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We study a vectorial asymptotically free gauge theory, with gauge groupG andNf massless fermions in a
representationR of this group, that exhibits an infrared (IR) zero in its beta function, β, at the couplingα ¼ αIR
in the non-Abelian Coulomb phase. For general G and R, we calculate the scheme-independent series
expansions of (i) the anomalous dimension of the fermion bilinear, γψ̄ψ ;IR, to OðΔ4

fÞ and (ii) the derivative

β0 ¼ dβ=dα, toOðΔ5
fÞ, both evaluated at αIR, whereΔf is anNf-dependent expansionvariable. These are the

highest orders towhich these expansions have been calculated.We apply these general results to theories with
G ¼ SUðNcÞ and R equal to the fundamental, adjoint, and symmetric and antisymmetric rank-2 tensor
representations. It is shown that for all of these representations, γψ̄ψ ;IR, calculated to the order Δp

f , with

1 ≤ p ≤ 4, increases monotonically with decreasing Nf and, for fixed Nf, is a monotonically increasing
functionofp. Comparisons of our scheme-independent calculations of γψ̄ψ ;IR andβ0IR aremadewith our earlier
higher n-loop values of these quantities, and with lattice measurements. ForR ¼ F, we present results for the
limit Nc → ∞ and Nf → ∞ with Nf=Nc fixed. We also present expansions for αIR calculated to OðΔ4

fÞ.
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I. INTRODUCTION

An important advance in the understanding of quantum
field theory was the realization that the properties of a
theory depend on the Euclidean energy/momentum scale μ
at which they are measured. This is of particular interest in
an asymptotically free non-Abelian gauge theory, in which
the running gauge coupling gðμÞ and the associated
quantity αðμÞ ¼ gðμÞ2=ð4πÞ approach zero at large μ in
the deep ultraviolet (UV). We shall consider a theory of this
type, with gauge group G and Nf massless fermions ψ j,
j ¼ 1;…; Nf, in a representation R of G. The dependence
of αðμÞ on μ is described by the renormalization-group
(RG) [1] beta function, β ¼ dαðμÞ=dt, where dt ¼ d ln μ.
The condition that the theory be asymptotically free implies
thatNf must be less than a certain value,Nu, given below in
Eq. (2.4). Since αðμÞ is small at large μ, one can self-
consistently calculate β as a power series in αðμÞ. As μ
decreases from large values in the UV to small values in the
infrared (IR), αðμÞ increases. A situation of special interest
occurs if the beta function has a zero at some value away
from the origin. For a given G and R, this can happen for
sufficiently large Nf, while still in the asymptotically free
regime. In this case, as μ decreases from large values in the
UV toward μ ¼ 0 in the IR, the coupling increases but
approaches the value of α at this zero in the beta function,
which is thus denoted αIR. Since β ¼ 0 at α ¼ αIR, the
resultant theory in this IR limit is scale-invariant, and
generically also conformally invariant [2,3]. A fundamental

question concerns the properties of the interacting theory at
such an IR fixed point (IRFP) of the renormalization group.
There is convincing evidence that if αIR is small enough,
then the IR theory is in a (deconfined) non-Abelian
Coulomb phase (NACP), also called the conformal window
[4]. In terms of Nf, this phase occurs if Nf is in the interval
Nf;cr < Nf < Nu, where Nu and Nf;cr depend on G and R.
Here, Nf;cr denotes the value of Nf below which the
running αðμÞ becomes large enough to cause spontaneous
chiral symmetry breaking and dynamical fermion mass
generation.
Physical quantities in the IR-limit theory at αIR cannot

depend on the scheme used for the regularization and
subtraction procedure in renormalization. In conventional
computations of these quantities, first, one expresses them
as series expansions in powers of α, calculated to n-loop
order; second, one computes the IR zero of the beta
function at the n-loop (nl) level, denoted αIR;nl; and third,
one sets α ¼ αIR;nl in the series expansion for the given
quantity to obtain its value at the IR zero of the beta
function to this n-loop order. However, these conventional
series expansions in powers of α, calculated to a finite
order, are scheme-dependent beyond the leading one or two
terms. Specifically, the terms in the beta function are
scheme-dependent at loop order l ≥ 3 and the terms in
an anomalous dimension are scheme-dependent at loop
order l ≥ 2 [5]. Indeed, as is well known, the presence of
scheme dependence in higher-order perturbative calcula-
tions is a general property in quantum field theory.
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It is therefore of great value to use a complementary
approach in which one expresses these physical quantities at
αIR as an expansion in powers of a variable such that, at every
order in this expansion, the result is scheme-independent. A
very important property is that one can recast the expressions
for physical quantities in a manner that is scheme-indepen-
dent. A crucial point here is that, for a given gauge group G
and fermion representation R, as Nf (formally generalized
from non-negative integers to the real numbers) approaches
the upper limit allowed by asymptotic freedom, denotedNu
[given by Eq. (2.4) below], the resultant value of αIR
approaches zero. This means that one can equivalently
express a physical quantity in a scheme-independentmanner
as a series in powers of the variable

Δf ¼ Nu − Nf ¼ 11CA

4Tf
− Nf; ð1:1Þ

where CA is the quadratic Casimir invariant for the adjoint
representation, and Tf is the trace invariant for the fermion
representation R [6]. Here, αIR → 0 ⇔ Δf → 0. Hence, for
Nf less than, but close to Nu, this expansion variable Δf is
reasonably small, and one can envision reliable perturbative
calculations of physical quantities at this IR fixed point in
powers ofΔf. Following the original calculations of the one-
and two-loop coefficients of the beta function [7–9], some
early work on this was reported in [10,11].
In this paper we consider a vectorial, asymptotically free

gauge theory and present scheme-independent calculations,
for a general gauge group G and fermion representation R,
of two physical quantities in the IR theory at αIR of
considerable importance, namely (i) the anomalous dimen-
sion, denoted γψ̄ψ ;IR, of the (gauge-invariant) fermion

bilinear ψ̄ψ ¼ PNf

j¼1 ψ̄ jψ j to OðΔ4
fÞ and (ii) the derivative

β0IR ¼ dβ=dα to OðΔ5
fÞ, both evaluated at α ¼ αIR. These

are the highest orders in powers of Δf to which these
quantities have been calculated. We give explicit expres-
sions for these quantities in the special cases where
G ¼ SUðNcÞ and the fermion representation R is the
fundamental (F), adjoint (adj), and symmetric and anti-
symmetric rank-2 tensors, (S2, A2). Our results extend our
previous scheme-independent calculations of γψ̄ψ ;IR to
OðΔ3

fÞ in [12] and of the derivative β0IR to OðΔ4
fÞ in

[13] for general G and R, and our scheme-independent
calculation of γψ̄ψ ;IR toOðΔ4

fÞ forG ¼ SUð3Þ and R ¼ F in
[14] (see also [15]). A brief report on some of our results
was given in [16].
Scheme-independent series expansions of γψ̄ψ ;IR and β0IR

can be written as

γψ̄ψ ;IR ¼
X∞
j¼1

κjΔ
j
f ð1:2Þ

and

β0IR ¼
X∞
j¼1

djΔ
j
f; ð1:3Þ

where d1 ¼ 0 for all G and R [12–14]. In general, the
calculation of the coefficient κj in Eq. (1.2) requires, as
inputs, the values of the bl for 1 ≤ l ≤ jþ 1 and the cl for
1 ≤ l ≤ j. The calculation of the coefficient dj in Eq. (1.3)
requires, as inputs, the values of the bl for 1 ≤ l ≤ j. We
refer the reader to [12,13] for discussions of the procedure
for calculating the coefficients κj and dj. We denote the
truncation of these series to maximal power j ¼ p as
γψ̄ψ ;IR;Δp

f
and β0IR;Δp

f
, respectively. Where it is necessary for

clarity, we will also indicate the fermion representation R in
the subscript.
Our main new results here include the general expres-

sions, for arbitrary gauge group G and fermion represen-
tation R, for the coefficient, κ4 in Eq. (3.5) below, and for
the coefficient d5, given in Eq. (4.9) below, as well as
reductions of these formulas for special cases and, for
R ¼ F, calculations in the LNN limit (3.21). As will be
discussed further below, the derivative β0IR is equivalent to
the anomalous dimension of the non-Abelian field strength
squared, TrðFμνFμνÞ. Our present calculations make use of
the newly computed five-loop coefficient in the beta
function for this gauge theory for general G and R in
[17], as our work in [14,15] made use of the calculation
of this five-loop coefficient for the case G ¼ SUð3Þ and
R ¼ F in [18].
In addition to being of interest and value in their own

right, our new scheme-independent calculations, performed
to the highest order yet achieved, are useful in several ways.
First, we will compare our results for γψ̄ψ ;IR and β0IR for
various G and R with the values that we obtained at
comparable order with the conventional n-loop approach in
[19–21]. Our new results have the merit of being scheme-
independent at each order in Δf, in contrast to scheme-
dependent series expansions of γψ̄ψ ;IR and β0IR in powers of
the IR coupling. Second, there is, at present, an intensive
program to study this IR behavior on the lattice [22]. Thus,
it is of considerable interest to compare our scheme-
independent results for γψ̄ψ ;IR for various theories with
values measured in lattice simulations of these theories. We
have done this in [13,14,16] (as well as in our work on
conventional n-loop calculations [15,19]), and we will
expand upon this comparison here. Third, we believe that
our scheme-independent expansions for these physical
quantities are of interest in the context of the great current
resurgence of research activity on conformal field theo-
ries (CFT). Much of this current activity makes use of
operator-product expansions and the associated bootstrap
approach [23]. Our method of scheme-independent series
expansions for physical quantities at an IR fixed point is
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complementary to this bootstrap approach in yielding
information about a conformal field theory.
Our calculations rely on αIR being an exact zero of the

beta function and thus an exact IR fixed point of the
renormalization group, and this property holds in the non-
Abelian Couloumb phase (conformal window). In this
phase, the chiral symmetry associated with the massless
fermions is preserved in the presence of the gauge
interaction. However, there has also been interest in
vectorial asymptotically free gauge theories that exhibit
quasiconformal behavior associated with an approximate
IRFP in the phase with broken chiral symmetry, which
could feature a substantial value of an effective γψ̄ψ ;IR ∼
Oð1Þ [24]. Our scheme-independent calculations are also
relevant to this area of research in two ways: (i) if
Nf ≲ Nf;cr, then the effective values of quantities such
as γψ̄ψ ;IR may be close to the values calculated via the Δf

expansion from within the NACP; (ii) combining our
calculations of γψ̄ψ ;IR with an upper bound on this anoma-
lous dimension from conformal invariance and an
assumption that this bound is saturated as Nf↘Nf;cr yields
an estimate of the value of Nf;cr. This is useful, since the
value of Nf;cr for a given G and R is not known exactly at
present and is the subject of current investigation, including
lattice studies, as discussed further below.
Although most of our paper deals with new scheme-

independent results for physical quantities, one of the
ouputs of our calculations is a new type of series expansion
for a scheme-dependent quantity, namely αIR. The conven-
tional procedure for calculating the IR zero of a beta
function at the n-loop order, which we have applied in
earlier work to four-loop order for arbitrary G and R
[19–21] (see also [25]) is to examine the n-loop beta
function, which has the form of α2 times a polynomial of
degree n − 1 in α, and then determine the n-loop value
αIR;nl as the (real, positive) root of this polynomial closest
to the origin. However, in [15], we investigated the five-
loop beta function forG ¼ SUð3Þ and R ¼ F, as calculated
in the standard MS scheme, and found that, over a
substantial range of values of Nf in the non-Abelian
Coulomb phase, it does not have any positive real root.
We were able to circumvent this problem in [15] by the use
of Padé approximants, but nevertheless, it is a complication
for this conventional approach to calculating αIR. The new
calculation of αIR as an expansion in powers of Δf up to
OðΔ4

fÞ for general G and R that we present here has the
advantage that it always yields a physical value, in contrast
to the situation with the n-loop beta function.
The paper is organized as follows. Some relevant back-

ground and methods are discussed in Sec. II. We present
our calculation of κ4 in the scheme-independent expansion
of γψ̄ψ ;IR for general G and R in Sec. III, together with
evaluations for G ¼ SUðNcÞ and R ¼ F; adj; S2, and A2.
These are compared with values from n-loop calculations

and with lattice measurements. In this section we also
present results for the case R ¼ F in the limit Nc → ∞,
Nf → ∞, with Nf=Nc fixed, which we call the LNN limit.
In Sec. IV we present our calculation of the coefficient d5 in
the scheme-independent expansion of β0IR for generalG and
R, with evaluations for the above-mentioned specific
representations. Section V gives an analysis of the five-
loop rescaled beta function in the LNN limit and a
determination of the interval over which it exhibits a
physical IR zero. Section VI is devoted to the calculation
of the coefficients in an expansion of αIR in powers of Δf

up to OðΔ4
fÞ. Our conclusions are given in Sec. VII, and

some auxiliary formulas are listed in the Appendix.

II. BACKGROUND AND METHODS

In this section we review some background and methods
relevant for our calculations. The series expansion of β in
powers of α is

β ¼ −2α
X∞
l¼1

bl

�
α

4π

�
l

ð2:1Þ

where bl is the l-loop coefficient. For a general operatorO,
we denote the full scaling dimension as DO and its free-
field value as DO;free. The anomalous dimension of this
operator, denoted γO, is defined via the relation [26]

DO ¼ DO;free − γO: ð2:2Þ

An operator of particular interest is the (gauge-invariant)
fermion bilinear, ψ̄ψ . The expansion of the anomalous
dimension of this operator, γψ̄ψ , in powers of α is

γψ̄ψ ¼
X∞
l¼1

cl

�
α

4π

�
l
; ð2:3Þ

where cl is the l-loop coefficient. As noted above, the
coefficients b1, b2, and c1 are scheme-independent, while
the bl with l ≥ 3 and the cl with l ≥ 2 are scheme-
dependent [5]. For a general gauge group G and fermion
representation R, the coefficients b1 and b2 were calculated
in [7,8], and b3 and b4 were calculated in [27,28] (and
checked in [29]) in the commonly used MS scheme [30].
For G ¼ SUð3Þ and R ¼ F, b5 was calculated in [18] and
recently, an impressive calculation of b5 for general gauge
group G and fermion representation R was presented in
[17], again in the MS scheme. We also make use of the cl
up to loop order l ¼ 4, calculated in [31]. Although we use
these coefficients as calculated in the MS scheme below, we
emphasize that the main results of this paper are calcu-
lations of the quantities κ4 and d5 which, like all of the κj
and dj, are scheme-independent. We denote the n-loop β,
β0, and γψ̄ψ as βnl, β0nl, and γψ̄ψ ;nl. As discussed above, we
denote the IR zero of βnl as αIR;nl, and the corresponding
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evaluations of β0nl and γψ̄ψ ;nl at αIR;nl as β0IR;nl and
γψ̄ψ ;IR;nl. The symbols αIR, γψ̄ψ ;IR, and β0IR refer to the
exact values of these quantities.
For a given G and R, as Nf increases, b1 decreases

through positive values and vanishes with sign reversal at
Nf ¼ Nu, with

Nu ¼
11CA

4Tf
; ð2:4Þ

where CA and Tf are group invariants [6,32]. Hence, the
asymptotic freedom condition yields the upper bound
Nf < Nu.
There is a range of Nf < Nu where b2 < 0, so the two-

loop beta function has an IR zero, at the value

αIR;2l ¼ −
4πb1
b2

: ð2:5Þ

The n-loop beta function has a double UV zero at α ¼ 0
and n − 1 zeros away from the origin. Among the latter
zeros of the beta function, the smallest (real, positive) zero,
if there is such a zero, is the physical IR zero, αIR;nl, of βnl.
As Nf decreases below Nu, b2 passes through zero to
positive values as Nf decreases through

Nl ¼ 17C2
A

2Tfð5CA þ 3CfÞ
: ð2:6Þ

Hence, with Nf formally extended from nonnegative
integers to nonnegative real numbers [32], β2l has an IR
zero (IRZ) for Nf in the interval

IIRZ∶ Nl < Nf < Nu: ð2:7Þ

Thus, Nl is the lower (l) end of this interval [33]
As Nf decreases in this interval, αIR;2l increases.

Therefore, in order to investigate the IR zero of the beta
function for Nf toward the middle and lower part of IIRZ
with reasonable accuracy, one requires higher-loop calcu-
lations. These were performed in [34,35], [19–21], [15,25]
for αIR;nl and for the anomalous dimension of the fermion
bilinear operator (see also [36,37]). Since the bl with l ≥ 3
are scheme-dependent, it is necessary to determine the
degree of sensitivity of the value obtained for αIR;nl for
n ≥ 3 to the scheme used for the calculation. This was
done in [38–41].
The nonanomalous global flavor symmetry of the

theory is

Gfl ¼ SUðNfÞL ⊗ SUðNfÞR ⊗ Uð1ÞV: ð2:8Þ

This Gfl symmetry is preserved in the (deconfined) non-
Abelian Coulomb phase. As in [12–16], we focus on this
phase in the present work, since both the expansion in a

small αIR and the scheme-independent expansion in powers
of Δf start from the upper end of the interval IIRZ in this
phase. In contrast, in the phase with confinement and
spontaneous chiral symmetry breaking, the gauge inter-
action produces a bilinear fermion condensate, hψ̄ψi, and
this breaks Gfl to SUðNfÞV ⊗ Uð1ÞV , where SUðNfÞV is
the diagonal subgroup of SUðNfÞL ⊗ SUðNfÞR.
We will consider the flavor-nonsinglet (fns) and flavor-

singlet (fs) bilinear fermion operators
PNf

j;k¼1 ψ̄ jðTaÞjkψk

and
PNf

j¼1 ψ̄ jψ j, where here Ta with a ¼ 1;…; N2
f − 1 is a

generator of the global flavor group SUðNfÞ. We will
usually suppress the explicit flavor indices and thus write
these operators as ψ̄Taψ and ψ̄ψ . These have the same
anomalous dimension (e.g., [42,43]), which we denote
simply as the anomalous dimension for the flavor-singlet
operator, γψ̄ψ . In vectorial gauge theories of the type
considered here, these fermion bilinear operators are
gauge-invariant, and hence the anomalous dimension
γψ̄ψ and its IR value, γψ̄ψ ;IR, are physical. (In contrast, in
a chiral gauge theory, fermion bilinears are generically not
gauge-invariant, and hence neither are their anomalous
dimensions.)
Since αIR vanishes (linearly) with Δf as Δf → 0, we can

express it as a series expansion in this variable,Δf. We thus
write

αIR ≡ 4πaIR ¼ 4π
X∞
j¼1

ajΔ
j
f: ð2:9Þ

The calculation of the aj requires, as input, the bl with
1 ≤ l ≤ jþ 1 [12,13].
A basic question concerns the part of the interval IIRZ in

which the series expansions for γψ̄ψ ;IR and β0IR in Eqs. (1.2)
and (1.3) are reliable. We analyzed this question in
[12–14,16] and concluded that these expansions for γIR
and β0IR should be reasonably reliable throughout much of
the interval IIRZ and non-Abelian Coulomb phase. We will
use our higher-order calculations in this paper to extend this
analysis here. We recall that the properties of the theory
change qualitatively as Nf decreases through the value
Nf;cr and spontaneous chiral symmetry breaking occurs,
with the fermions gaining dynamical masses. The (chirally
symmetric) non-Abelian Coulomb phase with Nf;cr <
Nf < Nu is clearly qualitatively different from the confined
phase with spontaneous chiral symmetry breaking at
smallerNf belowNf;cr. Therefore, one does not, in general,
expect the small-Δf series expansion to hold below Nf;cr.
Estimating the range of applicability of this expansion
is thus connected with estimating the value of Nf;cr.
For general G and R, as Nf, formally continued from
the nonnegative integers to the non-negative real numbers,
decreases from the upper end of the interval IIRZ at Nu to
the lower end of this interval at Nf ¼ Nl, Δf increases
from 0 to the maximal value

THOMAS A. RYTTOV and ROBERT SHROCK PHYSICAL REVIEW D 95, 105004 (2017)

105004-4



ðΔfÞmax ¼ Nu − Nl

¼ 3CAð7CA þ 11CfÞ
4Tfð5CA þ 3CfÞ

for Nf ∈ IIRZ: ð2:10Þ

Recall that for a function fðzÞ that is analytic about
z ¼ 0 and has a Taylor series expansion

fðzÞ ¼
X∞
j¼1

fjzj; ð2:11Þ

the radius of convergence of this series, zc, can be
determined by the ratio test

zc ¼ lim
j→∞

jfj−1j
jfjj

: ð2:12Þ

Of course, we cannot apply the full ratio test here, since we
have only calculated the κj and dj to finite order. However,
we can get a rough measure of the range of applicability of
the series expansions in Δf (and also Δr in the LNN limit
[21] discussed below) by computing the ratios κj−1=κj and
dj−1=dj for the values of j for which we have calculated
these coefficients.
The series expansion (1.2) for γIR starts at Δf ¼ 0, i.e., at

the upper end of the non-Abelian Coulomb phase, and
extends downward through this phase. Given that the
theory at αIR in this phase is conformal, there is an upper
bound from conformal invariance, namely [44]

γψ̄ψ ;IR ≤ 2: ð2:13Þ

We have used this in our earlier work [12–16,19] andwewill
apply itwith our higher-order calculations here.As discussed
in [19], in the phase with spontaneous chiral symmetry
breaking (SχSB), there is a similar upper bound, γψ̄ψ ;IR < 2.
This follows from the requirement that if mðkÞ is the
momentum-dependent running dynamical mass generated
in association with the SχSB, then limk→∞mðkÞ ¼ 0 (see
Eqs. (4.1)-(4.2) of [19]). Thus, if the approximate calculation
of the anomalous dimension of a given quantity at a fixed
value ofΔf, computed up to order Δp

f , yields a value greater
than 2, then we can infer that the perturbative calculation is
not applicable at this value of Δf or equivalently, Nf.
In particular, this can give information on the extent of

the non-Abelian Coulomb phase and the value ofNf;cr. The
application of this bound is particularly powerful in the
context of our present scheme-independent calculations
because we find that the κj in Eq. (1.2) are positive for all of
the representations considered here, and hence, for a given
p, γIR;Δp

f
is a monotonically increasing function of Δf or

equivalently it increases monotonically as Nf decreases
from its upper limit,Nu. If one assumes that γIR saturates its
upper bound, (2.13) and if a calculation of γIR is reliable in
the regime where it is approaching 2 from below, then one

can, in principle, determine the value of Nf;cr, where γIR
reaches this upper bound after approaching it from below.
In this context, it should be mentioned that in a super-
symmetric (vectorial) gauge theory (SGT) with Nf pairs of
massless chiral superfields transforming according the
representations R and R̄ of a gauge group G, the exact
expression for γIR is known [45,46], and (i) it increases
monotonically with decreasing Nf in the NACP; and (ii) it
saturates its upper bound (which, in the SGT case is
γIR;SGT ≤ 1) at the lower end of the non-Abelian
Coulomb phase. Specifically, in this supersymmetric gauge
theory, the upper and lower ends of the NACP occur at [32]

Nu;SGT ¼ 3CA

2Tf
; ð2:14Þ

and

Nl;SGT ¼ 3CA

4Tf
¼ Nu

2
; ð2:15Þ

and

γψ̄ψ ;IR;SGT ¼ 3CA − 2TfNf

2TfNf
¼ Nu

Nf
− 1

¼
2Tf

3CA
Δf

1 − 2Tf

3CA
Δf

: ð2:16Þ

Thus, γψ̄ψ ;IR;SGT increases from 0 to 1 as Nf decreases from
Nu;SGT toNl;SGT. However, it is not known if this saturation
occurs in the nonsupersymmetric case. In practice, we are
only able to apply this test in an approximate manner
because for a given G and R, as Nf decreases toward the
lower part of IIRZ, the ratio test already shows that higher-
order terms in the Δf expansion are becoming increasingly
non-negligible, so that the truncation of the infinite series
(1.2) to maximal power p ¼ 4 involves an increasingly
great uncertainty, as does an extrapolation to p ¼ ∞.
For some perspective, we note that in order to asses the

accuracy of the Δf expansion, the coefficients κj;SGT were
calculated for j ¼ 1, 2 in [12] andwere found to be in perfect
agreementwith the corresponding Taylor series expansion of
the exact expression (2.16). This check was carried to one
higher order in [16] for the case G ¼ SUðNcÞ and R ¼ F
with a calculation of γIR;SGT;Δ3

f
, and again, perfect agreement

was found with the exact result. This agreement explicitly
demonstrated the scheme independence of the κj;SGT, since
the calculations were carried out using inputs computed in
the DR scheme, while (2.16) was derived in the NSVZ
scheme [45]. Furthermore, as a consequence of electric-
magnetic duality [46], as Nf↘Nl;SGT in the non-Abelian
Coulomb phase, the physics is described by a magnetic
theory with coupling strength going to zero, or equivalently,
by an electric theory with divergent αIR. Therefore, this
perfect agreement, order-by-order, between the κj;SGT and
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the expansion of the exact expression (2.16) for γIR;SGT in
powers of Δf, showed that the Δf expansion in this super-
symmetric gauge theory is able to treat situationswith strong,
as well as weak, coupling. This could not be done with
conventional perturbative series expansions in powers of
α [36,37].

III. CALCULATION OF γψ̄ψ;IR TO OðΔ4
f Þ

A. General G and R

The coefficients κj in the scheme-independent expansion
of γψ̄ψ ;IR in powers of Δf, Eq. (1.2), contain important
information about the theory. For a general asymptotically
free vectorial gauge theory with gauge group G and Nf

massless fermions in a representation R, the coefficients κj

were given in [12] up to order j ¼ 3, yielding the expansion
of γψ̄ψ ;IR to order Δ3

f. It is convenient to define

D ¼ 7CA þ 11Cf; ð3:1Þ
since this factor occurs repeatedly in denominators of various
expressions. For reference,we list the κj for1 ≤ j ≤ 3 below:

κ1 ¼
8CfTf

CAD
; ð3:2Þ

κ2 ¼
4CfT2

fð5CA þ 88CfÞð7CA þ 4CfÞ
3C2

AD
3

; ð3:3Þ

and

κ3 ¼
4CfTf

34C4
AD

5

�
3CAT2

fð−18473C4
A þ 144004C3

ACf þ 650896C2
AC

2
f þ 356928CAC3

f þ 569184C4
fÞ

− 2560T2
fD

dabcdA dabcdA

dA
þ 45056CATfD

dabcdR dabcdA

dA
− 170368C2

AD
dabcdR dabcdR

dA

þ 33 · 210D

�
2T2

f
dabcdA dabcdA

dA
− 13CATf

dabcdR dabcdA

dA
þ 11C2

A
dabcdR dabcdR

dA

�
ζ3

�
: ð3:4Þ

Here, ζs ¼
P∞

n¼1 n
−s is the Riemann zeta function, the quantities CA, Cf, and Tf are group invariants, the contractions

dabcdA dabcdA ,dabcdR dabcdA ,dabcdR dabcdR are additional group-theoretic quantities given in [28], anddA is the dimension of the adjoint
representation ofG. In [12,13], the expression for κ3was givenwith termswritten in order of descending powers ofCA. It is also
useful to express this coefficient κ3 in an equivalent form that renders certain factors of D explicit and shows the simple
factorization of terms multiplying ζ3, and we have done this in Eq. (3.4).
Our new result here for κ4 for a general gauge group G and fermion representation R is

κ4¼
T2
f

35C5
AD

7

�
CACfT2

fð19515671C6
A−131455044C5

ACfþ1289299872C4
AC

2
fþ2660221312C3

AC
3
f

þ1058481072C2
AC

4
fþ6953709312CAC5

fþ1275715584C6
fÞþ210CfT2

fDð5789C2
A−4168CACf−6820C2

fÞ
dabcdA dabcdA

dA

−210CACfTfDð41671C2
A−125477CACf−53240C2

fÞ
dabcdR dabcdA

dA

−28 ·112C2
ACfDð2569C2

Aþ18604CACf−7964C2
fÞ
dabcdR dabcdR

dA

−214 ·3CAT2
fD

3
dabcdR dabcdA

dR
þ213 ·33C2

ATfD3
dabcdR dabcdR

dR

þ28D

�
−3CACfT2

fDð4991C4
A−17606C3

ACfþ33240C2
AC

2
f−30672CAC3

fþ9504C4
fÞ

−24CfT2
f
dabcdA dabcdA

dA
ð17206C2

A−60511CACf−45012C2
fÞþ40CACfTf

dabcdR dabcdA

dA
ð35168C2

A−154253CACf−88572C2
fÞ

−88C2
ACf

dabcdR dabcdR

dA
ð973C2

A−93412CACf−56628C2
fÞþ1440CAT2

fD
2
dabcdR dabcdA

dR
−7920C2

ATfD2
dabcdR dabcdR

dR

�
ζ3

þ4505600CACfD2

dA
½−4T2

fd
abcd
A dabcdA þ2TfdabcdR dabcdA ð10CAþ3CfÞþ11CAdabcdR dabcdR ðCA−3CfÞ�ζ5

�
: ð3:5Þ
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Here, dR is the dimension of the fermion representation R.
As before, we have indicated the simple factors in the
prefactor and, for sufficiently simple cases, also factoriza-
tions of numbers in numerator terms. We will follow the
same format for indicating numerical factorizations below.
We proceed to evaluate this general expression for the
gauge group G ¼ SUðNcÞ and several specific fermion
representations R, namely the fundamental, adjoint, and
symmetric and antisymmetric rank-2 tensor. As stated in
the Introduction, we will use the abbreviations F, adj, S2,
and A2 to refer to these representations. It is also worth-
while to evaluate our general formulas for other gauge
groups and their representations, including orthogonal,
symplectic, and exceptional groups. We will report these
evaluations for other groups and their representations
elsewhere. There has, indeed, been interest in conformal
phases for theories with these other gauge groups [47].
The coefficients κ1 and κ2 are manifestly positive for all

G and R. For G ¼ SUðNcÞ with all physical Nc, and for
representations R ¼ F, adj, S2, we have found that κ3 and
κ4 are also positive [12–16]. As one of the results in the
present paper, we generalize this further to include R ¼ A2.
That is, for all physical Nc and for all of these representa-
tions, we find that κj > 0 for j ¼ 3, 4 as well as the
manifestly positive cases j ¼ 1, 2. Thus, extending our
previous discussion in [12–16], the property that, for all of
these representations R, κj > 0 for 1 ≤ j ≤ 4 and for all Nc

implies two important monotonicity results: (i) for these R,
and with a fixed p in the interval 1 ≤ p ≤ 4, γψ̄ψ ;IR;Δp

f
is a

monotonically increasing function of Δf, i.e., it increases
monotonically with decreasing Nf; and (ii) for these R, and
with a fixed Nf ∈ IIRZ, γψ̄ψ ;IR;Δp

f
is a monotonically

increasing function of p in the range 1 ≤ p ≤ 4. In addition
to the manifestly positive κ1 and κ2 and the κ3 and κ4 that
we have shown to be positive, a plausible conjecture is that,
for these R, κj > 0 for all j ≥ 5. Assuming that this

conjecture is valid, then three consequences are that for
these representations R, (iii) for fixed Nf, γψ̄ψ ;IR;Δp

f
is a

monotonically increasing function of p for all p;
(iv) γψ̄ψ ;IR;Δp

f
is a monotonically increasing function of

Δf, i.e. it increases with decreasing Nf, for all p; and hence
(v) [assuming that the infinite series (1.2) converges] the
quantity γψ̄ψ ;IR defined by this infinite series, and equiv-
alent to limp→∞γψ̄ψ ;IR;Δp

f
, is a monotonically increasing

function of Δf, i.e., it increases monotonically with
decreasing Nf.

B. γψ̄ψ;IR;Δ4
f
for G=SUðNcÞ and R=F

An important special case is G ¼ SUðNcÞ with R being
the fundamental representation. For this case, the general
expression for the interval IIRZ, Eq. (2.7), is [32]

IIRZ∶
34N3

c

13N2
c − 3

< Nf <
11Nc

2
for R ¼ F: ð3:6Þ

The factor D in Eq. (3.1) has the explicit form

D ¼ 25N2
c − 11

2Nc
for R ¼ fund: ð3:7Þ

The general results for κp with 1 ≤ p ≤ 3 in (3.2)–(3.4)
from [12] take the following forms given in [13]:

κ1;F ¼ 4ðN2
c − 1Þ

Ncð25N2
c − 11Þ ð3:8Þ

κ2;F ¼ 4ðN2
c − 1Þð9N2

c − 2Þð49N2
c − 44Þ

3N2
cð25N2

c − 11Þ3 ð3:9Þ

and

κ3;F ¼ 8ðN2
c − 1Þ

33N3
cð25N2

c − 11Þ5 ½ð274243N
8
c − 455426N6

c − 114080N4
c þ 47344N2

c þ 35574Þ

− 4224N2
cð4N2

c − 11Þð25N2
c − 11Þζ3�: ð3:10Þ

For κ4;F, we have [16]

κ4;F ¼ 4ðN2
c − 1Þ

34N4
cð25N2

c − 11Þ7 ½ð263345440N
12
c − 673169750N10

c þ 256923326N8
c

− 290027700N6
c þ 557945201N4

c − 208345544N2
c þ 6644352Þ

þ 384ð25N2
c − 11Þð4400N10

c − 123201N8
c þ 480349N6

c − 486126N4
c þ 84051N2

c þ 1089Þζ3
þ 211200N2

cð25N2
c − 11Þ2ðN6

c þ 3N4
c − 16N2

c þ 22Þζ5�: ð3:11Þ

We have checked that when we substitute the valueNc ¼ 3 in our expression for κ4;F in Eq. (3.11), the result agrees with our
previous calculation of κ4;F for this case in Eq. (9) of Ref. [14].
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The explicit numerical expressions for the scheme-independent series expansions of γψ̄ψ ;IR to order Δ4
f for R ¼ F and

Nc ¼ 2, 3, 4 are as follows:

SUð2Þ∶ γψ̄ψ ;IR;F;Δ4
f
¼ Δf½0.067416þ ð0.73308 × 10−2ÞΔf þ ð0.60531 × 10−3ÞΔ2

f þ ð1.62662 × 10−4ÞΔ3
f� ð3:12Þ

SUð3Þ∶ γψ̄ψ ;IR;F;Δ4
f
¼ Δf½0.049844þ ð0.37928 × 10−2ÞΔf þ ð0.23747 × 10−3ÞΔ2

f þ ð0.36789 × 10−4ÞΔ3
f� ð3:13Þ

and

SUð4Þ∶ γψ̄ψ ;IR;F;Δ4
f
¼ Δf½0.038560þ ð0.22314 × 10−2ÞΔf þ ð0.11230 × 10−3ÞΔ2

f þ ð0.126505 × 10−4ÞΔ3
f�: ð3:14Þ

In these equations,

Δf ¼ 11Nc

2
− Nf for R ¼ F: ð3:15Þ

Plots of γψ̄ψ ;IR;F;Δp
f
for Nc ¼ 2 and Nc ¼ 3 and 1 ≤ p ≤ 4

were given in [16]. These showed the two monotonicity
properties mentioned above. For an extended comparison,
we show the plots of γψ̄ψ ;IR;F;Δp

f
for 2 ≤ Nc ≤ 4 and

1 ≤ p ≤ 4 in Figs. 1–3.
In Table I we list the values of γψ̄ψ ;IR;F;Δp

f
for 1 ≤ p ≤ 4

for the SU(2), SU(3), and SU(4) theories, with Nf in the
respective interval IIRZ for each. For comparison, we also
include the values of γψ̄ψ ;IR;nl obtained with our earlier
n-loop calculations in [19], using series expansions in
powers of α evaluated at α ¼ αIR;nl for 1 ≤ n ≤ 4 with b3
and b4 and cn, 2 ≤ n ≤ 4 calculated in theMS scheme. (See
Table VI in [19] for a list of numerical values of values of
γψ̄ψ ;IR;nl.) As discussed above, if, for a given Nc and Nf,
a calculated value of γψ̄ψ ;IR violates the upper bound
γψ̄ψ ;IR ≤ 2 in (2.13), this is unphysical (marked with a
symbol “u” in Table I) and indicates that the perturbative

calculation is not applicable for thisNf. In the case of the n-
loop values γIR;nl, if this occurs at the two-loop level, it also
leads to caution concerning γIR;nl for n ¼ 3, 4, and this is
similarly indicated with a “u”. The computations of γIR;nl in
[19,25] made use of the bn and cn up to the n ¼ 4 loop
level, where the scheme-dependent b3, b4, and cn with
2 ≤ n ≤ 4 had been calculated in the widely used MS
scheme [27–29,31]. As we pointed out in [15], the five-
loop beta function in the MS scheme does not exhibit a
physical IR zero over a substantial lower part of IIRZ. We
discuss this further below. For compact notation, we will
often leave the subscript ψ̄ψ implicit on these and other
quantities and thus write γψ̄ψ ;IR ≡ γIR, γψ̄ψ ;IR;nl ≡ γIR;nl,
etc. From Eqs. (2.4) and (2.6) it follows that the respective
lower and upper ends of the intervals IIRZ for these theories
are ðNu; NlÞ ¼ ð5.55; 11Þ, (8.05, 16.5), and (10.61, 22) for
SU(2), SU(3), and SU(4), and hence the physical intervals
IIRZ are 6 ≤ Nf ≤ 10 for SU(2), 9 ≤ Nf ≤ 16 for SU(3),
and 11 ≤ Nf ≤ 21 for SU(4).
Since the calculation of κj and the resultant γIR;Δj

f
uses

information from the (jþ 1)-loop beta function from (2.1)
and the j-loop expansion of γψ̄ψ in (2.3), it is natural to
compare the (SI) γIR;Δp

f
with the (SD) γIR;p0l for p0 ¼ p and

FIG. 1. Plot of γψ̄ψ ;IR;F;Δp
f
(labeled as γψ̄ψ ;IR on the vertical axis

in this and subsequent graphs) for Nc ¼ 2, i.e., G ¼ SUð2Þ, and
1 ≤ p ≤ 4 as a function of Nf ∈ IIRZ. From bottom to top, the
curves (with colors online) refer to γψ̄ψ ;IR;F;Δf

(red), γψ̄ψ ;IR;F;Δ2
f

(green), γψ̄ψ ;IR;F;Δ3
f
(blue), and γψ̄ψ ;IR;F;Δ4

f
(black).

FIG. 2. Plot of γψ̄ψ ;IR;F;Δp
f
for Nc ¼ 4 and 1 ≤ p ≤ 4 as a

function of Nf ∈ IIRZ. From bottom to top, the curves (with
colors online) refer to γψ̄ψ ;IR;F;Δf

(red), γψ̄ψ ;IR;F;Δ2
f

(green),

γψ̄ψ ;IR;F;Δ3
f
(blue), and γψ̄ψ ;IR;F;Δ4

f
(black).
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p0 ¼ pþ 1. In the upper and middle part of the interval
IIRZ for a givenNc, we find that γIR;Δ4

f
is slightly larger than

γIR;4l, with the difference increasing as Nf decreases below
Nu, i.e., as Δf increases.
It is important to assess the range of applicability and

reliability of these results from the Δf expansion. We did
this in [12–14] and extend our analysis here, using our new
result for κ4. Following our discussion above on the ratio
test for the determination of the radius of convergence of a
Taylor series, the ratios of successive coefficients, κj−1=κj,
give an approximate measure of the range of applicability
of the Δf expansion for γIR. For a givenG and R, this range
may be compared with the maximum size of Δf in the
interval IIRZ where the scheme-independent two-loop beta
function β2l has an IR zero. For the present case of
G ¼ SUðNcÞ and R ¼ F, the general formula (2.10) takes
the form

R ¼ F∶ ðΔfÞmax ¼
3Ncð25N2

c − 11Þ
2ð13N2

c − 3Þ : ð3:16Þ

This has the respective values

ðΔfÞmax ¼ 5.45; 8.45; 11.39 for Nc ¼ 2; 3; 4: ð3:17Þ

We begin by reviewing the SU(3) theory, for which

SUð3Þ∶ κF;1
κ;F;2

¼ 13.14;
κF;2
κF;3

¼ 15.97;

κF;3
κF;4

¼ 6.455: ð3:18Þ

As discussed in [12–14], these results suggest that for the
SU(3) theory with R ¼ F, the Δf expansion calculated to
this order should be reasonably reliable over a substantial

part, including the upper and middle portions, of the
interval IIRZ and the non-Abelian Coulomb phase.
Using our new results, we now extend this analysis to the

SU(2) and SU(4) theories [and will give a further analysis
in the LNN limit of Eq. (3.21)]. We find

SUð2Þ∶ κF;1
κ;F;2

¼ 9.20;
κF;2
κF;3

¼ 12.11;

κF;3
κF;4

¼ 3.72 ð3:19Þ

and

SUð4Þ∶ κF;1
κ;F;2

¼ 17.28;
κF;2
κF;3

¼ 19.87;

κF;3
κF;4

¼ 8.88: ð3:20Þ

Since ðΔfÞmax has the respective values 5.45 and 11.39 for
the SU(2) and SU(4) theories, we are led to the same
conclusion for these theories that we reached for the SU(3)
theory, namely that the Δf expansion should be reasonably
reliable over a substantial portion of the respective inter-
vals IIRZ.
As discussed above, another way to assess the range of

applicability of the Δf expansion is to check to see whether
the resultant values of γIR;Δp

f
obey the upper bound γIR ≤ 2

in (2.13). As is evident from Table I, all of our values of
γIR;Δp

f
listed there obey this bound. This again shows the

advantages of the scheme-independent Δf expansion as a
way of calculating γIR to a given order, as compared with
the conventional n-loop calculation of γIR;nl. As is also
evident from Table I for each of the cases listed there,
namely Nc ¼ 2, 3, 4, one finds unphysically large values of
γIR;nl for values of Nf in the lower portions of the
respective intervals IIRZ. In [19] and later works we
explained this as a consequence of the fact that, for a
given G and R, as Nf decreases toward Nl in the interval
IIRZ, the coupling αIR increases from weak toward strong
coupling. Thus, toward the lower end of the respective
intervals IIRZ, the IR coupling αIR;nl become too large for
the perturbative n-loop calculations of γIR;nl to be appli-
cable. In contrast, the Δf expansion can be applied over a
considerably greater portion of the interval IIRZ to yield
results for γIR;Δp

f
that obey the upper bound (2.13). We will

show this further below for the LNN limit (3.21). This also
demonstrates that the Δf expansion for γIR is able to be
used in situations with substantially stronger IR coupling
than is the case with the conventional expansion in powers
of this coupling yielding the n-loop value γIR;nl.
We proceed to compare our values in Table I with lattice

measurements. The SU(3) theory with R ¼ F and Nf ¼ 12

has been the subject of many lattice measurements. In [14],

FIG. 3. Plot of γψ̄ψ ;IR;F;Δp
f
for Nc ¼ 3 and 1 ≤ p ≤ 4 as a

function of Nf ∈ IIRZ. From bottom to top, the curves (with
colors online) refer to γψ̄ψ ;IR;F;Δf

(red), γψ̄ψ ;IR;F;Δ2
f

(green),

γψ̄ψ ;IR;F;Δ3
f
(blue), and γψ̄ψ ;IR;F;Δ4

f
(black).
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we compared our results for this theory with lattice
measurements, so we only briefly review that discussion
here. We recall that there is not, at present, a consensus
among all lattice groups as to whether this theory is in an
IR-conformal phase or is in a chirally broken phase [22].
There is a considerable spread of values of γIR in published
papers, including the values (where uncertainties in the last
digits are indicated in parentheses) γIR ∼ 0.414ð16Þ [48],
γIR ≃ 0.35 [49], γIR ≃ 0.4 − 0.5 [50], γIR ¼ 0.27ð3Þ [51],
γIR ≃ 0.25 [52] (see also [53]), γIR ¼ 0.235ð46Þ [54], and
0.2≲ γIR ≲ 0.4 [55]. We refer the reader to [22,48–55] for
discussions of estimates of overall uncertainties in these
measurements. Our value γIR;Δ4

f
¼ 0.338 and our extrapo-

lated value for limp→∞γIR;Δp
f
¼ γIR, namely γIR ¼ 0.40, are

consistent with this range of lattice measurements and are
somewhat higher than our five-loop value γIR;5l ¼ 0.255
from the conventional α series that we obtained in [15]. It is
hoped that further work by lattice groups will lead to a
consensus concerning whether this theory is IR conformal
or not and concerning the value of γIR.
The SU(3) theory with Nf ¼ 10 has been investigated

on the lattice in [56], with the result γIR ∼ 1. While our

highest-order n-loop values, namely our four-loop result,
γIR;4l ¼ 0.156 [19], and our five-loop result, γIR;5l ¼ 0.211
obtained using Padé methods [15], are smaller than this
lattice value, our extrapolated scheme-independent value,
γIR ¼ 0.95� 0.06 [14], is consistent with it.
There have also been a number of lattice studies of the

SU(3) theory with Nf ¼ 8 [57–59], which have yielded the
estimate γIR ≃ 1. As is evident from Fig. 3, if we were to
continue the curve for γIR;Δ4

f
plotted there downward further

to Nf ¼ 8, the resultant value would be compatible with
γIR ∼ 1. We note that this theory may well be in the chirally
broken phase, and there is not yet a clear consensus as to
whether it is in this phase or possibly near the lower end of
the IR-conformal non-Abelian Coulomb phase. In this
context, one may recall that if, for a given G and R,
Nf < Nf;cr, so that there is spontaneous chiral symmetry
breaking, then the IR zero of the beta function is only
approximate, since the theory flows away from this value as
the fermions gain dynamical mass and are integrated out,
leaving a pure gluonic low-energy effective field theory.
For such a theory, the quantity extracted from either
continuum or lattice analyses as γIR is only an effective

TABLE I. Values of the anomalous dimension γψ̄ψ ;IR;F calculated to OðΔp
f Þ, i.e., γψ̄ψ ;IR;F;Δp

f
, with 1 ≤ p ≤ 4, for

G ¼ SUðNcÞ, as a function of Nc and Nf for 2 ≤ Nc ≤ 4 and Nf in the respective intervals IIRZ for each Nc. For
comparison, we also include the n-loop values γψ̄ψ ;IR;F;nl with 2 ≤ n ≤ 4 from Table VI of [19]. Values that exceed
the bound γψ̄ψ ;IR ≤ 2 in Eq. (2.13) are marked as unphysical (u). For notational brevity in this and successive tables,
we omit the subscript ψ̄ψ . See text for further details.

Nc Nf γIR;F;2l γIR;F;3l γIR;F;4l γIR;F;Δf
γIR;F;Δ2

f
γIR;F;Δ3

f
γIR;F;Δ4

f

2 6 u u u 0.337 0.520 0.596 0.698
2 7 u u u 0.270 0.387 0.426 0.467
2 8 0.752 0.272 0.204 0.202 0.268 0.285 0.298
2 9 0.275 0.161 0.157 0.135 0.164 0.169 0.172
2 10 0.0910 0.0738 0.0748 0.0674 0.07475 0.07535 0.0755

3 9 u u u 0.374 0.587 0.687 0.804
3 10 u u u 0.324 0.484 0.549 0.615
3 11 1.61 0.439 0.250 0.274 0.389 0.428 0.462
3 12 0.773 0.312 0.253 0.224 0.301 0.323 0.338
3 13 0.404 0.220 0.210 0.174 0.221 0.231 0.237
3 14 0.212 0.146 0.147 0.125 0.148 0.152 0.153
3 15 0.0997 0.0826 0.0836 0.0748 0.0833 0.0841 0.0843
3 16 0.0272 0.0258 0.0259 0.0249 0.0259 0.0259 0.0259

4 11 u u u 0.424 0.694 0.844 1.029
4 12 u u u 0.386 0.609 0.721 0.8475
4 13 u u u 0.347 0.528 0.610 0.693
4 14 u u u 0.308 0.451 0.509 0.561
4 15 1.32 0.420 0.281 0.270 0.379 0.418 0.448
4 16 0.778 0.325 0.269 0.231 0.312 0.336 0.352
4 17 0.481 0.251 0.234 0.193 0.249 0.263 0.2705
4 18 0.301 0.189 0.187 0.154 0.190 0.197 0.200
4 19 0.183 0.134 0.136 0.116 0.136 0.139 0.140
4 20 0.102 0.0854 0.0865 0.0771 0.0860 0.0869 0.0871
4 21 0.0440 0.0407 0.0409 0.0386 0.0408 0.0409 0.0409
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anomalous dimension that describes the renormalization-
group behavior as the theory is flowing near to the
approximate zero of the beta function. A general comment
is that the determination of Nf;cr relies upon effective
methods to analyze the lattice data [22]; progress on this
continues [48–61].
Theories with an SU(2) gauge group and Nf ¼ 8 have

been of interest in the context of certain ideas for physics
beyond the Standard Model (SM) [62], in which the
number of Dirac fermions is Nf ¼ NwkðNc þ 1Þ ¼ 8,
where Nwk ¼ 2, corresponding to the SU(2) factor group
in the SM and Nc ¼ 3 colors. There have been several
lattice studies of this SU(2) theory with Nf ¼ 8, including
[22,63,64]. These are consistent with this theory being IR-
conformal, and the recent study [64] has reported the
measurement γIR ¼ 0.15� 0.02. For comparison, as listed
in Table I, our previous higher n-loop values were γIR;3l ¼
0.272 and γIR;4l ¼ 0.204 [19], and our current highest-
order scheme-independent value is γIR;Δ4

f
¼ 0.298. These

are somewhat higher than this lattice result.
There have also been a number of lattice studies of the

SU(2) theory withNf ¼ 6 [22,65–67]. From this work, it is
not yet clear if this theory is IR-conformal or chirally
broken. The authors of Ref. [66] obtained the range
0.26 < γIR < 0.74, while the authors of Ref. [67] found
γIR ≃ 0.275. Our higher-order scheme-independent values,
as listed in Table I, in particular, γIR;Δ4

f
¼ 0.698, are in

agreement with the range given in [66] and are somewhat
higher than the value from [67].

C. LNN limit for G=SUðNcÞ and R=F

For G ¼ SUðNcÞ and R ¼ F, it is of interest to consider
the limit

LNN∶ Nc → ∞; Nf → ∞

with r≡ Nf

Nc
fixed and finite

and ξðμÞ≡ αðμÞNc is a finite function of μ: ð3:21Þ

Wewill use the symbol limLNN for this limit, where “LNN”
stands for “large Nc and Nf” with the constraints in
Eq. (3.21) imposed. This is also called the ’t Hooft-
Veneziano limit. Anticipating our later discussion of
theories with fermions in two-index representations
(adjoint and symmetric and antisymmetric rank-2 tensor),
wewill use the symbol limLN , where “LN” stands for “large
Nc”, to denote the original ’t Hooft limit

LN∶ Nc → ∞

with ξðμÞ≡ αðμÞNc a finite function of μ ð3:22Þ

and Nf fixed and finite.

Continuing our discussion of the LNN limit, as relevant
to theories with fermions in the fundamental representation,
we define the following quantities in this limit:

ξ ¼ 4πx ¼ lim
LNN

αNc; ð3:23Þ

ru ¼ lim
LNN

Nu

Nc
; ð3:24Þ

and

rl ¼ lim
LNN

Nl

Nc
; ð3:25Þ

with values

ru ¼
11

2
¼ 5.5 ð3:26Þ

and

rl ¼ 34

13
¼ 2.615 ð3:27Þ

(to the indicated floating-point accuracy). With IIRZ∶
Nl < Nf < Nu, it follows that the corresponding interval
in the ratio r is

IIRZ;r∶
34

13
< r <

11

2
; i:e:; 2.615 < r < 5.5: ð3:28Þ

The critical value of r such that for r > rcr, the LNN theory
is IR-conformal and for r < rcr, it exhibits spontaneous
chiral symmetry breaking, is denoted rcr and is defined as

rcr ¼ lim
LNN

Nf;cr

Nc
: ð3:29Þ

We define the scaled scheme-independent expansion
parameter for the LNN limit

Δr ≡ Δf

Nc
¼ ru − r ¼ 11

2
− r: ð3:30Þ

As r decreases from ru to rl in the interval IIRZ;r, Δr

increases from 0 to a maximal value

ðΔrÞmax ¼ ru − rl ¼ 75

26
¼ 2.8846 for r ∈ IIRZ;r: ð3:31Þ

We define rescaled coefficients κ̂j;F

κ̂j;F ≡ lim
Nc→∞

Nj
cκj;F ð3:32Þ

that are finite in this LNN limit. The anomalous dimension
γIR is also finite in this limit and is given by
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R ¼ F∶ lim
LNN

γIR ¼
X∞
j¼1

κj;FΔ
j
f ¼

X∞
j¼1

κ̂j;FΔ
j
r: ð3:33Þ

From the results for κj, j ¼ 1, 2, 3 in [12] or the special
cases given above for G ¼ SUðNcÞ and R ¼ F in
Eqs. (3.8)–(3.10), we have

κ̂1;F ¼ 22

52
¼ 0.1600; ð3:34Þ

κ̂2;F ¼ 588

56
¼ 0.037632; ð3:35Þ

and

κ̂3;F ¼ 2193944

33 · 510
¼ 0.83207 × 10−2; ð3:36Þ

where, as above, we indicate the factorizations of the
denominators. (The numerators do not, in general, have
such simple factorizations; for example, in κ3;F, 2193944 ¼
23 × 274243.) From our new expression for κ4, we
calculate

κ̂4;F ¼ 210676352

34 · 513
þ 90112

33 · 510
ζ3 þ

11264

33 · 58
ζ5

¼ 0.36489 × 10−2: ð3:37Þ

Hence, numerically, to order OðΔ4
rÞ,

R ¼ F∶ γIR;LNN;Δ4
r
¼ Δr½0.160000þ 0.037632Δr

þ 0.0083207Δ2
r þ 0.003649Δ3

r �: ð3:38Þ

Using these results for γIR;F;Δp
r
with 1 ≤ p ≤ 4 for R ¼ F

in the LNN limit, we can now carry out a polynomial
extrapolation to p ¼ ∞. To do this, we fit an expression for
γIR;F;Δp

r
with some subset of the p terms to a polynomial in

1=p. We denote the resultant value generically as γIR;F;s,
where here s denotes the subset of the p terms used for the
extrapolation. We shall use, as a necessary condition for
γIR;F;s to be reliable, the requirement that it not differ too
much from the highest-order value, γIR;F;Δ4

r
. Quantitatively,

we require that for the given subset s, γIR;F;s=γIR;F;Δ4
r
< 1.5.

We find that this condition is satisfied if r ∈ IIRZ;r is
r≳ 3.5, but that it is not satisfied as r decreases below this
value toward the lower end of the interval IIRZ;r at
rl ¼ 2.615. As an example, at r ¼ 4.0, depending on
the subset of terms used for the extrapolation, we obtain
γIR;F;s=γIR;F;Δ4

r
≃ 1.2, while at r ¼ 3.6, this ratio increases

to ≃1.4. We remark that the value r ¼ 4.0 corresponds to
Nf ¼ 12 for the SU(3) theory and Nf ¼ 8 for the SU(2)
theory.
Previously, in [14] we performed this analysis for the

special case G ¼ SUð3Þ and R ¼ F and, for that work, we

studied how the extrapolated value depends on the subset
of terms that one includes for the fit. We perform the
corresponding analysis here for this LNN case. We study
three sets of terms:

set34∶fγIR;F;Δ3
r
; γIR;F;Δ4

r
g ð3:39Þ

set234∶fγIR;F;Δ2
r
; γIR;F;Δ3

r
; γIR;F;Δ4

r
g ð3:40Þ

set1234∶fγIR;F;Δr
; γIR;F;Δ2

r
; γIR;F;Δ3

r
; γIR;F;Δ4

r
g ð3:41Þ

There are countervailing advantages of these sets of terms.
The two-term set (3.39) has the advantage of using the two
highest-order terms, while the three-term and four-term sets
have the advantage of using progressively more terms in the
fit. The fits to the sets (3.39)–(3.41) yield polynomials in
the variable p−1 of the respective forms

set34 ⇒ γIR;F;ex34;p ¼ s34;0 þ s34;1p−1 ð3:42Þ

set234 ⇒ γIR;F;ex234;p ¼ s234;0 þ s234;1p−1 þ s234;2p−2

ð3:43Þ

and

set1234 ⇒ γIR;F;ex1234;p ¼ s1234;0 þ s1234;1p−1

þ s1234;2p−2 þ s1234;3p−3: ð3:44Þ

The extrapolated values in the limit p → ∞ given by these
fits are, respectively, as

lim
p→∞

γIR;F;ex34;p ¼ s34;0 ≡ γIR;F;ex34 ð3:45Þ

lim
p→∞

γIR;F;ex234;p ¼ s234;0 ≡ γIR;F;ex234 ð3:46Þ

and

lim
p→∞

γIR;F;ex1234;p ¼ s1234;0:≡ γIR;F;ex1234 ð3:47Þ

We have calculated these quantities analytically. Below, we
list the corresponding expressions with coefficients given to
the indicated floating-point precision:

γIR;F;ex34 ¼ 16.758754 − 11.042531rþ 2.8240528r2

− 0.32942724r3 þ 0.014595750r4 ð3:48Þ

γIR;F;ex234 ¼ 27.346053 − 19.2457889rþ 5.1985972r2

− 0.63389228r3 þ 0.0291915006r4 ð3:49Þ

and
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γIR;F;ex1234 ¼ 33.901799 − 24.4060664rþ 6.71925275r2

− 0.832708600r3 þ 0.038922001r4: ð3:50Þ

Note that there are strong cancellations between individual
terms for relevant values of r ∈ IIRZ;r. Some examples will
show the range of resultant values of extrapolations for
these different choices of sets of terms used in the fits. As
anticipated, for values of r in the upper part of the interval
IIRZ;r, all of the different types of extrapolation give quite
similar results. For example,

r ¼ 5.0 ⇒ γIR;F;ex;34 ¼ 0.0914; γIR;F;ex234 ¼ 0.0902;

γIR;F;ex1234 ¼ 0.0905: ð3:51Þ

As r decreases in the interval IIRZ;r, the differences between
the extrapolations using the different sets of terms increase
slightly, e.g., for a value roughly in the middle of this
interval, namely r ¼ 4.0, we find

r ¼ 4.0 ⇒ γIR;F;ex34 ¼ 0.427; γIR;F;ex234 ¼ 0.444;

γIR;F;ex1234 ¼ 0.456: ð3:52Þ

Toward the lower part of the interval IIRZ;r, these
differences increase further, but also, as discussed above,
for a given r, all of the different types of extrapolations
involve greater uncertainties, since each of the extrapolated
values differs more from the value of highest-order explic-
itly calculated quantity, γIR;Δ4

r
. For example, for r ¼ 3.0,

r ¼ 3.0 ⇒ γIR;F;ex34 ¼ 1.335; γIR;F;ex234 ¼ 1.645;

γIR;F;ex1234 ¼ 1.826: ð3:53Þ

The ratios of these values divided by the highest-order
explicitly calculated value, γIR;F;Δ4

r
, are

r ¼ 3.0 ⇒
γIR;F;ex34
γIR;F;Δ4

r

¼ 1.47;
γIR;F;ex234
γIR;F;Δ4

r

¼ 1.82

γIR;F;ex1234
γIR;F;Δ4

r

¼ 2.01: ð3:54Þ

Given our fiducial requirement that the ratio of the
extrapolated value for p → ∞ divided by the highest-order
explicitly calculated value, should not be greater than 1.5
for the extrapolation to be considered reasonably reliable, it
follows that we would not consider the latter two extrap-
olations in Eq. (3.53) to be sufficiently reliable to meet this
requirement.
It is interesting to compare these scheme-independent

calculations of γIR;F;Δp
r
to order 1 ≤ p ≤ 4 with the results

from the conventional n-loop calculations as truncated
expansions in αIR;F;nl, denoted γIR;F;nl from Table V of
[21] up to n ¼ 4 loop order. We list our scheme-
independent values together with these n-loop values in
Table II. For each value of r, we also include the
extrapolated value, γIR;F;ex234 for the p → ∞ limit, and
the ratio γIR;F;ex234=γIR;Δ4

r
. We do not include the results

from the n ¼ 5 loop conventional calculation, because of
the absence of a physical IR zero in the five-loop beta
function for 2.615 < r < 4.323 in IIRZ;r. Although the
extrapolated values γIR;F;ex234 for r values below r ¼ 3.5
are included, we caution that these do not satisfy our
fiducial criterion for sufficient reliability of extrapolation,
since they differ by too much from our highest-order
calculated values, γIR;Δ4

r
. For this reason, although we

can roughly apply the method discussed in Sec. II to use

TABLE II. Values of the scheme-independent γIR;F;Δp
r
in the LNN limit (3.21) for 1 ≤ p ≤ 4, together with γIR;F;nl

with n ¼ 2, 3, 4 from Table Vof [21] for comparison, as a function of r for r ∈ IIRZ;r. Values that exceed the bound
γIR ≤ 2 are marked as unphysical (u) or placed in parentheses. We also list the extrapolated estimate γIR;F;ex234 of
γIR;F;Δ∞

r
and, in the last column, the ratio γIR;F;ex234=γIR;F;Δ4

r
.

r γIR;F;2l γIR;F;3l γIR;F;4l γIR;F;Δr
γIR;F;Δ2

r
γIR;F;Δ3

r
γIR;F;Δ4

r
γIR;F;ex234

γIR;F;ex234
γIR;F;Δ4r

2.8 u 1.708 0.190 0.432 0.706 0.870 1.064 (2.09) 1.96
3.0 u 1.165 0.225 0.400 0.635 0.765 0.908 1.645 1.82
3.2 u 0.854 0.264 0.368 0.567 0.668 0.770 1.28 1.66
3.4 u 0.656 0.293 0.336 0.502 0.579 0.650 0.993 1.53
3.6 1.853 0.520 0.308 0.304 0.440 0.497 0.5445 0.763 1.40
3.8 1.178 0.420 0.306 0.272 0.381 0.422 0.452 0.584 1.29
4.0 0.785 0.341 0.288 0.240 0.325 0.353 0.371 0.444 1.20
4.2 0.537 0.277 0.257 0.208 0.272 0.290 0.300 0.337 1.12
4.4 0.371 0.222 0.217 0.176 0.2215 0.233 0.238 0.253 1.06
4.6 0.254 0.1735 0.1745 0.144 0.1745 0.1805 0.183 0.188 1.03
4.8 0.170 0.129 0.131 0.112 0.130 0.133 0.134 0.135 1.01
5.0 0.106 0.0889 0.0900 0.0800 0.0894 0.09045 0.0907 0.0905 1.00
5.2 0.0562 0.0512 0.0516 0.0480 0.0514 0.0516 0.0516 0.0516 1.00
5.4 0.0168 0.0164 0.0164 0.0160 0.0164 0.0164 0.0164 0.0164 1.00
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the extrapolated value of γIR to estimate the lower end, rcr,
of the IR-conformal non-Abelian Coulomb phase [defined
in Eq. (5.3)], this involves a substantial degree of uncer-
tainty. Bearing this caveat in mind, the resulting estimate
would be that rcr ∼ 2.7. If one were to pull back from the
LNN limit and multiply this value of rcr by a specific finite
value of Nc to get an estimate of the corresponding Nf;cr,
then, for example, for Nc ¼ 3, i.e., G ¼ SUð3Þ, this would
yield Nf;cr ∼ 8. This estimate is consistent with the
estimate 8≲ Nf;cr ≲ 9 that we derived from our calculation
of γIR;F;Δ4

f
for this theory and extrapolation to obtain

limp→∞γIR;F;Δp
f
in [14]. Clearly, the lower that one goes

in Nc away from the LNN limit, the greater is the error in
performing this conversion from a specific r value in the
LNN limit to a corresponding ratio Nf=Nc with finite Nf

and Nc, so we do not perform this conversion for Nc ¼ 2.
In Fig. 4 we plot γIR;F;Δp

r
, i.e., the value of γIR for

R ¼ F, calculated to order Δp
r with 1 ≤ p ≤ 4, in the

scheme-independent expansion, as a function of r ∈ IIRZ;r.
As a consequence of the positivity of the κ̂p;F in
Eqs. (3.34)–(3.36), for a fixed r, γIR;F;Δp

r
is a monotonically

increasing function of the order of calculation, p. As r
decreases toward the lower end of the interval IIRZ;r at
r ¼ rl ¼ 2.615, the value of γIR calculated to the highest
order in this LNN limit, namely OðΔ4

rÞ, is slightly greater
than 1.
As we did for specific SUðNcÞ theories above, here we

proceed to investigate the range of applicability of the
scheme-independent series expansion for γIR in the LNN
limit (see also [68]). As is evident from Table II, all of our
values of γIR;F;Δp

r
for 1 ≤ p ≤ 4 satisfy the bound γIR ≤ 2.

This is also true for all of our extrapolated values,
γIR;F;ex234, except for the lowest value of r listed, namely
r ¼ 2.8, for which γIR;F;ex234 ¼ 2.09, slightly above this
bound. Thus, these results in the LNN limit again dem-
onstrate the advantage of the scheme-independent

expansions, since they enable us to calculate self-consistent
values of γIR;F;Δr

over a greater range of the interval IIRZ;r
than is the case with the conventional n-loop calculations.
To show the latter in detail, we have explicitly listed the
values of γIR;F;3l and γIR;F;4l for values of r where γIR;F;2l
was unphysically large.
To investigate the range of applicability of the scheme-

independent expansions further, it is worthwhile to obtain
an estimate of this range from ratios of successive coef-
ficients. From the coefficients κ̂j;F that we have calculated
with 1 ≤ n ≤ 3, we compute the ratios

κ̂1;F
κ̂2;F

¼ 4.252 ð3:55Þ

κ̂2;F
κ̂3;F

¼ 4.523 ð3:56Þ

and

κ̂3;F
κ̂4;F

¼ 2.280: ð3:57Þ

Recalling that the maximal value of Δr in the interval IIRZ;r
is 2.885 [Eq. (3.31)], these ratios are consistent with the
inference that the small-Δr series expansion may be
reasonably accurate throughout most of this interval IIRZ;r.

D. γψ̄ψ;IR;Δ4
f
for G=SUðNcÞ and R= adj

Here we present our results for the κj coefficients and
thus γψ̄ψ ;IR;Δj

f
with 1 ≤ j ≤ 4 for G ¼ SUðNcÞ and Nf

fermions in the adjoint representation, R ¼ adj. We will
usually denote these as κj;adj and γψ̄ψ ;IR;adj;Δj

f
but some-

times, when no confusion will result, we will omit this adj
subscript for brevity of notation.
In this theory, Eqs. (2.4) and (2.6) yield, for the upper

and lower ends of the interval IIRZ, the values

Nu;adj ¼
11

4
¼ 2.75 ð3:58Þ

and

Nl;adj ¼
17

16
¼ 1.0625; ð3:59Þ

so this interval includes only one integral value of Nf,
namely Nf ¼ 2. We note that since the adjoint representa-
tion is self-conjugate, a theory withNf Dirac fermions with
R ¼ adj is equivalent to a theory with Nf;Maj ¼ 2Nf

Majorana fermions. Hence, here, one may also allow the
half-integral values Nf ¼ 3=2, 5=2 corresponding to
Nf;Maj ¼ 3, 5. We have

FIG. 4. Plot of γIR;F;Δp
r
for 1 ≤ p ≤ 4 as a function of r ∈ IIRZ;r

in the LNN limit (3.21). From bottom to top, the curves (with
colors online) refer to γIR;F;Δr

(red), γIR;F;Δ2
r
(green), γIR;F;Δ3

r

(blue), and γIR;F;Δ4
r
(black).
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R ¼ adj∶ Δf ¼ Nu − Nf ¼ 11

4
− Nf: ð3:60Þ

For this case, the factor D in Eq. (3.1) is simply D ¼ 18. In
[13] we gave the coefficients κj;adj for 1 ≤ n ≤ 3. These are
as follows:

κ1;adj ¼
�
2

3

�
2

¼ 0.44444; ð3:61Þ

κ2;adj ¼
341

2 · 36
¼ 0.23388; ð3:62Þ

and

κ3;adj ¼
61873

23 · 310
−

592

38N2
c

¼ 0.130978 − 0.090230N−2
c ; ð3:63Þ

where, as before, we indicate the simple factorizations of
the denominators. The coefficient κ4;adj is

κ4;adj ¼
53389393

27 · 314
þ 368

310
ζ3

þ
�
−
2170

310
þ 33952

311
ζ3

�
N−2

c

¼ 0.0946976þ 0.193637N−2
c : ð3:64Þ

The coefficients κ1;adj and κ2;adj are manifestly positive,
and we find that for all physical Nc, the coefficients κ3;adj
and κ4;adj are also positive. Although κ1;adj and κ2;adj are
independent of Nc, the coefficients κj;adj for j ¼ 3, 4 do
depend on Nc. We find that κ3;adj and κ4;adj are, respec-
tively, monotonically increasing and monotonically
decreasing functions of Nc. The Nc → ∞ limits of κ3;adj
and κ4;adj are given by the respective first terms in
Eqs. (3.63) and (3.64).
Thus, to order Δ4

f, we have

γψ̄ψ ;IR;adj;Δ4
f
¼ Δf½0.44444þ 0.23388Δf

þ ð0.13098 − 0.090230N−2
c ÞΔ2

f

þ ð0.094698þ 0.19364N−2
c ÞΔ3

f�: ð3:65Þ

In Fig. 5 we show γψ̄ψ ;IR;adj;Δp
f
with 1 ≤ p ≤ 4 for the

SU(2) theory, as a function of Nf, formally generalized
from the non-negative integers to the real numbers. In
Table III we list values of γψ̄ψ ;IR;adj;Δp

f
with 1 ≤ p ≤ 4 for

Nf ¼ 2 and Nc ¼ 2 and Nc ¼ 3. For comparison, we also
include our n-loop values γψ̄ψ ;IR;adj;nl calculated in the
conventional manner via power series in the coupling (in
the MS scheme), from Table VIII of [19].
Among SUðNcÞ theories with fermions in the adjoint

representation, the SU(2) theory with Nf ¼ 2 (Dirac)
fermions has been of particular interest [69]. In the
following, for notational brevity, the subscript adj is
understood implicitly. For this theory, as listed in
Table III we obtain the values γIR;Δ2

f
¼ 0.465,

γIR;Δ3
f
¼ 0.511, and γIR;Δ4

f
¼ 0.556, which are close to

our earlier higher-order n-loop calculations in [19], namely
γIR;3l ¼ 0.543 and γIR;4l ¼ 0.500. It is of interest to
compare these values with the results of lattice studies.
There have been a number of such studies, and these are
consistent with the conclusion that this theory is conformal
in the infrared [22,70–77]. These studies have yielded a
rather large range of measured values for γIR, including the
following (where the published estimated uncertainties in
the last digits are indicated in parentheses): γIR ¼ 0.49ð13Þ
[70], γIR ¼ 0.22ð6Þ [71], γIR ¼ 0.31ð6Þ [72], γIR ¼ 0.17ð5Þ
[73], γIR ¼ 0.37ð2Þ [74], γIR ¼ 0.20ð3Þ [75], and γIR ¼
0.50ð26Þ [76]. (See these references and [77] for additional
discussion of estimates of overall uncertainties.) Our

FIG. 5. Plot of γψ̄ψ ;IR;adj;Δp
f
for G ¼ SUð2Þ and 1 ≤ p ≤ 4 as a

function of Nf ∈ IIRZ for R ¼ adj and Nf ¼ 2. From bottom to
top, the curves (with colors online) refer to γIR;adj;Δf

(red),
γIR;adj;Δ2

f
(green), γIR;adj;Δ3

f
(blue), and γIR;adj;Δ4

f
(black).

TABLE III. Values of the anomalous dimension γIR;adj;Δp
f
with 1 ≤ p ≤ 4, for Nf ¼ 2 and G ¼ SUðNcÞ with

Nc ¼ 2, 3. For comparison, we also list our n-loop values, γIR;adj;nl for this theory from Table VIII of Ref. [19].

Nc γIR;adj;2l γIR;adj;3l γIR;adj;4l γIR;adj;Δf
γIR;adj;Δ2

f
γIR;adj;Δ3

f
γIR;adj;Δ4

f

2 0.820 0.543 0.500 0.333 0.465 0.511 0.556
3 0.820 0.543 0.523 0.333 0.465 0.516 0.553
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scheme-independent calculation of γIR to OðΔ4
fÞ and our

earlier n-loop calculations of γIR;nl up to n ¼ 4 loops are
clearly consistent with the larger among these lattice values.
Before carrying out a comparison of our results with the full
set of lattice values, it will be necessary to narrow the
current wide range of lattice measurements.
It is of interest to investigate the Nc → ∞ limit for an

SUðNcÞ gauge theory with fermions in the adjoint repre-
sentation. Since in this case, the upper and lower ends of the
interval IIRZ, given by Nu ¼ 11=4 in Eq. (3.58) and
Nl ¼ 17=16 in Eq. (2.6), are independent of Nc, it follows
that Δf is also independent of Nc. Hence, for R ¼ adj,

lim
LN

γIR ¼
X∞
j¼1

κ̂j;adjΔ
j
f ð3:66Þ

where

κ̂j;adj ¼ lim
LN

κj;adj: ð3:67Þ

The values of κ̂j;adj are evident from the full expressions for
κj;adj that we have given above in Eqs. (3.61)–(3.64); for
example, κ̂3;adj ¼ 61873=ð23 · 310Þ.

E. γψ̄ψ;IR;Δ4
f
for G=SUðNcÞ and R= S2, A2

Here we present our results for the κj coefficients and
thus γψ̄ψ ;IR;Δj

f
with 1 ≤ j ≤ 4 for G ¼ SUðNcÞ and Nf

fermions in the symmetric and antisymmetric rank-2 tensor
representations of SUðNcÞ, S2 and A2. Since many for-
mulas for these two cases are simply related to each other
by sign reversals in certain terms, it is convenient to treat
these cases together. As before [19], we shall use the
symbol T2 (rank-2 tensor) to refer to these cases together.
(Do not confuse this use of T with our use of the symbol T
in Sec. VII of Ref. [13] for the anomalous dimension of the
operators ψ̄σμνψ and operators ψ̄Taσμνψ , where it referred
to the antisymmetric Dirac tensor σμν ¼ ði=2Þ½γμ; γν�.)
The values of Nu and Nl for R ¼ T2 are [19]

Nu;T2
¼ 11Nc

2ðNc � 2Þ ð3:68Þ

and

Nl;T2
¼ 17N3

c

ðNc � 2Þð8N2
c � 3Nc − 6Þ ; ð3:69Þ

so that

R ¼ T2∶ Δf ¼ 11Nc

2ðNc � 2Þ − Nf: ð3:70Þ

The factor D in Eq. (3.1) takes the explicit form

R ¼ T2∶ D ¼ 18N2
c � 11Nc − 22

Nc
≡ F�

Nc
ð3:71Þ

where

F� ¼ 18N2
c � 11Nc − 22: ð3:72Þ

Both Fþ and F− are positive-definite for the physical range
Nc ≥ 2. At the lower end of the interval IIRZ, Δf takes on
the maximum value

R ¼ T2∶ ðΔfÞmax ¼
3NcF�

2ðNc � 2Þð8N2
c � 3Nc − 6Þ : ð3:73Þ

If Nc ¼ 2, then S2 is the same as the adjoint representa-
tion, so we focus on Nc ≥ 3 here. For this R ¼ S2
theory, the illustrative values Nc ¼ 3 and Nc ¼ 4
yield the respective intervals IIRZ 1.22 < Nf < 3.30 and
1.35 < Nf < 3.67. Hence, the physical integral values of
Nf in these respective intervals IIRZ are Nf ¼ 2, 3 for both
Nc ¼ 3 and Nc ¼ 4. Furthermore, the A2 representation is
the singlet if Nc ¼ 2 and is the same as the conjugate
fundamental, F̄ if Nc ¼ 3, so in the case of A2, we restrict
to Nc ≥ 3 and focus mainly on Nc ≥ 4. In the SU(4) theory
with R ¼ A2, the interval IIRZ is 4.945 < Nf < 11, includ-
ing the integral values 5 ≤ Nf ≤ 10.
Here, using our general results (3.2)–(3.5), we give

explicit expressions for the κj with 1 ≤ j ≤ 4 for the case
G ¼ SUðNcÞ and fermion representation R ¼ T2. From the
general expressions for κj with 1 ≤ j ≤ 4, Eqs. (3.2)–(3.5),
we calculate the following. In each expression, theþ and −
signs refer to the S2 and A2 special cases of T2,
respectively:

κ1;T2
¼ 4ðNc ∓ 1ÞðNc � 2Þ2

NcF�
ð3:74Þ

κ2;T2
¼ ðNc ∓ 1ÞðNc � 2Þ3ð11N2

c � 4Nc − 8Þð93N2
c � 88Nc − 176Þ

3N2
cF3

�
ð3:75Þ
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κ3;T2
¼ ðNc ∓ 1ÞðNc � 2Þ3

2 · 33N3
cF5

�
½ð1670571N9

c � 7671402N8
c þ 2181584N7

c ∓ 25294256N6
c

− 13413856N5
c � 17539136N4

c þ 16707328N3
c ∓ 3046912N2

c − 27320832Nc � 18213888Þ
� 8448N2

cðNc ∓ 2ÞF�ð3N3
c � 28N2

c ∓ 176Þζ3� ð3:76Þ

and

κ4;T2
¼ ðNc ∓ 1ÞðNc � 2Þ4

24 · 34N4
cF7

�
½ð4324540833N13

c � 26924228982N12
c þ 30086550336N11

c ∓ 106026091536N10
c

− 224952825968N9
c � 105492861344N8

c þ 600583055488N7
c � 45292329216N6

c − 1067559840512N5
c

� 68261028352N4
c þ 982655860736N3

c ∓ 385868775424N2
c − 136076328960Nc � 54430531584Þ

þ 29F�ð33534N11
c � 702000N10

c þ 4448403N9
c ∓ 2216812N8

c − 38600660N7
c � 22594304N6

c

þ 124680384N5
c ∓ 82679040N4

c − 90554112N3
c � 64551168N2

c − 6690816Nc � 3345408Þζ3
∓ 563200N2

cðNc ∓ 2ÞF2
�ð15N5

c � 158N4
c þ 240N3

c ∓ 912N2
c − 1056Nc � 2112Þζ5�: ð3:77Þ

We comment on some factors in these κj;T2
expressions.

The property that the κj;A2
coefficients contain an overall

factor of ðNc − 2Þ (possibly raised to a power higher than
1), and hence vanish for Nc ¼ 2, is a consequence of the
fact that forNc ¼ 2, the A2 representation is a singlet, so for
SU(2), fermions in the A2 ¼ singlet representation have no
gauge interactions and hence no anomalous dimensions.
Clearly, this property holds in general; i.e., the coefficients
κj;A2

for all j contain an overall factor of ðNc − 2Þ [as well
as possible additional factors of ðNc − 2Þ].
As noted above, ifNc ¼ 2, then theS2 representation is the

same as the adjoint representation, so the coefficients must
satisfy the equality κj;S2 ¼ κj;adj for this SU(2) case, and we
have checked that they do. Note that this equality requires

(i) that the term proportional to ζ3 in κ3;S2 must be absent if
Nc ¼ 2, since κ3;adj does not contain any ζ3 term, and,
indeed, this is accomplished by the factor ðNc − 2Þ multi-
plying the ζ3 term in κ3;S2 ; and (ii) the term proportional to ζ5
in κ4;S2 must be absent ifNc ¼ 2, since κ4;adj does not contain
any ζ5 term, and this is accomplished by the factor ðNc − 2Þ
multiplying this ζ5 term in κ4;S2 . Similarly, as we observed
above, ifNc ¼ 3, then theA2 representation is the sameas the
conjugate fundamental representation, F̄, so the coefficients
must satisfy the equality κj;A2

¼ κj;F for this SU(3) case, and
we have checked that they do.
The resultant Δf expansions for γψ̄ψ ;IR;S2;Δ4

f
with 2 ≤

Nc ≤ 4 are

SUð2Þ∶ γψ̄ψ ;IR;S2;Δ4
f
¼ Δf½0.44444þ 0.23388Δf þ 0.10842Δ2

f þ 0.14311Δ3
f� ð3:78Þ

SUð3Þ∶ γψ̄ψ ;IR;S2;Δ4
f
¼ Δf½0.38536þ 0.17038Δf þ 0.078062Δ2

f þ 0.060081Δ3
f� ð3:79Þ

and

SUð4Þ∶γψ̄ψ ;IR;S2;Δ4
f
¼ Δf½0.34839þ 0.13875Δf þ 0.059680Δ2

f þ 0.38102Δ3
f�: ð3:80Þ

For R ¼ A2, we give illustrative results for the Δf expansion of γψ̄ψ ;IR for Nc ¼ 4, 5:

SUð4Þ∶ γψ̄ψ ;IR;A2;Δ4
f
¼ Δf½0.090090þ ð1.1114 × 10−2ÞΔf þ ð1.6013 × 10−3ÞΔ2

f þ ð2.9668 × 10−4ÞΔ3
f� ð3:81Þ

and

SUð5Þ∶ γψ̄ψ ;IR;A2;Δ4
f
¼ Δf½0.11582þ ð1.7570 × 10−2ÞΔf þ ð2.9243 × 10−3ÞΔ2

f þ ð0.59791 × 10−3ÞΔ3
f�: ð3:82Þ
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In Fig. 6 we present a plot of γψ̄ψ ;S2;IR;Δp
f
for G ¼ SUð3Þ,

R ¼ S2, and 1 ≤ p ≤ 4, as a function of Nf. We list values
of the γIR;S2;Δp

f
with 1 ≤ p ≤ 4 for the SU(3) and SU(4)

theories with R ¼ S2 in Table IV. In both of these theories,
the interval IIRZ includes the two integer values Nf ¼ 2, 3.
For comparison, we also include the values γIR;S2;nl for 2 ≤
n ≤ 4 calculated via the conventional power series expan-
sion to n-loop order and evaluated at α ¼ αIR;nl from Table
XI in our previous work, Ref. [19]. As is evident from this
table, for a given Nc and Nf, there is reasonable agreement
between the n ¼ 4 loop values γIR;S2;Δ4

f
and γIR;S2;4l. For

example, for SU(3) and Nf ¼ 2, γIR;S2;4l ¼ 1.12 while
γIR;S2;Δ4

f
¼ 1.13.

We next compare our calculation of γψ̄ψ ;IR;S2;Δp
f
to order

p ¼ 4 with lattice measurements. A theory of particular
interest is the SU(3) gauge theory with Nf ¼ 2 flavors of
fermions in the S2 representation, and lattice studies of this
theory include [78,79] (see also [22,80]). As indicated in
Table IV, our higher-order scheme-independent results are
γIR;Δ3

f
¼ 0.960, and γIR;Δ4

f
¼ 1.132, in agreement with our

n-loop results from [19] for this theory, γIR;3l ¼ 1.28 and
γIR;4l ¼ 1.12. The lattice study [78] concluded that this
theory is IR-conformal and obtained γIR < 0.45 [78], while

Ref. [79] concluded that it is not IR-conformal and got an
effective γIR ∼ 1 [79]. One hopes that further work by
lattice groups will lead to a consensus concerning whether
this theory is IR-conformal or not and concerning the value
of γIR.
Regarding the range of applicability of the Δf expansion

for these cases, we compute the following ratios of
successive coefficients for the G ¼ SUð3Þ, R ¼ S2 case:

κ1;S2
κ2;S2

¼ 2.26176 ð3:83Þ

κ2;S2
κ3;S2

¼ 2.1826 ð3:84Þ

and

κ3;S2
κ4;S2

¼ 1.2993: ð3:85Þ

The first two ratios, (3.83) and (3.84), are slightly larger
than ðΔfÞmax;S2 ¼ 519=250 ¼ 2.076 in IIRZ for this theory.
However, the third ratio is about 40% less than this
maximal value of Δf;S2 . This suggests that because of
slow convergence, one must use the Δf expansion with
caution in the lower part of the interval IIRZ in this theory.
We list values of the γIR;A2;Δ

p
f
with 1 ≤ p ≤ 4 for the

SU(4) theory with R ¼ A2 and Nf ∈ IIRZ for this theory in
Table V. Again, for comparison, we include the values
γIR;A2;nl for 2 ≤ n ≤ 4 calculated via the conventional
power series expansion to n-loop order and evaluated at
α ¼ αIR;nl from Table XII in our previous work [19]. As
expected, the agreement between the two methods of
calculation is best at the upper end of the interval IIRZ,
where the IRFP occurs at weak coupling. For example, for
Nf ¼ 9, γIR;A2;Δ4

f
¼ 0.242, while γIR;4l ¼ 0.232.

It is of interest to consider the Nc → ∞ (LN) limit of
Eq. (3.22) for these theories with R ¼ S2 and A2. In this LN
limit, the upper ends of the interval IIRZ for the S2 and A2

representations approach the same limit, and similarly for
the lower ends:

lim
LN

Nu;T2
¼ 11

2
¼ 5.5 ð3:86Þ

TABLE IV. Values of the anomalous dimension γIR;S2;Δp
f
with 1 ≤ p ≤ 4, for G ¼ SUðNcÞ with Nc ¼ 3, 4 and

Nf ¼ 2, 3 (so Nf ∈ IIRZ). For comparison, we also include values of γIR;S2;nl with 2 ≤ n ≤ 4 for this theory from
Table XI in our Ref. [19]. Values that exceed the upper bound γIR < 2 are marked as unphysical (u).

Nc Nf γIR;S2;2l γIR;S2;3l γIR;S2;4l γIR;S2;Δf
γIR;S2;Δ2

f
γIR;S2;Δ3

f
γIR;S2;Δ4

f

3 2 u 1.28 1.12 0.501 0.789 0.960 1.132
3 3 0.144 0.133 0.133 0.116 0.131 0.133 0.1335
4 2 u u 1.79 0.581 0.966 1.242 1.536
4 3 0.381 0.313 0.315 0.232 0.294 0.312 0.319

FIG. 6. Plot of γψ̄ψ ;IR;S2;Δp
f
for Nc ¼ 3 and 1 ≤ p ≤ 4 as a

function of Nf . Here, S2 denotes the symmetric rank-2 tensor
representation. From bottom to top, the curves (with colors
online) refer to γψ̄ψ ;IR;S2;Δf

(red), γψ̄ψ ;IR;S2;Δ2
f
(green), γψ̄ψ ;IR;S2;Δ3

f

(blue), and γψ̄ψ ;IR;S2;Δ4
f
(black).
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lim
LN

Nl;T2
¼ 17

8
¼ 2.125: ð3:87Þ

Hence, in this Nc → ∞ limit, the interval IIRZ is formally
2.125 < Nf < 5.5, including the physical integer values
3 ≤ Nf ≤ 5. Similarly, in this limit, the variableΔf is given
by Δf ¼ ð11=2Þ − Nf and reaches a maximum value, at
Nf ¼ Nl;T2

, of

lim
LN

ðΔfÞmax;T2
¼ 27

8
¼ 3.375: ð3:88Þ

This is the Nc → ∞ limit of (3.73).
As with the adjoint representation, we define

κ̂j;T2
¼ lim

LN
κj;T2

: ð3:89Þ

We find that

κ̂j;S2 ¼ κ̂j;A2
: ð3:90Þ

From our general expressions for κj;T2
with 1 ≤ j ≤ 4, we

calculate

κ̂1;T2
¼ 2

32
¼ 0.2222 ð3:91Þ

κ̂2;T2
¼ 341

23 · 36
¼ 0.0584705 ð3:92Þ

κ̂3;T2
¼ 61873

26 · 310
¼ 0.016372 ð3:93Þ

and

κ̂4;T2
¼ 53389393

211 · 314
þ 23ζ3

310
¼ 0.59186 × 10−2: ð3:94Þ

Hence,

lim
LN

γIR;S2;Δp
f
¼ lim

LN
γIR;A2;Δ

p
f

ð3:95Þ

and, in the limit p → ∞,

lim
LN

γIR;S2 ¼ lim
LN

γIR;A2
: ð3:96Þ

Thus, for both R ¼ S2 and R ¼ A2,

lim
LN

γψ̄ψ ;IR;T2;Δ4
f
¼ Δf½0.22222þ 0.0584705Δf

þ 0.016372Δ2
f þ 0.0059186Δ3

f�: ð3:97Þ

We observe that for all of the cases we have calculated,
namely 1 ≤ j ≤ 4,

κ̂j;T2
¼ 2−jκ̂j;adj: ð3:98Þ

One can understand this relation from the structure of the
relevant group invariants, including the fact that the trace
invariant TðRÞ satisfies

lim
Nc→∞

TT2

Tadj
¼ 1

2
: ð3:99Þ

We thus infer more generally that the relation (3.98) holds
for all j. In Table VI we list the resultant common values of
γIR;T2;Δ

p
f
for 1 ≤ p ≤ 4 and Nf ∈ IIRZ in the LN limit. As

noted above, in this LN limit, this interval consists of the
integral values Nf ¼ 3, 4, 5.
Concerning the range of applicability of the Δf expan-

sion in this LN limit, we compute the ratios

κ̂1;T2

κ̂2;T2

¼ 1296

341
¼ 3.8006 ð3:100Þ

TABLE VI. Values of the anomalous dimension γIR;T2;Δ
p
f

for T2 ¼ S2 or T2 ¼ A2, calculated to order 1 ≤ p ≤ 4, in the
limit Nc → ∞ with Nf ∈ IIRZ for this limit, namely 3 ≤ Nf ≤ 5.

Nf γIR;T2;Δf
γIR;T2;Δ2

f
γIR;T2;Δ3

f
γIR;T2;Δ4

f

3 0.5555 0.921 1.177 1.408
4 0.333 0.465 0.520 0.550
5 0.111 0.126 0.128 0.128

TABLE V. Values of the anomalous dimension γIR;A2;Δ
p
f
calculated to order 1 ≤ p ≤ 4, for G ¼ SUð4Þ and

Nf ∈ IIRZ. For comparison, we also include values of γIR;A2;nl with 2 ≤ n ≤ 4 for this theory from Table XII in [19].
Values that exceed the upper bound γIR < 2 are marked as unphysical (u).

Nc Nf γIR;A2;2l γIR;A2;3l γIR;A2;4l γIR;A2;Δf
γIR;A2;Δ2

f
γIR;A2;Δ3

f
γIR;A2;Δ4

f

4 5 u u u 0.5405 0.941 1.287 1.671
4 6 u 1.38 0.293 0.450 0.728 0.928 1.114
4 7 u 0.695 0.435 0.360 0.538 0.641 0.717
4 8 0.802 0.402 0.368 0.270 0.370 0.4135 0.438
4 9 0.331 0.228 0.232 0.180 0.225 0.237 0.242
4 10 0.117 0.101 0.103 0.0901 0.101 0.103 0.103
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κ̂2;T2

κ̂3;T2

¼ 220968

61873
¼ 3.5713 ð3:101Þ

and

κ̂3;T2

κ̂4;T2

¼ 160374816

53389393þ 3815424ζ3

¼ 2.76624: ð3:102Þ

The first two ratios, (3.100) and (3.101), are slightly greater
than the maximum value ðΔfÞmax;T2

¼ 3.375, but the third
ratio, (3.102), is smaller than this maximum value, sug-
gesting that in this limit, for these tensor representations,
because of slow convergence, one must use caution in
applying the Δf expansion in the lower part of the interval
IIRZ. This is similar to what we found for the S2 repre-
sentation in the SU(3) theory.

IV. CALCULATION OF β0IR TO OðΔ5
f Þ

A. General G and R

The derivative β0IR is an important physical quantity
characterizing the conformal field theory at αIR. We denote
the gauge field of the theory as Aa

μ (where a is a group
index), the field-strength tensor as Fa

μν ¼ ∂μAa
ν − ∂νAa

μ þ
gcabcAb

μAc
ν (where cabc is the structure constant of the Lie

algebra of G) and the rescaled field-strength tensor
as Fa

μν;r ¼ gFa
μν, so that the gauge field kinetic term in

the Lagrangian is Lg ¼ −½1=ð4g2Þ�Fa
μν;rF

aμν
r . The trace

anomaly states that the trace of the energy-momentum
tensor Tμ

ν satisfies the relation [81]

Tμ
μ ¼ β

16πα2
Fa
μν;rF

a μν
r : ð4:1Þ

Therefore, the full scaling dimension of the operator
Fr;μνF

a μν
r , which we denote as DF2 , satisfies [82]

DF2 ¼ 4þ β0 −
2β

α
; ð4:2Þ

where we use the shorthand notation F2 ≡ Fa
r;μνF

a μν
r .

We denote the anomalous dimension of F2, γF2 via the
equation [26]

DF2 ¼ DF2;free − γF2 ¼ 4 − γF2 ð4:3Þ

and its evaluation at α ¼ αIR as γF2;IR. From Eq. (4.2), it
follows that at a zero of the beta function away from the
origin, in particular, at αIR, the derivative β0IR is equivalent
to the anomalous dimension of the operator Fa

r;μνF
a μν
r :

β0IR ¼ −γF2;IR: ð4:4Þ

In [13] we calculated the expansion coefficients dj of β0IR
in Eq. (1.3) to orderΔ4

f for generalG and R, and to orderΔ5
f

for the special case G ¼ SUð3Þ and fermion representation
R ¼ F, the fundamental. Here we calculate the next higher-
order coefficient, namely d5, for general G and R. For this
purpose, we make use of the recent computation of the five-
loopbeta function coefficient,b5, in [17]. The computation in
[17] was performed in the MS scheme, so that we can
combine it with the scheme-independent b1 and b2 [7,8] and
the results for b3 and b4 that have also been calculated in the
MS scheme [27,28]. However, we again stress that since the
dn coefficients are scheme-independent, it does not matter
which scheme one uses to calculate them. We first recall our
previous results from Ref. [13]:

d1 ¼ 0; ð4:5Þ

d2 ¼
25T2

f

32CAD
; ð4:6Þ

d3 ¼
27T3

fð5CA þ 3CfÞ
33C2

AD
2

; ð4:7Þ

and

d4 ¼−
23T2

f

36C4
AD

5

�
−3CAT2

fð137445C4
Aþ103600C3

ACfþ72616C2
AC

2
fþ951808CAC3

f−63888C4
fÞ

−5120T2
fD

dabcdA dabcdA

dA
þ90112CATfD

dabcdR dabcdA

dA
−340736C2

AD
dabcdR dabcdR

dA

þ8448D

�
C2
AT

2
fð21C2

Aþ12CACf−33C2
fÞþ16T2

f
dabcdA dabcdA

dA
−104CATf

dabcdR dabcdA

dA
þ88C2

A
dabcdR dabcdR

dA

�
ζ3

�
: ð4:8Þ

In Ref. [13] we presented the expression for d4 with terms written in order of descending powers of CA. It is also useful to
express this coefficient d4 in an equivalent form that renders certain factors ofD explicit and shows the simple factorization of
terms multiplying ζ3, and we have done this in Eq. (4.8).
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Here we present our calculation of d5 for arbitrary G and R:

d5¼
24T3

f

37C5
AD

7

�
−CAT2

fð39450145C6
Aþ235108272C5

ACfþ1043817726C4
AC

2
fþ765293216C3

AC
3
f

−737283360C2
AC

4
fþ730646400CAC5

f−356750592C6
fÞ−29T2

fD
dabcdA dabcdA

dA
ð6139C2

Aþ2192CACf−3300C2
fÞ

þ29CATfD
dabcdR dabcdA

dA
ð43127C2

A−28325CACf−2904C2
fÞþ15488C2

AD
dabcdR dabcdR

dA
ð2975C2

Aþ8308CACf−12804C2
fÞ

þ27D½3CAT2
fDð6272C4

A−49823C3
ACfþ40656C2

AC
2
fþ13200CAC3

fþ2112C4
fÞ

þ24T2
f
dabcdA dabcdA

dA
ð19516C2

A−18535CACf−21780C2
fÞ−23CATf

dabcdR dabcdA

dA
ð182938C2

A−297649CACf−197472C2
fÞ

−88C2
A
dabcdR dabcdR

dA
ð245C2

Aþ62524CACfþ42108C2
fÞ�ζ3

þ210 ·55CAD2

�
9CAT2

fDðCAþ2CfÞðCA−CfÞþ160T2
f
dabcdA dabcdA

dA

−80Tfð10CAþ3CfÞ
dabcdR dabcdA

dA
−440CAðCA−3CfÞ

dabcdR dabcdR

dA

�
ζ5

�
: ð4:9Þ

We proceed to evaluate these coefficients dj up to j ¼ 5,
and hence the derivative β0IR up to OðΔ5

fÞ below for G ¼
SUðNcÞ and several specific representations. The coeffi-
cients d2 and d3 are manifestly positive for arbitrary G and
R. These signs are indicated in Table VII. We discuss the
signs of d4 and d5 for various representations below.

B. β0
IR;Δ4

f
for G=SUðNcÞ and R=F

Here we present the evaluation of our general result (4.9)
for the case G ¼ SUðNcÞ and R ¼ F. For reference, we

first recall our results from [13] for dj with 2 ≤ j ≤ 4 (and
also recall that d1 ¼ 0 for all G and R):

d2;F ¼ 24

32ð25N2
c − 11Þ ; ð4:10Þ

d3;F ¼ 25ð13N2
c − 3Þ

33Ncð25N2
c − 11Þ2 ; ð4:11Þ

and

d4;F ¼ −
24

35N2
cð25N2

c − 11Þ5 ½N
8
cð−366782þ 660000ζ3Þ þ N6

cð865400 − 765600ζ3Þ

þ N4
cð−1599316þ 2241888ζ3Þ þ N2

cð571516 − 894432ζ3Þ þ 3993�: ð4:12Þ

This coefficient can be written equivalently in a form that shows the simple factorization of the terms multiplying ζ3:

d4;F ¼ −
24

35N2
cð25N2

c − 11Þ5 ½ð−366782N
8
c þ 865400N6

c − 1599316N4
c þ 571516N2

c þ 3993Þ

þ 1056N2
cð25N2

c − 11Þð25N4
c − 18N2

c þ 77Þζ3�: ð4:13Þ

In [16] we presented the expression for d5;F with terms ordered as descending powers ofNc. As with d4;F, it is also useful
to display this coefficient in an equivalent form that shows the simple factorizations of the terms multiplying ζ3 and ζ5:
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d5;F ¼ 25

36N3
cð25N2

c − 11Þ7 ½ð−298194551N
12
c þ 414681770N10

c þ 80227411N8
c

þ 210598856N6
c − 442678324N4

c þ 129261880N2
c þ 3716152Þ

− 96ð25N2
c − 11Þð176375N10

c − 564526N8
c þ 1489367N6

c − 1470392N4
c þ 290620N2

c þ 968Þζ3
þ 21120N2

cð25N2
c − 11Þ2ð40N6

c − 27N4
c þ 124N2

c − 209Þζ5�: ð4:14Þ

We have checked that when we set Nc ¼ 3 in our general result for d5;F in Eq. (4.14), the result agrees with our earlier
calculation of d5;F in Eq. (5.20) of Ref. [13].
As observed above, the coefficients d2 and d3 are manifestly positive for any G and R. We find that d4;F and d5;F are

negative-definite for G ¼ SUðNcÞ and all physical values of Nc ≥ 2. These results are summarized in Table VII.
We list below the explicit numerical expressions for β0IR to order Δ5

f, denoted β
0
IR;SUðNcÞ;F;Δ5

f
, for the gauge groups SU(Nc)

with Nc ¼ 2, 3, 4, with fermions in the fundamental representation, to the indicated floating-point precision:

SUð2Þ∶ β0
IR;F;Δ5

f
¼ Δ2

f½ð1.99750 × 10−2 þ ð3.66583 × 10−3ÞΔf − ð3.57303 × 10−4ÞΔ2
f − ð2.64908 × 10−5ÞΔ3

f� ð4:15Þ

SUð3Þ∶ β0
IR;F;Δ5

f
¼ Δ2

f½ð0.83074 × 10−2Þ þ ð0.98343 × 10−3Δf − ð0.46342 × 10−4ÞΔ2
f − ð0.56435 × 10−5ÞΔ3

f� ð4:16Þ

and

SUð4Þ∶ β0
IR;F;Δ5

f
¼ Δ2

f½ð0.45701 × 10−2Þ þ ð0.40140 × 10−3Δf − ð0.12938 × 10−4ÞΔ2
f − ð0.15498 × 10−5ÞΔ3

f�: ð4:17Þ

In Table VIII we list the (scheme-independent) values
that we calculate for β0IR;F;Δp

f
with 2 ≤ p ≤ 4 for the

illustrative gauge groups G ¼ SUð2Þ, SU(3), and SU(4),
as functions of Nf in the respective intervals IIRZ given in
Eq. (2.7). For comparison, we list the n-loop values of
β0IR;F;nl with the 2 ≤ n ≤ 4 from [13,20], where β0IR;F;3l and
β0IR;F;4l are computed in the MS scheme. Although, for
completeness, we list values of β0IR;F;2l with Nf extending
down to the lower end of the respective intervals IIRZ for
each value of Nc, we caution that in a number of cases,
including Nf ¼ 6 for SU(2), Nf ¼ 9 for SU(3), and 10 ≤
Nf ≤ 12 for SU(4), the corresponding values of αIR;2l
(discussed further below) are too large for the perturbative
n-loop calculations to be applicable. Moreover, since for a
considerable range of values of Nf ∈ IIRZ for each Nc, the
five-loop beta function β5l calculated via the conventional
power series expansion has no physical IR zero, we restrict
the resultant β0IR;F;nl evaluations to 1 ≤ n ≤ 4 loops.
In Figs. 7–9 we plot the values of β0IR, calculated to order

Δp
f with 2 ≤ p ≤ 5, for R ¼ F for the gauge groups SU(2),

SU(3), and SU(4). In the general calculations of γIR as a
series in powers of Δf to maximal power p ¼ 3 (i.e., order
Δ3

f) in [12] and, for G ¼ SUð3Þ and R ¼ F, to maximal
power p ¼ 4 in [14], it was found that, for a fixed value of
Nf, or equivalently, Δf, in the interval IIRZ, these anoma-
lous dimensions increased monotonically as a function of
p. This feature motivated our extrapolation to p ¼ ∞ in
[12] to obtain estimates for the exact γIR. In contrast, here

we find that, for a fixed value of Nf, or equivalently, Δf, in
IIRZ, as a consequence of the fact that different coefficients
dn do not all have the same sign, β0IR;Δp

f
is not a monotonic

function of p. Because of this nonmonotonicity, we do not
attempt to extrapolate our series to p ¼ ∞.
A lattice measurement of β0IR has been reported in [83]

for the SU(3) theory with R ¼ F and Nf ¼ 12, namely
β0IR ¼ 0.26ð2Þ. The earlier higher-order values calculated
in [20] via n-loop expansions in the coupling are
β0IR;3l ¼ 0.2955 and β0IR;4l ¼ 0.282, which agree with this
lattice measurement. As indicated in Table VIII, our
higher-order scheme-independent values for this theory
are β0

IR;Δ3
f
¼ 0.258, β0IR;Δ4

f
¼ 0.239, and β0

IR;Δ5
f
¼ 0.228.

Given the possible contributions of higher-order terms

TABLE VII. Signs of the dj;R coefficients for 2 ≤ j ≤ 5 for
gauge groupG ¼ SUðNcÞ and fermion representations R equal to
F (fundamental), adj (adjoint), S2, and A2 (symmetric and
antisymmetric rank-2 tensor). Note that d1 ¼ 0 for all G and
R. In the case R ¼ A2, we restrict to Nc ≥ 3.

j dj;F dj;adj dj;S2 dj;A2

2 þ þ þ þ
3 þ þ þ þ
4 − þ þ − for Nc ¼ 3, 4, 5

þ for Nc ≥ 6
5 − − − −
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in the Δf expansion, we consider that our scheme-
independent calculation of β0IR to this order is also con-
sistent with the lattice measurement from Ref. [83].
To get a rough estimate of the range of accuracy and

applicability of the series expansion for β0IR for this R ¼ F
case, we can compute ratios of coefficients, as discussed
before. For the illustrative case of SU(3), we have

d2;F
d3;F

¼ 8.447 for SU ð3Þ; ð4:18Þ

d3;F
jd4;Fj

¼ 21.221 for SU ð3Þ; ð4:19Þ

and

FIG. 7. Plot of β0IR;F;Δp
f
(labeled as β0IR on the vertical axis) for

Nc ¼ 2 and 2 ≤ p ≤ 5 as a function of Nf ∈ IIRZ. From bottom
to top, the curves (with colors online) refer to β0IR;F;Δ2

f
(red),

β0IR;F;Δ3
f
(green), β0IR;F;Δ4

f
(blue), and β0

IR;F;Δ5
f
(black).

TABLE VIII. Scheme-independent values of β0IR;F;Δp
f
with 2 ≤ p ≤ 4 for G ¼ SUð2Þ, SU(3), and SU(4), as

functions of Nf in the respective intervals IIRZ. For comparison, we list the n-loop values of β0IR;F;nl with 2 ≤ n ≤ 5,

where β0IR;F;nl with n ¼ 3, 4, 5 are computed in the MS scheme. The notation ae-n means a × 10−n.

Nc Nf β0IR;F;2l β0
IR;F;3l;MS

β0
IR;F;4l;MS

β0IR;F;Δ2
f

β0IR;F;Δ3
f

β0IR;F;Δ4
f

β0
IR;F;Δ5

f

2 6 6.061 1.620 0.975 0.499 0.957 0.734 0.6515
2 7 1.202 0.728 0.677 0.320 0.554 0.463 0.436
2 8 0.400 0.318 0.300 0.180 0.279 0.250 0.243
2 9 0.126 0.115 0.110 0.0799 0.109 0.1035 0.103
2 10 0.0245 0.0239 0.0235 0.0200 0.0236 0.0233 0.0233

3 9 4.167 1.475 1.464 0.467 0.882 0.7355 0.602
3 10 1.523 0.872 0.853 0.351 0.621 0.538 0.473
3 11 0.720 0.517 0.498 0.251 0.415 0.3725 0.344
3 12 0.360 0.2955 0.282 0.168 0.258 0.239 0.228
3 13 0.174 0.1556 0.149 0.102 0.144 0.137 0.134
3 14 0.0737 0.0699 0.0678 0.0519 0.0673 0.0655 0.0649
3 15 0.0227 0.0223 0.0220 0.0187 0.0220 0.0218 0.0217
3 16 2.21e-3 2.20e-3 2.20e-3 2.08e-3 2.20e-3 2.20e-3 2.20e-3

4 11 16.338 2.189 2.189 0.553 1.087 0.898 0.648
4 12 3.756 1.430 1.429 0.457 0.858 0.729 0.574
4 13 1.767 0.965 0.955 0.370 0.663 0.578 0.486
4 14 0.984 0.655 0.639 0.292 0.498 0.445 0.394
4 15 0.581 0.440 0.424 0.224 0.362 0.331 0.3045
4 16 0.348 0.288 0.276 0.1645 0.251 0.234 0.222
4 17 0.204 0.180 0.1725 0.114 0.164 0.156 0.1515
4 18 0.113 0.105 0.101 0.0731 0.0988 0.0955 0.0939
4 19 0.0558 0.0536 0.0522 0.0411 0.0520 0.0509 0.0505
4 20 0.0222 0.0218 0.0215 0.0183 0.0215 0.0213 0.0212
4 21 5.01e-3 4.99e-3 4.96e-3 4.57e-3 4.97e-3 4.96e-3 4.96e-3

FIG. 8. Plot of β0IR;F;Δp
f
for Nc ¼ 3 and 2 ≤ p ≤ 5 as a function

of Nf ∈ IIRZ. From bottom to top, the curves (with colors
online) refer to β0IR;F;Δ2

f
(red), β0IR;F;Δ3

f
(green), β0IR;F;Δ4

f
(blue),

and β0
IR;F;Δ5

f
(black).
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jd4;Fj
jd5;Fj

¼ 8.2115 for SU ð3Þ: ð4:20Þ

Since Nu ¼ 16.5 and Nl ¼ 153=19 ¼ 8.053 in this SU(3)
theory, the maximal value of Δf in the interval IIRZ, as
given by (3.16), is

ðΔfÞmax ¼
321

38
¼ 8.447 for SUð3Þ; Nf ∈ IIRZ:

ð4:21Þ

Therefore, these ratios suggest that the small-Δf expansion
may be reasonably reliable in most of this interval, IIRZ and
the associated non-Abelian Coulomb phase.

C. β0IR;Δ5
f
in LNN limit

The appropriately rescaled beta function that is finite in
the LNN limit is

βξ ¼
dξ
dt

¼ lim
LNN

Ncβ; ð4:22Þ

where ξ ¼ 4πx ¼ limLNNαNc was defined in Eq. (3.21).
This has the series expansion

βξ ≡ dξ
dt

¼ −8πx
X∞
l¼1

b̂lxl ¼ −2ξ
X∞
l¼1

~blξl ð4:23Þ

where

b̂l ¼ lim
LNN

bl
Nl

c
: ð4:24Þ

and ~bl ¼ b̂l=ð4πÞl. The b̂l with 1 ≤ l ≤ 4 were analyzed
in [20,21] and are listed for the reader’s convenience in the
Appendix.

From the recent calculation of b5 in [17], for general G
and R, in the MS scheme [17], we calculate

b̂5 ¼
8268479

3888
þ 38851

162
ζ3 −

121

6
ζ4 − 330ζ5

þ
�
−
11204369

5184
−
231619

648
ζ3 þ

77

6
ζ4 þ

4090

9
ζ5

�
r

þ
�
3952801

7776
þ 33125

108
ζ3 −

241

6
ζ4 −

1630

9
ζ5

�
r2

þ
�
−
5173

432
−
1937

81
ζ3 þ 7ζ4 þ

20

3
ζ5

�
r3

þ
�
61

486
−
52

81
ζ3

�
r4

¼ 2050.932 − 2105.880rþ 645.7474r2

− 26.2309r3 − 0.64618r4: ð4:25Þ

(In this expression although ζ4 could be expressed explic-
itly as ζ4 ¼ π4=90, we leave it in abstract form to be
parallel with the ζ3 and ζ5 terms.) We find that this
coefficient b̂5 is positive throughout the entire asymptoti-
cally free interval 0 ≤ r < 5.5. (Considered formally as a
function of r ∈ R, b̂5 is negative for r < −58.609, positive
for −58.609 < r < 14.336, and negative for r > 14.336,
where the numbers are quoted to the given floating-point
accuracy.)
Since the derivative dβξ=dξ satisfies the relation

dβξ
dξ

¼ dβ
dα

≡ β0; ð4:26Þ

it follows that β0 is finite in the LNN limit (3.21). In terms
of the variable x defined in Eq. (3.23), we have

β0 ¼ −2
X∞
l¼1

ðlþ 1Þb̂lxl: ð4:27Þ

Because β0IR is scheme-independent and is finite in
the LNN limit, one is motivated to calculate the LNN
limit of the scheme-independent expansion (1.3). For this
purpose, in addition to the rescaled quantities Δr defined in
Eq. (3.30), we define the rescaled coefficient

d̂j;F ¼ lim
LNN

Nj
cdj;F; ð4:28Þ

which is finite. Then each term

lim
LNN

dj;FΔ
j
f ¼ ðNj

cdj;FÞ
�
Δf

Nc

�
j
¼ d̂j;FΔ

j
r ð4:29Þ

is finite in this limit. Thus, writing limLNNβ
0
IR as β0IR;LNN for

this R ¼ F case, we have

FIG. 9. Plot of β0IR;F;Δp
f
for Nc ¼ 4 and 2 ≤ p ≤ 5 as a function

of Nf ∈ IIRZ. From bottom to top, the curves (with colors online)
refer to β0IR;F;Δ2

f
(red), β0IR;F;Δ3

f
(green), β0IR;F;Δ4

f
(blue), and β0

IR;F;Δ5
f

(black).
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β0IR;LNN ¼
X∞
j¼1

dj;FΔ
j
f ¼

X∞
j¼1

d̂j;FΔ
j
r: ð4:30Þ

We denote the value of β0IR;LNN obtained from this series
calculated to order OðΔp

f Þ as β0IR;LNN;Δp
f
.

From Eqs. (4.5)–(4.8), we find that the approach to the
LNN limits for d̂j;F involves correction terms that vanish
like 1=N2

c. This is the same property that was found in
[20,21] and, in the same way, it means that the approach to
the LNN limit for finiteNc andNf with fixed r ¼ Nf=Nc is
rather rapid, as discussed in [21]. In [13] we gave the d̂j;F
for 1 ≤ n ≤ 4; in addition to d̂1 ¼ 0 (which holds for anyG
and R), these are

d̂2;F ¼ 24

32 · 52
¼ 0.0711111; ð4:31Þ

d̂3;F ¼ 416

33 · 54
¼ 2.465185 × 10−2; ð4:32Þ

and

d̂4;F ¼
5868512

35 ·510
−
5632

34 ·56
ζ3¼−ð2.876137×10−3Þ: ð4:33Þ

Here we give the next higher coefficient:

d̂5;F ¼ −
9542225632

36 · 514
−
1444864

35 · 59
ζ3 þ

360448

35 · 58
ζ5

¼ −ð1.866490 × 10−3Þ: ð4:34Þ

In these equations we have indicated the simple factoriza-
tions of the denominators that were already evident in the
general analytic expressions (4.5)–(4.8). Although the

numerical coefficients in the numerators of terms in
Eq. (4.34) do not, in general, have simple factorizations,
they do contain various powers of 2; for example, in d̂5;F,
1444864 ¼ 210 · 17 · 83, etc. Thus, numerically, to order
Δ5

r , for the LNN limit of this theory with R ¼ F, we have

β0IR;LNN ¼ Δ2
r ½7.1111 × 10−2 þ ð2.4652 × 10−2ÞΔr

− ð2.8761 × 10−3ÞΔ2
r − ð1.8665 × 10−3ÞΔ3

r

þOðΔ4
rÞ�; ð4:35Þ

where the coefficients are given to the indicated floating-
point precision. We may again calculate ratios of successive
magnitudes of these coefficients to get a rough estimate of
the range over which the small-Δr expansion is reliable in
this LNN limit. We find

d̂2;F
d̂3;F

¼ 2.885; ð4:36Þ

d̂3;F
jd̂4;Fj

¼ 8.571; ð4:37Þ

and

jd̂4;Fj
jd̂5;Fj

¼ 1.541: ð4:38Þ

For r ∈ IIRZ;r, the maximal value of Δr is
ðΔrÞmax ¼ 75=26 ¼ 2.885. The first two ratios, (4.36)
and (4.37), suggest that the Δr expansion for β0IR may
be reasonably reliable over a reasonable fraction of the
interval IIRZ;r. From the third ratio, (4.38), we infer that the

TABLE IX. Scheme-independent values of β0IR;Δp
r
for 2 ≤ p ≤ 5 in the LNN limit (3.21) as functions of

r ¼ 5.5 − Δr. For comparison, we also list the n-loop values β0IR;nl with 2 ≤ n ≤ 5, where β0IR;nl with n ¼ 3, 4, 5 are
computed in the MS scheme. The notation ae-n means a × 10−n.

r β0IR;2l β0IR;3l β0IR;4l β0IR;Δ2
r

β0IR;Δ3
r

β0IR;Δ4
r

β0
IR;Δ5

r

2.8 8.100 1.918 1.913 0.518 1.004 0.851 0.583
3.0 3.333 1.376 1.379 0.444 0.830 0.717 0.535
3.2 1.856 1.006 1.003 0.376 0.676 0.596 0.4755
3.4 1.153 0.7395 0.729 0.314 0.542 0.486 0.410
3.6 0.752 0.542 0.527 0.257 0.426 0.388 0.342
3.8 0.500 0.393 0.378 0.2055 0.327 0.303 0.276
4.0 0.333 0.279 0.267 0.160 0.243 0.229 0.214
4.2 0.219 0.193 0.184 0.120 0.174 0.166 0.159
4.4 0.139 0.128 0.122 0.0860 0.119 0.115 0.112
4.6 0.0837 0.0792 0.0766 0.0576 0.0756 0.0737 0.0726
4.8 0.0460 0.0445 0.0435 0.0348 0.0433 0.0426 0.0423
5.0 0.0215 0.0212 0.0208 0.0178 0.0209 0.0207 0.0206
5.2 0.714e-2 0.710e-2 0.706e-2 0.640e-2 0.707e-2 0.704e-2 0.704e-3
5.4 0.737e-3 0.736e-3 0.7356e-3 0.7111e-3 0.7358e-3 0.7355e-3 0.7355e-3
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expansion is expected to be more accurate in the upper
portion of the interval IIRZ;r than the lower portion.
In Ref. [13] we presented a comparison of these scheme-

independent calculations of β0IR;LNN calculated up to the Δ4
r

order with the results of conventional n-loop calculations,
denoted β0IR;nl;LNN , computed up to the n ¼ 4 loop order
for which the bn were known at that time. We refer the
reader to [13] for details of this discussion. Here we shall
extend this comparison to the Δ5

r order. In Table IX we list
the numerical values of these conventional n-loop calcu-
lations up to n ¼ 4, in comparison with our scheme-
independent results calculated to OðΔp

r Þ with p up to 5.
(The conventional 4-loop values β0IR;4l for some values of r
toward the lower part of IIRZ;r supersede the corresponding
entries in Table II of [13].) Both β0IR;nl and β0IR;Δn

r
use, as

inputs, the coefficients of the beta function up to loop order
n, although β0IR;Δn

r
does this in a scheme-independent

manner. We see that, especially for r values in the upper
part of the interval IIRZIRZ;r, the results are rather close, and,
furthermore, as expected, for a given r, the higher the loop
level n and the truncation order p in the respective
calculations of β0IR;nl in the MS scheme and the scheme-
independent β0IR;Δp

r
, the better the agreement between these

two results. Toward the lower end of the interval IIRZ;r, both
the conventional expansion of β0IR and the scheme-
independent expansion of β0IR in powers of Δr become
less reliable, and hence it is understandable that the results
differ from each other in this lower part of IIRZ;r.

D. β0IR;Δ5
f
for G=SUðNcÞ and R= adj

Here we calculate the dj and hence β0
IR;Δj

f

for j up to

j ¼ 5 in the SUðNcÞ gauge theory with fermion represen-
tation R ¼ adj. As was discussed above, in this case, the
interval IIRZ contains the single Dirac value, Nf ¼ 2. For
this value of Nf, Eq. (3.60) yields Δf ¼ 3=4. We recall that
the dj for 2 ≤ j ≤ 4 are [13]

d2;adj ¼
�
2

3

�
4

¼ 0.19753; ð4:39Þ

d3;adj ¼
28

37
¼ 0.11706; ð4:40Þ

and

d4;adj ¼
46871

22 · 312
þ 2368

310N2
c

¼ 0.022049þ 0.040102N−2
c : ð4:41Þ

Here, from our new general result (4.9) for d5, we obtain the
next coefficient for this case of the adjoint representation:

d5;adj ¼ −
7141205

23 · 316
þ 5504

312
ζ3

−
�
30928

314
þ 465152

313
ζ3

�
N−2

c

¼ −ð0.828739 × 10−2Þ − 0.357173N−2
c : ð4:42Þ

While the dj;adj with 2 ≤ j ≤ 4 are positive-definite, we
thus find that d5;adj is negative-definite. These results on
signs are listed in Table VII. In the Nc → ∞ (LN) limit of
Eq. (3.22), the values of d̂j;adj can be read off directly from
our general results in Eqs. (4.39)–(4.42); for example,
d̂4;adj ¼ 46871=ð22 · 312Þ, etc.
With these coefficients, one can again compute ratios to

obtain a crude idea of the region over which the small-Δf

series expansion is reliable. We have

d2;adj
d3;adj

¼ 33

24
¼ 1.687 ð4:43Þ

and, taking the large-Nc limit for simplicity,

lim
Nc→∞

d3;adj
d4;adj

¼ 35 · 210

46871
¼ 5.309 ð4:44Þ

lim
Nc→∞

d4;adj
jd5;adjj

¼ 7593102

7141205 − 3566592ζ3
¼ 2.6606: ð4:45Þ

Since Δf ¼ 0.75 for Nf ¼ 2, these ratios indicate that the
small-Δf expansion should be reasonably accurate here.

E. β0IR;Δ5
f
for G=SUðNcÞ and R= S2, A2

Here we present our results for the dj coefficients and
hence β0

IR;Δj
f

with j up to 5 for G ¼ SUðNcÞ and Nf

fermions in the symmetric and antisymmetric rank-2 tensor
representations, S2 and A2. As before with γψ̄ψ ;IR;Δp

f
, since

many formulas for these two cases are simply related to
each other by sign reversals in certain terms, it is convenient
to treat these two cases together, denoting them collectively
as T2. We recall that for R ¼ A2, we restrict to Nc ≥ 3.
From our general formulas (4.5)–(4.9), we obtain the

following, where the upper and lower signs refer to the S2
and A2 special cases of T2, respectively, and F� was
defined in Eq. (3.72):

d2;T2
¼ 23ðNc � 2Þ2

32F�
ð4:46Þ

d3;T2
¼ 24ðNc � 2Þ3ð8N2

c � 3Nc − 6Þ
33NcF2

�
ð4:47Þ
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d4;T2
¼ ðNc � 2Þ3

2 · 35N2
cF5

�
½ð1265517N9

c � 6305850N8
c þ 8455112N7

c ∓ 18825808N6
c − 47225264N5

c

� 61021088N4
c þ 70598528N3

c ∓ 72131840N2
c þ 3066624Nc ∓ 2044416Þ

� 8448N2
cðNc ∓ 2Þð18N2

c � 11Nc − 22Þð12N3
c ∓ 9N2

c � 308Þζ3� ð4:48Þ

and

d5;T2
¼ ðNc � 2Þ4

2 · 36N3
cF7

�
½ð−578437605N13

c ∓ 2353001022N12
c − 1643220810N11

c � 1685855300N10
c

þ 12567177608N9
c � 29240054768N8

c − 75390007296N7
c ∓ 70417381376N6

c þ 243309040128N5
c

∓ 27199484928N4
c − 228577603584N3

c � 143780184064N2
c − 38053396480Nc � 15221358592Þ

þ 27F�ð125388N11
c � 372762N10

c − 7324047N9
c ∓ 9682414N8

c þ 52934332N7
c ∓ 12735976N6

c

− 192234240N5
c � 112670976N4

c þ 164609280N3
c ∓ 111598080N2

c þ 2973696Nc ∓ 1486848Þζ3
þ 210 · 55N2

cðNc ∓ 2ÞF2
�ð∓ 87N5

c þ 259N4
c � 1134N3

c − 3600N2
c ∓ 5016Nc þ 10032Þζ5�: ð4:49Þ

We find that, in addition to the manifestly positive d2;T2
, the

coefficient d3;T2
is also positive for all relevant Nc. Here, by

“relevant Nc”, we mean Nc ≥ 2 for S2 and Nc ≥ 3 for A2.
In contrast, while d4;S2 is positive for all relevant Nc, we
find that d4;A2

is negative for Nc ¼ 3, 4, 5, passes through
zero at Nc ¼ 5.515, and is positive for Nc ≥ 6. Further, we
find that d5;S2 and d5;A2

are both negative for their respective
physical ranges, Nc ≥ 2 and Nc ≥ 3. These sign properties
are listed in Table VII.
Some general comments are in order concerning these

dj;T2
expressions. These are analogous to the comments

that we made for the κj;T2
coefficients. The property that

all of the dj;A2
coefficients contain an overall factor of

ðNc − 2Þ (possibly raised to a power higher than 1), and
hence vanish for Nc ¼ 2, is a consequence of the fact that
for Nc ¼ 2, the A2 representation is a singlet, so for SU(2),
fermions in the A2 ¼ singlet representation have no gauge
interactions and do not contribute to the beta function
or β0IR.
Furthermore, if Nc ¼ 2, then the S2 representation is the

same as the adjoint representation, so the coefficients must
satisfy the equality dj;S2 ¼ dj;adj for this SU(2) case, and
we have checked that they do. This equality requires (i) that
the term proportional to ζ3 in d4;S2 must be absent if
Nc ¼ 2, since d4;adj does not contain any ζ3 term, and this
is accomplished by the factor of ðNc − 2Þ multiplying the
ζ3 term in d4;S2 ; and (ii) the term proportional to ζ5 in d5;S2
must be absent if Nc ¼ 2, since d5;adj does not contain any
ζ5 term, and this is accomplished by the factor ðNc − 2Þ
multiplying this ζ5 term in d5;S2 . Similarly, as observed
before, if Nc ¼ 3, then the A2 representation is the same as
the conjugate fundamental representation, F̄, so the

coefficients must satisfy the equality dj;A2
¼ dj;F for this

SU(3) case, and we have checked that they do.
In the LN limit (3.22), as discussed above in the case of

the anomalous dimension γIR;T2
, the upper ends of the

interval IIRZ for the S2 and A2 theories approach the same
value, Nu;T2

, given in Eq. (3.86), and similarly the lower
ends of this interval for these S2 and A2 theories approach
the same value, Nl;T2

, given in Eq. (3.87). We denote

d̂j;T2
¼ lim

LN
dj;T2

; ð4:50Þ

and we find

d̂j;S2 ¼ d̂j;A2
; ð4:51Þ

which we denote simply as d̂j;T2
. Hence,

lim
LN

β0IR;S2 ¼ lim
LN

β0IR;A2
: ð4:52Þ

Further, again in analogy with Eq. (3.98) and for the
same reasons concerning group invariants in the LN limit,
we have

d̂j;T2
¼ 2−jd̂j;adj: ð4:53Þ

From our general expressions, we calculate

d̂2;T2
¼ 22

34
¼ 0.049383 ð4:54Þ

d̂3;T2
¼ 25

37
¼ 1.46319 × 10−2 ð4:55Þ
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d̂4;T2
¼ 46871

26 · 312
¼ 1.37806 × 10−3 ð4:56Þ

and

d̂5;T2
¼ −

7141205

28 × 316
þ 172

312
ζ3

¼ −ð2.58981 × 10−4Þ: ð4:57Þ

To estimate the region over which the Δf expansion
converges, we calculate the ratios of adjacent coefficients.
We have

d2;T2

d3;T2

¼ 3Ncð18N2
c � 11Nc − 22Þ

ðNc � 2Þð8N2
c � 3Nc − 6Þ ð4:58Þ

and similarly for the ratios dj−1;T2
=dj;T2

for j ¼ 4, 5. For the
LN limit,

d̂2;T2

d̂3;T2

¼
�
3

2

�
3

¼ 3.375 ð4:59Þ

d̂3;T2

d̂4;T2

¼ 497664

46871
¼ 10.618 ð4:60Þ

and

d̂4;T2

jd̂5;T2
j ¼ 5.321: ð4:61Þ

Since formally, ðΔfÞmax ¼ 3.375 from Eq. (3.88)
and Δf ¼ 5.5 for Nf ¼ 2, these ratios indicate that
the Δf expansion for the LN limit of this R ¼ T2 case
should be reasonably accurate in the interval IIRZ for
this case.

V. IR ZERO OF βξ IN THE LNN LIMIT

In this section we analyze the zeros of the rescaled five-
loop beta function in the LNN limit. This elucidates further
the result that we first found for a finite value of Nc, namely
Nc ¼ 3, in [15], that for SU(3), the five-loop beta function
only has a physical IR zero in the upper range of the
interval IIRZ. We denote the n-loop rescaled beta function
(4.22) in this LNN limit as βξ;nl, and its IR zero (if such a
zero exists) as ξIR;nl ¼ 4πxIR;nl. The analytic expressions
of ξIR;2l and ξIR;3l were given in [21], together with
numerical values of ξIR;nl for 1 ≤ n ≤ 4. Here we extend
these results to the five-loop level, using the coefficient b̂5

in Eq. (4.25). As noted before, we use the b̂n with 3 ≤
n ≤ 5 calculated in the MS scheme. The reader is referred
to [21] for analysis of these zeros up to the four-loop level.
In general, the IR zero of the n-loop beta function, βξ;nl,

is the positive real root closest to the origin (if such a root
exists) of the equation

Xn
l¼1

b̂lxl−1 ¼ 0; ð5:1Þ

of degree n − 1 in the variable x. The roots of Eq. (5.1)
depend on the n − 1 ratios b̂l=b̂1 for 2 ≤ l ≤ n. In
particular, at the five-loop level, Eq. (5.1) is the quartic
equation

b̂1 þ b̂2xþ b̂3x2 þ b̂4x3 þ b̂5x4 ¼ 0: ð5:2Þ

To analyze the roots of this equation, it is natural to start
with r in the vicinity of ru ¼ 11=2, where b̂1 → 0 and
hence one solution of Eq. (5.2) approaches zero, matching
the behavior of xIR;nl for 2 ≤ n ≤ 4 in this limit. As we
reduce r from the value ru in the interval IIRZ;r, we can thus
calculate how the physical IR root, xIR;5l ¼ ξIR;5l=ð4πÞ,
changes. We find that, in contrast to the behavior of the IR
zero of the lower-loop beta functions βξ;nl with 2 ≤ n ≤ 4,
here at the five-loop level, as r decreases past a certain value
rcx, Eq. (5.2) (with b̂n, n ¼ 3, 4, 5 calculated in the MS
scheme) ceases to have a physical IR zero. We find that the
value of rcx is

rcx ¼ 4.32264; ð5:3Þ

TABLE X. Values of the IR zero ξIR;nl of the βξ;nl function in
the LNN limit for 2 ≤ n ≤ 5 and r ∈ Ir. Notation u (unphysical)
means that there is no physical IR zero ξIR;5l of the 5-loop beta
function.

r ξIR;2l ξIR;3l ξIR;4l ξIR;5l

2.8 28.274 3.573 3.323 u
3.0 12.566 2.938 2.868 u
3.2 7.606 2.458 2.494 u
3.4 5.174 2.076 2.168 u
3.6 3.731 1.759 1.873 u
3.8 2.774 1.489 1.601 u
4.0 2.095 1.252 1.349 u
4.2 1.586 1.041 1.115 u
4.4 1.192 0.8490 0.9003 1.0353
4.6 0.8767 0.6725 0.7038 0.7439
4.8 0.6195 0.5083 0.5244 0.5364
5.0 0.4054 0.3538 0.3603 0.3630
5.2 0.2244 0.2074 0.2089 0.2093
5.4 0.06943 0.06769 0.06775 0.06776
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to the indicated floating-point accuracy. This is deter-
mined as the relevant root of the discriminant of Eq. (5.2),
which is a polynomial of degree 15 in the variable r. (The
discriminants of the corresponding equations at loop
levels 3 and 4 are polynomials of degree 3 and 8 in r.)
For example, for the illustrative value r ¼ 5, near to the
upper end of the interval IIRZ;r, Eq. (5.2) has the solutions
in x, expressed in terms of ξ ¼ 4πx: ξ ¼ 0.36300,
1.69540, and −1.48884� 1.08446i. Of these, we identify
the first as the IR zero, ξIR;5l. As r decreases and
approaches rcx from above, the two real roots approach
a common value, ξ≃ 1.312 and as r decreases below rcx,
Eq. (5.2) has only two complex-conjugate pairs of
solutions, roots, but no real positive solution. In
Table X we list our new results for ξIR;5l, in comparison
with the previously calculated values of ξIR;nl in the LNN
limit with 2 ≤ n ≤ 4 from Table III of [21]. Although we
list ξIR;nl values extending to the lower part of the interval
IIRZ;r for completeness, it is clear that a number of these
values are too large for the perturbative calculations to be
reliable. For values of r where the five-loop beta function
(calculated in the MS scheme) has no physical IR zero, we
denote this as unphysical (u).
We note that the absence of a physical IR zero in the five-

loop beta function (calculated in the MS scheme) for Nf

values in the lower portion of the interval IIRZ does not
necessarily imply that higher-loop calculations would yield
similarly unphysical results. We gave an example of this in
Sec. VIII of the second paper in [38], using an illustra-
tive exact beta function. In this example, it was shown
that a certain order of truncation of the Taylor series
expansion in powers of α for this beta function did not
yield any physical IR zero, but higher orders did converge
toward this zero.

VI. Δf EXPANSION FOR αIR TO OðΔ4
f Þ

A. General G and R

Since the exact αIR (and also the n-loop approximation to
this exact αIR) vanishes as functions of Δf, it follows that

one can expand it as a power series in this variable.
This expansion was given above as Eq. (2.9), and it was
noted that the calculation of the coefficient aj requires, as
input, the l-loop beta function coefficients bl with
1 ≤ l ≤ jþ 1. We denote the truncation of this infinite
series (2.9) to maximal power j ¼ p as αIR;Δp

f
. Here we

present a calculation of this series to OðΔ4
fÞ, which is the

highest order to which it has been calculated. Since αIR is
scheme-dependent, it follows that the aj coefficients in
Eq. (2.9) are also scheme-dependent, in contrast to the
scheme-independent coefficients κj and dj in Eqs. (1.2) and
(1.3). Nevertheless, it is still worthwhile to calculate these
coefficients aj and the resultant finite-order approximations
αIR;Δp

f
, for several reasons. First, this method has the

advantage that αIR;Δp
f
is always physical and thus avoids

the problem that we found in [15] and have further studied
above, that the five-loop beta function calculated in the MS
scheme does not have a physical IR zero in the lower part of
the interval IIRZ. In [14], for the special case G ¼ SUð3Þ
and R ¼ F, we presented the aj (denoted ~aj there)
for 1 ≤ j ≤ 4.
Here, as a new result, we present the expressions for the

aj for arbitraryG and R, for 1 ≤ j ≤ 4. For this purpose, we
use the n-loop beta function coefficients bn with 3 ≤ n ≤ 5

calculated in the MS scheme. In particular, our result for a4
makes use of the recently calculated five-loop beta function
for general G and R [17].
For general G and R, recalling the definition of the

denominator factor D ¼ 7CA þ 11Cf in Eq. (3.1),
we find

a1 ¼
4Tf

3CAD
ð6:1Þ

a2 ¼
2T2

fð−287C2
A þ 1208CACf þ 924C2

fÞ
33C2

AD
3

ð6:2Þ

a3 ¼
2Tf

35C4
AD

5

�
CAT2

fð−71491C4
A þ 372680C3

ACf þ 2102252C2
AC

2
f þ 835560CAC3

f þ 836352C4
fÞ

− 2560T2
fD

dabcdA dabcdA

dA
þ 45056CATfD

dabcdR dabcdA

dA
− 170368C2

ATfD
dabcdR dabcdR

dA

þ 4224D

�
3C2

AT
2
fDðCA − CfÞ þ 16T2

f
dabcdA dabcdA

dA
− 104CATf

dabcdR dabcdA

dA
þ 88C2

A
dabcdR dabcdR

dA

�
ζ3

�
ð6:3Þ

and
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a4 ¼
T2
f

2 · 37C5
AD

7

�
CAT2

fð194849725C6
A − 684457480C5

ACf þ 4175949036C4
AC

2
f þ 13292017040C3

AC
3
f

þ 2617931536C2
AC

4
f þ 8758858944CAC5

f þ 85865472C6
fÞ

þ 210T2
fD

dabcdA dabcdA

dA
ð21287C2

A − 5504CACf − 19140C2
fÞ

þ 210CATfD
dabcdR dabcdA

dA
ð−194005C2

A þ 253231CACf þ 136488C2
fÞ

þ 28 · 112C2
AD

dabcdR dabcdR

dA
ð917C2

A − 40412CACf þ 26796C2
fÞ

− 2304D½CAT2
fDð15456C4

A − 75039C3
ACf þ 45716C2

AC
2
f þ 23848CAC3

f þ 2112C4
fÞ

þ 16T2
f
dabcdA dabcdA

dA
ð8610C2

A − 15037CACf − 14036C2
fÞ − 8CATf

dabcdR dabcdA

dA
ð95984C2

A − 190355CACf − 135036C2
fÞ

þ 88C2
A
dabcdR dabcdR

dA
ð3199C2

A − 26004CACf − 17908C2
fÞ�ζ3

þ 337920CAD2

�
−9CAT2

fDðCA − CfÞðCA þ 2CfÞ − 160T2
f
dabcdA dabcdA

dA

þ 80Tfð10CA þ 3CfÞ
dabcdR dabcdA

dA
þ 440CAðCA − 3CfÞ

dabcdR dabcdR

dA

�
ζ5

�
: ð6:4Þ

We next specialize to the case G ¼ SUðNcÞ and give explicit reductions of these general formulas for the representations of
interest here.

B. R=F

For R ¼ F, our general results (6.1)–(6.4) reduce to the following expressions:

a1;F ¼ 4

3ð25N2
c − 11Þ ð6:5Þ

a2;F ¼ 4ð548N4
c − 1066N2

c þ 231Þ
33Ncð25N2

c − 11Þ3 ð6:6Þ

a3;F ¼ 23

35N2
cð25N2

c − 11Þ5 ½ð730529N
8
c − 1105385N6

c − 719758N4
c þ 389235N2

c þ 52272Þ

þ 1584N2
cð25N2

c − 11Þð25N4
c − 18N2

c þ 77Þζ3� ð6:7Þ

and

a4;F ¼ 22

37N3
cð25N2

c − 11Þ7 ½ð2783259085N
12
c − 7278665930N10

c þ 4578046419N8
c − 1719569282N6

c

þ 2905511455N4
c − 1137735654N2

c þ 1341648Þ
þ 288ð25N2

c − 11Þð548025N10
c − 1857036N8

c þ 4694107N6
c − 5482510N4

c þ 1098130N2
c þ 2904Þζ3

− 190080N2
cð25N2

c − 11Þ2ð40N6
c − 27N4

c þ 124N2
c − 209Þζ5�: ð6:8Þ

We have checked that setting Nc ¼ 3 in our new a4 coefficient in Eq. (6.8) yields agreement with the value that we obtained
previously for this special case in [Eq. (14) of] Ref. [14].
We comment next on the signs of these coefficients. The coefficient a1 is manifestly positive for arbitrary group G and

fermion representation R. We find that a2;F and a3;F are also positive for all physicalNc ≥ 2. In contrast, we find that a4;F is
negative for Nc ¼ 2 and positive for Nc ≥ 3. With Nc generalized from positive integers to positive real numbers in the
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range Nc ≥ 2, we calculate that as Nc increases through the value Nc ¼ 2.1184 (given to the indicated accuracy), a4;F
passes through zero with positive slope.
We list below the explicit numerical expressions for αIR to order Δ4

f, for Nc ¼ 2, 3, 4 and R ¼ F, given to the indicated
floating-point precision:

SUð2Þ∶ αIR;F;Δ4
f
¼ Δf½ð0.18826þ ð0.62521 × 10−2ÞΔf þ ð0.70548 × 10−2ÞΔ2

f − ð0.45387 × 10−4ÞΔ3
f� ð6:9Þ

SUð3Þ∶ αIR;F;Δ4
f
¼ Δf½ð0.078295þ ð2.2178 × 10−3ÞΔf þ ð1.1314 × 10−3ÞΔ2

f þ ð2.1932 × 10−5ÞΔ3
f� ð6:10Þ

and

SUð4Þ∶ αIR;F;Δ4
f
¼ Δf½ð0.043072þ ð0.97619 × 10−3ÞΔf þ ð0.33823 × 10−3ÞΔ2

f þ ð0.71999 × 10−5ÞΔ3
f�: ð6:11Þ

In Figs. 10–12 we show αIR;F;Δp
f
for Nc ¼ 2, 3, 4 and

1 ≤ p ≤ 4 as a function of Nf. Note that in Fig. 10 the
curves for p ¼ 3 and p ¼ 4 are so close as to be indis-
tinguishable for this range of Nf.
In Table XI we compare the values of the IR zero of the

n-loop beta function for 1 ≤ n ≤ 4 from [19] with our
values of αIR;F;Δp

f
for 1 ≤ p ≤ 4 and Nc ¼ 2, 3, 4. Since the

calculation of αIR;nl uses the l-loop beta function coef-
ficients bl with 1 ≤ l ≤ n, while the calculation of αIR;Δp

f

uses the bl for 1 ≤ l ≤ pþ 1, the closest comparison is of
αIR;nl with αIR;Δn−1

f
, which both use n-loop information

from the beta function. Although, for completeness, we
include values of αIR;2l for Nf extending down to the lower
end of the respective intervals IIRZ for each value of Nc, we
caution that in a number of cases, including Nf ¼ 6 for
SU(2), Nf ¼ 9 for SU(3), and 10 ≤ Nf ≤ 12 for SU(4),
these values of αIR;2l are too large for the perturbative

FIG. 10. Plot of αIR;F;Δp
f
(denoted as αIR on the vertical axis)

with 1 ≤ p ≤ 4 for G ¼ SUð2Þ, as functions of Nf ∈ IIRZ. From
bottom to top, the curves (with colors online) refer to αIR;F;Δf

(red), αIR;F;Δ2
f
(green), αIR;F;Δ3

f
(blue), and αIR;F;Δ4

f
(black). Note

that the curves for αIR;F;Δ3
f
and αIR;Δ4

f
are so close as to be

indistinguishable in this figure.

FIG. 11. Plot of αIR;F;Δp
f
with 1 ≤ p ≤ 4 for G ¼ SUð3Þ, as

functions of Nf ∈ IIRZ. From bottom to top, the curves (with
colors online) refer to αIR;F;Δf

(red), αIR;F;Δ2
f
(green), αIR;F;Δ3

f

(blue), and αIR;F;Δ4
f
(black).

FIG. 12. Plot of αIR;F;Δp
f
with 1 ≤ p ≤ 4 for G ¼ SUð4Þ, as

functions of Nf ∈ IIRZ. From bottom to top, the curves (with
colors online) refer to αIR;F;Δf

(red), αIR;F;Δ2
f
(green), αIR;F;Δ3

f

(blue), and αIR;F;Δ4
f
(black).
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n-loop calculations to be reliable. Concerning the com-
parison of the higher-order n-loop values of αIR;nl with our
values of αIR;F;Δp

f
, we see that for a given Nc and Nf, at the

upper end of the non-Abelian Coulomb phase, the values of
αIR;Δn−1

f
and αIR;nl are quite close to each other, but as Nf

decreases in this NACP in the interval IIRZ, αIR;Δn−1
f

becomes slightly larger than αIR;nl.
In the LNN limit, for the IR zero of the rescaled beta

function, we write

ξIR ¼ 4π
X∞
j¼1

âj;FΔ
j
r ðLNN limitÞ; ð6:12Þ

where

âj;F ¼ lim
LNN

Njþ1
c aj;F: ð6:13Þ

From our results for aj;F, we calculate

â1;F ¼ 4

3 · 52
¼ 0.053333 ð6:14Þ

â2;F ¼ 2192

33 · 56
¼ 0.519585 × 10−2 ð6:15Þ

â3;F ¼ 5844232

35 · 510
þ 1408

33 · 56
ζ3 ¼ 0.647460 × 10−2 ð6:16Þ

and

â4;F ¼ 2226607268

37 · 513
þ 935296

34 · 510
ζ3 −

45056

34 · 58
ζ5

¼ 0.778770 × 10−3: ð6:17Þ

Thus, in the LNN limit, the expansion of ξIR, to OðΔ4
rÞ is

ξIR;Δ4
r
¼ 4πΔr½0.053333þ ð0.519585 × 10−2ÞΔr

þ ð0.647460 × 10−2ÞΔ2
r þ ð0.778770 × 10−3ÞΔ3

r �:
ð6:18Þ

C. R= adj

For R ¼ adj, our general results (6.1)–(6.4) reduce to the
following expressions:

a1;adj ¼
2

33Nc
¼ 0.074747

Nc
ð6:19Þ

a2;adj ¼
205

22 · 37Nc
¼ 0.023434

Nc
ð6:20Þ

TABLE XI. Values of αIR;Δp
f
with 1 ≤ p ≤ 4 for Nc ¼ 2, 3, 4 and R ¼ F, as functions of Nf ∈ IIRZ, together with

αIR;2l and MS values of n-loop αIR;nl with 3 ≤ n ≤ 4 from [19], for comparison.

Nc Nf αIR;2l αIR;3l αIR;4l αIR;Δf
αIR;Δ2

f
αIR;Δ3

f
αIR;Δ4

f

2 6 11.42 1.645 2.395 0.941 1.098 1.979 1.951
2 7 2.83 1.05 1.21 0.753 0.853 1.305 1.293
2 8 1.26 0.688 0.760 0.565 0.621 0.8115 0.808
2 9 0.595 0.418 0.444 0.377 0.402 0.458 0.457
2 10 0.231 0.196 0.200 0.188 0.1945 0.202 0.2015

3 9 5.24 1.028 1.072 0.587 0.712 1.19 1.26
3 10 2.21 0.764 0.815 0.509 0.603 0.913 0.952
3 11 1.23 0.578 0.626 0.431 0.498 0.686 0.706
3 12 0.754 0.435 0.470 0.352 0.397 0.500 0.509
3 13 0.468 0.317 0.337 0.274 0.301 0.350 0.353
3 14 0.278 0.215 0.224 0.196 0.210 0.227 0.228
3 15 0.143 0.123 0.126 0.117 0.122 0.126 0.126
3 16 0.0416 0.0397 0.0398 0.0391 0.0397 0.0398 0.0398

4 11 14.00 0.972 0.943 0.474 0.592 1.042 1.1475
4 12 3.54 0.754 0.759 0.431 0.528 0.867 0.939
4 13 1.85 0.6035 0.628 0.388 0.467 0.713 0.7605
4 14 1.16 0.489 0.521 0.345 0.407 0.580 0.610
4 15 0.783 0.397 0.428 0.3015 0.349 0.465 0.483
4 16 0.546 0.320 0.345 0.258 0.294 0.367 0.376
4 17 0.384 0.254 0.271 0.215 0.240 0.282 0.2865
4 18 0.266 0.194 0.205 0.172 0.188 0.210 0.211
4 19 0.175 0.140 0.145 0.129 0.138 0.147 0.148
4 20 0.105 0.091 0.092 0.0861 0.09005 0.0928 0.0929
4 21 0.0472 0.044 0.044 0.0431 0.04405 0.0444 0.0444
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a3;adj ¼
49129

24 · 311Nc
−

296

39N3
c

¼ 0.017333
Nc

−
0.015038

N3
c

ð6:21Þ

and

a4;adj ¼
�
38811689

28 · 315
−
40

39
ζ3

�
1

Nc

þ
�
−
3157

313
þ 25616

312
ζ3

�
1

N3
c

¼ 0.0081230
Nc

þ 0.055960
N3

c
: ð6:22Þ

The coefficients aj;adj with j ¼ 1, 2, 4 are manifestly
positive, andwe find thata3;adj is also positive for allNc ≥ 2.
Since for the adjoint representation, R ¼ adj, the upper

and lower boundaries of the interval IIRZ, Nu;T2
¼ 11=2 in

Eq. (3.58) andNl;adj ¼ 17=16 in (3.59), are independent of
Nf, it follows that Δf ¼ Nu − Nf is also independent of
Nc. From the general formula (2.9), in the LN limit of a
theory with fermions in a two-index representation R2,
including the adjoint and symmetric and antisymmetric
tensors, we can write

ξIR ¼ 4π
X∞
j¼1

âj;R2
Δj

f ðLN limitÞ; ð6:23Þ

where

âj;R2
¼ lim

LN
Ncaj;R2

: ð6:24Þ

From our calculations above, setting R2 ¼ adj, we have

â1;adj ¼
2

33
¼ 0.074747 ð6:25Þ

â2;adj ¼
205

22 · 37
¼ 0.023434 ð6:26Þ

â3;adj ¼
49129

24 · 311
¼ 0.017333 ð6:27Þ

and

â4;adj ¼
38811689

28 · 315
−
40

39
ζ3 ¼ 0.0081230: ð6:28Þ

D. R= S2, A2

For R equal to the symmetric or antisymmetric rank-2
tensor representations, S2 and A2, we give the reductions of
our general results (6.1)–(6.4) next. As before, it is
convenient to consider these together, since many terms
differ only by sign reversal. As above, the upper and lower
signs refer to the S2 and A2 representations, respectively.
Also, as before, for A2, we require that Nc ≥ 3. Recalling
the definition of the denominator factor F� in Eq. (3.72),
we have

a1;T2
¼ 2ðNc � 2Þ

3F�
ð6:29Þ

a2;T2
¼ ðNc � 2Þ2ð1845N4

c � 3056N3
c − 5188N2

c ∓ 3696Nc þ 3696Þ
2 · 33NcF3

�
ð6:30Þ

a3;T2
¼ ðNc � 2Þ2

22 · 35N2
cF5

�
½ð3979449N9

c � 16999002N8
c þ 761444N7

c ∓ 52233472N6
c − 3099440N5

c

� 11578144N4
c − 16368000N3

c � 36440448N2
c − 40144896Nc � 26763264Þ

∓ 12672N2
cðNc ∓ 2ÞF�ð12N3

c ∓ 9N2
c � 308Þζ3� ð6:31Þ

and

a4;T2
¼ ðNc � 2Þ3

25 · 37N3
cF7

�
½ð28293721281N13

c � 156860406306N12
c þ 13832572748N11

c ∓ 547968555432N10
c

− 929147053664N9
c � 428226859968N8

c þ 2279581786496N7
c � 586028410624N6

c − 4633121830656N5
c

� 143588589056N4
c þ 4686268342272N3

c ∓ 2321839534080N2
c − 27476951040Nc � 10990780416Þ

− 2304F�ð131220N11
c � 695898N10

c − 6916683N9
c ∓ 10687114N8

c þ 60333108N7
c ∓ 12100440N6

c

− 239418432N5
c � 140804928N4

c þ 208053120N3
c ∓ 140560640N2

c þ 2973696Nc ∓ 1486848Þζ3
þ 1013760N2

cðNc ∓ 2ÞF2
�ð�87N5

c − 259N4
c ∓ 1134N3

c þ 3600N2
c � 5016Nc − 10032Þζ5�: ð6:32Þ
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The same general comments that we made before
concerning factors in the κj;T2

and dj;T2
coefficients also

apply here. Thus, for arbitrary j, the aj;A2
coefficients

contain at least one overall factor of ðNc − 2Þ and hence
vanish forNc ¼ 2, as a result of the fact that forNc ¼ 2, the
A2 representation is a singlet, so for SU(2), fermions in
the A2 ¼ singlet representation are free fields and hence
make no contribution to the beta function. Moreover,
if Nc ¼ 2, then the S2 representation is the same as the
adjoint representation, so the aj coefficients must satisfy
the equality aj;S2 ¼ aj;adj for this SU(2) case, and we have
checked that they do. Similarly, if Nc ¼ 3, then the A2

representation is the same as the conjugate fundamental
representation, F̄, so these coefficients must satisfy the
equality aj;A2

¼ aj;F for this SU(3) case, and we have
checked that they do.
We next consider the LN limit of the theory with

fermions in the S2 or A2 representations. Using the
definition (6.24) with R2 ¼ S2 and R2 ¼ A2, we find that

âj;S2 ¼ âj;A2
ð6:33Þ

so we denote these simply as âj;T2
. In general, for the same

group-theoretical reasons as led to the LN relation κ̂j;T2
¼

2−jκ̂j;adj in Eq. (3.98) and the LN relation d̂j;T2
¼ 2−jd̂j;adj

in Eq. (4.53), we have, in the LN limit,

âj;T2
¼ 2−jâj;adj: ð6:34Þ

Explicitly, we calculate

â1;T2
¼ 1

33
¼ 0.05333 ð6:35Þ

â2;T2
¼ 205

24 · 37
¼ 0.58585 × 10−2 ð6:36Þ

â3;T2
¼ 49129

27 · 311
¼ 2.16668 × 10−3 ð6:37Þ

and

â4;T2
¼ 38811689

212 · 315
−

5

2 · 39
ζ3 ¼ 0.50769 × 10−3: ð6:38Þ

VII. CONCLUSIONS

In conclusion, in this paper we have presented a number
of new results on scheme-independent calculations of
various quantities in an asymptotically free vectorial gauge
theory having an IR zero of the beta function. We have
presented scheme-independent series expansions of the
anomalous dimension γψ̄ψ ;IR to OðΔ4

fÞ and the derivative

of the beta function, β0IR, to OðΔ5
fÞ for a theory with a

general gauge group G and Nf fermions in a representation

R of G. We have given reductions of our general formulas
for theories with G ¼ SUðNcÞ and R equal to the funda-
mental, adjoint, and symmetric and antisymmetric rank-2
tensor representations. We have compared our scheme-
independent calculations of γψ̄ψ ;IR and β0IR with previous
n-loop values of these quantities calculated via series
expansions in powers of the coupling. For a number of
specific theories we have also compared our new scheme-
independent calculations of γψ̄ψ ;IR and β0IR with lattice
measurements. We have shown that for all of the repre-
sentations we have studied, and for the full range 1 ≤ p ≤ 4
for which we have performed calculations, γψ̄ψ ;IR calcu-
lated to OðΔp

f Þ, denoted γψ̄ψ ;IR;Δp
f
, increases monotonically

with decreasingNf (i.e., increasingΔf) and, for a fixed Nf,
γψ̄ψ ;IR;Δp

f
, increases monotonically with the order p. For the

representation R ¼ F, we have presented results for the
limit Nc → ∞ and Nf → ∞ with Nf=Nc fixed. These
higher-order results have been applied to obtain estimates
of the lower end of the (IR-conformal) non-Abelian
Coulomb phase. We have confirmed and extended our
earlier finding that our expansions in powers of Δf should
be reasonably accurate throughout a substantial portion of
the non-Abelian Coulomb phase. We have also given
expansions for αIR calculated to OðΔ4

fÞ which provide a
useful complementary approach to calculating αIR. Our
scheme-independent calculations of physical quantities at a
conformal IR fixed point yield new information about the
properties of a conformal field theory.
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APPENDIX: SERIES COEFFICIENTS
FOR βξ AND γψ̄ψ IN THE LNN LIMIT

For reference, we list here the rescaled series coefficients
for βξ and γψ̄ψ in the LNN limit (3.21). From the (scheme-
independent) one-loop and two-loop coefficients in the beta
function [7,8], it follows that in the LNN limit the b̂l with
l ¼ 1, 2 are

b̂1 ¼
1

3
ð11 − 2rÞ

¼ 3.667 − 0.667r ðA1Þ

and

b̂2 ¼
1

3
ð34 − 13rÞ

¼ 11.333 − 4.333r: ðA2Þ
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The coefficients b3 and b4 have been calculated in the MS
scheme [27,28]. With these inputs, one has [21]

b̂3 ¼
1

54
ð2857 − 1709rþ 112r2Þ

¼ 52.907 − 31.648rþ 2.074r2 ðA3Þ

and

b̂4 ¼
�
150473

486
þ 44

9
ζ3

�
−
�
485513

1944
þ 20

9
ζ3

�
r

þ
�
8654

243
þ 28

3
ζ3

�
r2 þ

�
130

243

�
r3

¼ 315.492 − 252.421rþ 46.832r2 þ 0.5350r3: ðA4Þ

The behavior of these coefficients b̂l as functions of r was
discussed in [21] for 1 ≤ l ≤ 4. The positivity of b̂1 is
equivalent to the asymptotic freedom of the theory, and
requires r to lie in the interval 0 ≤ r < 11=2. The existence
of an IR zero in the two-loop beta function is equivalent to
the condition that b̂2 < 0, which, in turn, is equivalent to

the condition that r ∈ IIRZ;r as given in Eq. (3.28). In this
interval, b̂3 is negative-definite, while b̂4 is negative for
2.615 < r < 3.119 and positive for 3.119 < r < 5.5 [21].
For the coefficients ĉl in Eq. (3.33), from [31] and

references therein, one has [21]

ĉ1 ¼ 3; ðA5Þ

ĉ2 ¼
203

12
−
5

3
r; ðA6Þ

ĉ3 ¼
11413

108
−
�
1177

54
þ 12ζ3

�
r −

35

27
r2; ðA7Þ

and

ĉ4 ¼
460151

576
−
23816

81
rþ 899

162
r2 −

83

81
r3

þ
�
1157

9
−
889

3
rþ 20r2 þ 16

9
r3
�
ζ3

þ rð66 − 12rÞζ4 þ ð−220þ 160rÞζ5: ðA8Þ
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