medium, when μ ≠ 0, ν ≠ 0, and ν5 ≠ 0, the ground
state expectation values of bosonic fields might have a
nontrivial dependence on the spatial coordinate x. In
particular, in this paper we use the following spatially
inhomogeneous CDW ansatz for chiral condensate and the
single plane wave ansatz for charged pion condensates:

hσðxÞi ¼ M cosð2kxÞ; hπ3ðxÞi ¼ M sinð2kxÞ;
hπ1ðxÞi ¼ Δ cosð2k0xÞ; hπ2ðxÞi ¼ Δ sinð2k0xÞ; ð11Þ

where gaps M, Δ and wave vectors k, k0 are constant
dynamical quantities. In fact, they are coordinates of the
global minimum point (GMP) of the thermodynamic
potential (TDP) ΩðM; k; k0;ΔÞ.4 In the leading order of
the large-Nc expansion it is defined by the following
expression:

Z
d2xΩðM; k; k0;ΔÞ

¼ −
1

Nc
SefffσðxÞ; πaðxÞgjσðxÞ¼hσðxÞi;πaðxÞ¼hπaðxÞi; ð12Þ

which gives

Z
d2xΩðM; k; k0;ΔÞ ¼

Z
d2x

M2 þ Δ2

4G

þ i
Nc

ln

�Z
½dq̄�½dq� exp

�
i
Z

d2xq̄ ~Dq

��
; ð13Þ

where

q̄ ~Dq ¼ q̄½γρi∂ρ þ μγ0 þ ντ3γ
0 þ ν5τ3γ

1

−M expð2iγ5τ3kxÞ�q − Δðq̄uiγ5qdÞe−2ik0x
− Δðq̄diγ5quÞe2ik0x: ð14Þ

[Remember that in this formula q is indeed a flavor
doublet, i.e., q ¼ ðqu; qdÞT .] To proceed, let us introduce
in Eqs. (13)–(14) the new quark doublets, ψ and ψ̄ ,
by the so-called Weinberg (or chiral) transformation
of these fields [55], ψ ¼ expðiτ3k0xþ iτ3γ5kxÞq and ψ̄ ¼
q̄ expðiτ3γ5kx − iτ3k0xÞ. Since this transformation of quark
fields does not change the path integral measure in
Eq. (13),5 the expression (13) for the TDP is easily
transformed to the following one:

Z
d2xΩðM; k; k0;ΔÞ ¼

Z
d2x

M2 þ Δ2

4G

þ i
Nc

ln

�Z
½dψ̄ �½dψ � exp

�
i
Z

d2xψ̄Dψ

��
; ð15Þ

where instead of the x-dependent Dirac operator ~D a new
x-independent operator D appears

D ¼ γνi∂ν −M þ μγ0 þ ðν5 þ k0Þτ3γ1 þ ðνþ kÞτ3γ0
− iΔτ1γ5: ð16Þ

The expression (15) for the TDP now takes the form

ΩðM;k;k0;ΔÞ¼M2þΔ2

4G
þ i

Trcsfx lnD

Nc

R
d2x

¼M2þΔ2

4G
þ iTrsf

Z
d2p
ð2πÞ2 lnD̄ðpÞ; ð17Þ

where D̄ðpÞ ¼ pþ μγ0 þ ~ντ3γ
0 þ ~ν5τ3γ

1 −M − iγ5Δτ1,
~ν ¼ νþ k, and ~ν5 ¼ ν5 þ k0. The Tr-operation Trcsfx in
Eq. (17) stands for the trace in color- (c), spinor- (s), flavor-
(f) as well as two-dimensional coordinate- (x) spaces,
respectively, and Trsf is the respective trace without color
and x-spaces. The general relation

Trsf ln D̄ðpÞ ¼ ln DetD̄ðpÞ ¼
X
i

ln ϵi; ð18Þ

4Here and in what follows we will use a rather conventional
notation “global” minimum in the sense that among all our
numerically found local minima the TDP takes in their case the
lowest value. This does not exclude the possibility that there exist
other inhomogeneous condensates, different from (11), which
lead to ground states with even lower values of the TDP.

5Strictly speaking, performing Weinberg transformation of
quark fields in Eq. (13), one can obtain in the path integral
measure a factor, which however does not depend on the
dynamical variables M, Δ, k, and k0. Hence, we ignore this
unessential factor in the following calculations. Note that only in
the case when there is an interaction between spinor and gauge
fields there might appear a nontrivial, i.e., dependent on dynami-
cal variables, path integral measure, generated by Weinberg
transformation of spinors. This unobvious fact follows from
the investigations by Fujikawa [56].
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where the summation over all four eigenvalues ϵi of the
4 × 4 matrix D̄ðpÞ

ϵ1;2;3;4 ¼ −M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 2

ffiffiffiffi
P

pq
; ð19Þ

is implied. Here

N ¼ ðp0 þ μÞ2 − p2
1 − Δ2 þ ~ν2 − ~ν25;

P ¼ ½ðp0 þ μÞ~νþ p1 ~ν5�2 − Δ2ð~ν2 − ~ν25Þ: ð20Þ

So we have from Eqs. (17) and (18)

ΩðM; k; k0;ΔÞ ¼ M2 þ Δ2

4G
þ i

Z
d2p
ð2πÞ2 lnP4ðp0Þ: ð21Þ

In Eq. (21) we use the notations

P4ðp0Þ ¼ ϵ1ϵ2ϵ3ϵ4 ¼ η4 − 2aη2 − bηþ c; ð22Þ

where η ¼ p0 þ μ and

a ¼ M2 þ Δ2 þ p2
1 þ ~ν2 þ ~ν25;

b ¼ 8p1 ~ν~ν5;

c ¼ a2 − 4p2
1ð~ν2 þ ~ν25Þ − 4M2 ~ν2 − 4Δ2 ~ν25 − 4~ν2 ~ν25: ð23Þ

It is evident from Eq. (23) that the expression (21) for
the TDP is an even function over each of the variables M
and Δ. In addition, it is invariant under each of the
transformations μ → −μ, ~ν → −~ν, ~ν5 → −~ν5.

6 Hence,
without loss of generality we can consider in the following
only μ ≥ 0, ~ν ≥ 0, ~ν5 ≥ 0, M ≥ 0, and Δ ≥ 0 values
of these quantities. Moreover, the expression (21) for the
TDP is invariant with respect to the so-called duality
transformation,

D ∶ M ⟷ Δ; ν ⟷ ν5; k ⟷ k0: ð24Þ

It means that in the leading order of the large-Nc approxi-
mation there is the so-called duality correspondence
between chiral symmetry breaking (CSB) and charged
PC phenomena (in details, see below in Sec. IV). Note
that another kind of duality correspondence, the duality
between CSB and superconductivity, was demonstrated
both in (1þ 1)- and (2þ 1)-dimensional NJL models
[53,54]. In powers of Δ the fourth-degree polynomial
P4ðp0Þ has the following form

P4ðp0Þ≡ Δ4 − 2Δ2ðη2 − p2
1 −M2 þ ~ν25 − ~ν2Þ

þ ½M2 þ ðp1 − ~ν5Þ2 − ðηþ ~νÞ2�
× ½M2 þ ðp1 þ ~ν5Þ2 − ðη − ~νÞ2�: ð25Þ

Expanding the right-hand side of Eq. (25) in powers of M,
one can obtain an equivalent alternative expression for this
polynomial. Namely,

P4ðp0Þ≡M4 − 2M2ðη2 − p2
1 − Δ2 þ ~ν2 − ~ν25Þ

þ ½Δ2 þ ðp1 − ~νÞ2 − ðηþ ~ν5Þ2�
× ½Δ2 þ ðp1 þ ~νÞ2 − ðη − ~ν5Þ2�: ð26Þ

Note also that according to the general theorem of algebra,
the polynomial P4ðp0Þ can be presented in the form

P4ðp0Þ≡ ðp0 − P01Þðp0 − P02Þðp0 − P03Þðp0 − P04Þ;
ð27Þ

where P01, P02, P03, and P04 are the roots of this
polynomial. This quantities are the energies of quasiparticle
or quasi-antiparticle excitations of the system. In particular,
it follows from Eq. (25) that at Δ ¼ 0 the set of roots P0i
looks like

fP01; P02; P03; P04gjΔ¼0 ¼ f�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðp1 − ~ν5Þ2

q

− μ − ~ν; −μþ ~ν�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðp1 þ ~ν5Þ2

q
g; ð28Þ

whereas it is clear from Eq. (26) that at M ¼ 0 it has the
form

fP01; P02; P03; P04gjM¼0 ¼ f�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ ðp1 − ~νÞ2

q

− μ − ~ν5; −μþ ~ν5 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ ðp1 þ ~νÞ2

q
g: ð29Þ

Taking into account in Eq. (21) the relation (27) as well as a
rather general formula

Z
∞

−∞
dp0 lnðp0 − KÞ ¼ iπjKj; ð30Þ

(obtained rigorously, e.g., in Appendix B of [32] and
being true up to an infinite term independent of the real
quantity K), it is possible to integrate there over p0. So the
unrenormalized TDP (21) can be presented in the following
form,

6Indeed, if simultaneously with μ → −μ we perform in the
integral (21) the p0 → −p0 and p1 → −p1 change of variables,
then one can easily see that the expression (21) remains intact.
Finally, if only ~ν (only ~ν5) is replaced by −~ν (is replaced by −~ν5),
we should transform p1 → −p1 in the integral (21) in order to be
convinced that the TDP remains unchanged.
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ΩðM; k; k0;ΔÞ≡ΩunðM; k; k0;ΔÞ

¼ M2 þ Δ2

4G
−
Z

∞

−∞

dp1

4π
ðjP01j þ jP02j

þ jP03j þ jP04jÞ: ð31Þ

III. HOMOGENEOUS CASE OF THE ANSATZ (11)
FOR CONDENSATES: k= 0, k0 = 0

The case k ¼ 0, k0 ¼ 0 was investigated in details in
[35], where we have shown that at finite nonzero values of
μI5 there might appear in the model (1) a charged PC phase
with nonzero baryon density (see Fig. 1). Since some
approaches, expressions, etc. from our paper [35] are
necessary when considering the inhomogeneous ansatz
for condensates, in the present section we reproduce them
briefly.

A. Thermodynamic potential
in the vacuum case: μ= 0, ν= 0, ν5 = 0

It is interesting first of all to find the TDP of the model
(1) in vacuum, when k ¼ 0, k0 ¼ 0 and μ ¼ 0, ν ¼ 0,
ν5 ¼ 0. Since in this case the thermodynamic potential (31)
is usually called effective potential, we use for it the
notation VunðM;ΔÞ. As a consequence of Eqs. (21)–(23),
it is clear that at μ ¼ ~ν ¼ ~ν5 ¼ 0 the effective potential
VunðM;ΔÞ looks like

VunðM;ΔÞ ¼M2þΔ2

4G
þ 2i

Z
d2p
ð2πÞ2 ln½p

2
0−p2

1−M2 −Δ2�

¼M2þΔ2

4G
−
Z

∞

−∞

dp1

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1þM2þΔ2

q
:

ð32Þ

[To obtain the last expression in this formula, we have
integrated there over p0 according to the general relation
(30).] It is evident that the effective potential (32) is an
ultraviolet divergent quantity. So, we need to renormalize
it. This procedure consists of two steps: (i) First of all we
need to regularize the divergent integral in Eq. (32), i.e., we
suppose there that jp1j < Λ and replace bare coupling
constant G by the new Λ-dependent coupling constant
GðΛÞ. (ii) Second, we must suppose also that the coupling
constant GðΛÞ depends on the cutoff parameter Λ in such a
way that in the limit Λ → ∞ one obtains a finite expression
for the effective potential.
Following the step (i) of this procedure, we have

VregðM;ΔÞ ¼ M2 þ Δ2

4GðΛÞ −
2

π

Z
Λ

0

dp1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þM2 þ Δ2

q
;

ð33Þ

which gives

VregðM;ΔÞ ¼ M2 þ Δ2

4GðΛÞ −
1

π

�
Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2 þ Δ2

p

þ ðM2 þ Δ2Þ lnΛþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2 þ Δ2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ Δ2

p
�
:

ð34Þ

Further, according to the step (ii) we suppose that in
Eq. (34) the coupling constant GðΛÞ has the following
Λ dependence:

1

4GðΛÞ ¼
1

π
ln
2Λ
m

; ð35Þ

where m is a new free massive parameter of the model,
which appears instead of the dimensionless bare coupling
constant G (dimensional transmutation) and, evidently,
does not depend on a normalization point, i.e., it is a
renormalization invariant quantity. Substituting Eq. (35)
into Eq. (34) and ignoring there an unessential term
(−Λ2=π), we have in the limit Λ → ∞ the finite and
renormalization invariant expression for the effective
potential,

V0ðM;ΔÞ ¼ M2 þ Δ2

2π

�
ln

�
M2 þ Δ2

m2

�
− 1

�
: ð36Þ

FIG. 1. Schematic representation of the (ν5, ν, μ)-phase portrait
of the model in the case of spatially homogeneous condensates. It
consists of charged pion condensation (PC) and chiral symmetry
breaking (CSB) phases, in which quark number density is zero.
Moreover, there are charged pion condensation (PCd) and chiral
symmetry breaking (CSBd) phases with nonzero quark number
density. The points which are outside PC-, CSB-, PCd-, and
CSBd phases of the diagram correspond to the symmetric phase.
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It is evident that the parameter m corresponds to the
minimum value of M of the effective potential (36) with
Δ ¼ 0. Then everything is measured in units of this mass
scale.7

B. Renormalization of the TDP (31) in the general case:
μ > 0, ν > 0, ν5 > 0

To find a renormalized expression for the TDP (31) at
k ¼ 0 and k0 ¼ 0 in the general case, i.e., at μ > 0, ν > 0
and ν5 > 0, we need first of all to regularize it. Here we use
the so-called momentum space regularization,

ΩregðM;ΔÞ ¼ M2 þ Δ2

4GðΛÞ −
Z

Λ

0

dp1

2π

�X4
i¼1

jp0ij
�

ð37Þ

¼ M2 þ Δ2

4GðΛÞ −
Z

Λ

0

dp1

2π

�X4
i¼1

jp0ij
�				

μ¼ν¼ν5¼0

−
Z

Λ

0

dp1

2π

�X4
i¼1

jp0ij −
�X4

i¼1

jp0ij
�				

μ¼ν¼ν5¼0

�
; ð38Þ

where the notation p0i is accepted for the quasiparticle
energy P0i at k ¼ 0 and k0 ¼ 0 (i ¼ 1;…; 4). In addition,
we took into account that the quantities P0i and p0i are even
functions with respect to p1 (see Appendix). In Appendix
other properties of the quasiparticle energies p0i, where
i ¼ 1;…; 4, are also presented. Since the asymptotic
expansion (A11) for the quantity

P
4
i¼1 jp0ij does not

depend on chemical potentials μ, ν, and ν5, it is clear that
the second integral in Eq. (38) converges in the limit
Λ → ∞. Moreover, one can see that due to the relation
(A12) the first two terms on the right-hand side of Eq. (38)
are no more, than the regularized effective potential in
vacuum (34). So to obtain a finite expression for the
unrenormalized TDP (31), it is enough to use in
Eq. (38) the way of the previous subsection, where just
these two terms, i.e., the vacuum effective potential, were
renormalized by an appropriate behavior (35) of the
coupling constant GðΛÞ. Taking the relation (35) into
account, we have in the limit Λ → ∞ for the TDP
ΩregðM;ΔÞ the following expression

ΩrenðM;ΔÞ ¼ V0ðM;ΔÞ −
Z

∞

0

dp1

2π

�X4
i¼1

jp0ij

− 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þM2 þ Δ2

q �
; ð39Þ

where V0ðM;ΔÞ is the renormalized TDP (effective
potential) (36) of the model at μ ¼ ν ¼ μ5 ¼ 0.
Moreover, we have used in Eq. (39) the relation (A12)
for the sum of quasiparticle energies in vacuum.
Let us denote by ðM0;Δ0Þ the global minimum point

(GMP) of the TDP (39). Then, investigating the behavior of
this point vs μ, ν, and ν5 it is possible to construct the
ðμ; ν; ν5Þ-phase portrait (diagram) of the model. A numeri-
cal algorithm for finding the quasi(anti)particle energies
p01, p02, p03, and p04 is elaborated in Appendix. Based on
this, it can be shown numerically that GMP of the TDP can
never be of the form (M0 ≠ 0, Δ0 ≠ 0). Hence, in order to
establish the phase portrait of the model, it is enough to
study the projections F1ðMÞ≡ΩrenðM;Δ ¼ 0Þ and
F2ðΔÞ≡ΩrenðM ¼ 0;ΔÞ of the TDP (39) to the M and
Δ axes, correspondingly. Taking into account the relations
(28) and (29) for the quasiparticle energies p0i at Δ ¼ 0 or
M ¼ 0, it is possible to obtain the following expressions for
these quantities,

F1ðMÞ ¼ M2

2π
ln

�
M2

m2

�
−
M2

2π
−
ν25
π
− θðμþ ν −MÞA

π

− θðjμ − νj −MÞθð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ − νÞ2 −M2

q
− ν5Þ

B
2π

þ θðμþ ν −MÞθð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμþ νÞ2 −M2

q
− ν5Þ

C
2π

;

ð40Þ

where

A ¼ ðμþ νÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμþ νÞ2 −M2

q

−M2 ln
μþ νþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμþ νÞ2 −M2

p
M

; ð41Þ

B¼ jμ− νj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ− νÞ2−M2

q
þ ν5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν25þM2

q

− 2jμ− νjν5−M2 ln
jμ− νjþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jμ− νj2 −M2

p
ν5þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν25þM2

q ; ð42Þ

C ¼ ðμþ νÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμþ νÞ2 −M2

q

þ ν5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν25 þM2

q
− 2ðμþ νÞν5

−M2 ln
μþ νþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμþ νÞ2 −M2

p
ν5 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν25 þM2

q : ð43Þ

7Formally, the effective potential (36) in vacuum might have a
minimum at Δ ≠ 0. However, this is not a physical situation
because it was shown by Vafa and Witten in Ref. [57] that global
symmetries such as isospin and baryon number in vectorlike
gauge theories like QCD cannot be spontaneously broken in
vacuum, i.e., at zero chemical potentials. Since the NJL model is
particularly interesting as a low-energy effective theory for QCD,
we do not consider the minima of (36) withΔ ≠ 0. But at nonzero
values of μ, the Vafa-Witten theorem is no longer applicable, so
the phase with Δ ≠ 0, which is predicted by some NJL models,
can be realized in dense quark matter.
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F2ðΔÞ ¼ F1ðΔÞjν↔ν5
: ð44Þ

(Details of the derivation of these expressions are given in
Appendix B of [35].) After simple transformations, it is
clear that F1ðMÞ and F2ðΔÞ coincide at ν5 ¼ 0 with
corresponding TDPs (12) and (13) of the paper [30].
To find the phase structure of the model (1), it is

necessary to determine (numerically) the global minimum
points of the TDPs F1ðMÞ (40) and F2ðΔÞ (44) and then
compare the minimum values of these functions. The result
is the GMP of the whole TDP (39). Investigating the
behavior of this GMP vs external parameters μ, ν, ν5, one
can establish the phase structure of the model in the case of
approach with spatially homogeneous condensates.
Moreover, the derivative of the TDP vs μ supplies

the quark number density nq in each phase. In Fig. 1
the ðμ; ν; ν5Þ-phase portrait of the model is presented in the
supposition that all condensates are spatially homogeneous
[35]. It is clear from this figure that charged PC phase with
nonzero quark number density nq (this phase is denoted
there by PCd) can be realized in the model (1) only at rather
large values of ν5.
Now we are ready to consider the role and influence of

the chiral isotopic chemical potential ν5 on the phase
structure of the model (1) in a more general approach,
when condensates are spatially inhomogeneous and
restricted by the ansatz (11) with k, k0 ≠ 0.

IV. INHOMOGENEOUS CASE OF THE ANSATZ
(11): k ≠ 0, k0 ≠ 0

A. Thermodynamic potential

As it is clear from comments after the formula (17), at k,
k0 ≠ 0 the unrenormalized TDP (31) ΩunðM; k; k0;ΔÞ can
be obtained from the unrenormalized TDP in the case of
homogeneous condensates simply performing there the
replacement ν, ν5 → ~ν≡ νþ k, ~ν5 ≡ ν5 þ k0. Moreover,
throughout the paper we suppose that ~ν ≥ 0, ~ν5 ≥ 0 [see the
motivation given after Eq. (23)]. So, in order to obtain a
finite (or renormalized) expression for the TDP at k, k0 ≠ 0,
it is natural to use the same renormalized procedure as for
the case of homogeneous condensates (see the previous
section). As a result, we have

ΩrenðM; k; k0;ΔÞ ¼ ΩrenðM;ΔÞjν;ν5→~ν;~ν5 ; ð45Þ

where ΩrenðM;ΔÞ is the renormalized TDP (39) in the case
with homogeneous condensates, i.e., when k, k0 ¼ 0.
However, the TDP (45) has several unphysical properties
such as (i) the unboundedness from below with respect to
the variables k, k0. [The unboundedness from below of the
TDP (45) is evident, e.g., from the expression (40) if

ν5 → ~ν5. In this case the TDP (40) behaves as − ðν5þk0Þ2
π at

k0 → ∞.] (ii) Moreover, one can observe immediately that

at M ¼ 0 and Δ ¼ 0 the expression (45) for thermody-
namic potential does depend on k and k0. Bearing in mind
the expression (11) it is obvious that this is also quite
unphysical and we need to change somehow the expression
for thermodynamic potential in such a way that this
dependence is eliminated.
Such unphysical properties of the TDP (45) are

explained due to the following reason. In the case of
spatially homogeneous condensates, all regularization
schemes are usually equivalent. However, in the case of
spatially inhomogeneous condensate approach the transla-
tional invariance over one or several spatial coordinates is
lost. So, the corresponding (spatial) momenta are not
conserved. Then, if one uses the momentum-cutoff regu-
larization technique, as in the case of obtaining the
expression (45), nonphysical (spurious) k, k0-dependent
terms appear, and the TDP acquires some nonphysical
properties (such as the above-mentioned unboundedness
from below with respect to k, k0, etc.). In order to obtain a
physically relevant TDP (or effective potential), in this case
an additional subtraction procedure is usually applied (for
details see [28,58]). For example, if the phase structure of
the system is described by only one order parameter (e.g.,
chiral condensate), then in the spatially inhomogeneous
CDW approach the TDP of the system, VðM; kÞ, depends
on two dynamical quantities, M and k [compare with (11),
which is for the case under consideration with two
inhomogeneous condensates]. Then, if renormalized
TDP VrenðM; kÞ is obtained in the framework of momen-
tum-cutoff regularization scheme, one should apply to
VrenðM; kÞ the following subtraction procedure RMk, in
order to get a physically relevant TDP VphysðM; kÞ of the
system [28,58]:

VphysðM; kÞ ¼ RMkðVrenðM; kÞÞ
≡ VrenðM; kÞ − Vrenð0; kÞ þ Vrenð0; 0Þ: ð46Þ

[Due to the term Vrenð0; kÞ in (46) the resulting TDP
VphysðM; kÞ becomes bounded from below, whereas the last
term Vrenð0; 0Þ is added there in order the TDP VphysðM; kÞ
reproduces at k ¼ 0 the TDP, obtained in the homogeneous
condensate approach.]
On the other hand, if one uses more adequate regulari-

zation schemes such as Schwinger proper-time [47,51] or
energy-cutoff regularizations [32,50], etc., such spurious
terms do not appear.8

Since in the paper the momentum-cutoff regularization
technique is used for obtaining the renormalized TDP (39),
the TDP (45) gets above mentioned nonphysical properties,

8As discussed in the recent papers [28,32,47,50], an adequate
regularization scheme in the case of spatially inhomogeneous
phases consists in the following: for different quasiparticles the
same restriction on their region of energy values jP01j;…; jP04j
should be used in a regularized thermodynamic potential.
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which should be eliminated by, e.g., the subtraction
operation (46) applying twice, first with respect to the
variablesM, k and then with respect toΔ, k0. As a result, we
have from Eq. (45) the following physically relevant TDP,

ΩphysðM; k; k0;ΔÞ ¼ RΔk0 ðRMkðΩrenðM; k; k0;ΔÞÞÞ; ð47Þ

where ΩrenðM; k; k0;ΔÞ is presented in Eq. (45). It is clear
from Eqs. (46) and (47) that

ΩphysðM; k; k0;ΔÞ ¼ ΩrenðM; k; k0;ΔÞ −ΩrenðM; k; k0; 0Þ
þΩrenðM; k; 0; 0Þ −Ωrenð0; k; k0;ΔÞ
þΩrenð0; 0; k0;ΔÞ −Ωrenð0; k; 0; 0Þ
−Ωrenð0; 0; k0; 0Þ þ Ωrenð0; k; k0; 0Þ
þΩrenð0; 0; 0; 0Þ: ð48Þ

It turns out that, as in the case of spatially homogeneous
condensates (see Sec. III B), the phase with both sponta-
neous breaking of chiral and isospin symmetry is absent in
the model. So it is enough to study only the projections of
the TDP ΩphysðM; k; k0;ΔÞ (48) on the M and Δ axes,

~F1ðM; kÞ≡ΩphysðM; k; k0; 0Þ ¼ ΩrenðM; k; 0; 0Þ
−Ωrenð0; k; 0; 0Þ þ Ωrenð0; 0; 0; 0Þ

¼ F1ðMÞjν→~ν − F1ð0Þjν→~ν þ F1ð0Þ; ð49Þ

~F2ðΔ; k0Þ≡Ωphysð0; k; k0;ΔÞ
¼ Ωrenð0; 0; k0;ΔÞ −Ωrenð0; 0; k0; 0Þ
þ Ωrenð0; 0; 0; 0Þ

¼ F2ðΔÞjν5→~ν5
− F2ð0Þjν5→~ν5

þ F2ð0Þ; ð50Þ

where F1ðMÞ and F2ðΔÞ are TDPs, which are given in
Eq. (40) and Eq. (44), respectively. Note that the projection
~F1ðM; kÞ (the TDP ~F2ðΔ; k0Þ) does not depend on a wave
parameter k0 (parameter k).
Now, to find the phase structure of the model (1) in the

case of inhomogeneous ansatz (11) for condensates, it is
necessary to determine the global minimum points of the
TDPs ~F1ðM; kÞ (49) and ~F2ðΔ; k0Þ (50) vs M, k and Δ, k0,
respectively, and then compare the minimum values of
these functions. The result is the GMP of the whole TDP
(47)–(48). Investigating the behavior of this GMP vs
external parameters μ, ν, ν5, one can establish the phase
structure in the approach of spatially inhomogeneous
condensates (11).
There could be several phases in the model (1). The first

one is the symmetric phase, which corresponds to the
global minimum point (M0, k0, k00, Δ0) of the TDP (48)
with zero gapsM0 ¼ 0,Δ0 ¼ 0 and zero values of the wave
vectors k0 ¼ 0, k00 ¼ 0. In the chiral symmetry breaking
phase, homogeneous or inhomogeneous, the TDP (48)

reaches the least value at the global minimum point with
M0 ≠ 0, Δ0 ¼ 0, k00 ¼ 0, and k0 ¼ 0 or k0 ≠ 0, respec-
tively. Finally, in the charged pion condensation phase,
homogeneous or inhomogeneous, the global minimum of
the TDP lies at the point withM0 ¼ 0, Δ0 ≠ 0, k0 ¼ 0, and
k00 ¼ 0 or k00 ≠ 0, respectively. (Notice that in the most
general case the coordinates of the global minimum point,
i.e., the gapsM0,Δ0 and the wave vectors k0, k00, depend on
chemical potentials.) Since in our consideration the quark
number density nq is the most important physical feature of
the ground state, we present here the ways how expressions
for nq can be found in different phases. Recall that in the
general case this quantity is defined by the relation

nq ¼ −
∂ΩphysðM0; k0; k00;Δ0Þ

∂μ : ð51Þ

Hence, in the chiral symmetry breaking phase we have
from Eqs. (51) and (48) that

nqjCSB ¼ −
∂ΩphysðM0; k0; k00;Δ0 ¼ 0Þ

∂μ
¼ −

∂ ~F1ðM0; k0Þ
∂μ ; ð52Þ

where the quantity ~F1ðM; kÞ is given in Eq. (49), whereas
the particle density in the charged pion condensation phase
looks like

nqjPC ¼ −
∂ ~ΩphysðM0 ¼ 0; k0; k00;Δ0Þ

∂μ
¼ −

∂ ~F2ðΔ0; k00Þ
∂μ ; ð53Þ

where the quantity ~F2ðΔ; k0Þ is given in Eq. (50).

B. Phase diagrams and duality property of the model

As it was mentioned in the previous section, in order to
obtain the most general ðμ; ν; ν5Þ-phase portrait (diagram)
of the model in the framework of the spatially inhomo-
geneous ansatz (11) for condensates, we have to study
(numerically) the behavior of the TDP (48) global mini-
mum point (M0, k0, k00, Δ0) vs chemical potentials.
However, to simplify the task, it is very convenient to
consider different cross sections of this diagram by the
planes of the form ν ¼ const, ν5 ¼ const, and μ ¼ const.
These particular phase portraits will help us to form an
understanding of the structure of the most general
ðμ; ν; ν5Þ-phase portrait of the model. Moreover, by this
way one can use very efficiently the duality symmetry (24)
of the model TDP (21), which allows to predict a phase
structure in different regions of the ðμ; ν; ν5Þ plane.
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1. Different ðμ;νÞ-phase diagrams

First, we consider the ðμ; νÞ-phase portraits of the model
at several typical values of ν5. Recall that in Ref. [28] this
phase portrait was investigated at ν5 ¼ 0. In addition, it was
supposed in [28] that in the ground state of the system only
chiral condensate is spatially inhomogeneous (as CDW),
but pion condensate is a homogeneous one, i.e., from the
very beginning the ansatz (11) was used there with k ≠ 0,
k0 ¼ 0 for condensates. In this case the ðμ; νÞ-phase
diagram has a rather trivial form. Namely, for arbitrary ν >
0 there is a homogeneous charged pion condensation (PC)
phase if μ < m=

ffiffiffi
2

p
, and at larger values of μ one can

observe the inhomogeneous chiral symmetry breaking
(ICSB) phase [m is a massive parameter presented in
Eq. (35)].
Our analysis shows that at infinitesimal values of ν5, i.e.,

at ν5 ¼ 0þ, this phase portrait is changed if both the chiral
and charged pion condensates are spatially inhomogeneous
in the form of Eq. (11) (see Fig. 2). Indeed, while at μ >
m=

ffiffiffi
2

p
one can see there the same ICSBd phase (here and

below the additional symbol “d” means that quark number
density in the phase is nonzero), at lower values of μ there is
a region which is called “Mixed inhomogeneous phase.” It
turns out that for each point ðμ; νÞ belonging to this region
the TDP (35) has two degenerate global minima, first of
them, i.e., the point of the form (M0 ¼ m, k0 ¼ −ν, k00 ¼ 0,

Δ0 ¼ 0), corresponds to ICSB phase, the second—the
point of the form (M0¼ 0, k0 ¼ 0, k00 ¼−ν5, Δ0 ¼ m)—
to inhomogeneous charged pion condensation (IPC) phase.
The degeneracy of these ground states means that for
arbitrary fixed values of chemical potentials μ and ν from
this region in the space, filled with ICSB (or chiral density
wave) phase, a bubble of the IPC phase (and vice versa) can
be created, i.e., one can observe in space the mixture (or
coexistence) of these two phases. Note also that in mixed
inhomogeneous phase of Fig. 2, etc. the quark number
density is zero.
The structure of ðμ; νÞ-phase diagrams at other fixed

values of the chiral chemical potential ν5 can be easily
understood from the phase portraits of Fig. 3, where ðμ; νÞ-
phase diagrams are presented for two qualitatively different
values of ν5. It clear from the figure that at each finite
ν5 > 0 the ðμ; νÞ-phase diagram contains the inhomo-
geneous charged pion condensation phase with nonzero
quark number density (IPCd). Moreover, the greater ν5, the
smaller the size of the ICSBd phase, which disappears from
a ðμ; νÞ-phase portrait at ν5 ≥ 0.2m. Hence, in the frame-
work of the initial NJL2 model, the chiral chemical
potential ν5 serves as a factor, which promotes the charged
pion condensation phenomenon in dense quark matter (it is
the IPCd phase in all figures).

2. Other phase diagrams and the role of duality

Before presenting the ðμ; ν5Þ- and ðν; ν5Þ-phase diagrams
at fixed values of ν and μ, respectively, and before obtaining
of the most general (ν, ν5, μ)-phase portrait of the model, let
us discuss the role and influence of the duality invariance
(24) of the model TDP (21)–(48) on the phase structure.
Suppose that at some fixed particular values of chemical

potentials μ, ν ¼ A and ν5 ¼ B the global minimum of the
TDP (48) lies at the point, e.g., (M ¼ M0 ≠ 0, k ¼ k0,
k0 ¼ 0, Δ ¼ 0). It means that for such fixed values of the
chemical potentials the chiral symmetry breaking (CSB)
phase is realized in the model (it is homogeneous if k0 ¼ 0
or inhomogeneous if k0 ≠ 0). Then it follows from the
duality invariance of the TDP (21) [or (48)] with respect to
the transformation D (24) that at permuted chemical
potential values (i.e., at ν ¼ B and ν5 ¼ A and intact value
of μ) the global minimum of the TDP ΩphysðM; k; k0;ΔÞ is
arranged at the point (M ¼ 0, k ¼ 0, k0 ¼ k0, Δ ¼ M0),
which corresponds to the charged, homogeneous or inho-
mogeneous, PC phase (and vice versa). This is the so-called
duality correspondence between CSB and charged PC
phases in the framework of the model under consideration.
Hence, the knowledge of a phase of the model (1) at

some fixed values of external free model parameters μ, ν, ν5
is sufficient to understand what phase (we call it a dually
conjugated) is realized at rearranged values of external
parameters, ν ↔ ν5, at fixed μ. Moreover, different physi-
cal parameters such as condensates, densities, etc., which
characterize both the initial phase and the dually conjugated

FIG. 2. The case of spatially inhomogeneous condensates: The
ðν; μÞ-phase portrait of the model at ν5 ¼ 0þ. The notation ICSBd
means the inhomogeneous chiral symmetry breaking phase with
nonzero quark number density. For arbitrary point of the region
“Mixed inhomogeneous phase” there is a degeneracy between
global minima of the TDP corresponding to inhomogeneous
chiral symmetry breaking and inhomogeneous charged pion
condensation phases. Quark number density in both is zero. m
is a massive parameter introduced in Eq. (35).
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one, are connected by the duality transformation D. For
example, the chiral condensate of the initial CSB phase at
some fixed μ, ν, ν5 is equal to the charged-pion condensate
of the dually conjugated charged PC phase, in which one
should perform the replacement ν ↔ ν5. Knowing the
particle density nqðν; ν5Þ of the initial CSB phase as a
function of chemical potentials ν, ν5, one can find the
particle density in the dually conjugated charged PC phase
by interchanging ν and ν5 in the expression nqðν; ν5Þ, etc.
The duality transformation D of the TDP can also be

applied to an arbitrary phase portrait of the model. In
particular, it is clear that if we have a most general (ν, ν5, μ)-
phase portrait, i.e., the one-to-one correspondence between
any point (ν, ν5, μ) of the three-dimensional space of
chemical potentials and possible model phases (CSB,
charged PC and symmetric phase), then under the duality
transformation (which is understood as a renaming both
of the diagram axes, i.e., ν ↔ ν5, and phases, i.e., CSB ↔
charged PC) this phase portrait is mapped to itself, i.e., the
most general (ν, ν5, μ)-phase portrait is self-dual. Further-
more, the self-duality of the (ν, ν5, μ)-phase portrait means
that in the three-dimensional (ν, ν5, μ) space the regions of
the CSB and charged PC phases (both homogeneous and
inhomogeneous) are arranged mirror-symmetrically with
respect to the plane ν ¼ ν5 of this space.
It follows from these rather general inferences that at

arbitrary fixed μ the ðν; ν5Þ-phase diagram of the model
is also self-dual, i.e., its CSB and charged PC (homo-
geneous or inhomogeneous) phases should lie mirror-
symmetrically with respect to the line ν ¼ ν5. These
conclusions are supported by Fig. 4, where we present
a typical self-dual ðν; ν5Þ-phase portrait of the model
for the case μ > m=

ffiffiffi
2

p
≈ 0.71m. If μ < m=

ffiffiffi
2

p
, then the

ðν; ν5Þ-phase portrait is even simpler because at each point
of it the “Mixed inhomogeneous phase” is realized. The
features of the structure of this phase were already
discussed in detail in the previous Sec. IV B 1. So it is
clear that both the “Mixed inhomogeneous phase” itself
and the ðν; ν5Þ-phase portrait of the model at fixed μ <
m=

ffiffiffi
2

p
are also self-dual.

Now let us show how to construct the ðν5; μÞ-phase
diagram of the model at arbitrary fixed value ν ¼ A. Of
course, in this case one can fulfill a numerical investigation
of the TDP (48). However, a simpler way [which is due to

FIG. 3. The case of spatially inhomogeneous condensates: The ðν; μÞ-phase portrait of the model at ν5 ¼ 0.1m (left figure) and at
ν5 ≥ 0.2m (right figure). Here SYM denotes the symmetrical phase, in the IPCd region a global minimum of the TDP corresponds to the
inhomogeneous charged pion condensation phase with nonzero quark number density. Other notations are the same as in Fig. 2.

FIG. 4. The case of spatially inhomogeneous condensates: The
ðν; ν5Þ-phase portrait of the model at μ ¼ 0.75m. All notations
are described in Figs. 2 and 3.
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the dual invariance (24) of the TDP] is to perform the dual
transformation of the ðν; μÞ-phase diagram at the corre-
sponding fixed value ν5 ¼ A. For example, to find the
ðν5; μÞ-phase diagram at ν ¼ 0.1m we should start from the
ðν; μÞ-diagram at fixed ν5 ¼ 0.1m of Fig. 3 (left panel) and
make the simplest replacement in the notations of this
figure: ν ↔ ν5, IPCd ↔ ICSBd. (Note, the symmetrical
and mixed inhomogeneous phases are intact under the dual
transformation.) As a result of this mapping, we obtain the
phase diagram of Fig. 5. In a similar way one can dually
transform Fig. 2 and Fig. 3 (right panel) in order to find the
ðν5; μÞ-phase diagrams at ν ¼ 0þ and ν ≥ 0.2m, respec-
tively, etc.
The behaviour of different order parameters, such as

chiral M0 and charged PC Δ0 condensates as well as
corresponding wave vectors k0 and k00 [note that the point
(M0, k0, k00, Δ0) is the GMP of the TDP (48)], as functions
of the chemical potential ν5 at fixed values of μ ¼ m and
ν ¼ 0.1m is presented in Fig. 6. It is clear from the figure
that in the critical point ν5 ¼ 0.1m there is a phase
transition in the system from ICSBd phase [where the
GMP has the form (M0 ≠ 0, k0 ≠ 0, k00 ¼ 0, Δ0 ¼ 0)] to
IPCd phase [where the GMP looks like (M0 ¼ 0, k0 ¼ 0,
k00 ≠ 0, Δ0 ≠ 0)]. Since in this point a GMP of the system
changes its location by a jump, we conclude that it is a
phase transition of the first order.
Now, taking into account the particular phase diagrams

of Figs. 2–5, it is possible to represent schematically the
most general phase portrait of the model in the space of
chemical potentials ν, ν5, μ (see Fig. 7). As is easily seen
from this figure, the charged pion condensation and chiral
symmetry breaking phases are arranged mirror-symmetri-
cally with respect to the plane ν ¼ ν5, i.e., the phase
diagram is self-dual. Moreover, it supports the above

conclusion: the charged PC phenomenon can be realized
in chirally asymmetric quark matter with nonzero baryon
density.
Finally, a few words about the order of phase transitions

between phases depicted in Fig. 7. Numerical analysis of
the TDP (48) gives us the form of its GMP (M0, k0, k00, Δ0)
and especially the behavior of the GMP vs chemical
potentials on the boundaries between phases. Since on
the boundary between ICSBd and IPCd phase the GMP
changes its position in the (M, k, k0,Δ) space by a jump, we
conclude that on this boundary there are first order phase
transitions. (The situation is well illustrated by Fig. 6,

FIG. 5. The case of spatially inhomogeneous condensates: The
ðν5; μÞ-phase portrait of the model at ν ¼ 0.1m. All notations are
described in Figs. 2 and 3.

FIG. 6. The case of spatially inhomogeneous condensates: The
behavior of the coordinatesM0, k0, k00,Δ0 of the GMP of the TDP
(48) as functions of ν5 for fixed μ ¼ m and ν ¼ 0.1m.

FIG. 7. Schematic representation of the (ν5, ν, μ)-phase portrait
of the model in the case of spatially inhomogeneous condensates.
The notations are the same as in Figs. 2 and 3. The points which are
outside IPCd-, ICSBd- and “Mixed inhomogeneous phase”-
regions of the diagram correspond to the symmetric phase of
the model.
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where for particular values of chemical potentials just a first
order phase transition occurs between ICSBd and IPCd
phases.) However, numerical investigations show that on
the boundary between ICSBd and symmetrical as well as
between IPCd and symmetrical phases there occurs a
second order phase transition. In our opinion, when one
talks about the transitions from the region “Mixed inho-
mogeneous phase” to other phases, it does not make sense
to talk about the order of the phase transition or even about
the phase transition itself. The reason is the fact that in
“Mixed inhomogeneous phase” the system has two equiv-
alent minima corresponding to IPC or ICSB phases, and we
do not know which one is realized at the moment.

V. SUMMARY AND CONCLUSIONS

In this paper the phase structure of the NJL2 model
(1) with two quark flavors is investigated in the large-Nc
limit in the presence of baryon μB, isospin μI, and chiral
isospin μI5 chemical potentials. Moreover, we take into
account the possibility of existence of spatially inhomo-
geneous condensates which are assumed to have the form
of a chiral density wave for chiral condensate and a single
plane wave for charged pion one [see in Eq. (11)].
Recall that for the particular case with μI5 ¼ 0 and with

account only for chiral density wave, the problem was
solved earlier in Refs. [28,33], where it was shown that the
toy model (1) does not predict a charged PC phase of dense
and isotopically asymmetric quark matter. If μI5 ≠ 0 and
both condensates are spatially homogeneous, this model
was considered in Ref. [35], where it was shown that μI5
promotes charged PC phase with nonzero baryon density.
The most general (ν, ν5, μ)-phase diagram of the model in
this case is depicted schematically in Fig. 1 of the present
paper, where this phase is denoted as PCd. In contrast to
Ref. [35], our present consideration of the model (1) is
mainly devoted to study of the properties of chirally
(μI5 ≠ 0) and isotopically (μI ≠ 0) asymmetric dense
(μB ≠ 0) quark matter with inhomogeneous condensates
of the form (11).
Let us summarize some of the most interesting results

obtained.
(1) We proved that the main conclusion made in

Ref. [35] for the model (1) under the assumption
that all condensates are homogeneous, i.e., that
charged PC phase with nonzero baryon density
can be realized in chirally asymmetric dense
quark matter, holds also for the case of spatially
inhomogeneous condensates. Furthermore, in the
last case this phase is realized for larger region of a
phase diagram and hence for broader range of μI5
(compare Fig. 1 and Fig. 7). In particular, in the
inhomogeneous case the dense PC phase is realized
at any nonzero μI5 in contrast to homogeneous case,
where it is realized only for rather large values of μI5
(larger than some particular value). This means that

in dense quark matter charged pion condensation
takes place even at small chiral asymmetry.

(2) In this model inhomogeneous condensates are
quite favored compared to homogeneous conden-
sates. For nonzero values of the chiral isospin
chemical potential μI5 and isospin chemical potential
μI , all phases at the phase diagram are inhomo-
geneous or symmetric ones.

(3) We demonstrated in the framework of the NJL2

model (1), that in the inhomogeneous case duality
correspondence between CSB and charged PC
phenomenon takes place in the leading order of
the large-Nc approximation.

Finally, the main result of this paper is that the chemical
potential μI5 generates charged pion condensation in dense
quark matter. This effect is realized both in spatially
homogeneous and inhomogeneous approaches for conden-
sates, but in the inhomogeneous case it is even enhanced.
After our work was finished, we found a recent paper

[59], where it was discussed a possibility for charged pions
to act as a probe for measuring the strong CP violation in
chirally imbalance matter. Since in the charged PC phase
the isotopic density is nonzero, which also implies the
possibility of a nonzero density of charged pions, we guess
that our results support this mechanism for detecting the
CP violation in chirally asymmetric baryon matter.
Moreover, we believe that our analysis may shed some
new light on other physical effects in chirally and isotopi-
cally asymmetric dense quark matter in the case of realistic
(3þ 1)-dimensional spacetime. It is applied primarily to
heavy-ion colliding systems, where the external magnetic
field can reach high values, and spacetime is effectively
(1þ 1)-dimensional.

APPENDIX: EVALUATION OF THE ROOTS
OF THE POLYNOMIAL P4ðp0Þ (22) AT k= k0 = 0

1. General consideration

At k ¼ k0 ¼ 0 it is very convenient to present the fourth-
order polynomial (22) of the variable η≡ p0 þ μ as a
product of two second-order polynomials (this way is
proposed in [60]), i.e., we assume that

η4 − 2aη2 − bηþ c ¼ ðη2 þ rηþ qÞðη2 − rηþ sÞ

¼
��

ηþ r
2

�
2

þ q −
r2

4

�

×

��
η −

r
2

�
2

þ s −
r2

4

�

≡ ðη − η1Þðη − η2Þðη − η3Þðη − η4Þ;
ðA1Þ

where r, q, and s are some real valued quantities, such that
[see the relations (22)]:
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−2a≡−2ðM2þΔ2þp2
1þ ν2þ ν25Þ ¼ sþq− r2;

−b≡−8p1νν5 ¼ rs−qr;

c≡a2− 4p2
1ðν2þ ν25Þ− 4M2ν2− 4Δ2ν25− 4ν2ν25 ¼ sq:

ðA2Þ

In the most general case, i.e., at M ≥ 0, Δ ≥ 0, ν ≥ 0, ν5 ≥
0 and arbitrary values of p1, one can solve the system of
equations (A2) with respect to q, s, r and find

q ¼ 1

2

�
−2aþ Rþ bffiffiffiffi

R
p

�
; s ¼ 1

2

�
−2aþ R −

bffiffiffiffi
R

p
�
;

r ¼
ffiffiffiffi
R

p
; ðA3Þ

where R is an arbitrary positive real solution of the
equation

X3 þ AX ¼ BX2 þ C ðA4Þ

with respect to a variable X, and

A ¼ 4a2 − 4c ¼ 16½ν25Δ2 þM2ν2 þ ν25ν
2 þ p2

1ðν2 þ ν25Þ�;
B ¼ 4a ¼ 4ðM2 þ Δ2 þ ν2 þ ν25 þ p2

1Þ;
C ¼ b2 ¼ ð8ν5νp1Þ2: ðA5Þ

Finding (numerically) the quantities q, s, and r, it is
possible to obtain from Eq. (A1) the roots ηi:

η1 ¼ −
r
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
r2

4
− q

r
; η2 ¼

r
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
r2

4
− s

r
;

η3 ¼ −
r
2
−

ffiffiffiffiffiffiffiffiffiffiffiffi
r2

4
− q

r
; η4 ¼

r
2
−

ffiffiffiffiffiffiffiffiffiffiffiffi
r2

4
− s

r
: ðA6Þ

Numerical investigation shows that in the most general
case the discriminant of the third-order algebraic
equation (A4), i.e., the quantity 18ABC − 4B3Cþ
A2B2 − 4A3 − 27C2, is always nonnegative. So the
equation (A4) vs X has three real solutions R1, R2,
and R3 (this fact is presented in [60]). Moreover, since
the coefficients A, B, and C (A5) are nonnegative, it is
clear, due to a form of the Eq. (A4), that all its roots R1,
R2, and R3 are also nonnegative quantities (usually, they
are positive and different). So we are free to choose the
quantity R from (A3) as one of the positive solutions R1,
R2 or R3. In each case, i.e., for R ¼ R1, R ¼ R2, or
R ¼ R3, we will obtain the same set of the roots (A6)
(possibly rearranged), which depends only on ν, ν5, M, Δ
and p1, and does not depend on the choice of R. Due
to the relations (A1)–(A6), one can find numerically
(at fixed values of μ, ν, ν5, M, Δ, and p1) the roots
ηi ¼ p0i þ μ (A6) and, as a result, investigate numerically
the TDP (31). It is clear also from Eqs. (A1)–(A6) that
the roots ηi are even functions vs p1. So in all improper

p1 integrals, which include quasiparticle energies p0i
[see, e.g., the integral in Eq. (31)], we can confine
ourselves by integration over nonnegative values of p1

(up to a factor 2).
On the basis of the relations (A1)–(A6) let us

consider the asymptotic behavior of the quasiparticle
energies p0i at p1 → ∞. First of all, we start from the
asymptotic analysis of the roots R1;2;3 of the Eq. (A4) at
p1 → ∞,

R1 ¼ 4ν2 −
4Δ2ν2

p2
1

þOð1=p4
1Þ; ðA7Þ

R2 ¼ 4ν25 −
4M2ν25
p2
1

þOð1=p4
1Þ; ðA8Þ

R3 ¼ 4p2
1 þ 4ðM2 þ Δ2Þ þ 4ðν25M2 þ ν2Δ2Þ

p2
1

þOð1=p4
1Þ:

ðA9Þ

It is clear from these relations that R3 is invariant,
whereas R1 ↔ R2 under the duality transformation (24).
Then, using for example R3 (A9) as the quantity R in
Eqs. (A3) and (A6), one can get the asymptotics of the
quasiparticle energies p0i ≡ ηi − μ at p1 → ∞,

p01 ¼ −jp1j − μþ jν5 − νj − Δ2 þM2

2jp1j
þOð1=p2

1Þ;

p02 ¼ jp1j − μþ ν5 þ νþ Δ2 þM2

2jp1j
þOð1=p2

1Þ;

p03 ¼ −jp1j − μ − jν5 − νj − Δ2 þM2

2jp1j
þOð1=p2

1Þ;

p04 ¼ jp1j − μ − ν5 − νþ Δ2 þM2

2jp1j
þOð1=p2

1Þ: ðA10Þ

Finally, it follows from (A10) that at p1 → ∞

jp01j þ jp02j þ jp03j þ jp04j

¼ 4jp1j þ
2ðΔ2 þM2Þ

jp1j
þOð1=p2

1Þ: ðA11Þ

For the purposes of the renormalization of the TDP (31),
it is very important that the leading terms of this
asymptotic behavior do not depend on different chemi-
cal potentials, i.e., the quantity

P
4
i¼1 jp0ij at μ ¼ ν ¼

ν5 ¼ 0 has the same asymptotic (A11). This conclu-
sion confirms a rather general statement that counter-
terms do not depend on external parameters. So the
coupling constant GðΛÞ (35) is enough to renormalize
the model.
Moreover, we would like to emphasize once again that

the asymptotic behavior (A11) does not depend on which
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of the roots R1, R2, or R3 of the Eq. (A4) is taken as the
quantity R from the relations (A3).

2. Consideration of some particular cases

Note that in some particular cases it is possible to
solve exactly the third order auxiliary equation (A4) and,
as a result, to present the quasiparticle energies p0i [or
the roots ηi of the polynomial (A1)] in an explicit
analytical form.
1. The case μ ¼ ν ¼ ν5 ¼ 0. It is clear from Eqs. (A4)

and (A5) that at ν ¼ ν5 ¼ 0 we have A ¼ C ¼ 0, so
R1;2 ¼ 0, R3 ¼ 4ðM2 þ Δ2 þ p2

1Þ. In this case we have
R ¼ R3 and find that q ¼ s ¼ r2=4 ¼ M2 þ Δ2 þ p2

1,
η1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ Δ2 þ p2

1

p
and η3;4 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ Δ2 þ p2

1

p
. If

in addition μ ¼ 0, then

ðjp01j þ jp02j þ jp03j þ jp04jÞjμ¼ν¼ν5¼0

¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ Δ2 þ p2

1

q
: ðA12Þ

As was noted above, this quantity at p1 → ∞ is expanded
in the form (A11).
2. The case Δ ¼ 0. In this particular case the exact

expression for the set of quasiparticle energies p0i was
already presented in Eq. (28). Here we would like to
demonstrate how this result is reproduced in the framework
of the procedure (A1)–(A6).
It is easy to see that at Δ ¼ 0 there is an evident root

R1 ¼ 4ν2 of the polynomial (A4). On this basis we can find
exact expressions for the other two its roots,

R2;3 ¼ 2ðM2 þ ν25 þ p2
1Þ � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2 þ ν25 þ p2

1Þ2 − 4ν25p
2
1

q

¼ ðE1 � E2Þ2; ðA13Þ

where

E1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðp1 þ ν5Þ2

q
;

E2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðp1 − ν5Þ2

q
: ðA14Þ

If R1 ¼ 4ν2 is taken as the quantity R of the relations (A3),
then, using Eq. (A3) in Eq. (A6), we obtain directly the
expression (28) for the set of quasiparticle energies P0i
at k ¼ k0 ¼ 0.
If, e.g., R ¼ R3 ≡ ðE1 þ E2Þ2, then, taking into account

the evident relation E2
1 − E2

2 ¼ 4p1ν5, we have from
Eq. (A3)

r ¼ E1 þ E2; q ¼ E1E2 − ν2 þ νðE1 − E2Þ;
s ¼ E1E2 − ν2 − νðE1 − E2Þ;

r2

4
− q ¼ ðE1 − E2 − 2νÞ2

4
;

r2

4
− s ¼ ðE1 − E2 þ 2νÞ2

4
: ðA15Þ

Using these relations in Eq. (A6), we receive for the
quasiparticle energies p0i the same set as in (28) at
k ¼ k0 ¼ 0. Thereby we have demonstrated that the set of
roots ηi (A6) does not depend on which of the solutions R1,
R2, or R3 of the Eq. (A4) is used as the quantity R in the
relations (A3).
3. The caseM ¼ 0. In a similar way it is possible to show

that Eq. (A4) at M ¼ 0 has the following three roots:

R1 ¼ 4ν25; R2;3 ¼ ðE1 � E2Þ2; ðA16Þ

where

E1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ ðp1 þ νÞ2

q
;

E2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ ðp1 − νÞ2

q
: ðA17Þ

On the basis of each of them, using the relations (A6)
and (A3), one can obtain the set of quasiparticle energies
(29) at k ¼ k0 ¼ 0.
4. The case ν5 ¼ ν. In this particular case Eq. (A4) has

the following three roots:

R1 ¼ 4ν2; R2;3 ¼ ð ~E1 � ~E2Þ2; ðA18Þ

where

~E1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ Δ2 þ ðp1 þ νÞ2

q
;

~E2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ Δ2 þ ðp1 − νÞ2

q
: ðA19Þ

Taking for simplicity R ¼ R1 in Eq. (A3) and using the
relations (A6), we have in this case for the quasiparticle
energies p0i the following set of values:

fp01; p02; p03; p04gjν5¼ν

¼
n
−μ − ν�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ Δ2 þ ðp1 − νÞ2

q
;

− μþ ν�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ Δ2 þ ðp1 þ νÞ2

q o
: ðA20Þ
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