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The Yang-Baxter σ-model is a systematic way to generate integrable deformations of AdS5 × S5. We
recast the deformations as seen by open strings, where the metric is undeformed AdS5 × S5 with constant
string coupling, and all information about the deformation is encoded in the noncommutative (NC)
parameter Θ. We identify the deformations of AdS5 as twists of the conformal algebra, thus explaining the
noncommutativity. We show that the unimodularity condition on r-matrices for supergravity solutions
translates into Θ being divergence-free. Integrability of the σ-model for unimodular r-matrices implies the
existence and planar integrability of the dual NC gauge theory.
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I. INTRODUCTION

Integrable models have been key to enriching our
knowledge of condensed matter systems, field theory, and
string theory. Within string theory, considerable attention
has focused on integrable structures underlying the AdS/
Conformal Field Theory (CFT) correspondence [1]. The
most studied example is a duality between superstrings
on AdS5 × S5 and N ¼ 4 super Yang-Mills (sYM).
Remarkably, the two-dimensional (2D) string world sheet
σ-model on AdS5 × S5 is classically integrable [2]; it has an
infinite set of conserved charges.
There is immense interest in identifying integrable

structures beyond the maximally symmetric setting of
AdS5 × S5, or equivalently sYM on R1;3. It is curious
that the earliest integrability preserving deformation of
AdS5×S5 [3–5] was inspired by noncommutative (NC)
spacetimes, which are ubiquitous in string theory [6,7] (see
[8] for a review). In hindsight, we understand these
deformations as T-duality shift T-duality (TsT) transforma-
tions in the string and gravity side [9–11].
Recently, Yang-Baxter (YB) deformations of the

σ-model [12–15] were generalized to the AdS5 × S5 super-
string [16,17]. We now understand TsT transformations as
part of a larger class of YB deformations of the σ-model
[18–31], which are defined by r-matrices satisfying the
classical Yang-Baxter equation (cYBE). A further unim-
odularity condition ensures the YB deformation has a valid
string theory (supergravity) description [32]. It has been
conjectured [33] (for the proof of the boson part and the
result for the supersymmetric case, see [34]) that homo-
geneous YB deformations [15,17] may all be realized
through non-Abelian duality transformations [35–39].

In this article, we retrace TsT transformations to NC
deformations of quantum field theories (QFTs).We encounter
a number of surprises. First, irrespective of the YB defor-
mation, for r-matrix solutions to the homogeneous cYBE,
there is a universal description in open string parameters.
Concretely, we show that the open string metric [7] is always
the original undeformed AdS5 × S5 metric with constant
open string coupling, and all information about the YB de-
formation is encoded in a NC parameter Θ. This in particular
implies that all YB string theory σ-models of AdS5 × S5 have
a NC gauge theory dual on R1;3 where integrability of the
σ-model has direct bearing on planar integrability.
For our second result, sharpening an earlier conjecture

[24], we confirm that YB deformations of AdS5 are simply
Drinfeld twists of the conformal algebra. To better under-
stand this fact, we recall that in NC spacetimes the
coordinate operators x̂μ satisfy the commutation relation,

½x̂μ; x̂ν� ¼ iΘμν ðμ; ν ¼ 0;…; 3Þ; ð1Þ
where Θμν is in general an x-dependent antisymmetric
matrix. For twists of Poincaré algebra, the x-dependence of
Θ is fixed to be constant, linear, or quadratic [40–42].
As we will argue, however, for twists in the conformal
algebra we can also have cubic and quartic dependence. In
fact, the homogeneous YB deformations studied to date
[18–28,30–32] provide predictions for NC parameters that
arise from twists of the full conformal algebra. We establish
by exhaustion that the NC parameters and r-matrices are
directly related [43],

ΘMN ¼ −2ηrMN ðM;N ¼ 0;…; 3; zÞ; ð2Þ
where η is the deformation parameter, z is the radial
direction of AdS5, and rMN is the r-matrix expressed as
differential operators on AdS5.
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Finally, non-unimodular YB deformations lead to geom-
etries that solve generalized supergravity equations, speci-
fied through a modification given by a Killing vector field I
[44,45]; setting I ¼ 0, we recover usual supergravity. We
show Θ and I are related through the equation,

∇MΘMN ¼ IN; ð3Þ

evaluated with an open string metric. This remarkable
result, which marries open and closed string descriptions, is
a requirement of the Λ-symmetry [46,47] of the string
σ-model. Under Λ-symmetry the Neveu-Schwarz-Neveu-
Schwarz (NSNS) two-form B-field is transformed by dΛ,
which in the presence of D-branes (open strings) must be
supplemented by a shift of the gauge field on the brane by a
one-form Λ. This novel observation provides the first
explanation of the unimodularity condition [32] from a
symmetry principle. Observe, for supergravity solutions,
ΘMN is divergence-free.

II. CLOSED STRING PICTURE

In an effort to make this article self-contained, we review
the essentials of the YB σ-model, following the presenta-
tion of Ref. [25]. Here, we restrict ourselves to deforma-
tions of AdS5 by considering the coset space SOð4; 2Þ=
SOð4; 1Þ and the homogeneous cYBE. Furthermore, to
avoid unnecessary technicalities, we suppress the Ramond-
Ramond (RR) sector, which does not affect any of our
results. The corresponding YB σ-model action is [15,17]

L ¼ Tr

�
APð2Þ∘ 1

1 − 2ηRg∘Pð2Þ A
�
; ð4Þ

with a deformation parameter η and RgðXÞ≡
g−1RðgXg−1Þg. Here A ¼ −g−1dg, g ∈ SOð4; 2Þ, is a
left-invariant current, while Pð2Þ is a projector onto the
coset space soð4; 2Þ=soð4; 1Þ, spanned by the gene-
rators Pmðm ¼ 0;…; 4Þ, which satisfy Tr½PmPn� ¼ ηmn ¼
diagð−þþþþÞ. Details, such as matrix representations,
are given in [25]. Pð2Þ may be expressed as

Pð2ÞðXÞ ¼ ηmnTr½XPm�Pn; X ∈ soð4; 2Þ: ð5Þ

Above, R is an antisymmetric operator satisfying the
homogeneous cYBE

½RðXÞ; RðYÞ� − Rð½RðXÞ; Y� þ ½X;RðYÞ�Þ ¼ 0; ð6Þ

with X; Y ∈ soð4; 2Þ. In turn, the operator R can be written
in terms of an r-matrix as

RðXÞ ¼ Tr2½rð1 ⊗ XÞ� ¼
X
i;j

rijbiTr½bjX�; ð7Þ

where r ∈ soð4; 2Þ ⊗ soð4; 2Þ is

r ¼ 1

2

X
i;j

rijbi ∧ bj; with bi ∈ soð4; 2Þ: ð8Þ

The r-matrix is called Abelian if ½bi; bj� ¼ 0 and unim-
odular if it satisfies the following condition [32]:

rij½bi; bj� ¼ 0: ð9Þ

Note i, j range over the generators of soð4; 2Þ, but
expressed as differential operators on AdS5, one finds rMN .
To determine the YB deformed geometry, we adopt the

following parametrization for g ∈ SOð4; 2Þ:

g ¼ exp½xμPμ� exp½ðlog zÞD�; ð10Þ

where Pμðμ ¼ 0;…; 3Þ, D, respectively, denote translation
and dilatation generators and are related to Pm [25]. In
terms of these coordinates, we define

r ¼ 1

2
rMN∂M ∧ ∂N; ∂M ∈ f∂μ; ∂zg: ð11Þ

Then, the YB deformed metric gMNðM;N ¼ 0;…; 4Þ,
NSNS two-form BMN , and dilaton Φ (in string frame)
can be expressed as [25]

gMN ¼ emMe
n
NkðmnÞ; BMN ¼ emMe

n
Nk½nm�; ð12Þ

eΦ ¼ gsðdet5kÞ−1=2; kmn ¼ kðmnÞ þ k½mn�; ð13Þ

where emM is the AdS5 vielbein, and we have defined

kmn ≡ ðδmn − 2ηλmnÞ−1; ð14Þ

λm
n ≡ ηnlTr½PlRgðPmÞ�: ð15Þ

It is useful to exemplify the deformation for the simplest
case of the Abelian r-matrix [19],

r ¼ 1

2
P2 ∧ P3; ð16Þ

corresponding to the closed string background [3,4],

ds2 ¼ 1

z2
½−dx20 þ dx21 þ hðzÞðdx22 þ dx23Þ þ dz2�;

B23 ¼ ηhðzÞ=z4; e2Φ ¼ g2shðzÞ; ð17Þ

where h−1 ¼ 1þ η2z4. The above together with S5 and the
RR-fields constitute a supergravity solution, which is
obtained simply via TsT from AdS5 × S5 [3,4].
In passing, we comment that while we focus on AdS5,

following [18], similar arguments apply equally to S5. In
particular, the case of β [9] or γ-deformations [10] is related
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to Abelian twists of SOð6Þ, and via AdS/CFT, to marginal
deformations of N ¼ 4 sYM [48].

III. OPEN STRING PICTURE

Given closed string parameters (gMN , BMN , gs), the open
string metric GMN , NC parameter ΘMN, and coupling Gs
are defined as [7]

GMN ¼ ðg − Bg−1BÞMN; ð18Þ

ΘMN ¼ −ððgþ BÞ−1Bðg − BÞ−1ÞMN; ð19Þ

Gs ¼ gseΦ
�
detðgþ BÞ

det g

�1
2

: ð20Þ

For YB deformations of AdS5 (12), we find

GMN þ ΘMN ¼ eMmeNn ðηmn þ 2ηλmnÞ; ð21Þ

where eMm denotes the inverse vielbein. As λmn is anti-
symmetric, it is easy to separate the components, getting

GMN ¼ eMmeNn ηmn; ΘMN ¼ 2ηeMmeNn λmn: ð22Þ

Inverting GMN , it is clear that the open string metric is
precisely the original AdS5 metric. Moreover, inserting (12)
and (13) into (20), we get Gs ¼ gs ¼ const. That is, all
the information about the YB deformation, as viewed by
open strings, is sitting in ΘMN , while the geometry is
undeformed AdS5 [49].
For the example (17), the open string parameters are

ds2open ¼
1

z2
ð−dx20 þ dx21 þ dx22 þ dx23 þ dz2Þ;

Θ23 ¼ −η; Gs ¼ gs: ð23Þ

While the closed string metric (17) has a severely deformed
causal and boundary structure [3–5], the spacetime as
seen by the open strings is the usual AdS5 × S5 with
R1;3 boundary, indicating that the dual gauge theory
description is a Θ-deformed sYM.

IV. CONFORMAL TWISTS AND
NC GAUGE THEORY

One can formulate the QFT on the NC spacetime
specified by Θ (1). Let us start with the constant Θ case,
relevant to the example (17). The NCQFT may be obtained
by replacing the usual product of functions, or fields in
QFT, with the Moyal star product, fðxÞgðxÞ → ðf⋆gÞðxÞ,
such that

ðf⋆gÞðxÞ ¼ fðxÞei
2
Θμν∂⃖μ ∂⃗νgðxÞ: ð24Þ

The Moyal bracket of two functions is defined to be

½f; g�⋆ ≔ f⋆g − g⋆f ¼ iΘμν∂μf∂νgþOð∂3f; ∂3gÞ: ð25Þ

It is worth noting that fðxÞ ¼ xμ, gðxÞ ¼ xν reproduces the
commutator (1). It has been shown that the introduction of
the Moyal ⋆-product is equivalent to using the coproducts
with a Drinfeld twist element [40],

F ¼ e−2iηr ¼ e
i
2
ΘμνPμ∧Pν : ð26Þ

This is a special case of an Abelian Poincaré twist, and the
r-matrix satisfies the cYBE [19]. Abelian twists have the
remarkable property that they do not affect the Poincaré
algebra P [40], but instead deform the coproduct of UðPÞ
[51], where UðPÞ is the universal enveloping algebra of the
Poincaré algebra.
In (26), we have considered the simplest twist, with

constant Θ. However, for other solutions to the cYBE, the
NC parameter need not be a constant. Indeed, including
Lorentz generators Mμν, the cYBE has solutions r ∼ P ∧
M and r ∼M ∧ M, which, respectively, lead to linear and
quadratic Θ [42]. For example, for r ¼ 1

2
M01 ∧ M23,

modulo a convention dependent sign in the twist (26),
the NC parameter has components [42]

Θ02 ¼ −2 sinh
η

2
· x1x3; Θ03 ¼ 2 sinh

η

2
· x1x2;

Θ12 ¼ −2 sinh
η

2
· x0x3; Θ13 ¼ 2 sinh

η

2
· x0x2: ð27Þ

We recover the same result (at leading order) from the YB
prescription (22).
This example shows that the open string parameter Θ

knows about the Moyal bracket, which may be derived
from twists of the Poincaré algebra. One can repeat the YB
analysis for all r-matrices of the conformal algebra and
show that (2) holds once the r-matrix is expressed in terms
of differential operators [43]. Note, (2) generalizes existing
results [24,30] from the Poincaré to conformal algebra.
In support of our claim, we present two examples,

r1 ¼
1

2
D ∧ K1;

r2 ¼
1

2
ðP0 − P3Þ ∧ ðDþM03Þ; ð28Þ

which involve scale D and special conformal symmetries
Kμ. Note, the first is non-unimodular and the second
appears in the classification of unimodular r-matrices
[32]. The NC parameter in each case can easily be
calculated from (15) and (22). For r1, we find

Θ1μ ¼ ηxμðxνxν þ z2Þ; Θ1z ¼ ηzðxνxν þ z2Þ; ð29Þ

where μ ≠ 1, while for r2, we get
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Θ−þ ¼ −4ηxþ; Θ−i ¼ −2ηxi; Θ−z ¼ −2ηz; ð30Þ

where i ¼ 1, 2 and we have employed x� ¼ x0 � x3. One
recovers the same results from conformal twists of the dual
CFT [43]. We interpret this mathematical agreement as
evidence in support of our claim that YB deformations
based on unimodular r-matrices are dual to NC deforma-
tions of N ¼ 4 sYM. We establish this through an almost
exhausting set of examples in our upcoming work [43].
Some comments and remarks are in order:
(1) In both cases one can confirm that Eq. (2) holds.
(2) One generically encounters cubic and quartic terms

from conformal twists.
(3) Not only are there nonzero Θzμ components, they

also have nontrivial z-dependence. Nonetheless, it
can be shown in general that Θzμ components vanish
at the AdS boundary at z ¼ 0, where the dual field
theory resides. Viewing Eq. (3) as a first order
equation for ΘMN, the z-components and depend-
ence can be recovered from the Θμν; no information
is lost in the dual field theory side.

(4) For YB deformations corresponding to unimodular
r-matrices, there is a well-defined string theory
picture. Following the usual reasoning of AdS/
CFT, wherever the decoupling limit exists, closed
string theory on these deformed AdS5 backgrounds
is expected to be dual to NC deformations of sYM
with noncommutativity Θμν ¼ −2ηrμν. Particular
examples are discussed in [3–5]. However, we note
that the existence of a decoupling limit, where the
open string theory is reduced to its low energy limit
of NC sYM, is not trivial [5] (see also [24,30] for
related discussion). For the cases with ΘμνΘμν < 0,
so-called “electric” noncommutativity, it has been
argued that the open string theory does not reduce to
NC sYM. In these cases we are dealing with the
noncritical NC open string theory (NCOS) [52–55]
which is related to NC sYM at strong coupling.

V. UNIMODULARITY AND Λ-SYMMETRY

Our statements about the universal open string description
are true, irrespective of unimodularity. Here, we address the
origin of unimodularity in terms of string theory and its
symmetry.
The key to our explanation is Λ-symmetry [46,47]. It is

known that closed string theory (supergravity) is invariant
under B → Bþ dΛ, where B is the NSNS two-form and Λ
is an arbitrary one-form. Upon introduction of open strings
with Dirichlet boundary conditions, this symmetry sur-
vives, since B appears in the brane Dirac-Born-Infeld (DBI)
action only through the combination Bþ F, where F ¼ dA
is the field strength of the brane gauge field A [56], and one
can compensate by shifting A → A − Λ. Therefore, the
action of the system, which is the sum of the supergravity
and DBI actions, maintains the Λ-symmetry.

Open string parameters (18), (19), and (20), however, are
defined in a particular Λ-gauge, where the expectation
(or background) value of F is set to zero. So, the expression
for ΘMN (19) is not necessarily Λ-invariant [7,47]. In fact,
recalling that when F is set to zero [7],

1

Gs

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
¼ eΦ

gs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðgþ BÞ

p
;

one can readily see that the variation of the DBI action with
respect to Λ-symmetry is ∇MΘMN , where the divergence is
computed with respect to open string metric GMN . So,
invariance of the full action for the unimodular cases where
the supergravity part is Λ-invariant on its own leads to
∇MΘMN ¼ 0. See also [57] for related arguments.
For the non-unimodular cases, where we encounter gen-

eralized supergravity equations with Killing vector I, one can
show that these equations are Λ-symmetric. However, the
presence of the isometry direction I would modify the DBI
action by an IMAM term, which is not Λ-invariant [43].
Therefore, to restore Λ-symmetry, the NC parameter should
satisfy (3). As an example consider r1 in (28), which is known
to be non-unimodular with I ¼ K1. One can then explicitly
check that Θ given in (29) satisfies (3).

VI. OUTLOOK

Our observations and results have broad implications. It
is imperative to revisit Poincaré twists [40–42] and extend
them to conformal twists [43], thus testing our claim that
the conformal twists can be described as YB deformations.
While we considered only bosonic deformations of AdS5,
one can easily repeat for different coset spaces, in different
dimensions, or extend the analysis to the fermionic sector
of the AdS5 × S5 σ-model, where one will encounter
fermionic T-duality [58,59], or potentially a non-Abelian
generalization of it.
We recall that the homogeneous YB deformations may

be described as non-Abelian T-duality [33]. In principle,
a careful treatment of the Θ parameter for non-Abelian
T-duals supported by RR flux [38,39] may elucidate the
dual theory [60]. It is interesting that the open string, via
Λ-symmetry, knows about generalized supergravity
through I. Since the latter is reproducible from the double
field theory description, it may be interesting to push this
connection by following [63–65].
The AdS5 × S5 YB σ-model integrability has implications

for the dual gauge theory and the dual open strings. The fact
that open strings reside in an undeformed AdS5 × S5 geom-
etry prompts the proposal of integrability of the correspond-
ing open string σ-model. The effects of the deformation
should then appear inΘwhich is expected to affect only open
string end point dynamics (which end on the AdS5 × S5

boundary). This open string integrability dovetails with the
fact that some of the deformed backgrounds can be obtained
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through TsT transformations and that T-duality is a symmetry
of the world sheet theory. Establishing this open string
integrability proposal, however, requires a thorough analysis
of the boundary conditions.
Integrability of the AdS5 × S5 σ-model is intimately

connected with the planar integrability of the corresponding
dual N ¼ 4 sYM. With the same token, one would expect
the associated NC sYM to be planar integrable. Some
preliminary analysis and results for a special case have
already appeared [66]. This is a highly nontrivial statement
and extends the important sYM integrability to a big list of
NC gauge theories. In the same line, one would expect that
Drinfeld twists and Drinfeld doubles of the original
Yangian, which underlies the integrability of sYM, to be
at work for the NC cases.
It is known that the constant magnetic NC sYM at strong

coupling flows to the NCOS [52–55]. It is interesting
to check if the same feature extends to more general
x-dependent twist elements. Recalling the S-duality of
type IIB supergravity, this is expected to be the case. It
is also interesting to explore the direct consequences of the
twisted conformal symmetry on the corresponding NCOS
and in particular features like Hagedorn transition [67]. One
may also explore extending these considerations about the
S-duality and NCOS to the non-unimodular cases and to
generalized IIB supergravity.

VII. DATA MANAGEMENT

No additional research data beyond the data presented
and cited in this work are needed to validate the research
findings in this work.
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APPENDIX

1. Four-dimensional conformal algebra

We record the conformal algebra soð4; 2Þ employed in
this work,

½D;Pμ� ¼ Pμ; ½D;Kμ� ¼ −Kμ;

½Pμ; Kν� ¼ 2ðημνDþMμνÞ;
½Mμν; Pρ� ¼ −2ημ½νPρ�; ½Mμν; Kρ� ¼ −2ημ½νKρ�;

½Mμν;Mρσ� ¼ −ημρMνσ þ ηνρMμσ þ ημσMνρ − ηνσMμρ:

ðA1Þ

The algebra can be realized in terms of differential
operators as

Pμ ¼ −∂μ; Kμ ¼ −ðxνxν þ z2Þ∂μ þ 2xμðxν∂ν þ z∂zÞ;
D ¼ −xμ∂μ − z∂z; Mμν ¼ xμ∂ν − xν∂μ: ðA2Þ

2. Duality between YB σ-models and NC sYM
for conformal twists

In the body of this article, we determined ΘMN for two
r-matrices r1 and r2. We have conjectured for unimodular
r-matrices, for example r2, that the YB deformation is dual
to a NC deformation ofN ¼ 4 sYM. To support this claim,
we now show that Eq. (30), evaluated at z ¼ 0, agrees with
the resulting NC parameter from the corresponding con-
formal twist. The analysis presented here generalizes
known Drinfeld twists with respect to the Poincaré sub-
algebra to the conformal algebra.
Let us recall the r-matrix,

r2 ¼
1

2
ðP0 − P3Þ ∧ ðDþM03Þ: ðA3Þ

We introduce null coordinates, x� ¼ x0 � x3, so that the
four-dimensional Minkowski metric is

ds2 ¼ −dxþdx− þ ðdx1Þ2 þ ðdx2Þ2: ðA4Þ

It is worth noting that ηþ− ¼ − 1
2
, ηþ− ¼ −2. In these

coordinates, the generators correspond to differential
operators,

P0 − P3 ¼ −2∂−; DþM03 ¼ −2xþ∂þ − x1∂1 − x2∂2:

ðA5Þ

Note, there is no z-dependence, and the operators are
essentially the AdS5 Killing vectors evaluated at z ¼ 0.
Following the standard procedure, we introduce the twist
element, which acts on the commutative algebra A of
functions, fðxÞ, gðxÞ, in Minkowski space,

F ¼ e−2iηr2 ¼ e−iηðP0−P3Þ∧ðDþM03Þ: ðA6Þ
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The star product then takes the form

fðxÞ⋆gðxÞ
¼ m∘F ðfðxÞ ⊗ gðxÞÞ
¼ m∘e−iηðP0−P3Þ∧ðDþM03ÞðfðxÞ ⊗ gðxÞÞ
¼ m∘e−iη∂−∧ð2xþ∂þþx1∂1þx2∂2ÞðfðxÞ ⊗ gðxÞÞ; ðA7Þ

where m denotes the operation of commutative multipli-
cation, mðfðxÞ ⊗ gðxÞÞ ≔ fðxÞgðxÞ. Taking fðxÞ ¼ xμ,
gðxÞ ¼ xν, μ, ν ¼ þ, −, 1, 2, while expanding to first
order, one finds

xμ⋆xν ¼ xμxν −
i
2
ηðxþημþην− − x1ημþην1

− x2ημþην1 − μ ↔ νÞ;

xν⋆xμ ¼ xνxμ −
i
2
ηðxþηνþημ− − x1ηνþημ1

− x2ηνþημ1 − ν ↔ μÞ: ðA8Þ

Therefore, the Moyal bracket is

½xμ; xν�⋆ ¼ xμ⋆xν − xν⋆xμ
¼ −iηðxþημþην− − x1ημþην1 − x2ημþην1 − μ↔ νÞ:

At this stage, it is easy to read off the nonzero components
of Θμν,

Θ−þ ¼ −4ηxþ;

Θ−1 ¼ −2ηx1;

Θ−2 ¼ −2ηx2: ðA9Þ

This precisely agrees with Eq. (30), which was derived
from the open string description and evaluated at z ¼ 0.
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