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In a previous paper, we derived the quantum states of a Dirac particle in a circular, intense magnetic field
in the limit of low momentum perpendicular to the field with the purpose of giving a quantum description
of the trajectory of an electron, or a positron, in a typical pulsar or magnetar magnetosphere. Here we
continue this work by computing the radiation resulting from transitions between these states. This leads us
to derive from first principles a quantum theory of the so-called curvature and synchro-curvature radiations
relevant for rotating neutron star magnetospheres. We find that, within the approximation of an infinitely
confined wave function around the magnetic field and in the continuous energy-level limit, classical
curvature radiation can be recovered in a fully consistent way. Further we introduce discrete transitions to
account for the change of momentum perpendicular to the field and derive expressions for what we call
quantum synchro-curvature radiation. Additionally, we express deconfinement and quantum recoil
corrections.
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I. INTRODUCTION

In a previous paper [1] (hereafter paper 1), we derived
the states of an electron in a curved strong magnetic field
within the approximation of a very low momentum
perpendicular to the magnetic field. To ease calculations,
it is convenient to consider a “circular” magnetic field, that
is the field lines are of constant curvature and so form
circles. In this paper, we compute the transition rates
between these states in the limit of high momentum parallel
to the magnetic field, in such a way that parallel transition
can be considered approximately continuous. Our goal is
to derive a quantum-electrodynamics theory of curvature
radiation and low synchro-curvature radiation in the con-
text of rotating neutron star magnetospheres. These mag-
netospheres are characterized by intense magnetic field
from 105 Teslas for recycled millisecond pulsars to 1011

Teslas for magnetars. The radius of curvature of magnetic
field lines is typically larger than 10 km, which is the
typical radius of the star, within the assumption of a dipolar
magnetic field. Extremely large electric-potential gaps
along the open magnetic-field lines (see e.g., [2] for a
review) accelerate charged particles to energies only limited
by radiation reaction at Lorentz factors as high as 105–108.
In this regime, an electron loses all of its momentum

perpendicular to the magnetic field after traveling a few
meters in the synchro-curvature regime (see hereafter and
[3]). When only parallel momentum remains, radiation

reaction is attributed to the so-called curvature radiation
along the magnetic field [4], which is the radiation of a
charged particle following exactly a locally circular tra-
jectory. Synchrotron radiation can be seen as a particular
case where the trajectory is the cyclotron trajectory.
However, curvature radiation usually refers to the case
of a magnetic-field-line trajectory, and therefore is not
strictly physical, in the sense that a particle not rotating
around the field does not undergo any force capable of
keeping it along. Therefore, curvature radiation is better
seen as the mathematical zero-perpendicular-momentum
limit of the so-called synchro-curvature radiation [5] that
describes the classical theory of radiation by a charged
particle with low perpendicular momentum in a locally
circular magnetic field. Quantum corrections were added
by [6] and later by [7] in the form of an effective correction
to classical expressions in analogy with equivalent photon
theories developed for synchrotron radiation which essen-
tially amounts to the replacement ω → ωð1þ ℏω=EÞ in the
transition probability ω−1IðωÞ accounting for quantum
recoil, where I is the intensity per pulsation ω and E is
the energy of the particle. A formalism based on effective
electric fields was developed [7] to deal with further
inhomogeneities of the magnetic field such as a
perpendicular gradient of intensity. A more compact but
equivalent formalism for synchro-curvature radiation was
also developed [8]. Recently, a description [9] with a self-
consistent trajectory that takes carefully into account the
drift along the cylinder generated by the circular field
showed that the drift effectively changes the curvature*guillaume.voisin@obspm.fr
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radius for relatively large Lorentz factors or low magnetic
field intensities. As we pointed out in paper 1, classical
synchro-curvature (CSC) radiation results in numerous
cases in a very fast decay of the perpendicular momentum
of the particle which can reach the first Landau levels, if
one assumes the well-known quantum theory of an electron
in a homogeneous-intensity uniform-orientation magnetic
field (see e.g., [10]). One then has to take into account
discrete transitions from one Landau level to another
[11,12]. This is particularly interesting when the plasma
is at rest in the frame of the star such that the uniform-
magnetic-field theory is locally relevant. This is the case for
example in x-ray binaries where x-ray cyclotron lines have
been observed and where two levels are typically separated
by 11.6B8 keV with B8 ¼ B=ð108 TeslasÞ [13].
Therefore, classical synchro-curvature cannot hold for

very low perpendicular momenta since the synchrotron part
becomes discrete. This effect cannot be taken into account
with the usual quantum recoil corrections which apply in
the continuous limit. Besides it does not take into account
the fact that two quantum numbers are changing, one
for parallel and another for perpendicular momenta.
Simultaneously, cyclotron transitions are irrelevant for
particles with high parallel momenta since they do not
take into account longitudinal transitions, that is the
curvature part of the radiation. In this paper, we start from
first principles using the quantum states derived in paper 1.
The resulting radiation results from transitions in the
continuous approximation for parallel momentum varia-
tions and discrete for perpendicular momentum variations.
Parallel transitions are treated in a similar way as [10] did
for the quantum theory of synchrotron radiation (see also
[14,15]). With this formalism syncho-curvaturelike and
curvaturelike components appear in a very distinct fashion.
As mentioned in paper 1, we neglect every drift of the
particle, which is very appropriate except at extremes of the
magnetic-field and Lorentz-factor ranges mentioned above.
We also find additional corrections in ðℏω=EÞpðBc=BÞq
where p, q are positive integers, Bc ¼ 4.4 × 109 Teslas
being the critical field of Landau states and B being the
magnetic-field intensity. We interpret these as deconfine-
ment corrections, in the sense that they give the difference
between a pointlike particle and an extended wave function
around the magnetic-field line. At leading order, we find
the classical curvature (CC) radiation.
This paper is organized as follows: in Sec. II we

introduce the general formalism to compute quantum
transitions; in Sec. III we develop this formalism in the
particular case of curvature radiation which allows us to
introduce notations and concepts that we generalize in
Sec. IV to the general case of synchro-curvature radiation;
in Sec. V we integrate the previously found expressions
over solid angles to obtain power spectra; and in Sec. VI we
discuss these results around the example of a millisecond
pulsar.

II. RADIATION OF CONFINED PARTICLES
IN QUANTUM ELECTRODYNAMICS

We compute the interaction of the electron with the
photon vacuum to the first order of perturbation theory. The
Hamiltonian of interaction is

Ĥint ¼
Z

ecΨ̄fγ
μΨiÂμd3x⃗; ð1Þ

where Ψi is the initial state of the electron, Ψ̄f ¼ Ψ�
fγ

0

being the Dirac conjugate of the final state. Â is the vacuum
amplitude operator [see e.g., [16] Eq. (11.98)], in the
Heinsenberg representation

Âμ ¼
ffiffiffiffiffiffiffiffiffiffi
ℏ

2ϵ0V

s X
k⃗;e

1ffiffiffiffiffiffi
ωk

p
�
ak⃗;zeμðk⃗Þe{ðk⃗·x⃗−ωktÞ

þ a†
k⃗;ϵ
e�μðk⃗Þe−{ðk⃗·x⃗−ωktÞ

�
; ð2Þ

where we consider photons of four-vector ðℏωk=c;ℏk⃗Þ
with polarizations eμðk⃗Þ ¼ ðe0ðk⃗Þ; e⃗ðk⃗ÞÞ in the transverse

(Coulomb) gauge such that k⃗ · e⃗ ¼ 0. ϵ0 ≃ 8.854 ×
10−12 F=m is the electric permittivity of vacuum and
V ≡ L3 the volume of quantification.
Since the number of electrons does not vary we need not

quantify the electron field Ψ.
The rate of transition from vacuum to a state with one

photon characterized by ðk⃗; eÞ while the electron switches
from an initial state i to a final state f is given by

wfi ¼
∂
∂t

����
����
Z

t

0

dτe{
Efþℏω−Ei

ℏ τh1k⃗;e; fj
Ĥint

ℏ
j0; ii

����
����2; ð3Þ

which after standard manipulation (e.g., [17], [10]) gives

wfi ¼ ∥Mfi∥22πℏδðEf þ ℏω − EiÞ; ð4Þ

where Mfi ¼ h1k⃗;ϵ; fj Ĥint
ℏ j0; ii is the matrix element of the

transition, which in this case can be explicitly written for
each mode as

Mfi ¼ e
jμeμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ϵ0ℏωkV
p ; ð5Þ

where jμ are the components of the transition current

jμ ¼ c
Z

Ψ̄fγ
μΨie−{k⃗·x⃗d3x: ð6Þ

In the continuum limit, we obtain the differential
probability of radiating a photon in the solid angle do at
a pulsation in dω by multiplying by the density of such
states ω2dodω

c3ð2πÞ3=V,
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dwfi ¼ ∥Mfi∥22πℏδðEf þ ℏω − EiÞ
ω2dodω
c3ð2πÞ3=V : ð7Þ

To obtain the radiated intensity we need only multiply by
the photon energy ℏω the differential probability (7), and

sum over every possible final energy state applying
R dEf

ℏΩ in
the continuum limit and ultrarelativistic limit defined below
along with Ω. The intensity per pulsation per solid angle
corresponding to a transition between an initial state i and a
final state f reads

d2Ie⃗f;i
dodω

¼ ℏω3V
Ωð2πÞ2c3 ∥Mfi∥2ðEf ¼ Ei − ℏωÞ: ð8Þ

III. CLASSICAL CURVATURE RADIATION FROM
QUANTUM ELECTRODYNAMICS

In this paper we consider ultrarelativistic particles
traveling along a circular magnetic field, the states of
which were derived in paper 1 [1]. The proper energies can
be written as

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ 2m2c4

B
Bc

nþ ℏ2Ω2l∥2

s
ð9Þ

where B is the magnetic field, Bc ¼ m2c2
eℏ ¼ 4.4 × 109

Teslas is the critical magnetic field for which the difference
between two Landau levels is equal to the rest mass energy
of the electron, and Ω ¼ c=ρ is the pulsation of the particle
along the main circle (see Fig. 1). The numbers n and l∥ are
integers respectively quantifying the angular momentum
around the magnetic field and around the axis of the
circular magnetic field (see Fig. 1).
In the theory of classical curvature radiation the rotation

of the particle around the trajectory is neglected. Here we
therefore take the lowest perpendicular state that is n ¼ 0.
Moreover, recalling that in the ultrarelativistic approxima-
tion most of the energy is in the longitudinal term, we
expand the energy (9) as

E ¼ ℏΩl∥
�
1þ 1

2γ2
þ○

�
1

γ4

��
ð10Þ

where γ ¼ E=ðmc2Þ is the classical Lorentz factor. The
wave function corresponding to this perpendicular funda-
mental state (see paper 1) is given to ○ðγ−2Þ by

Ψ0 ¼
eil∥θe−x

2=2

2π
ffiffiffiffiffiffiffi
ρλ2

p
0
BBBBB@

i sin θ
2

− cos θ
2

−i sin θ
2

cos θ
2

1
CCCCCA; ð11Þ

where ρ is the radius of the classical trajectory that we call
here the main circle and

λ ¼
�
2ℏ
eB

�
1=2

ð12Þ

is the magnetic length scale which characterizes the extent
of the wave function perpendicular to the main circle. We
use the toroidal coordinates related to the Cartesian system
ðx; y; zÞ by the homeomorphism

T∶ðr; θ;ϕÞ →

0
B@ x ¼ r cosϕ

y ¼ cos θðρþ r sinϕÞ
z ¼ sin θðρþ r sinϕÞ

1
CA; ð13Þ

where θ represents the direct angle with respect to the y⃗ axis
in the ðy⃗; z⃗Þ plane, ϕ represents the direct angle with respect

to x⃗ in the plane ðx⃗; y⃗0Þ of the local frame ðx⃗; y⃗0; u⃗θÞ image
of ðx⃗; y⃗; z⃗Þ by a rotation of θ around x⃗ and r represents
the distance to the main circle. For further references on
the coordinate system, see paper 1 and Fig. 1. Here we
use the reduced variable x ¼ r=λ. Moreover, the approxi-
mation used in paper 1 imposes that all our expressions are
given to leading order in

ϵ ¼ λ=ρ ≪ 1: ð14Þ

We now have all the ingredients to compute the
current (6) for a transition between two perpendicular

FIG. 1. Representation of a circular magnetic field line (green)
of radius ρ, called the “main circle” in the text. The blue shadow
around the line represents the wave function of a ground
orthogonal level with a characteristic extent λ. The relation
between the toroidal coordinates ðr; θ;ϕÞ and the Cartesian
coordinates ðx; y; zÞ is also shown.

QUANTUM THEORY OF CURVATURE AND SYNCHRO- … PHYSICAL REVIEW D 95, 105008 (2017)

105008-3



fundamentals of initial longitudinal number l∥i and final
l∥f. It reads

j00 ¼
1

2π2

�
0;
Z

sin θe−x
2

eiðli−lfÞθ−iλk⃗·x⃗d3x⃗; ð15Þ
Z

cos θe−x
2

eiðli−lfÞθ−iλk⃗·x⃗d3x⃗
�
; ð16Þ

with a dimensionless d3x⃗ ¼ xdxdθdϕþ○ðϵÞ.
In the following we restrict ourselves to wave numbers

lying in the ðz⃗; x⃗Þ plane defined as

k⃗ ¼ kðsin κ; 0; cos κÞ ð17Þ

where κ is the direct angle from the z axis. Since x⃗ is a
symmetry axis, this is done without loss of generality. This
allows us to choose the polarization basis (we use the same
basis as used in the textbook [18])

e⃗∥ ¼ ð0; 1; 0Þ;

e⃗⊥ ¼ k⃗
k
∧ e⃗∥ ¼ ð− cos κ; 0; sin κÞ: ð18Þ

From a classical point of view, the parallel polarization e⃗∥
points towards the center of the trajectory of the electron,
and the perpendicular polarization e⃗⊥ completes the direct
triad ðk⃗=k; e⃗∥; e⃗⊥Þ.
From Eq. (10), one derives the relation between the

variation of the parallel quantum number Δl∥ ¼ l∥i − l∥f
and the variation of energy of the electron Ei − Ef ¼ ℏω,
where ω is the pulsation of the emitted photon. Considering
l∥ as a continuous parameter, the energy variation can be
Taylor expanded,

ℏω ¼ Δl∥
∂El∥;σ

∂l∥
����
i

−
Δl∥2

2

∂2El∥;σ

∂l∥2
����
i

; ð19Þ

which is inverted into

Δl∥ ¼
ω

Ω

�
1þ 1

2γ2

�
þ○

�
ℏω
E

�
: ð20Þ

We give additional ℏω=E terms, which are quantum recoil
corrections, in the next sections.
The imaginary exponential in the current (15) can be

rewritten, using (20) and expanding the scalar product
thanks to (13) and (17), as

e
iωΩð1þ 1

2γ2
Þθ−iρk cos κ sin θ

e−ixλkðcosϕ sin κþsinϕ cos κ sin θÞ: ð21Þ

The second factor above exists only in the quantum
mechanical theory. One can easily be convinced of that
by noticing the presence of the magnetic length λ (12),

which contains the Planck constant λ ∝ ℏ1=2. To obtain the
classical theory one therefore puts λ ¼ ℏ ¼ 0. We neglect
this factor (put it to 1) in the first part of the following
discussion and then reintroduce it.
As in the usual treatment of classical synchrotron or

curvature radiation (see e.g., [18]) we consider the approxi-
mation of high frequency photons in which

ω ≫ Ω: ð22Þ

It follows that one can develop the phase in the first factor
above to third order in θ since the exponential oscillates
heavily even for θ ≪ 1 as found in the literature on the
classical radiation. One also expects a very high relativistic
beaming implying that κ ∼ 1=γ, and we can therefore
expand cos κ ¼ 1 − 1

2
κ2 þ○ðκ4Þ. We also notice that

ρk ¼ ω=Ω. It follows that (21) now reads

e
i ω
2Ωððκ2þ 1

γ2
Þθþθ3

3
Þ
: ð23Þ

We check the consistency of our approximations by
looking at the qualitative behavior of (23) above when
integrated over θ as in (15).

(i) When in the integral θ > θ̄ ¼ ðκ2 þ 1
γ2
Þ1=2 the θ3

term in the phase becomes dominant.
(ii) If ωΩ θ̄

3 > 1 then the exponential oscillates heavily for
θ ≫ θ̄ and kills the remaining part of the integral.
This sets a critical pulsation ω ∼ θ̄−3Ω above which
the integral starts to decay.

(iii) The smallest critical pulsation corresponds to κ ¼ 0.
More generally, if κ ≫ 1=γ the transitions remain
possible on a much smaller part of the spectrum, and
we recover the relativistic beaming condition that
transitions are most likely for κ ∼ 1=γ. Further we
use the definition given by, e.g., [19] or [18] to
define the critical pulsation of the dominant con-
tribution as

ωcrit ¼
3

2
Ωγ3: ð24Þ

(iv) As a result, the dominant contribution to the integral
comes from the part where θ ∼ 1=γ. This justifies the
earlier expansion of trigonometric functions in θ.

Let us reintroduce the second factor in (21). If one
assumes the previous result that θ ∼ κ ∼ 1=γ and x ∼ 1 then
the amplitude of the phase is about

λk
γ
¼ ℏω

E

�
2Bc

B

�
1=2

: ð25Þ

Therefore there is a range of magnetic fields and electron
energies (remember that ω ∼ ωcrit) for which this amplitude
is small. For example, for a typical pulsar with B ¼ 108
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Teslas, γ ¼ 107 and a dipolar magnetic field with
curvature next to the pole of ρ ¼ 104 m (see e.g., [2])
one has

λωcrit=c
γ

≃ 0.05γ27ρ
−1
4 B−1=2

8 : ð26Þ

For now, we can legitimately consider these corrections to
be negligible. This amounts to considering that the particle
is infinitely confined, λ ¼ 0, as in the classical theory.
We bring back the deconfinement corrections in the next
sections.
We proceed to integrate the expressions in the current

(15). Integration over ϕ simply yields a factor 2π since
within our approximation of infinite confinement there is
no explicit dependence in ϕ. Integration over x of xe−x

2

yields a factor 1=2. To integrate over θ, we use the fact that
sin θ and cos θ are slowly varying compared to the
exponential for θ ≫ 1=γ to develop them to first order
in θ. Moreover, we extend the boundaries to infinity since
the contributing part is centered on θ ≪ 1. We get the two
following integrals:

Icos ¼
Z þ∞

−∞
ei

ω
2Ωðθðκ2þ1

~γÞþθ3

3
Þdθ; ð27Þ

Isin ¼
Z þ∞

−∞
θei

ω
2Ωðθðκ2þ1

~γÞþθ3

3
Þdθ; ð28Þ

and

j00 ¼
1

2π
ð0; Icos; IsinÞ: ð29Þ

We recognize in (27) an Airy integral and its derivative
in (28). We use in this paper the definitions of special
functions of [20] where the Airy function is given by

AiðxÞ ¼ 1

2π

Z
∞

−∞
dteiðxtþ

t3
3
Þ: ð30Þ

After performing the change of variable

~θ → θ ¼
�

ω

2Ω

�
−1=3

~θ ð31Þ

one identifies x ¼ ðω=2ΩÞ2=3ðκ2 þ 1
~γ2
Þ and obtains

Icos ¼ 2πðω=2ΩÞ−1=3AiðxÞ; ð32Þ

Isin ¼ −2πðω=2ΩÞ−2=3Ai0ðxÞ: ð33Þ

For practical calculations, the Airy integrals can be changed
into modified Bessel functions Kν,

K1=3ðξÞ ¼ π

ffiffiffiffiffi
3

jxj

s
AiðxÞ; ð34Þ

K2=3ðξÞ ¼ −π
ffiffiffi
3

p

x
Ai0ðxÞ; ð35Þ

with ξ ¼ 2
3
jxj3=2 and assuming x > 0.

We now calculate the intensities. We need to compute the
matrix elements (5) for both parallel and perpendicular
polarizations. We seek a result to the lowest ultrarelativistic
order. For this, it is useful to see that owing to the θ factor in
(28) Isin ∼ 1

γ Icos. Further, the polarization vectors (18) are
expanded to first order in κ ∼ 1=γ such that the squared
matrix elements for respectively parallel and perpendicular
polarizations are

M∥
00

2 ¼ e2

2ϵ0ℏωkV
I2sin; ð36Þ

M⊥
00

2 ¼ e2

2ϵ0ℏωkV
κ2I2cos: ð37Þ

Inserting the above matrix elements in the expression of the
intensity (8) and expressing Icos and Isin with modified
Bessel functions one obtains

d2I∥00
dodω

¼ 1

2πΩ
e2ω2

12π3ϵ0c

�
κ2 þ 1

γ2

�
2

K2
2=3ðξÞ; ð38Þ

d2I⊥00
dodω

¼ 1

2πΩ
e2ω2

12π3ϵ0c
κ2
�
κ2 þ 1

γ2

�
K2

1=3ðξÞ; ð39Þ

where ξ ¼ ω
3Ω jκ2 þ 1

γ2
j3=2. These expressions are identical

to expressions found in the classical theory (see e.g., [18]).

IV. GENERAL CALCULATION OF
SYNCHRO-CURVATURE INCLUDING

QUANTUM CORRECTIONS

We now generalize the calculation of the previous
section to transitions between states of any initial
perpendicular quantum number n to a final number n0

including quantum corrections up to second order in ℏω
E .

The need to go to second order is dictated by the occurrence
of deconfinement corrections in Bc=B potentially increas-
ing the role of this order for relatively low magnetic fields,
as we see in (49).
The energy of an ultrarelativistic particle of perpendicular

quantum number n is generalized from (9) and (10) as
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E ¼ ℏΩl∥
�
1þ 1

2γ2
þ 1

γ2
B
Bc

nþ○

�
1

γ4

��
: ð40Þ

For n > 0, the perpendicular quantum number is degenerate
between the perpendicular angular momentum l⊥ and the

center-of-trajectory quantumnumber s sincen ¼ l⊥ þ s (see
paper 1). Without loss of generality, we can consider only
centered trajectories with s ¼ 0. To energies (40) then
correspond the proper states found in paper 1 with n ¼ l⊥
that we develop here to first ultrarelativistic order in 1=γ,

Ψnðx; θ;ϕÞ ¼
e
−x2
2 xn−1eiðn−1Þϕ

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð1þ nÞρλ2

p

0
BBBBBBBBB@

ζixeiϕ sin θ
2
þ i

γ

�
1
2
ζxeiϕ sin θ

2
− ζ−1

2
n

ffiffiffi
2

p �
B
Bc

�
1=2

cos θ
2

�
−ζxeiϕ cos θ

2
− 1

γ

�
1
2
ζxeiϕ cos θ

2
þ ζ−1

2
n

ffiffiffi
2

p �
B
Bc

�
1=2

sin θ
2

�
−iζxeiϕ sin θ

2
þ i

γ

�
1
2
ζxeiϕ sin θ

2
þ 1þζ

2
n

ffiffiffi
2

p �
B
Bc

�
1=2

cos θ
2

�
ζxeiϕ cos θ

2
− 1

γ

�
1
2
ζxeiϕ cos θ

2
− 1þζ

2
n

ffiffiffi
2

p �
B
Bc

�
1=2

sin θ
2

�

1
CCCCCCCCCA
: ð41Þ

The parameter ζ ¼ �1 describes the spin orientation and
is degenerate with respect to the energy.
We now outline the computation from the transition

currents jnn0 to the intensities. We assume n > n0 without
loss of generality. Putting (41) in the current (6) and
projecting onto polarizations (18) one obtains the following
structure,

jμnn0e
σ
μ ¼ ζζ0

Z
d3x

Xnþ1−n0

p¼n−1−n0
apeipϕeiðli−lfÞθ−iλk⃗·x⃗; ð42Þ

where σ denotes parallel or perpendicular polarization and
each ap coefficient is of the form

CðκÞxm1e−x
2

cosm2 θ sinm3 θ; ð43Þ

where C is a coefficient depending only on κ and m1, m2,
m3 are positive integers.
In this section we take into account corrections to second

order in ℏω
E which leads us to express the variation of the

quantum number l∥ as

Δl∥ ¼
ω

Ω

�
1þ 1

2γ2

	�
1þ2n

B
Bc

��
1þℏω

E

�
−2

E
ℏω

B
Bc

Δn

�

þ○

��
ℏω
E

�
3
�

ð44Þ

where Δn ¼ n − n0. We see that the rightmost exponential
factor in (42) takes exactly the same form as in (21) if we
make the replacement 1

γ2
→ 1

γ2
where we define

1

γ2
¼ 1

γ2

	�
1þ 2n

B
Bc

��
1þ ℏω

E

�
− 2

E
ℏω

B
Bc

Δn


: ð45Þ

Let us detail this effective Lorentz factor a little. The left
part corresponds to transitions where the particle remains

on the same perpendicular level n, with ð1þ ℏω=EÞ giving
the high-energy quantum recoil correction. If n ¼ 0 and we
neglect the high-energy correction we therefore recover
1=γ2 as in the previous section. The second term results
from the shift to a different perpendicular level. This term is
particularly important for low-energy photons and high
magnetic fields. Notice that it can even lead to a negative γ2
meaning that energy is transferred from the perpendicular
excitation of the electron to its longitudinal motion. We can
follow the same reasoning as in the previous section [see
(23) and thereafter] and obtain similar scalings provided
one makes the replacement γ → ~γ with

~γ ¼
ffiffiffiffiffiffiffi
jγ2j

p
; ð46Þ

then

κ ∼ θ ∼ 1=~γ; ð47Þ

and the critical pulsation

~ωcrit ¼
3

2
Ω~γ3: ð48Þ

We proceed to integrate over ϕ. To obtain the relevant
high-energy accuracy to second order one separates the
imaginary exponential in (42) as in (21) and notices that,
similarly to (25), its argument is of order

x
λk
~γ
∼

ffiffiffi
n

p γ

~γ

ℏω
E

�
2Bc

B

�
1=2

; ð49Þ

where we used the fact that the averaged normalized radial
distance of an electron is ∼

ffiffiffi
n

p
as explained in paper 1.

Assuming (49) is small compared to 1, we expand the
second factor of (21) to second order in the argument
−ixλkðcosϕ sin κ þ sinϕ cos κ sin θÞ. We are left to inte-
grate terms of the form

VOISIN, BONAZZOLA, and MOTTEZ PHYSICAL REVIEW D 95, 105008 (2017)

105008-6



Apq ¼
Z

π

−π
dϕeipϕðacosϕþb sinϕÞq

ð50Þ

where p and q are integers and q ≥ 0; a and b can have any
value independent of ϕ. One can show that

Apq ¼ 0 if

8<
:

q < jpj
or

q − jpj odd
: ð51Þ

For this reason, the only transitions yielding terms of order
lower or equal to ðℏωE Þ2 once current (6) is inserted in the
squared matrix element (5) are for n ¼ n0, n0 ¼ n − 1 and
n0 ¼ n − 2. Moreover, one can see that the next non-null
term of the expansion of (23) is of order ðℏωE Þ4, pushing
further the validity of our approximation. In practice,
we need

Apq ¼

8>>><
>>>:

πðaþ ibÞ p ¼ −1 q ¼ 1

πða2 þ b2Þ p ¼ 0 q ¼ 2

πða − ibÞ p ¼ 1 q ¼ 1

π
2
ðaþ ibÞ2 p ¼ 2 q ¼ 2

: ð52Þ

We then integrate over x with only integrals of the type

Z
∞

0

dxe−x
2

x2pþ1 ¼ p!
2
; ð53Þ

where p is a positive integer.

We are now left with integrals over θ of the type

Bpq ¼
Z

π

−π
dθei

ω
2Ωððκ2þ 1

γ2
Þθþθ3

3
Þcospθ sinqθ ð54Þ

where p, q are positive integers. As in the previous section,
the smallness of contributing values of θ ∼ 1=~γ allows
us to extend boundaries to infinity. Moreover, to leading
ultrarelativistic order one has

∀ðp; qÞ; Bpq ¼
Z

∞

−∞
dθei

ω
2Ωððκ2þ 1

γ2
Þθþθ3

3
Þθq: ð55Þ

Using definition (30) one sees that Bpq is proportional to
the qth derivative of the Airy function. Recalling that the
Airy function verifies the relation [20]

Ai00ðxÞ ¼ xAiðxÞ; ð56Þ

one is able to express every Bpq in terms of Ai and Ai0,
and from that in terms of Icos and Isin [(27) and (28)]. In
particular, we need the following expressions,

Bp2 ¼ −
�
κ2 þ 1

γ2

�
Icos; ð57Þ

Bp3 ¼
1

~γ3
4 ~ωcrit

3ω
Icos −

�
κ2 þ 1

γ2

�
Isin; ð58Þ

where the replacement 1=γ2 → 1=γ2 is assumed in Icos
and Isin.
Squaring (42), inserting it into the matrix element (5) and

using formula (8) we obtain all the relevant intensities to
order ðℏωE Þ2. These intensities are proportional to ðζζ0Þ2 and
therefore the spin average 1

2

P
ζ;ζ0¼�1 is immediate, giving

d2I∥nn
dodω

¼ 1

2πΩ
e2ω2

16π3ϵ0c

	
I2sin þ

Bc

B

�
ℏω
E

�
2 γ2

γ2
ðnþ 1Þ

�
I2sin −

4

3

~ωcrit

ω

Icos
~γ

Isin

�
þ
�
ℏω
E

�
2

n2κ2I2cos



; ð59Þ

d2I⊥nn
dodω

¼ 1

2πΩ
e2ω2

16π3ϵ0c

	
κ2I2cos þ

Bc

B

�
ℏω
E

�
2 γ2

γ2
ðnþ 1Þκ2I2cos þ

�
ℏω
E

�
2

n2I2sin



; ð60Þ

d2I∥nn−1
dodω

¼ 1

2πΩ
e2ω2

16π3ϵ0c

	
B
Bc

n
2

I2cos
γ2

þ ℏω
E

n

�
1

γ2
þ κ2

�
I2cos þ

Bc

B

�
ℏω
E

�
2 n
2

�
γ2κ2I2sin þ γ2

�
1

γ2
þ κ2

�
2

I2cos

�

þ
�
ℏω
E

�
2 n2

4

�
2

γ2
− κ2

n − 1

n

�
I2cos



; ð61Þ

d2I⊥nn−1
dodω

¼ 1

2πΩ
e2ω2

16π3ϵ0c

	
B
Bc

n
2

I2cos
γ2

−
ℏω
E

nκ2I2cosþ
Bc

B

�
ℏω
E

�
2n
2
γ2κ2ðI2sinþ κ2I2cosÞþ

�
ℏω
E

�
2n2

4

�
2

γ2
þn−1

n
κ2
�
I2cos



; ð62Þ
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d2I∥nn−2
dodω

¼ 1

2πΩ
e2ω2

16π3ϵ0c

	�
ℏω
E

�
2 nðn − 1Þ

4
ðI2sin þ κ2I2cosÞ



;

ð63Þ

d2I⊥nn−2
dodω

¼ 1

2πΩ
e2ω2

16π3ϵ0c

	�
ℏω
E

�
2 nðn − 1Þ

4
I2sin



: ð64Þ

Our result is based on the following hierarchy of scales:

1

γ
≪

ffiffiffi
n

p γ

~γ

ℏω
E

�
2Bc

B

�
1=2

< 1 and
1

γ
≪

B
Bc

: ð65Þ

This allows us to consider that all the gamma parameters
have roughly the same order of magnitude compared to
other terms 1=~γ2 ∼ 1=γ2 ∼ 1=γ2. All terms are of second
ultrarelativistic order since Isin ∼ Icos=~γ and κ2 ∼ 1=~γ2. One
notices that this is not a strict expansion in powers of ℏω

E
and B

Bc
, since ~γ also contains such terms. It would even be

impossible to perform a total, rapidly converging expansion
of Isin, Icos with respect to B

Bc
since it is not necessarily

small. However, the present expansion is relatively compact
and directly reflects the confinement corrections as
explained in (25) and (49).
One recognizes the classical curvature intensities derived

in the previous section, (38) and (39), as the first terms of
(59) and (60) respectively.

V. POWER SPECTRUM

We proceed to integrate expressions (59)–(64) over the
solid angle do which can be written explicitly as

do ¼ cos κdκ dχ ð66Þ

where χ is an angle around the main circle. Integration of χ
is trivial and yields a factor of 2π. Integration over κ
requires more care. Applying the change of variable (31)
we express all the relevant integrals over κ of (59)–(64) in
terms of the integrals calculated in Appendix A, IaðξÞ,
IbðξÞ, IcðξÞ, IdðξÞ; IeðξÞ and IfðξÞ,Z

∞

−∞
I2sindκ ¼

πffiffiffi
3

p
~γ2
2Ω
ω

IaðξÞ; ð67Þ

Z
∞

−∞
I2cosdκ ¼

2πffiffiffi
3

p 2Ω
ω

IbðξÞ; ð68Þ

Z
∞

−∞
κ2I2cosdκ ¼

πffiffiffi
3

p
~γ2
2Ω
ω

IcðξÞ; ð69Þ

Z
∞

−∞
IcosIsindκ ¼

πffiffiffi
3

p
~γ

2Ω
ω

IdðξÞ; ð70Þ

Z
∞

−∞
κ2I2sindκ ¼

π

4
ffiffiffi
3

p
~γ4
2Ω
ω

IeðξÞ; ð71Þ

Z
∞

−∞
κ4I2cosdκ ¼

π
ffiffiffi
3

p

4~γ4
2Ω
ω

IfðξÞ; ð72Þ

where we define

ξ ¼ ω

~ωcrit
: ð73Þ

The values of the previous integrals are summarized
here by

IaðξÞ ¼

8>><
>>:

R∞
ξ K5=3ðxÞdxþ K2=3ðξÞ γ2 > 0

π
ffiffiffi
3

p
−
R
∞
ξ dxF1=3ðx; γ2Þ− γ2 < 0

3F2=3ðξ; γ2Þ
; ð74Þ

IbðξÞ ¼
8<
:

R
∞
ξ K1=3ðxÞdx γ2 > 0

π
ffiffiffi
3

p
−
R∞
ξ dxF1=3ðx; γ2Þ γ2 < 0

; ð75Þ

IcðξÞ ¼

8>>><
>>>:

R∞
ξ K5=3ðxÞdx − K2=3ðξÞ γ2 > 0

π
ffiffiffi
3

p
−
R
∞
ξ dxF1=3ðx; γ2Þ− γ2 < 0

F2=3ðξ; γ2Þ
; ð76Þ

IdðξÞ ¼ −4π
ffiffiffi
3

p
ffiffiffiffiffi
4

3ξ
3

s Z
∞

−∞
dxAiðx2 þ cÞAi0ðx2 þ cÞ;

ð77Þ

IeðξÞ¼
10

3ξ
F1=3ðξ;γ2Þ

þ
8<
:
Rþ∞
ξ dxF1=3ðx;γ2Þ−F2=3ðξ;γ2Þ γ2 > 0

π
ffiffiffi
3

p
−
Rþ∞
ξ dxF1=3ðx;γ2Þ−F2=3ðξ;γ2Þ γ2 < 0

;

ð78Þ

IfðξÞ¼
2

3ξ
F1=3ðξ;γ2Þ

þ
8<
:
Rþ∞
ξ dxF1=3ðx;γ2Þ−F2=3ðξ;γ2Þ γ2> 0

π
ffiffiffi
3

p
−
Rþ∞
ξ dxF1=3ðx;γ2Þ−F2=3ðξ;γ2Þ γ2< 0

:

ð79Þ

Among these, only Id could not be turned into a more
convenient analytical form. Therefore we give here only its
raw expression. The F functions are defined as follows:
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F1=3ðξ; sÞ ¼
(
K1=3ðξÞ; s > 0

πffiffi
3

p ðJ1=3ðξÞ þ J−1=3ðξÞÞ ; s < 0
;

F2=3ðξ; sÞ ¼
(
K2=3ðξÞ; s > 0

πffiffi
3

p ðJ2=3ðξÞ − J−2=3ðξÞÞ ; s < 0
: ð80Þ

Performing replacements (67)–(72) we obtain the spectra per unit pulsation

dI∥nn
dω

¼ 1

2πΩ
e2Ωω

~γ2
ffiffiffi
3

p
4πϵ0c

	
IaðξÞ þ

Bc

B

�
ℏω
E

�
2 γ2

γ2
ðnþ 1Þ

�
IaðξÞ −

4

3

~ωcrit

ω
IdðξÞ

�
þ
�
ℏω
E

�
2

n2IcðξÞ


; ð81Þ

dI⊥nn
dω

¼ 1

2πΩ
e2Ωω

~γ2
ffiffiffi
3

p
4πϵ0c

	
IcðξÞ þ

Bc

B

�
ℏω
E

�
2 γ2

γ2
ðnþ 1ÞIcðξÞ þ

�
ℏω
E

�
2

n2IaðξÞ


; ð82Þ

dI∥nn−1
dω

¼ 1

2πΩ
e2Ωω

~γ2
ffiffiffi
3

p
4πϵ0c

	
B
Bc

n
~γ2

γ2
IbðξÞþ

ℏω
E

n

�
2
~γ2

γ2
IbðξÞþ IcðξÞ

�

þBc

B

�
ℏω
E

�
2 n
2

�
γ2

4~γ2
IeðξÞþ 2

γ2

~γ2
IbðξÞþ 2

γ2

γ2
IcðξÞþ

3

4

γ2

~γ2
IfðξÞ

�
þ
�
ℏω
E

�
2 n2

4

�
4
~γ2

γ2
IbðξÞ−

n− 1

n
IcðξÞ

�

; ð83Þ

dI⊥nn−1
dω

¼ 1

2πΩ
e2Ωω

~γ2
ffiffiffi
3

p
4πϵ0c

	
B
Bc

n
~γ2

γ2
IbðξÞ −

ℏω
E

nIcðξÞ þ
Bc

B

�
ℏω
E

�
2 n
8

γ2

~γ2
ðIeðξÞ þ 3IfðξÞÞ

þ
�
ℏω
E

�
2 n2

4

�
4
~γ2

γ2
IbðξÞ þ

n − 1

n
IcðξÞ

�

; ð84Þ

dI∥nn−2
dω

¼ 1

2πΩ
e2Ωω

~γ2
ffiffiffi
3

p
4πϵ0c

	�
ℏω
E

�
2 nðn − 1Þ

4
ðIaðξÞ þ IcðξÞÞ



; ð85Þ

dI⊥nn−2
dω

¼ 1

2πΩ
e2Ωω

~γ2
ffiffiffi
3

p
4πϵ0c

	�
ℏω
E

�
2 nðn − 1Þ

4
IaðξÞ



: ð86Þ

To have an estimate of the position of the peak of these
spectra, following the arguments of the two previous
sections one can take the critical pulsation without quantum
correction for the n → n transitions, that is

ωc ¼ Ω
γ2

1þ 2nB=Bc
: ð87Þ

However, the other transitions cannot be treated exactly
with the same arguments as in Sec. III, (24), owing to the
fact that the factor γ2 becomes infinite at a pulsation

ω0 ¼
E
ℏ

2ΔnB=Bc

1þ 2nB=Bc
þ○

�
ℏω
E

�
: ð88Þ

If we restrict our reasoning to positive γ2, or equivalently
ω > ω0, one can then show that the position of the peak of
the spectra given above can be estimated to be

ωp ∼maxðωc;ω0Þ: ð89Þ

VI. DISCUSSION AND CONCLUSION

In Sec. III we showed that classical curvature radiation
can be derived from first principles of quantum electrody-
namics in a self-consistent manner within the ultrarelativ-
istic approximation. Indeed, the usual derivation of
curvature radiation assumes the limit of an unphysical
trajectory, as mentioned in the introduction of the present
paper and in [3]. Curvature radiation then results from
transitions between states of different longitudinal quantum
numbers l∥ but both in the ground perpendicular level. The
assumed ultrarelativistic regime allows us to consider l∥ as
a continuous variable and obtain a continuous spectrum.
Perpendicular levels are the quantum analogues of classical
rotation around the magnetic field. In the perpendicular
ground level, or perpendicular fundamental, we showed in
paper 1 that although orbital angular momentum around the
field line is null, the particle is maintained on the field line
through spin-magnetic-field interaction. Therefore, curva-
ture radiation understood as the radiation of a particle
following a magnetic-field line without “turning” around it
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should be seen as a purely quantum phenomenon.
However, this is not enough to obtain the classical result:
one has to consider that the particle wave function is
infinitely confined on the magnetic-field line, which is
equivalently achieved by assuming ℏ → 0, obviously the
classical limit, or that the magnetic field intensity B → ∞
in (25), and to neglect the quantum recoil effect in (20) by
assuming that the emitted photon energy ℏω ≪ E, where E
is the energy of the radiating particle.
In Sec. IV, we consider the general case of synchro-

curvature radiation in the regime of very low pitch angle, so
low that the perpendicular energy of the particle must be
quantified. This is, to our knowledge, the first time such a
derivation has been made. Therefore, the radiation becomes
the sum of continuous transitions of l∥ and discrete
transitions between perpendicular levels labeled by the
integer n. Moreover, we take into account deconfinement
and quantum recoil effects up to second order. We show
that in the ultrarelativistic regime, transitions involving a
change of perpendicular quantum number are significant
only for n → n − 1 and n → n − 2 with a decreasing
importance as the jump is larger. Transitions n → n are
the generalization of curvature radiation on an arbitrary
level n from which they differ by an effective Lorentz factor
(46) and an amplified proportional weight of deconfine-
ment terms (because they are proportional to n or n2). The
two other transitions can be considered as the synchrotron
part of synchro-curvature radiation.
At leading order, n → n transitions have the same

polarization as the classical curvature radiation, n → n − 1
transitions are not polarized at all, and n → n − 2 has
a ratio between parallel and perpendicular polarization of
1þ IcðξÞ=IaðξÞ.
It is out of the scope of this paper to proceed to a

general exploration of the spectra generated by our final
formulas (81)–(86) depending on magnetic field B=Bc,
curvature radius ρ, Lorentz factor γ and perpendicular level
n. However we show in Fig. 2 a case with parameters
compatible with a polar cap of recycled millisecond
pulsar [2], B ¼ 106 Teslas, ρ ¼ 4 × 104 meters, a moderate
Lorentz factor of 105, and a perpendicular level n ¼ 100.
These parameters fall within our approximations given in
(65) and paper 1, Eq. (19). On the upper panel of Fig. 2 we
plot the curvature component Inn (to make notations lighter
we remove here the d

dω) in dashed blue, Inn−1 in dotted red,
and Inn−2 in dotted down-triangle yellow. In order to
compare we also plotted CC radiation in dashed green
and CSC radiation in dot-dashed green. The pitch angle α is
related to n by

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nB=Bc

p
γ

; ð90Þ

and here α≃ 2 × 10−6. This value is quite easily reached
in simulations of motion of an electron with classical-
synchro-curvature-radiation losses in pulsarlike magnetic
fields in [8] or [9].

If one neglects radiation losses, or more physically that
the particle remains for a while at levels around n ∼ 100,
then one can compare the sum of the intensities of the three
above-mentioned transitions Itot ¼ Inn þ Inn−1 þ Inn−2
(Fig. 2, upper panel) with the intensity of the classical
curvature radiation (Fig. 2, lower panel) and with the
intensity of the classical synchro-curvature radiation
(Fig. 2, lower panel).
Until the peak of CC radiation, Inn and CC are very close

with a difference of a few percents and up to 10 percent,
after which the difference mostly due to deconfinement
terms (that grows with photon energy) reaches more than
100% at high energies. One obtains a similar deviation in
the fundamental curvature regime, n ¼ 0, but with a
slightly higher Lorentz factor.
Transitions to lower perpendicular levels become impor-

tant at high energies; taking over the vanishing Inn
component in Itot they get quite close to the high-energy
part of the CSC spectrum. Slight wiggles on the ascending
parts of spectra Inn−1 and Inn−2 make the line a little bit
thicker on this graph around ω0 (thick black tick) and
are due to the fact that γ2 < 0 [see (45)] at low photon
pulsations and therefore these spectra are expressed by
oscillatory Bessel functions in virtue of (74)–(79) below
their peak pulsations [see the discussion around (89)]. In
particular, it is responsible in the present case for the very
sharp peak and cutoff of Inn−1. Spectrum Inn−2 takes over
just above ω0 and is responsible for the last maximum.
As a result, the total intensity Itot is very close to CC

radiation at low photon energies and becomes compara-
tively closer to CSC radiation at the highest energies.
Although we see on the lower panel that the CSC spectrum
is quasialways ∼100% or more intense than Itot, this agrees
with the general tendency in the classical theory of synchro-
curvature radiation to show broader spectra at high energies
compared to curvature radiation while tending to the
curvature spectrum at lower energies; see e.g., [9]. We
also notice that this transition of behavior between quasi-
curvature and synchro-curvature is much sharper in the
quantum theory in the case of Fig. 2. The sharpness of this
transition depends on the difference between ωc and ω0: if
ω0 ≫ ωc as is the case in Fig. 2 the downward components
have more time to grow before they cut off; on the contrary
if ω0 < ωc or ω0 ∼ ωc the transition is much smoother or
even insignificant and the spectrum resembles closely the
CC spectrum.
More generally, it comes out of Eqs. (81)–(86) that the

n − 1 and n − 2 components are increasing with the
intensity of the magnetic field and with the perpendicular
level n. The Lorentz factor has a significant impact on
the relative importance of the deconfinement terms since
their relative importance to the main term grows like
ðℏωcrit=EÞp ∼ γ2p where p ¼ 1, 2. In the case of terms
going like ∝ Bc=B, this can even lead them to become
dominant at low magnetic field and high Lorentz factors.
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However, in this case one falls under the limitation of (65)
and our approximation starts to fail, needing computation
of higher order terms.
It is to be noticed that perpendicular upward transitions,

from n − 1 and n − 2 to n, are also possible. As mentioned,
the only difference between upward and downward tran-
sitions is in the effective Lorentz factor (49). The proba-
bility of upward transition is generally lower than the
downward transitions because the effective Lorentz factor
is lower. However, for very high Lorentz factors this
difference becomes smaller. Because of the necessity of
high Lorentz factors, the range of parameters where
significant upwards rates can be computed safely is quite
narrow [see (49) and approximation 19 in paper 1]. In the

case of Fig. 2, the upward spectra are not represented
because they are numerically 0. However, we can speculate
on other configurations. First we can speculate beyond
our approximations: our scheme remains convergent even
outside the validity region; the results keep the same
qualitative behavior as shown above, and approximation
19 of paper 1 is regularly overcome in classical calculations
(see paper 1). For example, an electron with a Lorentz
factor of 6.3 × 106 (reasonable in a pulsar magnetosphere
gap) on the perpendicular level n ¼ 100 with a magnetic
field of 106 Teslas and a radius of curvature of 104 m yields
in this formalism a ratio of 0.6 between the first upward and
first downward components. This last example suggests
that the decay to the perpendicular fundamental may be

FIG. 2. Upper panel: Intensities radiated by an electron following a magnetic field of radius of curvature 4 × 104 m, intensity 106

Teslas, at a Lorentz factor γ ¼ 105, on a perpendicular level n ¼ 100. For comparison, CC and CSC (formula of [8]) radiation are plotted
in dashed green and dot-dashed green respectively. The thicker lines are showing plots of formulas (81)–(86) summed over photon
polarizations, respectively the curvature component Inn in the dashed blue, the first downward component Inn−1 in dotted red and the
second downward component in dotted yellow with trident markers in yellow. The sum of these three components Itot is plotted in plain
red. Abscissa are scaled by the pulsation ωc (87) and the thick ticks on lower axes show the position of the peak pulsation ωp (88) of the
downward components. The lower panel shows the relative differences between the curvature component Inn and CC in dashed green
(not represented on the full range because these components are getting numerically too small at high pulsations), the sum of all
components Itot and CC in dotted blue, Itot and CSC in dot-dashed red. One sees that, in this case, the three peaks due to the curvature,
first downward component and second downward component are distinct in the total spectrum, which corresponds well to CC at low
pulsations and bridges the gap to CSC at high pulsations. However, it should be noted that the difference between the total spectrum and
CSC is roughly around 100% of CSC everywhere.
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slow and not monotonous if the Lorentz factor of the
particle is high enough, and that a computation of the total
radiated spectrum may need to take into account the
random perpendicular jumps along the trajectory. This
would especially be important due to the smallness of
neutron star magnetospheres.
The particular case where we deal with a jump between

the perpendicular fundamental and the first excited level
can also be seen as the lowest spin-flip transition possible,
in the sense that the perpendicular fundamental is the only
state having a nondegenerate spin state and the only way to
flip the spin is therefore to go to the first level (see paper 1).
This is what we called spin-flip curvature radiation in a
preliminary work [21].
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APPENDIX: INTEGRATION OF
SQUARED AIRY INTEGRALS

Here we compute different expressions that differ
slightly. We therefore detail the first case and then proceed
faster for the others.
We use the functions F1=3 and F2=3 defined in (3). We

here give an alternative definition that is useful in the
developments of this appendix,

F1=3ðξÞ ¼
ffiffiffi
3

p Z þ∞

0

dx cos

�
3

2
ξ

�
sxþ x3

3

��
;

F2=3ðξÞ ¼
ffiffiffi
3

p Z þ∞

0

dxx sin

�
3

2
ξ

�
sxþ x3

3

��
; ðA1Þ

with s ∈ ½−1; 0; 1�. We recall their definition from (80),

F1=3ðξ; sÞ ¼

8>><
>>:

K1=3ðξÞ; s > 0

1
32=3Γð2

3
Þ ; s ¼ 0

πffiffi
3

p ðJ1=3ðξÞ þ J−1=3ðξÞÞ; s < 0 ;

F2=3ðξ; sÞ ¼

8>><
>>:

K2=3ðξÞ; s > 0

− 1
31=3Γð1

3
Þ ; s ¼ 0

πffiffi
3

p ðJ2=3ðξÞ − J−2=3ðξÞÞ; s < 0

: ðA2Þ

They are related to the Airy function and its derivative by

F1=3ðξ; sÞ ¼ π

ffiffiffiffiffi
3

jxj

s
AiðxÞ; ðA3Þ

F2=3ðξ; sÞ ¼ −π
ffiffiffi
3

p

x
Ai0ðxÞ; ðA4Þ

where x ¼ signðsÞð3
2
ξÞ2=3.

We also frequently use the following integrals,

Z
∞

−∞
dττn exp ½iaτ2� ¼ Γðnþ1

2
Þ

jajnþ1
2

eiðπ4−
argðaÞ

2
Þðnþ1Þ; ðA5Þ

where a is a complex with argument 0 < argðaÞ < π and n
a positive integer. For practical purposes we give particular
value of the Γ function [20],

Γ
�
1

2

�
¼ ffiffiffi

π
p

; Γð1Þ ¼ 1;

Γ
�
3

2

�
¼

ffiffiffi
π

p
2

; Γ
�
5

2

�
¼ 3

ffiffiffi
π

p
4

: ðA6Þ

1. First case

We compute the following expression, where c is a
constant:

Ia ¼
ffiffiffi
3

p

πjcj
Z

∞

−∞
dx

����
Z

∞

−∞
dττ exp

	
{

�
ðcþ x2Þτ þ τ3

3

�
����2:
ðA7Þ

The present derivation is directly inspired by that of [5],
however, correcting for a mistake that we point out below.
Since

AiðyÞ ¼
1

2π

Z
∞

−∞
dτ exp

	
{

�
yτ þ τ3

3

�

; ðA8Þ

one remarks that

Ia ¼
ffiffiffi
3

p

πjcj
Z

∞

−∞
dxj2πA0

iðcþ x2Þj2; ðA9Þ

where A0
i is the derivative of the Airy function as defined

in [20].
We seek to evaluate I through its integral formulation

(A7). Developing the squared Airy integral we get

Ia ¼
ffiffiffi
3

p

πjcj
Z

∞

−∞
dx

Z
∞

−∞
dτ1

Z
∞

−∞
dτ2τ1τ2

× exp
	
{ðτ1 − τ2Þ

�
ðcþ x2Þ þ 1

3
ðτ21 þ τ1τ2 þ τ22Þ

�

:

ðA10Þ

In order to separate as much as possible the integrals we
introduce the following variables:
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ðτ1; τ2Þ →
�
τþ ¼ 1

2
ðτ1 þ τ2Þ; τ− ¼ 1

2
ðτ1 − τ2Þ

�
: ðA11Þ

The Jacobian of this transformation is���� ∂ðτ1; τ2Þ∂ðτþ; τ−Þ
���� ¼

���� 1 1

1 −1

���� ¼ 2 ðA12Þ

and we notice that

τ1τ2 ¼ τ2þ − τ2− ðA13Þ

τ21 þ τ1τ2 þ τ22 ¼ 3τ2þ þ τ2− ðA14Þ

such that we get the form

Ia ¼
ffiffiffi
3

p

πjcj
Z

∞

−∞
dx

�
2

Z
∞

−∞
dτþ

Z
∞

−∞
dτ−

× exp

	
2{τ−

�
ðcþ x2Þ þ τ2−

3

�

ðτ2þ − τ2−Þ

exp½2{τ−τ2þ�
�
: ðA15Þ

Here one splits the computation in two integrals

C ¼
Z

∞

−∞
dx

Z
∞

−∞
dτþ

Z
∞

−∞
dτ−

× exp ½2{τ−τ2þ� exp
	
2{τ−

�
ðcþ x2Þ þ τ2−

3

�

τ2−

D ¼
Z

∞

−∞
dx

Z
∞

−∞
dτþτ2þ

Z
∞

−∞
dτ−

× exp ½2{τ−τ2þ� exp
	
2{τ−

�
ðcþ x2Þ þ τ2−

3

�

ðA16Þ

such that

Ia ¼ 2

ffiffiffi
3

p

πjcj ðD − CÞ: ðA17Þ

Here it would be nice to integrate over τþ first since
these integrals are of Gaussian type. However, the integrals
cannot be swapped in D without becoming divergent, as
done in [5]. We circumvent this problem by introducing a
positive real parameter ϵ,

D¼ lim
ϵ→0þ

Z
∞

−∞
dx

Z
∞

−∞
dτþτ2þ

Z
∞

−∞
dτ− exp ½2{ðτ− þ {ϵÞτ2þ�

× exp
	
2{ðτ− þ {ϵÞ

�
ðcþ x2Þ þ ðτ− þ {ϵÞ2

3

�

; ðA18Þ

which is allowed by the theorem of dominated convergence
using for example the following hat function:

gðτþ; τ−Þ

¼

8>>>>>>>>><
>>>>>>>>>:

τ2þ
�
max

�
0; cos

h
τ−
�
ðcþ x2Þ þ τ2þ þ τ2−

3

�i�
þ{max

�
0; sin

h
τ−
�
ðcþ x2Þ þ τ2þ þ τ2−

3

�i��
jτ−jτ2þ

�
max

�
0; cos

h
τ−
�
ðcþ x2Þ þ τ2þ þ τ2−

3

�i�
þ{max

�
0; sin

h
τ−
�
ðcþ x2Þ þ τ2þ þ τ2−

3

�i��
:

ðA19Þ

Then we can first integrate over τþ using (A5),

C¼
Z

∞

−∞
dx

Z
∞

−∞
dτ−

ffiffiffiffiffiffiffiffiffiffi
π

2jτ−j
r

e{
π
4
sτ−

×exp

	
2{τ−

�
ðcþx2Þþ τ2−

3

�

τ2−;

D¼ lim
ϵ→0þ

Z
∞

−∞
dx

Z
∞

−∞
dτ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

2jτ−þ {ϵj
r

e{
π
4
sτ−þiΔϵ

×exp

	
2{ðτ−þ {ϵÞ

�
ðcþx2Þþðτ−þ {ϵÞ2

3

�

{

4ðτ−þ {ϵÞ ;

ðA20Þ

where Δϵ ¼ − 1
2
ðargðxþ {ϵÞ − argðxÞÞ.

Summing over x,

C ¼
Z

∞

−∞
dτ−

{π
2
τ− exp

	
2{τ−

�
cþ τ2−

3

�

;

D ¼ lim
ϵ→0þ

Z
∞

−∞
dτ−

−π
8ðτ− þ {ϵÞ2

× exp

	
2{ðτ− þ {ϵÞ

�
cþ ðτ− þ {ϵÞ2

3

�

: ðA21Þ

Performing the following change of variable in C,

τ− → y ¼ 2ffiffiffi
43

p τ−; ðA22Þ

we recognize that C is proportional to the derivative of the
Airy integral with respect to c0 ¼ ffiffiffi

43
p

c. Expressing it with a
modified Bessel function according to (4),

C ¼
�−π cffiffi

3
p K2=3ðξÞ c > 0

π2 c
3
ðJ2=3ðξÞ − J−2=3ðξÞÞ c < 0;

ðA23Þ

where ξ ¼ 4
3
c3=2.

For D, we perform the following change of variable,

τ− → y ¼ 1ffiffiffiffiffijcjp ðτ− þ {ϵÞ; ðA24Þ
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which means integrating in the complex plane on the
line defined by y ¼ iϵffiffiffiffi

jcj
p . Taking again ξ ¼ 4

3
jcj3=2 and

sc ¼ signðcÞ we write

D¼ −π
8c1=2

lim
ϵ→0þ

Z
y¼ iϵffiffiffi

jcj
p

dy
1

y2
exp

	
3

2
ξ{

�
scyþ

y3

3

�

: ðA25Þ

After integration by parts

D ¼ −{πc
4

lim
ϵ→0þ

Z
y¼ iϵffiffiffi

jcj
p

dy

�
sc
y
þ y

�
exp

	
3

2
ξ{

�
yþ y3

3

�

:

ðA26Þ

Here we can swap again the integral and the limit except
for the cosine part of the 1=y term. Indeed, if we go back to
the τ− ¼ ffiffiffi

c
p

y − {ϵ variable we see that

pϵðτ−Þ ¼
cos ½3

2
ξðyþ y3

3
Þ�

y

¼ cos ½2ðcðτ− þ {ϵÞ þ ðτ−þ{ϵÞ3
3

Þ�
ðτ− þ {ϵÞ : ðA27Þ

We see that because of the pole in τ− ¼ 0 it is impossible
to find a hat function g such that

∀ϵ > 0; ∀ τ− ∈ R; gðτ−Þ > jpϵðτ−Þj; ðA28Þ

and therefore the swapping is forbidden.
However, we may compute limϵ→0

Rþ∞
−∞ dτ−pϵðτ−Þ

directly. Let us first write

∀ ϵ; L > 0;
Z þ∞

−∞
dτ−pϵðτ−Þ

¼
Z þL

−L
dτ−pϵðτ−Þ þ

Z
Rn½−L;L�

dτ−pϵðτ−Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðaÞ

: ðA29Þ

The first term on the right-hand side can be written

Z þL

−L
dτ−pϵðτ−Þ ¼

Z þL

−L
dτ−

cos ð2cðτ− þ iϵÞÞ
τ− þ iϵ

þ ∘ððLþ {ϵÞ5Þ; ðA30Þ

where the notation ∘ðxÞ is to be understood as ∘ðxÞ ¼ xfðxÞ
where f is analytical and tends to 0 as x tends to 0.

The first term on the right-hand side can be expressed asZ þL

−L
dτ−

cos ð2cðτ− þ iϵÞÞ
τ− þ iϵ

¼
Z þ∞

−∞
dτ−

cos ð2cðτ− þ iϵÞÞ
τ− þ iϵ

−
Z
Rn½−L;L�

dτ−
cos ð2cðτ− þ iϵÞÞ

τ− þ iϵ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðbÞ

: ðA31Þ

The first term on the right-hand side can be developed asZ þ∞

−∞
dτ−

cos ð2cðτ− þ iϵÞÞ
τ− þ iϵ

¼ cos ð2ciϵÞ
Z þ∞

−∞
dτ−

cos ð2cτ−Þ
τ− þ iϵ

− sin ð2ciϵÞ
Z þ∞

−∞
dτ−

sin ð2cτ−Þ
τ− þ iϵ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðcÞ

: ðA32Þ

The integral in (b) is a well-known integral [22] given byZ þ∞

−∞
dτ−

cos ð2cτ−Þ
τ− þ iϵ

¼ −{πe−2cϵ: ðA33Þ

Now we can take the limit ϵ → 0. One can obviously
swap the integral and limit in (a), (b) and (c). (a) and (b)
cancel because the integrand is odd while (c) cancels
because of the sine prefactor. It follows that

lim
ϵ→0

Z þ∞

−∞
dτ−pϵðτ−Þ ¼ −{π þ ∘ðL5Þ: ðA34Þ

Since the left-hand side does not depend on L it follows
that ∘ðL5Þ is a constant proportional to L5, namely 0.
For the other terms in D, we swap the limit and integral.

When c > 0 we use the following relations demonstrated
by [19] ([19] uses the definitions of [23] for the Bessel
functions while we use those, slightly different, of [20]).
(However one can show that the relations (A35) and (A36)
are not affected by the change of convention.)

Z þ∞

0

dx
sin ð3

2
ξðxþ x3

3
ÞÞ

x
¼ π

2
−

1ffiffiffi
3

p
Z þ∞

ξ
dxK1=3ðxÞ;

ðA35Þ

and Z þ∞

0

dx

�
1

x
þ 2x

�
sin

�
3

2
ξ

�
xþ x3

3

��

¼ π

2
þ 1ffiffiffi

3
p

Z þ∞

ξ
dxK5=3ðxÞ; ðA36Þ
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to obtain

D ¼ πc
2

�
−

1ffiffiffi
3

p
Z

∞

ξ
K1=3ðxÞdxþ

1ffiffiffi
3

p K2=3ðξÞ
�

ðA37Þ

¼ πc
2

�
1ffiffiffi
3

p
Z

∞

ξ
K5=3ðxÞdx −

1ffiffiffi
3

p K2=3ðξÞ
�
: ðA38Þ

Here, [5] find a result exactly three times larger. We
successfully compared our results with direct numerical
integrations.
Finally when c > 0

Ia ¼
Z

∞

ξ
K5=3ðxÞdxþ K2=3ðξÞ: ðA39Þ

The case c < 0 needs to demonstrate the equivalent of
(A35) and (A36) when c < 0. The demonstration is similar
to that of [19]. Let us first notice that

d
dξ

Z þ∞

−∞
dx

sinð3
2
ξð−xþ x3

3
ÞÞ

x

¼
Z þ∞

−∞
dx

3

2

�
−xþx3

3

�
cos

�
3

2
ξ

�
−xþx3

3

��
: ðA40Þ

In the right-hand side, one recognizes an exact primitive
minus a cosine term. The exact primitive cancels for
reasons of parity and we are left with

d
dξ

Z þ∞

−∞
dx

sin ð3
2
ξð−xþ x3

3
ÞÞ

x

¼ −
Z þ∞

−∞
dx cos

�
3

2
ξ

�
−xþ x3

3

��
; ðA41Þ

where the right-hand side identifies with the function
F1=3ðξÞ in (A1). Noticing that

lim
L→∞

Z þ∞

−∞
dx

sin ð3
2
Lð−xþ x3

3
ÞÞ

x
¼ −π; ðA42Þ

we obtain

Z þ∞

0

dx
sin ð3

2
ξð−xþ x3

3
ÞÞ

x

¼ −
π

2
þ π

3

Z þ∞

ξ
dxðJ1=3ðxÞ þ J−1=3ðxÞÞ: ðA43Þ

Using this and (A1) we obtain D and Ia in the case
c < 0,

D ¼ π2

2
jcj

�
1 −

1

3

Z
∞

ξ
dxðJ1=3ðxÞ þ J−1=3ðxÞÞ

−
1

3
ðJ2=3ðξÞ − J−2=3ðξÞÞ

�
; ðA44Þ

and, using functions F (3),

Ia ¼ π
ffiffiffi
3

p
−
Z

∞

ξ
dxF1=3ðxÞ − 3F2=3ξÞ: ðA45Þ

2. Second case

We compute

Ib ¼
ffiffiffi
3

p

2π

Z
∞

−∞
dx

����
Z

∞

−∞
dτ exp

	
{

�
ðcþ x2Þτ þ τ3

3

�
����2:
ðA46Þ

Performing the change of variables (A11) we get

Ib ¼
ffiffiffi
3

p

2π

Z
∞

−∞
dx

�
2

Z
∞

−∞
dτþ

Z
∞

−∞
dτ−

× exp

	
2{τ−

�
ðcþ x2Þ þ τ2−

3

�

exp½2{τ−τ2þ�

�
: ðA47Þ

Integrating over τþ we obtain

Ib ¼ 2

ffiffiffi
3

p

2π

Z
∞

−∞
dx

Z
∞

−∞
dτ−

ffiffiffiffiffiffiffiffiffiffi
π

2jτ−j
r

e{
π
4
sτ−

× exp

	
2{τ−

�
ðcþ x2Þ þ τ2−

3

�

: ðA48Þ

Here we need to be careful to deal with the singularity of
the cosine term. Consequently, before swapping the inte-
grals and integrating over x one must perform the change
of variables (A24), then take the limit of the cosine term
using (A34) and compute the sine term using (A35) if
c > 0 or (A43) if c < 0. One eventually obtains

Ib ¼
(R∞

ξ K1=3ðxÞdx; c > 0

π
ffiffiffi
3

p
−
R
∞
ξ dxF1=3ðxÞ; c < 0.

ðA49Þ

3. Third case Ic
We compute

Ic ¼
ffiffiffi
3

p

πjcj
Z

∞

−∞
dxx2

����
Z

∞

−∞
dτ exp

	
{

�
ðcþ x2Þτ þ τ3

3

�
����2:
ðA50Þ

Here it is enough to see that the x2 factor yields exactly
the same result as the τþ factor in D. Therefore
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Ic ¼ 2D ¼
(R

∞
ξ K5=3ðxÞdx − K2=3ðξÞ c > 0

π
ffiffiffi
3

p
−
R∞
ξ dxF1=3ðxÞ − F2=3ðξÞ c < 0.

:

ðA51Þ

Remark that we put here only the expression using K5=3,
but one could also express it as a function of K1=3 as
in Eq. (A37).

4. Fourth case Id
We compute

Id ¼
ffiffiffi
3

p

π
ffiffiffiffiffijcjp Z

∞

−∞
dx

�Z
∞

−∞
dτ exp

	
{

�
ðcþ x2Þτ þ τ3

3

�


×
Z

∞

−∞
dττ exp

	
{

�
ðcþ x2Þτ þ τ3

3

�
�
: ðA52Þ

However we could not find a way to obtain a complete
analytical expression for this integral. One has to compute
it numerically using the following equivalent formula:

Id ¼ −4π

ffiffiffiffiffi
3

jcj

s Z
∞

−∞
dxAiðx2 þ cÞAi0ðx2 þ cÞ: ðA53Þ

5. Fifth case Ie
We compute

Ie ¼
4

ffiffiffi
3

p

πc2

Z
∞

−∞
dxx2

����
Z

∞

−∞
dττ exp

	
{

�
ðcþ x2Þτ þ τ3

3

�
����2:
ðA54Þ

Performing the change of variable (A11) we get that

Ie ¼ 2
4

ffiffiffi
3

p

πc2
ðD − CÞ ðA55Þ

with

C ¼
Z

∞

−∞
dxx2

Z
∞

−∞
dτþ

Z
∞

−∞
dτ−τ2−

× exp ½2{τ−τ2þ� exp
	
2{τ−

�
ðcþ x2Þ þ τ2−

3

�

; ðA56Þ

D ¼
Z

∞

−∞
dxx2

Z
∞

−∞
dτþτ2þ

Z
∞

−∞
dτ−

× exp ½2{τ−τ2þ� exp
	
2{τ−

�
ðcþ x2Þ þ τ2−

3

�

: ðA57Þ

Integrating C is quite straightforward by using two
times (A5), once for τþ, once for x. One is left with an
Airy integral and

C ¼ −π2

4
ffiffiffi
3

p
2
Aið22=3cÞ: ðA58Þ

For D, as for Ia in Sec. A 1 integrals cannot be
exchanged without obtaining a divergent integrand. To
avoid this we apply the same recipe, that is we introduce a
positive real parameter ϵ such that

D ¼ lim
ϵ→0

Z
∞

−∞
dxx2

Z
∞

−∞
dτþτ2þ

Z
∞

−∞
dτ−

× e2{ðτ−þiϵÞτ2þe2{ðτ−þiϵÞððcþx2Þþðτ−þiϵÞ2
3

Þ: ðA59Þ

It is possible to invert the integrals and we perform
integration over τþ and x using (A5). Performing the
change of variable (A24), we get

D ¼ lim
ϵ→0

−iπ
32jcj

Z
y¼ iϵffiffiffi

jcj
p

dy
ei

3
2
ξðyscþy3

3
Þ

y3
ðA60Þ

where as before sc ¼ signðcÞ and ξ ¼ 4
3
jcj3=2. Performing

an integration by part we have

D ¼ lim
ϵ→0

π
ffiffiffiffiffijcjp

32

Z
y¼ iϵffiffiffi

jcj
p

dy

�
sc
y2

þ 1

�
ei

3
2
ξðyscþy3

3
Þ: ðA61Þ

The second term corresponds to F1=3ðξ; scÞ by definition
(A3). The first term is, up to a factor, the same integral as
in (A25).
With D and C we use formula (A55) and expressing C

with a F1=3 function using (A3), we obtain

D ¼ πjcj1=2
16

ffiffiffi
3

p
"
F1=3ðξÞ þ 2jcj3=2

(Rþ∞
ξ dxF1=3ðxÞ − F2=3ðξÞ c > 0

π
ffiffiffi
3

p
−
Rþ∞
ξ dxF1=3ðxÞ − F2=3ðξÞ c < 0

#
; ðA62Þ

Ie ¼
5

2jcj3=2 F1=3ðξÞ þ
8<
:

Rþ∞
ξ dxF1=3ðxÞ − F2=3ðξÞ c > 0

π
ffiffiffi
3

p
−
Rþ∞
ξ dxF1=3ðxÞ − F2=3ðξÞ c < 0

: ðA63Þ
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6. Sixth case If
We compute

If ¼
4

π
ffiffiffi
3

p
c2

Z
∞

−∞
dxx4

����
Z

∞

−∞
dτ exp

	
{

�
ðcþ x2Þτ þ τ3

3

�
����2:
ðA64Þ

Performing the change of variable (A11) we get that

If ¼ 2
4

π
ffiffiffi
3

p
c2

Z
∞

−∞
dxx4

Z
∞

−∞
dτþ

Z
∞

−∞
dτ−

× exp ½2{τ−τ2þ� exp
	
2{τ−

�
ðcþ x2Þ þ τ2−

3

�

: ðA65Þ

Is is not possible to exchange integration over x with
integration over τ−. We work around this by inserting a
positive real parameter ϵ

If ¼ 8

π
ffiffiffi
3

p
c2

lim
ϵ→0

Z
∞

−∞
dxx4

Z
∞

−∞
dτþ

Z
∞

−∞
dτ−

× e½2{ðτ−þiϵÞτ2þ�e

h
2{ðτ−þiϵÞ

�
ðcþx2Þþðτ−þiϵÞ2

3

�i
; ðA66Þ

and perform integrations over τþ and x using (A5). We then
perform the change of variable (A24) to obtain

If ¼ 24

π
ffiffiffi
3

p
c2

lim
ϵ→0

−iπ
32jcj

Z
∞

−∞
dy

e½
3
2
ξ{ðyscþy3

3
Þ�

y3
;

where sc ¼ signðcÞ.
Here we recognize the integral (A60), the value of which

is given in (A62). Therefore the final result is

If ¼ 1

2jcj3=2 F1=3ðξÞ þ
8<
:

Rþ∞
ξ dxF1=3ðxÞ − F2=3ðξÞ c > 0

π
ffiffiffi
3

p
−
Rþ∞
ξ dxF1=3ðxÞ − F2=3ðξÞ c < 0

: ðA67Þ
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