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We study a vectorial asymptotically free gauge theory, with gauge group G and N ; massless fermions in a
representation R of this group, that exhibits an infrared (IR) zero in its beta function, /3, at the coupling @ = ar
in the non-Abelian Coulomb phase. For general G and R, we calculate the scheme-independent series

expansions of (i) the anomalous dimension of the fermion bilinear, 7, r, to O(A;‘c) and (ii) the derivative

B =dp/da,to O( A;.), both evaluated at aig, where A is an N ;-dependent expansion variable. These are the

highest orders to which these expansions have been calculated. We apply these general results to theories with
G = SU(N,) and R equal to the fundamental, adjoint, and symmetric and antisymmetric rank-2 tensor
representations. It is shown that for all of these representations, y, g, calculated to the order A’f’, with

1 < p <4, increases monotonically with decreasing N, and, for fixed N, is a monotonically increasing
function of p. Comparisons of our scheme-independent calculations of y 5, 1r and S are made with our earlier
higher n-loop values of these quantities, and with lattice measurements. For R = F, we present results for the
limit N, — oo and Ny — co with N/N, fixed. We also present expansions for ag calculated to O(A?).
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I. INTRODUCTION

An important advance in the understanding of quantum
field theory was the realization that the properties of a
theory depend on the Euclidean energy/momentum scale
at which they are measured. This is of particular interest in
an asymptotically free non-Abelian gauge theory, in which
the running gauge coupling g(y) and the associated
quantity a(u) = g(u)?/(4x) approach zero at large y in
the deep ultraviolet (UV). We shall consider a theory of this
type, with gauge group G and N massless fermions y;,
J=1,...,Ny, in a representation R of G. The dependence
of a(u) on u is described by the renormalization-group
(RG) [1] beta function, f = da(u)/dt, where dt = dln .
The condition that the theory be asymptotically free implies
that Ny must be less than a certain value, N, given below in
Eq. (2.4). Since a(yu) is small at large u, one can self-
consistently calculate f as a power series in a(u). As u
decreases from large values in the UV to small values in the
infrared (IR), a(p) increases. A situation of special interest
occurs if the beta function has a zero at some value away
from the origin. For a given G and R, this can happen for
sufficiently large Ny, while still in the asymptotically free
regime. In this case, as u decreases from large values in the
UV toward u = 0 in the IR, the coupling increases but
approaches the value of a at this zero in the beta function,
which is thus denoted . Since f =0 at a = o, the
resultant theory in this IR limit is scale-invariant, and
generically also conformally invariant [2,3]. A fundamental
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question concerns the properties of the interacting theory at
such an IR fixed point (IRFP) of the renormalization group.
There is convincing evidence that if ajg is small enough,
then the IR theory is in a (deconfined) non-Abelian
Coulomb phase (NACP), also called the conformal window
[4]. In terms of N, this phase occurs if N is in the interval
N¢er < Ny <Ny, where N, and Ny ., depend on G and R.
Here, Ny, denotes the value of N, below which the
running a(u) becomes large enough to cause spontaneous
chiral symmetry breaking and dynamical fermion mass
generation.

Physical quantities in the IR-limit theory at ajy cannot
depend on the scheme used for the regularization and
subtraction procedure in renormalization. In conventional
computations of these quantities, first, one expresses them
as series expansions in powers of «, calculated to n-loop
order; second, one computes the IR zero of the beta
function at the n-loop (n?) level, denoted ayg ,,~; and third,
one sets @ = ayr ¢ in the series expansion for the given
quantity to obtain its value at the IR zero of the beta
function to this n-loop order. However, these conventional
series expansions in powers of a, calculated to a finite
order, are scheme-dependent beyond the leading one or two
terms. Specifically, the terms in the beta function are
scheme-dependent at loop order £ > 3 and the terms in
an anomalous dimension are scheme-dependent at loop
order # > 2 [5]. Indeed, as is well known, the presence of
scheme dependence in higher-order perturbative calcula-
tions is a general property in quantum field theory.
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It is therefore of great value to use a complementary
approach in which one expresses these physical quantities at
oqr as an expansion in powers of a variable such that, atevery
order in this expansion, the result is scheme-independent. A
very important property is that one can recast the expressions
for physical quantities in a manner that is scheme-indepen-
dent. A crucial point here is that, for a given gauge group G
and fermion representation R, as N (formally generalized
from non-negative integers to the real numbers) approaches
the upper limit allowed by asymptotic freedom, denoted N,
[given by Eq. (2.4) below], the resultant value of a
approaches zero. This means that one can equivalently
express a physical quantity in a scheme-independent manner
as a series in powers of the variable

(1.1)

where C, is the quadratic Casimir invariant for the adjoint
representation, and Tf is the trace invariant for the fermion
representation R [6]. Here, aig — 0 < Ay — 0. Hence, for
Ny less than, but close to N, this expansion variable Af is
reasonably small, and one can envision reliable perturbative
calculations of physical quantities at this IR fixed point in
powers of A ;. Following the original calculations of the one-
and two-loop coefficients of the beta function [7-9], some
early work on this was reported in [10,11].

In this paper we consider a vectorial, asymptotically free
gauge theory and present scheme-independent calculations,
for a general gauge group G and fermion representation R,
of two physical quantities in the IR theory at arz of
considerable importance, namely (i) the anomalous dimen-
sion, denoted yy, r, Of the (gauge-invariant) fermion
bilinear yy = Zjvz’ VW to O(A;‘c) and (ii) the derivative
Pir = df/da to O(A3}), both evaluated at @ = arg. These
are the highest orders in powers of A; to which these
quantities have been calculated. We give explicit expres-
sions for these quantities in the special cases where
G =SU(N,) and the fermion representation R is the
fundamental (F), adjoint (adj), and symmetric and anti-
symmetric rank-2 tensors, (S5, A,). Our results extend our
previous scheme-independent calculations of yy, g to
O(A}) in [12] and of the derivative Sz to O(A}) in
[13] for general G and R, and our scheme-independent
calculation of y,, 1 to O(A}) for G = SU(3) and R = Fin
[14] (see also [15]). A brief report on some of our results
was given in [16].

Scheme-independent series expansions of y;,, r and fir
can be written as

yll_/l//,IR = Z K'/A; (1 2)
Jj=1
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and

Pr =Y d;A), (1.3)
j=1

where d; =0 for all G and R [12-14]. In general, the
calculation of the coefficient «; in Eq. (1.2) requires, as
inputs, the values of the b, for 1 < < j + 1 and the ¢, for
1 < < j. The calculation of the coefficient d; in Eq. (1.3)
requires, as inputs, the values of the b, for 1 <7 < j. We
refer the reader to [12,13] for discussions of the procedure
for calculating the coefficients «; and d;. We denote the
truncation of these series to maximal power j= p as
Yo IRA? and ﬂiR, AP respectively. Where it is necessary for

clarity, we will also indicate the fermion representation R in
the subscript.

Our main new results here include the general expres-
sions, for arbitrary gauge group G and fermion represen-
tation R, for the coefficient, x, in Eq. (3.5) below, and for
the coefficient ds, given in Eq. (4.9) below, as well as
reductions of these formulas for special cases and, for
R = F, calculations in the LNN limit (3.21). As will be
discussed further below, the derivative S is equivalent to
the anomalous dimension of the non-Abelian field strength
squared, Tr(F,, F**). Our present calculations make use of
the newly computed five-loop coefficient in the beta
function for this gauge theory for general G and R in
[17], as our work in [14,15] made use of the calculation
of this five-loop coefficient for the case G = SU(3) and
R =F in [18].

In addition to being of interest and value in their own
right, our new scheme-independent calculations, performed
to the highest order yet achieved, are useful in several ways.
First, we will compare our results for y;, g and fjz for
various G and R with the values that we obtained at
comparable order with the conventional n-loop approach in
[19-21]. Our new results have the merit of being scheme-
independent at each order in A, in contrast to scheme-
dependent series expansions of y;,, g and S in powers of
the IR coupling. Second, there is, at present, an intensive
program to study this IR behavior on the lattice [22]. Thus,
it is of considerable interest to compare our scheme-
independent results for g, g for various theories with
values measured in lattice simulations of these theories. We
have done this in [13,14,16] (as well as in our work on
conventional n-loop calculations [15,19]), and we will
expand upon this comparison here. Third, we believe that
our scheme-independent expansions for these physical
quantities are of interest in the context of the great current
resurgence of research activity on conformal field theo-
ries (CFT). Much of this current activity makes use of
operator-product expansions and the associated bootstrap
approach [23]. Our method of scheme-independent series
expansions for physical quantities at an IR fixed point is
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complementary to this bootstrap approach in yielding
information about a conformal field theory.

Our calculations rely on oz being an exact zero of the
beta function and thus an exact IR fixed point of the
renormalization group, and this property holds in the non-
Abelian Couloumb phase (conformal window). In this
phase, the chiral symmetry associated with the massless
fermions is preserved in the presence of the gauge
interaction. However, there has also been interest in
vectorial asymptotically free gauge theories that exhibit
quasiconformal behavior associated with an approximate
IRFP in the phase with broken chiral symmetry, which
could feature a substantial value of an effective yy,, r ~
O(1) [24]. Our scheme-independent calculations are also
relevant to this area of research in two ways: (i) if
Ny <Ny, then the effective values of quantities such
as ¥y, ik May be close to the values calculated via the Af
expansion from within the NACP; (ii) combining our
calculations of y;,, ;g With an upper bound on this anoma-
lous dimension from conformal invariance and an
assumption that this bound is saturated as N ; \(N; ., yields
an estimate of the value of Ny ... This is useful, since the
value of N ., for a given G and R is not known exactly at
present and is the subject of current investigation, including
lattice studies, as discussed further below.

Although most of our paper deals with new scheme-
independent results for physical quantities, one of the
ouputs of our calculations is a new type of series expansion
for a scheme-dependent quantity, namely agr. The conven-
tional procedure for calculating the IR zero of a beta
function at the n-loop order, which we have applied in
earlier work to four-loop order for arbitrary G and R
[19-21] (see also [25]) is to examine the n-loop beta
function, which has the form of a® times a polynomial of
degree n — 1 in a, and then determine the n-loop value
arr e as the (real, positive) root of this polynomial closest
to the origin. However, in [15], we investigated the five-
loop beta function for G = SU(3) and R = F, as calculated
in the standard MS scheme, and found that, over a
substantial range of values of N, in the non-Abelian
Coulomb phase, it does not have any positive real root.
We were able to circumvent this problem in [15] by the use
of Padé approximants, but nevertheless, it is a complication
for this conventional approach to calculating a;g. The new
calculation of ag as an expansion in powers of A, up to
O(A}) for general G and R that we present here has the
advantage that it always yields a physical value, in contrast
to the situation with the n-loop beta function.

The paper is organized as follows. Some relevant back-
ground and methods are discussed in Sec. II. We present
our calculation of k, in the scheme-independent expansion
of yg, r for general G and R in Sec. III, together with
evaluations for G = SU(N,.) and R = F, adj, S,, and A,.
These are compared with values from n-loop calculations
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and with lattice measurements. In this section we also
present results for the case R = F in the limit N. — oo,
Ny — oo, with N;/N fixed, which we call the LNN limit.
In Sec. IV we present our calculation of the coefficient ds in
the scheme-independent expansion of f#j for general G and
R, with evaluations for the above-mentioned specific
representations. Section V gives an analysis of the five-
loop rescaled beta function in the LNN limit and a
determination of the interval over which it exhibits a
physical IR zero. Section VI is devoted to the calculation
of the coefficients in an expansion of ajg in powers of A,
up to O(A?). Our conclusions are given in Sec. VII, and

some auxiliary formulas are listed in the Appendix.

II. BACKGROUND AND METHODS

In this section we review some background and methods
relevant for our calculations. The series expansion of f in
powers of a is

(2.1)

© 14
p=-2a> b <1>
; avr

where b, is the £-loop coefficient. For a general operator O,
we denote the full scaling dimension as Dy and its free-
field value as D¢ ge.. The anomalous dimension of this
operator, denoted y(, is defined via the relation [26]

Dy = DO,free —Yo- (22)
An operator of particular interest is the (gauge-invariant)
fermion bilinear, yy. The expansion of the anomalous

dimension of this operator, y;,, in powers of « is
Yow = D e <> : (2.3)
= \4

where ¢, is the Z-loop coefficient. As noted above, the
coefficients by, b,, and ¢, are scheme-independent, while
the b, with £ >3 and the ¢, with £ > 2 are scheme-
dependent [5]. For a general gauge group G and fermion
representation R, the coefficients b, and b, were calculated
in [7,8], and b5y and b, were calculated in [27,28] (and
checked in [29]) in the commonly used MS scheme [30].
For G = SU(3) and R = F, bs was calculated in [18] and
recently, an impressive calculation of b5 for general gauge
group G and fermion representation R was presented in
[17], again in the MS scheme. We also make use of the c,
up to loop order # = 4, calculated in [31]. Although we use
these coefficients as calculated in the MS scheme below, we
emphasize that the main results of this paper are calcu-
lations of the quantities x, and ds which, like all of the «;
and d;, are scheme-independent. We denote the n-loop f,
p',and vy, as Bz, B, and yg,, 0. As discussed above, we
denote the IR zero of f,, as ar .z, and the corresponding
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evaluations of £, and yg, ., at ag, as P, and
Yy Rae- The symbols a, 7z, k. and pip refer to the
exact values of these quantities.

For a given G and R, as N increases, b decreases
through positive values and vanishes with sign reversal at

N;=N,, with
it
“T AT,

(2.4)

where Cy and T are group invariants [6,32]. Hence, the
asymptotic freedom condition yields the upper bound
Ny <N,.

There is a range of Ny < N, where b, < 0, so the two-
loop beta function has an IR zero, at the value

47Tb]
AR 2¢ = _b—z'

(2.5)
The n-loop beta function has a double UV zero at @ = 0
and n — 1 zeros away from the origin. Among the latter
zeros of the beta function, the smallest (real, positive) zero,
if there is such a zero, is the physical IR zero, ag ,,z, of B,
As N decreases below N,, b, passes through zero to
positive values as N, decreases through

_ 17C4
2T(5C, +3Cy)’

N, (2.6)

Hence, with N, formally extended from nonnegative
integers to nonnegative real numbers [32], f,, has an IR
zero (IRZ) for N in the interval

IIRZ: Nz,”<Nf<Nu- (27)
Thus, N, is the lower () end of this interval [33]

As Ny decreases in this interval, ap,, increases.
Therefore, in order to investigate the IR zero of the beta
function for N toward the middle and lower part of Ijgy,
with reasonable accuracy, one requires higher-loop calcu-
lations. These were performed in [34,35], [19-21], [15,25]
for ag ,» and for the anomalous dimension of the fermion
bilinear operator (see also [36,37]). Since the b, with £ > 3
are scheme-dependent, it is necessary to determine the
degree of sensitivity of the value obtained for ap ,, for
n >3 to the scheme used for the calculation. This was
done in [38—41].

The nonanomalous global flavor symmetry of the
theory is

Gpi =SUN,), ® SUN ) ® U(1)y.  (28)
This G4, symmetry is preserved in the (deconfined) non-
Abelian Coulomb phase. As in [12-16], we focus on this
phase in the present work, since both the expansion in a
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small o and the scheme-independent expansion in powers
of A, start from the upper end of the interval /gy in this
phase. In contrast, in the phase with confinement and
spontaneous chiral symmetry breaking, the gauge inter-
action produces a bilinear fermion condensate, (yy), and
this breaks G, to SU(Ny)y, ® U(1)y, where SU(N/)y, is
the diagonal subgroup of SU(N,); ® SU(N/)g.

We will consider the flavor-nonsinglet (fns) and flavor-
singlet (fs) bilinear fermion operators Zjv,ﬁzl W i(To) i
and Zjvzfl Wy, where here T, witha = 1,...,N7 — lisa
generator of the global flavor group SU(N,). We will
usually suppress the explicit flavor indices and thus write
these operators as w7,y and yy. These have the same
anomalous dimension (e.g., [42,43]), which we denote
simply as the anomalous dimension for the flavor-singlet
operator, yy,. In vectorial gauge theories of the type
considered here, these fermion bilinear operators are
gauge-invariant, and hence the anomalous dimension
Yoy and its IR value, y;, g, are physical. (In contrast, in
a chiral gauge theory, fermion bilinears are generically not
gauge-invariant, and hence neither are their anomalous
dimensions.)

Since ag vanishes (linearly) with A, as Ay — 0, we can
express it as a series expansion in this variable, A ;. We thus
write

AR = 47TaIR = 4ﬂ'z aJA;

J=1

(2.9)

The calculation of the a; requires, as input, the b, with
1<2<j+1][12,13].

A basic question concerns the part of the interval /gy in
which the series expansions for y;, g and fg in Eqgs. (1.2)
and (1.3) are reliable. We analyzed this question in
[12-14,16] and concluded that these expansions for yjr
and Sz should be reasonably reliable throughout much of
the interval /g7 and non-Abelian Coulomb phase. We will
use our higher-order calculations in this paper to extend this
analysis here. We recall that the properties of the theory
change qualitatively as N, decreases through the value
Ny and spontaneous chiral symmetry breaking occurs,
with the fermions gaining dynamical masses. The (chirally
symmetric) non-Abelian Coulomb phase with Ny, <
Ny < N, s clearly qualitatively different from the confined
phase with spontaneous chiral symmetry breaking at
smaller N s below N ... Therefore, one does not, in general,
expect the small-A series expansion to hold below N ...
Estimating the range of applicability of this expansion
is thus connected with estimating the value of Ng.,.
For general G and R, as Ny, formally continued from
the nonnegative integers to the non-negative real numbers,
decreases from the upper end of the interval /gy at N, to
the lower end of this interval at Ny = N,, A, increases
from O to the maximal value
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(Af)max = Nu _Nf
| 3C4(1C, +11Cy)
©AT,(5C, +3Cy)

for Ny € Iiry. (2.10)

Recall that for a function f(z) that is analytic about
z =0 and has a Taylor series expansion

Q=357 @)

the radius of convergence of this series, z., can be
determined by the ratio test

1l

o Jll’% S j| '
Of course, we cannot apply the full ratio test here, since we
have only calculated the x; and d; to finite order. However,
we can get a rough measure of the range of applicability of
the series expansions in A (and also A, in the LNN limit
[21] discussed below) by computing the ratios k;_; /x; and
d;_,/d; for the values of j for which we have calculated
these coefficients.

The series expansion (1.2) for y starts at A = 0, i.e., at
the upper end of the non-Abelian Coulomb phase, and
extends downward through this phase. Given that the
theory at oy in this phase is conformal, there is an upper
bound from conformal invariance, namely [44]

(2.12)

7/1/71//le S 2 (213)
‘We have used this in our earlier work [12—-16,19] and we will
apply it with our higher-order calculations here. As discussed
in [19], in the phase with spontaneous chiral symmetry
breaking (SySB), there is a similar upper bound, y;,, r < 2.
This follows from the requirement that if m(k) is the
momentum-dependent running dynamical mass generated
in association with the SySB, then lim;_ m(k) = 0 (see
Egs. (4.1)-(4.2) of [19]). Thus, if the approximate calculation
of the anomalous dimension of a given quantity at a fixed
value of A, computed up to order A?, yields a value greater
than 2, then we can infer that the perturbative calculation is
not applicable at this value of A or equivalently, N .

In particular, this can give information on the extent of
the non-Abelian Coulomb phase and the value of N ... The
application of this bound is particularly powerful in the
context of our present scheme-independent calculations
because we find that the «; in Eq. (1.2) are positive for all of
the representations considered here, and hence, for a given
P> YR is a monotonically increasing function of A or
equivalently it increases monotonically as N, decreases
from its upper limit, V.. If one assumes that yj saturates its
upper bound, (2.13) and if a calculation of yjy is reliable in
the regime where it is approaching 2 from below, then one
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can, in principle, determine the value of Ny ., where yjr
reaches this upper bound after approaching it from below.
In this context, it should be mentioned that in a super-
symmetric (vectorial) gauge theory (SGT) with N, pairs of
massless chiral superfields transforming according the
representations R and R of a gauge group G, the exact
expression for yjg is known [45,46], and (i) it increases
monotonically with decreasing N in the NACP; and (ii) it
saturates its upper bound (which, in the SGT case is
Yrsgt < 1) at the lower end of the non-Abelian
Coulomb phase. Specifically, in this supersymmetric gauge
theory, the upper and lower ends of the NACP occur at [32]

3¢,
u,SGT — 2Tf s

(2.14)

and

3C N
Nf,SGT:4—T?—7", (2.15)

and

3CA=2TyN; N,
YowIRSGT = — A A7 —
44 2T ;N N,

2T
2
3C, Af

=,
1 -3t A;

(2.16)

Thus, 7, 1r sgr increases from 0 to 1 as N decreases from
N, sgr to Ny sgr. However, it is not known if this saturation
occurs in the nonsupersymmetric case. In practice, we are
only able to apply this test in an approximate manner
because for a given G and R, as Nf decreases toward the
lower part of /gy, the ratio test already shows that higher-
order terms in the A expansion are becoming increasingly
non-negligible, so that the truncation of the infinite series
(1.2) to maximal power p =4 involves an increasingly
great uncertainty, as does an extrapolation to p = 0.
For some perspective, we note that in order to asses the
accuracy of the A, expansion, the coefficients k; sgr were
calculated for j = 1, 2in [12] and were found to be in perfect
agreement with the corresponding Taylor series expansion of
the exact expression (2.16). This check was carried to one
higher order in [16] for the case G = SU(N,) and R = F
with a calculation of yg sgr. A and again, perfect agreement

was found with the exact result. This agreement explicitly
demonstrated the scheme independence of the k; sgr, since
the calculations were carried out using inputs computed in
the DR scheme, while (2.16) was derived in the NSVZ
scheme [45]. Furthermore, as a consequence of electric-
magnetic duality [46], as Ny \N,sgr in the non-Abelian
Coulomb phase, the physics is described by a magnetic
theory with coupling strength going to zero, or equivalently,
by an electric theory with divergent aqr. Therefore, this
perfect agreement, order-by-order, between the k;sgr and
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the expansion of the exact expression (2.16) for yr sgr in
powers of Ay, showed that the A, expansion in this super-
symmetric gauge theory is able to treat situations with strong,
as well as weak, coupling. This could not be done with
conventional perturbative series expansions in powers of
a [36,37].

III. CALCULATION OF 7,,, g TO O(A})

PHYSICAL REVIEW D 95, 105004 (2017)
were given in [12] up to order j = 3, yielding the expansion

of 7y r to order A?. It is convenient to define

since this factor occurs repeatedly in denominators of various
expressions. Forreference, we listthe x; for 1 < j < 3 below:

_8C Ty 39
A. General G and R K= C,D’ (32)
The coefficients ; in the scheme-independent expansion
of 75,k in powers of Ay, Eq. (1.2), contain important B 4C/'T]2f(5CA + 88Cy)(7C4 +4Cy) (3.3)
information about the theory. For a general asymptotically 2= 3CiD? ’ '
free vectorial gauge theory with gauge group G and Ny
massless fermions in a representation R, the coefficients x; and
|
_AGT 3C,T2(—18473C% + 144004C5 C + 650896C2 C% + 356928C, C3 + 569184 C
ST 3ep T 7= At alr+ aly + aCy+ 7)
abced jJabcd abed jabcd abcddabcd
- 2560T§D% +45056C,T ;D £ - 170368C3D &
A A
dabcddabcd dabcddabcd dabcddabcd
+33- 210D(2T2 - 13CATf7+ 113 T)Cg] (3.4)
A A

Here, {, =
abed jabed  jabed jabed  jabed jabed
dA dA ’ dR dA ’ dR dR

n—yn~* is the Riemann zeta function, the quantities C4, Cy, and T, are group invariants, the contractions
are additional group-theoretic quantities given in [28], and d4 is the dimension of the adjoint

representation of G. In [12,13], the expression for k3 was given with terms written in order of descending powers of Cy. Itis also
useful to express this coefficient x5 in an equivalent form that renders certain factors of D explicit and shows the simple
factorization of terms multiplying {5, and we have done this in Eq. (3.4).

Our new result here for x, for a general gauge group G and fermion representation R is

2v

K :ﬁ CaCyTH(19515671C5 — 131455044C5 C; +1289299872C4 €3 +2660221312C5 C}
dabcddabcd
+1058481072C3 C4+6953709312C, C3 + 1275715584C%) +2!0C,T2D(5789C% —4168C, C;—6820C%) 4
abcddabcd !
—219C, C,T;D(41671C% —125477C,C;—53240C3) & ;
dabcddabcd

=281 12C3‘Cf~D(2569C/24 +18604C,C;—7964C )

dabcddabcd N 2]3 33C2 T D3 dabcddabcd

2430, T2p3=R
A%t R dg

+28D|=3C,C;T3D(4991C; —17606C; C+33240C; C5—30672C,4 C}+9504C})
dabcddabcd abcddabcd
—24C T2 (17206C2 60511CACf—45012C2)+4OCACfo (35168C2—154253CACf—88572C )
A A
ahcddahcd abed ade abcddahcd
—88C% Cf (973C§—93412CACf—56628C]2c)—|—144OCAT}D2 k —7920C2T Dzdi} I
R R
4505600C,C ;D?
- 0. A 4T3 dsPed 2T ;g dsPd(10C, +3C )+ 11Codg e (C 3Cf)}§5] : (3.5)
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Here, dj is the dimension of the fermion representation R.
As before, we have indicated the simple factors in the
prefactor and, for sufficiently simple cases, also factoriza-
tions of numbers in numerator terms. We will follow the
same format for indicating numerical factorizations below.
We proceed to evaluate this general expression for the
gauge group G = SU(N,.) and several specific fermion
representations R, namely the fundamental, adjoint, and
symmetric and antisymmetric rank-2 tensor. As stated in
the Introduction, we will use the abbreviations F, adj, S,,
and A, to refer to these representations. It is also worth-
while to evaluate our general formulas for other gauge
groups and their representations, including orthogonal,
symplectic, and exceptional groups. We will report these
evaluations for other groups and their representations
elsewhere. There has, indeed, been interest in conformal
phases for theories with these other gauge groups [47].
The coefficients «; and k, are manifestly positive for all
G and R. For G = SU(N,) with all physical N, and for
representations R = F, adj, S,, we have found that k3 and
k4 are also positive [12—16]. As one of the results in the
present paper, we generalize this further to include R = A,.
That is, for all physical N, and for all of these representa-
tions, we find that x; > 0 for j =3, 4 as well as the
manifestly positive cases j = 1, 2. Thus, extending our
previous discussion in [12—16], the property that, for all of
these representations R, k; > 0 for 1 < j < 4 and forall N,
implies two important monotonicity results: (i) for these R,
and with a fixed p in the interval 1 < p <4, Vi IR.A? isa

monotonically increasing function of Ay, i.e., it increases

PHYSICAL REVIEW D 95, 105004 (2017)

conjecture is valid, then three consequences are that for
these representations R, (iii) for fixed Ny, Vi IR.AY is a
monotonically increasing function of p for all p;
(@iv) Vi IR.A? is a monotonically increasing function of
Af, i.e. it increases with decreasing N £ for all p; and hence
(v) [assuming that the infinite series (1.2) converges] the
quantity yg, r defined by this infinite series, and equiv-
alent to limp_,ooyWJR.Ajg, is a monotonically increasing
function of Ay, ie., it increases monotonically with
decreasing N.

B. YW,IR,A}' for G:SU(NC) and R=F

An important special case is G = SU(N.) with R being
the fundamental representation. For this case, the general
expression for the interval Iz, Eq. (2.7), is [32]

34N? 11N,
IIRZ: W<Nf< for R =F. (36)
The factor D in Eq. (3.1) has the explicit form
D 25N - 11 for R = fund (3.7)
= T - nd. .
N, (Y u

The general results for x, with 1 < p <3 in (3.2)~(3.4)
from [12] take the following forms given in [13]:

A(NZ - 1)

monotonically with decreasing N ; and (ii) for these R, and KLk = N.(25 N2 -1 1) (3.8)
with a fixed Ny € IRz, Vjy1r, A is a monotonically
increasing function of p in the range 1 < p < 4. In addition P 4(NZ = 1)(ONZ = 2)(49N? — 44) (3.9)
to the manifestly positive k; and k, and the x5 and «, that 2F 3N2(25N% - 11)° '
we have shown to be positive, a plausible conjecture is that,
for these R, x; >0 for all j>5. Assuming that this  and
|
Kyp = S(Ve — 1) [(274243N8 — 455426N% — 114080N?¢ + 47344N2 + 35574)
T 3BN3(25N2 - 11)° ¢ ¢ ¢ ¢
—4224N2(4N? — 11)(25N?% = 11)&5). (3.10)
For x4 p, we have [16]
Kyp = 4N —1) [(263345440N}? — 673169750N ! + 256923326 N8
T3NS (25N — 1) ¢ ¢ ¢
—290027700N¢ 4 557945201 N% — 208345544N2 + 6644352)
+ 384(25N% — 11)(4400N % — 123201 N8 + 480349N6 — 486126N* + 84051N?2 + 1089)(;
+ 211200N2(25N2 — 11)2(N8 + 3N% — 16N? + 22)¢5]. (3.11)

We have checked that when we substitute the value N. = 3 in our expression for x,  in Eq. (3.11), the result agrees with our
previous calculation of x4 y for this case in Eq. (9) of Ref. [14].
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The explicit numerical expressions for the scheme-independent series expansions of y;, r to order A‘; for R = F and

N, =2, 3, 4 are as follows:

SU(2): ¥gyar.rat = Ag[0.067416 4 (0.73308 x 1072)A; + (0.60531 x 107%)A7 + (1.62662 x 10~4)A]]

SUB): Fpparr.as = Ar[0.049844 + (037928 x 102)A, + (023747 x 107)A3 + (0.36789 x 10~4)A]

and

SU(4): ViR Fat = A £[0.038560 + (0.22314 x 107%)A; + (0.11230 x 107%) A7 + (0.126505 x 107*)A3].

In these equations,

11N,

~N; forR=F. (3.15)

Plots of Vi IRF.AT for N.=2and N,=3and 1 <p <4
were given in [16]. These showed the two monotonicity
properties mentioned above. For an extended comparison,
we show the plots of yg, 1k F, A for 2<N.<4 and
1 < p <4 in Figs. 1-3.

In Table I we list the values of y;,, 1r ¢, A? forl<p<4
for the SU(2), SU(3), and SU(4) theories, with N in the
respective interval I1gy for each. For comparison, we also
include the values of yy, r ., Obtained with our earlier
n-loop calculations in [19], using series expansions in
powers of a evaluated at a = ag ,, for 1 < n <4 with b;
and b, and c,,, 2 < n < 4 calculated in the MS scheme. (See
Table VI in [19] for a list of numerical values of values of
Yoy Rne-) As discussed above, if, for a given N, and Ny,
a calculated value of yg, r violates the upper bound
Yopr <2 in (2.13), this is unphysical (marked with a
symbol “u” in Table I) and indicates that the perturbative

N.=2, Fundamentals
1.0

0.8
0.6
YouwR

0.4

0.2

0.0

N

FIG. 1. Plot of g, 1r F, A (labeled as yy,, 1r on the vertical axis
in this and subsequent graphs) for N. = 2, i.e., G = SU(2), and
1 < p <4 as a function of Ny € I\rz. From bottom to top, the
curves (with colors online) refer to vy, R ra, (ted), 75, R F, A

(green), ¥y, 1R F. IS (blue), and Vi IR . (black).

(3.12)

(3.13)

(3.14)

calculation is not applicable for this N ;. In the case of the n-
loop values yg ¢, if this occurs at the two-loop level, it also
leads to caution concerning g ,,» for n = 3, 4, and this is
similarly indicated with a “u”. The computations of yg ,,» in
[19,25] made use of the b,, and c, up to the n = 4 loop
level, where the scheme-dependent b3, by, and ¢, with
2 <n <4 had been calculated in the widely used MS
scheme [27-29,31]. As we pointed out in [15], the five-
loop beta function in the MS scheme does not exhibit a
physical IR zero over a substantial lower part of /. We
discuss this further below. For compact notation, we will
often leave the subscript wy implicit on these and other
quantities and thus write yg, R = YR Yy, Rt = VIRt
etc. From Egs. (2.4) and (2.6) it follows that the respective
lower and upper ends of the intervals Iz for these theories
are (N, N,) = (5.55,11), (8.05, 16.5), and (10.61, 22) for
SU(2), SU(3), and SU(4), and hence the physical intervals
Igz are 6 < N, < 10 for SU(2), 9 < N, < 16 for SU3),
and 11 < Ny <21 for SU4).

Since the calculation of k; and the resultant y, Al uses

information from the (j + 1)-loop beta function from (2.1)
and the j-loop expansion of yy, in (2.3), it is natural to
compare the (SI) yg. A? with the (SD) yg s for p’ = p and

10 N.=3, Fundamentals

0.8
0.6
YyulrR

0.4

0.2

0'09 10 11 12 13 14 15 16

N

FIG. 2. Plot of Vi IR F.A? for N.=4 and 1< p<4 as a
function of N; € I\rz. From bottom to top, the curves (with
colors online) refer to yz, rra, (red), Vi IR F.02 (green),

}/l/_ll//,IR,F.A; (blue), and yWW,IR,F,A; (blaCk)
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N.=4, Fundamentals

1.0

0.8

0.6
YyulrR

0.4

0.2

0.0

12 14 16 18 20 22
Nt

FIG. 3. Plot of yz, rpar for No=3 and 1 <p <4 as a
function of N; € I\rz. From bottom to top, the curves (with
colors online) refer to yz, rra, (red), Yy IR F.A2 (green),

Vg IR F.A3 (blue), and Yy IR F,Al (black).

p' = p + 1. In the upper and middle part of the interval
I'gz fora given N, we find that yz_ Al is slightly larger than

V1R 47> With the difference increasing as Ny decreases below
N, ie., as Ay increases.

It is important to assess the range of applicability and
reliability of these results from the A, expansion. We did
this in [12—14] and extend our analysis here, using our new
result for k4. Following our discussion above on the ratio
test for the determination of the radius of convergence of a
Taylor series, the ratios of successive coefficients, k;_; /K s
give an approximate measure of the range of applicability
of the A, expansion for yg. For a given G and R, this range
may be compared with the maximum size of A, in the
interval /g, where the scheme-independent two-loop beta
function f,, has an IR zero. For the present case of
G = SU(N,) and R = F, the general formula (2.10) takes
the form

3N.(25N% —11)

R=F: (A = 3.16
(Ame =537 =3y (16)

This has the respective values
(Af)max = 5:45,8.45,11.39 for N, =2,3,4. (3.17)

We begin by reviewing the SU(3) theory, for which

SUB): “EL— 1314, SF2_ 1597,
KF2 Kr3

KF3 _ 6.455.
KF a4

(3.18)

As discussed in [12-14], these results suggest that for the
SU(3) theory with R = F, the Ay expansion calculated to
this order should be reasonably reliable over a substantial

PHYSICAL REVIEW D 95, 105004 (2017)

part, including the upper and middle portions, of the
interval I1gz and the non-Abelian Coulomb phase.

Using our new results, we now extend this analysis to the
SU(2) and SU(4) theories [and will give a further analysis
in the LNN limit of Eq. (3.21)]. We find

SUQ): XL —920,  SE2_ 1211,
KFp2 KF3
Kes _ 372 (3.19)
KFa4
and
SUM4): “EL— 1728, “F2_ 1987,
KF2 KF3
r3 g8 (3.20)
KF 4

Since (Af) . has the respective values 5.45 and 11.39 for
the SU(2) and SU(4) theories, we are led to the same
conclusion for these theories that we reached for the SU(3)
theory, namely that the A, expansion should be reasonably
reliable over a substantial portion of the respective inter-
vals [ IRZ-

As discussed above, another way to assess the range of
applicability of the A expansion is to check to see whether
the resultant values of y. A obey the upper bound yr < 2

in (2.13). As is evident from Table I, all of our values of
VIR A" listed there obey this bound. This again shows the

advantages of the scheme-independent A, expansion as a
way of calculating yg to a given order, as compared with
the conventional n-loop calculation of yg .. As is also
evident from Table I for each of the cases listed there,
namely N, = 2, 3, 4, one finds unphysically large values of
YiRne for values of N, in the lower portions of the
respective intervals Ijgz. In [19] and later works we
explained this as a consequence of the fact that, for a
given G and R, as Ny decreases toward N, in the interval
IRz, the coupling o increases from weak toward strong
coupling. Thus, toward the lower end of the respective
intervals /g7, the IR coupling arg ,,» become too large for
the perturbative n-loop calculations of yr ,, to be appli-
cable. In contrast, the A, expansion can be applied over a
considerably greater portion of the interval gy to yield
results for g A? that obey the upper bound (2.13). We will

show this further below for the LNN limit (3.21). This also
demonstrates that the A, expansion for ypg is able to be
used in situations with substantially stronger IR coupling
than is the case with the conventional expansion in powers
of this coupling yielding the n-loop value yg .-

We proceed to compare our values in Table I with lattice
measurements. The SU(3) theory with R = F and Ny = 12
has been the subject of many lattice measurements. In [14],
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TABLE 1. Values of the anomalous dimension yy,, g r calculated to O(A;), Le., Yoy IR F, AL with 1 < p <4, for
G = SU(N,), as a function of N, and N, for 2 < N, <4 and N/ in the respective intervals I1rz for each N.. For
comparison, we also include the n-loop values y g, g 7 s With 2 < n < 4 from Table VI of [19]. Values that exceed
the bound y;,, 1k < 2 in Eq. (2.13) are marked as unphysical (u). For notational brevity in this and successive tables,

we omit the subscript yy. See text for further details.

N, Ny YIRF 2/ YIR,F3¢ YIR,F 47 VIR F.A, VIR F.A2 VIR F.A} VIR F.A
2 6 u u u 0.337 0.520 0.596 0.698
2 7 u u u 0.270 0.387 0.426 0.467
2 8 0.752 0.272 0.204 0.202 0.268 0.285 0.298
2 9 0.275 0.161 0.157 0.135 0.164 0.169 0.172
2 10 0.0910 0.0738 0.0748 0.0674 0.07475 0.07535 0.0755
3 9 u u u 0.374 0.587 0.687 0.804
3 10 u u u 0.324 0.484 0.549 0.615
3 11 1.61 0.439 0.250 0.274 0.389 0.428 0.462
3 12 0.773 0.312 0.253 0.224 0.301 0.323 0.338
3 13 0.404 0.220 0.210 0.174 0.221 0.231 0.237
3 14 0.212 0.146 0.147 0.125 0.148 0.152 0.153
3 15 0.0997 0.0826 0.0836 0.0748 0.0833 0.0841 0.0843
3 16 0.0272 0.0258 0.0259 0.0249 0.0259 0.0259 0.0259
4 11 u u u 0.424 0.694 0.844 1.029
4 12 u u u 0.386 0.609 0.721 0.8475
4 13 u u u 0.347 0.528 0.610 0.693
4 14 u u u 0.308 0.451 0.509 0.561
4 15 1.32 0.420 0.281 0.270 0.379 0.418 0.448
4 16 0.778 0.325 0.269 0.231 0.312 0.336 0.352
4 17 0.481 0.251 0.234 0.193 0.249 0.263 0.2705
4 18 0.301 0.189 0.187 0.154 0.190 0.197 0.200
4 19 0.183 0.134 0.136 0.116 0.136 0.139 0.140
4 20 0.102 0.0854 0.0865 0.0771 0.0860 0.0869 0.0871
4 21 0.0440 0.0407 0.0409 0.0386 0.0408 0.0409 0.0409

we compared our results for this theory with lattice
measurements, so we only briefly review that discussion
here. We recall that there is not, at present, a consensus
among all lattice groups as to whether this theory is in an
IR-conformal phase or is in a chirally broken phase [22].
There is a considerable spread of values of yz in published
papers, including the values (where uncertainties in the last
digits are indicated in parentheses) yr ~ 0.414(16) [48],
yir = 0.35 [49], yir = 0.4 — 0.5 [50], yr = 0.27(3) [51],
yir = 0.25 [52] (see also [53]), yir = 0.235(46) [54], and
0.2 < yr < 0.4 [55]. We refer the reader to [22,48-55] for
discussions of estimates of overall uncertainties in these
measurements. Our value yg. At = 0.338 and our extrapo-

lated value for lim,,_, ., y1g, A? = VIRs namely yr = 0.40, are

consistent with this range of lattice measurements and are
somewhat higher than our five-loop value y s, = 0.255
from the conventional a series that we obtained in [15]. It is
hoped that further work by lattice groups will lead to a
consensus concerning whether this theory is IR conformal
or not and concerning the value of yg.

The SU(3) theory with Ny = 10 has been investigated
on the lattice in [56], with the result yg ~ 1. While our

highest-order n-loop values, namely our four-loop result,
YiR4¢ = 0.156 [19], and our five-loop result, y1g s, = 0.211
obtained using Padé methods [15], are smaller than this
lattice value, our extrapolated scheme-independent value,
yir = 0.95 £ 0.06 [14], is consistent with it.

There have also been a number of lattice studies of the
SU(3) theory with N, = 8 [S7-59], which have yielded the
estimate ygr = 1. As is evident from Fig. 3, if we were to
continue the curve for yp. Al plotted there downward further

to N = 8, the resultant value would be compatible with
71r ~ 1. We note that this theory may well be in the chirally
broken phase, and there is not yet a clear consensus as to
whether it is in this phase or possibly near the lower end of
the IR-conformal non-Abelian Coulomb phase. In this
context, one may recall that if, for a given G and R,
Ny < Ny, so that there is spontaneous chiral symmetry
breaking, then the IR zero of the beta function is only
approximate, since the theory flows away from this value as
the fermions gain dynamical mass and are integrated out,
leaving a pure gluonic low-energy effective field theory.
For such a theory, the quantity extracted from either
continuum or lattice analyses as yr is only an effective
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anomalous dimension that describes the renormalization-
group behavior as the theory is flowing near to the
approximate zero of the beta function. A general comment
is that the determination of Ny .. relies upon effective
methods to analyze the lattice data [22]; progress on this
continues [48-61].

Theories with an SU(2) gauge group and Ny = 8 have
been of interest in the context of certain ideas for physics
beyond the Standard Model (SM) [62], in which the
number of Dirac fermions is Ny = N, (N.+ 1) =8,
where N, = 2, corresponding to the SU(2) factor group
in the SM and N, = 3 colors. There have been several
lattice studies of this SU(2) theory with N = 8, including
[22,63,64]. These are consistent with this theory being IR-
conformal, and the recent study [64] has reported the
measurement y;g = 0.15 £ 0.02. For comparison, as listed
in Table I, our previous higher n-loop values were yg 3, =
0.272 and yr4, = 0.204 [19], and our current highest-
order scheme-independent value is VIRAY = 0.298. These

are somewhat higher than this lattice result.

There have also been a number of lattice studies of the
SU(2) theory with Ny = 6 [22,65-67]. From this work, it is
not yet clear if this theory is IR-conformal or chirally
broken. The authors of Ref. [66] obtained the range
0.26 < yir < 0.74, while the authors of Ref. [67] found
7ir = 0.275. Our higher-order scheme-independent values,
as listed in Table I, in particular, At = 0.698, are in

agreement with the range given in [66] and are somewhat
higher than the value from [67].

C. LNN limit for G=SU(N,) and R=F

For G = SU(N,) and R = F, it is of interest to consider
the limit
LNN: N, = o,

Nf — 00

Ny .
r = — fixed and finite
C

with

and ¢&(u) = a(u)N, is a finite function of p.  (3.21)
We will use the symbol lim; y for this limit, where “LNN”
stands for “large N. and N, with the constraints in
Eq. (3.21) imposed. This is also called the ’t Hooft-
Veneziano limit. Anticipating our later discussion of
theories with fermions in two-index representations
(adjoint and symmetric and antisymmetric rank-2 tensor),
we will use the symbol lim; , where “LN” stands for “large
N_.”, to denote the original ’t Hooft limit

LN: N. -

with  &(u) = a(u)N, a finite function of u  (3.22)

and Ny fixed and finite.

PHYSICAL REVIEW D 95, 105004 (2017)

Continuing our discussion of the LNN limit, as relevant
to theories with fermions in the fundamental representation,
we define the following quantities in this limit:

E=dnx = sz aN,, (3.23)
N
r, = lim —*, (3.24)
LNN N,
and
. Ny
re = }%N—C, (3.25)
with values
11
=—=155 3.26
re=- (3.:26)
and
34
rp = e =2.615 (3.27)

(to the indicated floating-point accuracy). With Iy :
Ny, < N; <N, it follows that the corresponding interval
in the ratio r is

34 11

Imz,t 3 <r<—. ie. 2615<r<55  (328)

The critical value of r such that for r > r,,, the LNN theory
is IR-conformal and for r < r,, it exhibits spontaneous
chiral symmetry breaking, is denoted r.., and is defined as

Nior
—Ler, (3.29)

We define the scaled scheme-independent expansion
parameter for the LNN limit

A 11
A = — = —_ = ——7.
rEN T

(3.30)
As r decreases from r, to r, in the interval Iz ,, A,
increases from O to a maximal value

75
Fo—rs=—=28846 for r€ Iy, (3.31)

A pu— p—
( r)max re 26

We define rescaled coefficients &; p
(3.32)

A 1 j
K r= lim Nek;
JF N.—x R F

that are finite in this LNN limit. The anomalous dimension
7ir 1S also finite in this limit and is given by
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R=F: lim y = D kjpAh = kipAl (3.33)
=1 J=1

From the results for x;, j = 1, 2, 3 in [12] or the special
cases given above for G=SU(N,) and R=F in
Egs. (3.8)—(3.10), we have

22
Rip= 53 = 0.1600, (3.34)
Ryp = Ssg = 0.037632, (3.35)
and
2193944
939 =0.83207 x 1072, (3.36)

K3 r = 33 . 510

where, as above, we indicate the factorizations of the
denominators. (The numerators do not, in general, have
such simple factorizations; for example, in x5 r, 2193944 =
23 x 274243.) From our new expression for k,, we
calculate

. 210676352 90112 11264
Kap = 34,503 +33 ,510‘:3 +33 _58§5
= 0.36489 x 1072, (3.37)
Hence, numerically, to order O(AY),
+ 0.0083207A% + 0.003649A§]. (3.38)

Using these results for yig g a» With 1 < p <4forR = F
in the LNN limit, we can now carry out a polynomial
extrapolation to p = o0. To do this, we fit an expression for
YR, F,a7 With some subset of the p terms to a polynomial in
1/p. We denote the resultant value generically as yr .
where here s denotes the subset of the p terms used for the
extrapolation. We shall use, as a necessary condition for
YIR.F.s to be reliable, the requirement that it not differ too
much from the highest-order value, yg  »s. Quantitatively,
we require that for the given subset s, yig /7R p.at < 1.5
We find that this condition is satisfied if r € Iy, is
r 2 3.5, but that it is not satisfied as r decreases below this
value toward the lower end of the interval Iz, at
rp =2.615. As an example, at r = 4.0, depending on
the subset of terms used for the extrapolation, we obtain
YiR.Fs/YR Fat = 1.2, while at r = 3.6, this ratio increases
to =1.4. We remark that the value r = 4.0 corresponds to
Ny =12 for the SU(3) theory and Ny = 8 for the SU(2)
theory.

Previously, in [14] we performed this analysis for the
special case G = SU(3) and R = F and, for that work, we
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studied how the extrapolated value depends on the subset
of terms that one includes for the fit. We perform the
corresponding analysis here for this LNN case. We study
three sets of terms:

setss  {VR F.a2> VIR F.A% ) (3.39)
setyss : {VIR F.a2+ VIR F A3 VIR F.AS (3.40)
Selyn3q - {}’IR,F,A,’ YIR.F.A2> VIR F.A3» VIR.F.Ai} (3.41)

There are countervailing advantages of these sets of terms.
The two-term set (3.39) has the advantage of using the two
highest-order terms, while the three-term and four-term sets
have the advantage of using progressively more terms in the
fit. The fits to the sets (3.39)—(3.41) yield polynomials in
the variable p~! of the respective forms

selyy = VIR Fexsdp = 5340 + 534107 (3.42)

S€h34 = YIR.F.ex234.p = 52340 T $2341 0" + 2340077
(3.43)

and

_ -1
Set1234 = VIR,F.ex1234,p = S1234,0 T 5123410

+ $1234207% + S12343P 7. (3.44)

The extrapolated values in the limit p — oo given by these
fits are, respectively, as

lim VIR.F.ex34.p = 34,0 = VIR.F.ex34 (3-45)
p—)OO
lim VIR.F.ex234.p = 52340 = VIR.F.ex234 (3-46)
p—>oo
and
I}EEOYIR,F.ex1234.p = 81234,0- = VIR.F.ex1234 (3-47)

We have calculated these quantities analytically. Below, we
list the corresponding expressions with coefficients given to
the indicated floating-point precision:

VIR Ferss = 16758754 — 11.042531 7 + 2.8240528/>
—0.329427247% + 0.014595750r* (3.48)

VIR Fexass = 27.346053 — 19.2457889r 4 5.19859722
— 0.63389228% + 0.02919150067*  (3.49)

and
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TABLE II.
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Values of the scheme-independent y f »r in the LNN limit (3.21) for I < p < 4, together with yg 5 ¢

with n = 2, 3, 4 from Table V of [21] for comparison, as a function of r for r € Iz . Values that exceed the bound
7 < 2 are marked as unphysical (u) or placed in parentheses. We also list the extrapolated estimate yig r ,234 Of
YIR.F.ae and, in the last column, the ratio yig rev234/71R F. INE

VIR.F.ex234

r YIR.F.2¢ VIR.F 3¢ VIR.F.4¢ VIR, F.A, YIR,F.A2 VIR, F A3 VIR, F A4 VIR.F.ex234 Yrat
2.8 u 1.708 0.190 0.432 0.706 0.870 1.064 (2.09) 1.96
3.0 u 1.165 0.225 0.400 0.635 0.765 0.908 1.645 1.82
3.2 u 0.854 0.264 0.368 0.567 0.668 0.770 1.28 1.66
34 u 0.656 0.293 0.336 0.502 0.579 0.650 0.993 1.53
3.6 1.853 0.520 0.308 0.304 0.440 0.497 0.5445 0.763 1.40
3.8 1.178 0.420 0.306 0.272 0.381 0.422 0.452 0.584 1.29
4.0 0.785 0.341 0.288 0.240 0.325 0.353 0.371 0.444 1.20
4.2 0.537 0.277 0.257 0.208 0.272 0.290 0.300 0.337 1.12
44 0.371 0.222 0.217 0.176 0.2215 0.233 0.238 0.253 1.06
4.6 0.254 0.1735 0.1745 0.144 0.1745 0.1805 0.183 0.188 1.03
4.8 0.170 0.129 0.131 0.112 0.130 0.133 0.134 0.135 1.01
5.0 0.106 0.0889 0.0900 0.0800 0.0894 0.09045 0.0907 0.0905 1.00
5.2 0.0562 0.0512 0.0516 0.0480 0.0514 0.0516 0.0516 0.0516 1.00
54 0.0168 0.0164 0.0164 0.0160 0.0164 0.0164 0.0164 0.0164 1.00

yIR,F.ex1234 = 33901799 - 2440606647' + 671925275}’2
—0.83270860073 + 0.0389220017*.  (3.50)

Note that there are strong cancellations between individual
terms for relevant values of r € Iy .. Some examples will
show the range of resultant values of extrapolations for
these different choices of sets of terms used in the fits. As
anticipated, for values of r in the upper part of the interval
IRz, all of the different types of extrapolation give quite
similar results. For example,

r=35.0= 7R Fex3s = 0.0914, YIR.Fex234 = 0.0902,

YR F.ex1234 = 0.0905. (3.51)
As r decreases in the interval /gy, the differences between
the extrapolations using the different sets of terms increase
slightly, e.g., for a value roughly in the middle of this
interval, namely r = 4.0, we find

r=4.0 = 7R Fens = 0427, VIR Fex234 = 0.444,

VIRF.exi234 = 0.456. (3.52)
Toward the lower part of the interval Iry,, these
differences increase further, but also, as discussed above,
for a given r, all of the different types of extrapolations
involve greater uncertainties, since each of the extrapolated
values differs more from the value of highest-order explic-
itly calculated quantity, yig 5¢. For example, for r = 3.0,

r=3.0= YR Feass = 1.335, VIR.F.ex234 = 1.645,

YIR.Fexi2za = 1.826. (3.53)

The ratios of these values divided by the highest-order
explicitly calculated value, yig g a4, are

VRFext g7 VRFed3d g g)

r=30=

YIR.F.A% VIR F.A%

VIR,F ex1234 —201. (3_54)

VIR, F,A4

Given our fiducial requirement that the ratio of the
extrapolated value for p — oo divided by the highest-order
explicitly calculated value, should not be greater than 1.5
for the extrapolation to be considered reasonably reliable, it
follows that we would not consider the latter two extrap-
olations in Eq. (3.53) to be sufficiently reliable to meet this
requirement.

It is interesting to compare these scheme-independent
calculations of yg z o to order 1 < p < 4 with the results
from the conventional n-loop calculations as truncated
expansions in ag gz, denoted yg p,, from Table V of
[21] up to n =4 loop order. We list our scheme-
independent values together with these n-loop values in
Table II. For each value of r, we also include the
extrapolated value, yig r.x234 for the p — oo limit, and
the ratio yig r ex234/7R a4~ We do not include the results
from the n = 5 loop conventional calculation, because of
the absence of a physical IR zero in the five-loop beta
function for 2.615 < r < 4.323 in Iz, Although the
extrapolated values yg r 234 for r values below r = 3.5
are included, we caution that these do not satisfy our
fiducial criterion for sufficient reliability of extrapolation,
since they differ by too much from our highest-order
calculated values, yg 4. For this reason, although we
can roughly apply the method discussed in Sec. II to use
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LNN Limit
1.4
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1.0
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YouR o6
0.4
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3.0 3.5 4.0 4.5 5.0 5.5

FIG. 4. Plotof yig g ar for 1 < p <4 as afunction of r € I1gz,
in the LNN limit (3.21). From bottom to top, the curves (with
colors online) refer to yr pa, (red), yirFpaz (green), yg pa
(blue), and y1g y ¢ (black).

the extrapolated value of yr to estimate the lower end, r,.,
of the IR-conformal non-Abelian Coulomb phase [defined
in Eq. (5.3)], this involves a substantial degree of uncer-
tainty. Bearing this caveat in mind, the resulting estimate
would be that 7., ~2.7. If one were to pull back from the
LNN limit and multiply this value of r..,. by a specific finite
value of N, to get an estimate of the corresponding N .,
then, for example, for N, = 3, i.e., G = SU(3), this would
yield Ny .. ~8. This estimate is consistent with the
estimate 8 < N ., < 9 that we derived from our calculation

~

of yrF. Al for this theory and extrapolation to obtain
limp_,ooyIR,F,A; in [14]. Clearly, the lower that one goes

in N. away from the LNN limit, the greater is the error in
performing this conversion from a specific r value in the
LNN limit to a corresponding ratio N/N, with finite N,
and N, so we do not perform this conversion for N, = 2.

In Fig. 4 we plot yg par, ie., the value of y for
R = F, calculated to order A} with 1 < p <4, in the
scheme-independent expansion, as a function of r € Iy ,.
As a consequence of the positivity of the k,r in
Egs. (3.34)—(3.36), for a fixed r, yjg r o7 is @ monotonically
increasing function of the order of calculation, p. As r
decreases toward the lower end of the interval /iy, at
r =r, = 2.615, the value of yg calculated to the highest
order in this LNN limit, namely O(A%), is slightly greater
than 1.

As we did for specific SU(N,.) theories above, here we
proceed to investigate the range of applicability of the
scheme-independent series expansion for yj in the LNN
limit (see also [68]). As is evident from Table II, all of our
values of yig par for 1 < p < 4 satisfy the bound y1g < 2.
This is also true for all of our extrapolated values,
YIR.F.cx234, €Xcept for the lowest value of r listed, namely
r = 2.8, for which yg g 34 = 2.09, slightly above this
bound. Thus, these results in the LNN limit again dem-
onstrate the advantage of the scheme-independent

PHYSICAL REVIEW D 95, 105004 (2017)

expansions, since they enable us to calculate self-consistent
values of yig p o, Over a greater range of the interval Iz,
than is the case with the conventional n-loop calculations.
To show the latter in detail, we have explicitly listed the
values of yr r3¢ and yg r 4, for values of r where yg r s
was unphysically large.

To investigate the range of applicability of the scheme-
independent expansions further, it is worthwhile to obtain
an estimate of this range from ratios of successive coef-
ficients. From the coefficients &;  that we have calculated
with 1 < n <3, we compute the ratios

MLE 4052 (3.55)

(3.56)
and

2 = 2.280.
K4 F

(3.57)

Recalling that the maximal value of A, in the interval I gz ,
is 2.885 [Eq. (3.31)], these ratios are consistent with the
inference that the small-A, series expansion may be
reasonably accurate throughout most of this interval /gy ,.

D. YW,IR,A}‘ for G:SU(NC> and R=adj

Here we present our results for the «; coefficients and
thus VowRa) with 1< j<4 for G=SU(N,) and N,

fermions in the adjoint representation, R = adj. We will
usually denote these as «; ,4; and Y IR adj. N but some-

times, when no confusion will result, we will omit this adj
subscript for brevity of notation.

In this theory, Egs. (2.4) and (2.6) yield, for the upper
and lower ends of the interval Iz, the values

11
Nu,adj — I - 275 (358)
and
17
Nf,adj - 1_6 - 10625, (359)

so this interval includes only one integral value of Ny,
namely N, = 2. We note that since the adjoint representa-
tion is self-conjugate, a theory with N Dirac fermions with
R = adj is equivalent to a theory with Ny y,; = 2Ny
Majorana fermions. Hence, here, one may also allow the
half-integral values N, =3/2, 5/2 corresponding to
Nf,Muj =3, 5. We have
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N,=2, Adjoints
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FIG. 5. Plot of Yoy IR adj Al forG=SU(2)and 1 < p<4asa
function of Ny € I gy for R = adj and Ny = 2. From bottom to
top, the curves (with colors online) refer to0 yig 4aj.a, (red),

VIR adj,A% (green), VIR adj,A3 (blue), and VIR adj,A% (black).

11
R:adj: Af:NM_Nf:Z_Nf

(3.60)
For this case, the factor D in Eq. (3.1) is simply D = 18. In
[13] we gave the coefficients k; ,4; for I < n < 3. These are
as follows:

2\ 2
Kladj = <§> = 0.44444, (3.61)
341
K2,adj = 2—36 = 023388, (362)
and
61873 592
K3.adj = 73 . 310 - 3BN2
= 0.130978 — 0.090230N 2, (3.63)

where, as before, we indicate the simple factorizations of
the denominators. The coefficient x, ,4; is

53389393 368
27 . 314 W 3

2170 33952 >
- 310 + 311 ¢ NG

= 0.0946976 + 0.193637N 2.

K4.adj =

(3.64)

PHYSICAL REVIEW D 95, 105004 (2017)

The coefficients « ,4; and «, ,4; are manifestly positive,
and we find that for all physical N, the coefficients k3 ,4;
and k4 ,4; are also positive. Although «; ,4; and k;, ,4; are
independent of N, the coefficients «; ,4; for j =3, 4 do
depend on N.. We find that k3 ,4; and k4 ,4; are, respec-
tively, monotonically increasing and monotonically
decreasing functions of N.. The N, — oo limits of k3 ,4;
and k4 ,q; are given by the respective first terms in
Egs. (3.63) and (3.64).
Thus, to order A‘,‘f, we have

Yy IR .adj. b = A[0.44444 4-0.23388A
+ (0.13098 — O.O9023ON;2)A%

+ (0.094698 + 0.19364N;2)A}}. (3.65)

In Fig. 5 we show Vi IR adj.A? with 1 < p <4 for the

SU(2) theory, as a function of N, formally generalized
from the non-negative integers to the real numbers. In
Table III we list values of y;,, 1r 44j, A? with 1 < p <4 for

Ny =2and N, =2 and N, = 3. For comparison, we also
include our n-loop values yy,, g qqjne Calculated in the
conventional manner via power series in the coupling (in
the MS scheme), from Table VIII of [19].

Among SU(N,) theories with fermions in the adjoint
representation, the SU(2) theory with N, =2 (Dirac)
fermions has been of particular interest [69]. In the
following, for notational brevity, the subscript adj is
understood implicitly. For this theory, as listed in
Table 1III we obtain the values yR a2 = 0.465,

VIR = 0.511, and VIR = 0.556, which are close to

our earlier higher-order n-loop calculations in [19], namely
YR3e = 0.543 and yRr4, = 0.500. It is of interest to
compare these values with the results of lattice studies.
There have been a number of such studies, and these are
consistent with the conclusion that this theory is conformal
in the infrared [22,70-77]. These studies have yielded a
rather large range of measured values for yr, including the
following (where the published estimated uncertainties in
the last digits are indicated in parentheses): yjg = 0.49(13)
[70], yir = 0.22(6) [71], yir = 0.31(6) [72], yir = 0.17(5)
[73], yir = 0.37(2) [74], yir = 0.20(3) [75], and yr =
0.50(26) [76]. (See these references and [77] for additional
discussion of estimates of overall uncertainties.) Our

TABLE III.  Values of the anomalous dimension yg 44;, A with 1 < p <4, for Ny =2 and G = SU(N,) with
N. =2, 3. For comparison, we also list our n-loop values, yig 44j ¢ for this theory from Table VIII of Ref. [19].

N, YIR.adj2¢ VIR adj 3¢ VIR adj.4¢ VIR.adj.A; VIR adj.a2 }’IR,adj,Aﬁ VIR adj.a
2 0.820 0.543 0.500 0.333 0.465 0.511 0.556
3 0.820 0.543 0.523 0.333 0.465 0.516 0.553
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scheme-independent calculation of yz to O(Ajﬁ) and our
earlier n-loop calculations of yg ,, up to n = 4 loops are
clearly consistent with the larger among these lattice values.
Before carrying out a comparison of our results with the full
set of lattice values, it will be necessary to narrow the
current wide range of lattice measurements.

It is of interest to investigate the N. — oo limit for an
SU(N,) gauge theory with fermions in the adjoint repre-
sentation. Since in this case, the upper and lower ends of the
interval Iy, given by N, =11/4 in Eq. (3.58) and
N, =17/16 in Eq. (2.6), are independent of N, it follows
that A, is also independent of N.. Hence, for R = adj,

limy g = 2 R} aaj (3.66)
=
where
’%j,adj = lzI}VlKj'adj' (367)

The values of k; ,,4; are evident from the full expressions for
Kjqqj that we have given above in Egs. (3.61)—(3.64); for
example, &3 ,4; = 61873/(2° - 319).

E. 7y.1r a1 for G=SU(N,) and R=S,, A,

Here we present our results for the «; coefficients and
thus VowRa with 1 < j <4 for G=SU(N,) and N,

fermions in the symmetric and antisymmetric rank-2 tensor
representations of SU(N,), S, and A,. Since many for-
mulas for these two cases are simply related to each other
by sign reversals in certain terms, it iS convenient to treat
these cases together. As before [19], we shall use the
symbol T, (rank-2 tensor) to refer to these cases together.
(Do not confuse this use of T with our use of the symbol T
in Sec. VII of Ref. [13] for the anomalous dimension of the
operators yo,,y and operators T ,6,,w, where it referred
to the antisymmetric Dirac tensor o, = (i/2)[y,.7,].)
The values of N, and N, for R = T, are [19]

PHYSICAL REVIEW D 95, 105004 (2017)
17N?

Nyp = , 3.69
“T2 7 (N, £ 2)(8N2 £ 3N, —6) (3.69)
so that
11N
R=T,: Ay =———N,. 3.70
2 f 2(Nc + 2) f ( )
The factor D in Eq. (3.1) takes the explicit form
I8N2 £+ 1IN, -22 F
R=T,: D=—F° ¢ == (3.71)
N, N,
where
F, = 18N? £ 1IN, —22. (3.72)

Both F, and F_ are positive-definite for the physical range
N. > 2. At the lower end of the interval I1rz, Af takes on
the maximum value

3N.F,
R=T,: (A = .
2 (A7) max 2(N. £2)(8N2 £+ 3N, —6)

(3.73)

If N. =2, then S, is the same as the adjoint representa-
tion, so we focus on N, >3 here. For this R =S5,
theory, the illustrative values N.=3 and N,=4
yield the respective intervals Iz 1.22 < Ny < 3.30 and
1.35 < Ny < 3.67. Hence, the physical integral values of
N/ in these respective intervals I1gz are Ny = 2, 3 for both
N. =3 and N, = 4. Furthermore, the A, representation is
the singlet if N, =2 and is the same as the conjugate
fundamental, F if N. = 3, so in the case of A,, we restrict
to N. > 3 and focus mainly on N, > 4. In the SU(4) theory
with R = A,, the interval Iy is 4.945 < Ny < 11, includ-
ing the integral values 5 < N, < 10.

Here, using our general results (3.2)-(3.5), we give
explicit expressions for the x; with 1 < j <4 for the case
G = SU(N,.) and fermion representation R = T',. From the
general expressions for «; with 1 < j <4, Egs. (3.2)-(3.5),
we calculate the following. In each expression, the + and —
signs refer to the S, and A, special cases of T,,

11N, respectively:
Nz, =N 1) (3.68) p y
4(N. F 1)(N, +2)?
K1 T, — ( [& :F )( c ) (374)
and oo N.Fy
|
(N. F 1)(N. £2)*(11N2 £ 4N, — 8)(93N? + 88N, — 176)
Ko, = (3.75)

3N2F3
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(N F (N, £2)}
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K31, = [(1670571N9 + 7671402N8 + 2181584N7 F 25294256N°

2 BN

— 13413856N? 4= 17539136N% + 16707328N; F 3046912N2 — 27320832N,. + 18213888)

+ 8448N2(N,. F 2)F.(3N3 £ 28N? F 176)(5]

and

(N, F (N, £2)*

(3.76)

Kar, = [(4324540833N13 £ 26924228982N12 + 30086550336N1! F 106026091536N10

24 3 NAFT

— 224952825968 N° = 105492861344N8 + 600583055488N7 & 45292329216N° — 1067559840512N3
+ 68261028352N% + 982655860736N3 F 385868775424N2 — 136076328960N, & 54430531584)
+2°F, (33534N! &£ 702000N1° + 4448403N9 F 2216812N8 — 38600660N7 = 22594304N°®

+ 124680384N3 F 82679040N* — 90554112N3 £ 64551 168N? — 6690816N, == 3345408);

F 563200N%(N, F 2)FL (15N + 158N? + 240N?  912N2 — 1056N . & 2112)¢s].

We comment on some factors in these x; 7, expressions.
The property that the «; 4, coefficients contain an overall
factor of (N, —2) (possibly raised to a power higher than
1), and hence vanish for N. = 2, is a consequence of the
fact that for N, = 2, the A, representation is a singlet, so for
SU(2), fermions in the A, = singlet representation have no
gauge interactions and hence no anomalous dimensions.
Clearly, this property holds in general; i.e., the coefficients
K; a, for all j contain an overall factor of (N, —2) [as well
as possible additional factors of (N, —2)].

Asnoted above, if N. = 2, then the S, representation is the
same as the adjoint representation, so the coefficients must
satisfy the equality k; g, = k; 44; for this SU(2) case, and we

have checked that they do. Note that this equality requires
|

and

(3.77)

(1) that the term proportional to {3 in k3 5, must be absent if
N. =2, since k3 ,4; does not contain any {3 term, and,
indeed, this is accomplished by the factor (N, — 2) multi-
plying the {3 term in k3 g, ; and (ii) the term proportional to {s
inky g, mustbe absentif N. = 2, since k4 ,4; does not contain
any (s term, and this is accomplished by the factor (N, — 2)
multiplying this {5 term in k4 g, . Similarly, as we observed
above, if N. = 3, then the A, representation is the same as the
conjugate fundamental representation, F, so the coefficients
must satisfy the equality «; 4, = k; ¢ for this SU(3) case, and
we have checked that they do.

The resultant Ay expansions for yg, r s, Al with 2 <

N, <4 are

For R = A,, we give illustrative results for the A, expansion of yg, r for N. =4, 5:

and

SU2): Vg ik 5,00 = A;[0.44444 + 0.23388A, + 0.10842A7 +- 0.14311A7)] (3.78)

SUB): Vgyrs,as = Ar[0.38536 + 0170384, + 0.078062A7 + 0.060081A7] (3.79)

SU(4) 75y 1k 5,00 = A7[0.34839 + 0.13875A 7 + 0.059680A7 + 0.38102A7]. (3.80)

SU(4): ¥gy 1R a,at = Ar[0.090090 + (11114 x 107)A; + (16013 x 107%) A + (2.9668 x 1074)A7] (3.81)
(3.82)

SU(S)* Vgyma,as = A7[0.11582 + (17570 x 1072) A, + (2.9243 x 107) A7 + (0.59791 x 107%) A7),
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FIG. 6. Plot of vy, s, A for N.=3 and 1 <p<4 as a
function of Ny. Here, S, dénotes the symmetric rank-2 tensor
representation. From bottom to top, the curves (with colors
online) refer to 7, 1r.s,.4 . (red), Vi IR 55,02 (green), Vi IR.S,.A3

(blue), and YIRS A% (black).

In Fig. 6 we present a plot of y;,, s, 1r. I for G = SU(3),

R =5§,,and 1 < p <4, as a function of N;. We list values
of the VIR.S,.A” with 1 < p <4 for the SU(3) and SU4)
theories with R = S, in Table IV. In both of these theories,
the interval /7 includes the two integer values Ny = 2, 3.
For comparison, we also include the values yg g, ,» for 2 <
n < 4 calculated via the conventional power series expan-
sion to n-loop order and evaluated at @ = ayg ,,» from Table
XI in our previous work, Ref. [19]. As is evident from this
table, for a given N and N, there is reasonable agreement
between the n = 4 loop values YIRS, a8 and yr g, 40 For
example, for SUB) and Ny =2, yrg, 4 = 1.12 while
7IR,SZ,A; = 1.13.

We next compare our calculation of yy,, v s, A to order
p =4 with lattice measurements. A theory of particular
interest is the SU(3) gauge theory with N, =2 flavors of
fermions in the S, representation, and lattice studies of this
theory include [78,79] (see also [22,80]). As indicated in
Table IV, our higher-order scheme-independent results are
VRAY = 0.960, and yx. AL = 1.132, in agreement with our
n-loop results from [19] for this theory, yg 3, = 1.28 and
YiR4¢ = 1.12. The lattice study [78] concluded that this
theory is IR-conformal and obtained yg < 0.45 [78], while

PHYSICAL REVIEW D 95, 105004 (2017)

Ref. [79] concluded that it is not IR-conformal and got an
effective yjg ~ 1 [79]. One hopes that further work by
lattice groups will lead to a consensus concerning whether
this theory is IR-conformal or not and concerning the value
of yr.

Regarding the range of applicability of the A expansion
for these cases, we compute the following ratios of
successive coefficients for the G = SU(3), R = S, case:

5% _ 526176 (3.83)
K25,
25 _ 51826 (3.84)
K35,

and
5% _ 12993, (3.85)
Ky.s,

The first two ratios, (3.83) and (3.84), are slightly larger
than (A) s, = 519/250 = 2.076 in I gy, for this theory.
However, the third ratio is about 40% less than this
maximal value of Afg . This suggests that because of
slow convergence, one must use the Af expansion with
caution in the lower part of the interval Iz, in this theory.

We list values of the VIR A, A7 with 1 < p <4 for the

SU(4) theory with R = A, and N € Iy, for this theory in
Table V. Again, for comparison, we include the values
YIRA,ne fOr 2 <n <4 calculated via the conventional
power series expansion to n-loop order and evaluated at
a = ag ,, from Table XII in our previous work [19]. As
expected, the agreement between the two methods of
calculation is best at the upper end of the interval /rz,
where the IRFP occurs at weak coupling. For example, for
Nf = 9, yIR,A2,A; = 0242, while YIR 4 = 0.232.

It is of interest to consider the N, — oo (LN) limit of
Eq. (3.22) for these theories with R = S, and A,. In this LN
limit, the upper ends of the interval Iz, for the S, and A,
representations approach the same limit, and similarly for
the lower ends:

11

lim N7, == =55 (3.86)

TABLE IV. Values of the anomalous dimension yg s, A7 with 1 < p <4, for G = SU(N,.) with N, =3, 4 and
Ny =2, 3 (so Ny € Igz). For comparison, we also 1nclude values of yg 5, o With 2 <n < 4 for th1s theory from
Table XI in our Ref. [19]. Values that exceed the upper bound yr < 2 are marked as unphysical (u).

N, Ny VIR.S,.2¢ YIRS, 3¢ YIRS, 47 VIR.S,.Af TIR,S,.42 7IR.52,Aj, 7'IR.SZ,A7.
3 2 u 1.28 1.12 0.501 0.789 0.960 1.132
3 3 0.144 0.133 0.133 0.116 0.131 0.133 0.1335
4 2 u u 1.79 0.581 0.966 1.242 1.536
4 3 0.381 0.313 0.315 0.232 0.294 0.312 0.319
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TABLE V. Values of the anomalous dimension VIR A;.A7 calculated to order 1 < p <4, for G = SU(4) and

N € I1gz. For comparison, we also include values of yg 4, ,» With 2 < n < 4 for this theory from Table XII in [19].
! Ay,

Values that exceed the upper bound y;r < 2 are marked as unphysical (u).

N, Ny VIR A, .27 VIR A,.37 VIR A, 47 VIR A,.A, VIR A,.02 VIR A0 VIR 4,8

4 5 u u u 0.5405 0.941 1.287 1.671

4 6 u 1.38 0.293 0.450 0.728 0.928 1.114

4 7 u 0.695 0.435 0.360 0.538 0.641 0.717

4 8 0.802 0.402 0.368 0.270 0.370 0.4135 0.438

4 9 0.331 0.228 0.232 0.180 0.225 0.237 0.242

4 10 0.117 0.101 0.103 0.0901 0.101 0.103 0.103
, 17 lim yrs, = lm yRa,. (3.96)
lim Ny, == =2.125. (3.87) LN LN ’

Hence, in this N. — oo limit, the interval /g, is formally
2.125 < N; < 5.5, including the physical integer values
3< Nf < 5. Similarly, in this limit, the variable Af is given
by Ay = (11/2) = N, and reaches a maximum value, at
Nj = NK.TQ’ of

. 27
lil,f,l(Af)max,Tz =5 = 3.375. (3.88)
This is the N, — oo limit of (3.73).
As with the adjoint representation, we define
kj.Tz = llillgllkj"rz. (389)
We find that
kj-,Sz - k\‘j,Az (390)

From our general expressions for k; 7, with 1 < j <4, we
calculate

2
Rir, = 3 =0.2222 (3.91)
341
61873
Ky, = 26310 =0.016372 (3.93)
and
53389393  23(; B
Ky, = ST 314 310 =0.59186 x 1072, (3.94)
Hence,
lif]\rll YIRS, A7 = lif]\f,l VIR Ay, A7 (3.95)

and, in the limit p — oo,

Thus, for both R =S, and R = A,,

im 75, 10.7,a0 = 470022222 + 005847054,

+0.016372A% + 0.0059186A%]. (3.97)

We observe that for all of the cases we have calculated,
namely 1 < j <4,

k\'j,Tz = 2_jk\'j,adj' (398)

One can understand this relation from the structure of the

relevant group invariants, including the fact that the trace
invariant T(R) satisfies

T 1
lim — 2 =,
N.—oco T 2

(3.99)

adj

We thus infer more generally that the relation (3.98) holds
for all j. In Table VI we list the resultant common values of
VIR.T,.A7 for 1 < p <4 and N; € I\gz in the LN limit. As
noted above, in this LN limit, this interval consists of the
integral values Ny = 3, 4, 5.

Concerning the range of applicability of the A, expan-
sion in this LN limit, we compute the ratios

Rir, 1296

=——=3.8006
Ryp, 341

(3.100)

TABLE VI Values of the anomalous dimension yr,. A7
for T, =8, or T, = A,, calculated to order 1 < p <4, in the
limit N. — oo with Nt € Iy for this limit, namely 3 < Ny <5.

Ny VIRT,.A, VIR.T,.A2 VIR.T,.2 VIR.T,.%
3 0.5555 0.921 1.177 1.408
4 0.333 0.465 0.520 0.550
5 0.111 0.126 0.128 0.128
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Rar, 220968
= =3.5713 3.101
Ryr, 61873 (3.101)
and
K3, _ 160374816
Ry, 53389393 + 3815424¢;
= 2.76624. (3.102)

The first two ratios, (3.100) and (3.101), are slightly greater
than the maximum value (Af),,, r, = 3.375, but the third
ratio, (3.102), is smaller than this maximum value, sug-
gesting that in this limit, for these tensor representations,
because of slow convergence, one must use caution in
applying the A, expansion in the lower part of the interval
I1rz- This is similar to what we found for the S, repre-
sentation in the SU(3) theory.

IV. CALCULATION OF gz TO O(Af)
A. General G and R

The derivative fj is an important physical quantity
characterizing the conformal field theory at ogz. We denote
the gauge field of the theory as Ay (where a is a group
index), the field-strength tensor as Fyj, = 0,A] — 0,A; +
gcu,nAbAC (where ¢y, is the structure constant of the Lie
algebra of G) and the rescaled field-strength tensor
as F¢ F¢,, so that the gauge field kinetic term in

uvr — 98 s
the Lagrangian is £, = —[1/(4¢%)|F¢,  F/*. The trace

PHYSICAL REVIEW D 95, 105004 (2017)
where we use the shorthand notation F? = F¢, F;*.
We denote the anomalous dimension of F2, yz via the
equation [26]

Dp = Dprfree =y =4 —7p (4.3)
and its evaluation at a = ag as yp2 g. From Eq. (4.2), it
follows that at a zero of the beta function away from the
origin, in particular, at arg, the derivative S is equivalent

to the anomalous dimension of the operator F¢ , Fy*":

ﬂfR = ~YF]R- (4~4)

In [13] we calculated the expansion coefficients d; of fip
in Eq. (1.3) to order A;& for general G and R, and to order A}
for the special case G = SU(3) and fermion representation
R = F, the fundamental. Here we calculate the next higher-
order coefficient, namely ds, for general G and R. For this
purpose, we make use of the recent computation of the five-
loop beta function coefficient, b5, in [17]. The computation in
[17] was performed in the MS scheme, so that we can
combine it with the scheme-independent b, and b, [7,8] and
the results for b5 and b, that have also been calculated in the
MS scheme [27,28]. However, we again stress that since the
d, coefficients are scheme-independent, it does not matter
which scheme one uses to calculate them. We first recall our
previous results from Ref. [13]:

anomaly states that the trace of the energy-momentum dy =0, (4.5)
tensor 7% satisfies the relation [81]
p 21
Ho_ a a py dy = ——"— s 4.6
T” - 1677.'02 F/“’»”Fr : (41) 2 32CAD ( )
Therefore, the full scaling dimension of the operator 2173 (5 3
F,, F7", which we denote as D2, satisfies [82] ds — f( Ca+3Cy) (4.7)
’ BCApr '
2p
Dp=4+p ——, 4.2
P +/ p (4.2) and
|
2’1}
dy= “¥ciDs D5 —3CAT7(137445C; 4-103600C; C; +72616C5CF 4-951808C, C; — 63888C)
abcddabcd dabcddabcd abcddabcd
—512077D -4 +90112C,T (D —340736C5D2—F—
A A da
dabcddabcd dabcddabcd dabcddabcd
+8448D [CZ T3(21C5 +12C,Cp—33C%) + 16754 o 104C, T 2 ’ +88C3 T} @} (4.8)

In Ref. [13] we presented the expression for d, with terms written in order of descending powers of C,. It is also useful to
express this coefficient d, in an equivalent form that renders certain factors of D explicit and shows the simple factorization of

terms multiplying {3, and we have done this in Eq. (4.8).
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Here we present our calculation of ds for arbitrary G and R:

24T3

ds = 37 C5 D7

—737283360C3 Cﬁ +730646400C 4 Cfc - 356750592C6) 29T2

%bcd abcd
+29C,T;D )

(43127C5 —28325C,C; —2904C]2c) +15488C3 DR

CAT2 (39450145C% +235108272C3 2Crt 1043817726C% C2 +765293216C3 C3

dabcd abcd
(61 39C2 +2192C,C - 33OOC2)

dubcddabcd
) (29756% +8308C,Cr— 12804C12£)

+2'D[3CAT3D(6272C; —49823C; C;+40656C7 C +13200C, C} +2112C%)

. 24 T2 dabcddabcd
A
dabcddabcd

—-88C3 &R
dy

+2!10.55C,D? |9C,T3D(C4 +2C;)(Cy —Cy) +160T5-4

abcddabcd

—80T;(10C4 +3C;) =k —440C,(C4—3C))

A

We proceed to evaluate these coefficients d; up to j =35,
and hence the derivative fiiz up to O(A3}) below for G =

SU(N,) and several specific representations. The coeffi-
cients d, and d5 are manifestly positive for arbitrary G and

(19516C5 — 18535CACf—21780C2) -23C Tf

(245C3 +62524C,Cy —|—42108C2)]C

dabcddabcd
(182938C2 —297649C,C - 197472C2)

dabcddabcd
dy

dabcddabcd
e

(4.9)

first recall our results from [13] for d; with 2 < j < 4 (and
also recall that d; = 0 for all G and R):

24

R. These signs are indicated in Table VII. We discuss the dr = 32(25N2 - 11)° (4.10)
signs of d, and ds for various representations below.
25(13N2% -3) (411)
/ _ _ = N .
B. ﬁIR,A}‘ for G—SU(NC) and R=F 3.F 3’%NC(25N3 _ 11)2
Here we present the evaluation of our general result (4.9)
for the case G = SU(N,) and R = F. For reference, we  and
|
2¢ 8 6
dyp=— N2 (—366782 + 660000 N2(865400 — 765600
4,F 35N§(25N%—11)5{ c( + C3)+ c( C%)
+ N¥(—1599316 + 2241888¢3) + N2(571516 — 894432¢3) + 3993]. (4.12)

This coefficient can be written equivalently in a form that shows the simple factorization of the terms multiplying {;:

24
33NZ(25N? - 11)3
+ 1056N2(25N2 — 1

dyp=—

1)(25N% —

18N2 + 77)&5).

[(—366782N8 + 865400N® — 1599316N* + 571516N2 + 3993)

(4.13)

In [16] we presented the expression for ds  with terms ordered as descending powers of N .. As with d f, it is also useful
to display this coefficient in an equivalent form that shows the simple factorizations of the terms multiplying {3 and {5:

105004-21



THOMAS A. RYTTOV and ROBERT SHROCK
25
3ON3(25N2 —11)7

dS,F =

PHYSICAL REVIEW D 95, 105004 (2017)

[(—298194551N!? + 414681770N° + 80227411N8

+ 210598856N® — 442678324N* + 129261880N2 + 3716152)
—96(25N% — 11)(176375N 0 — 564526N8 + 1489367N% — 1470392N* + 290620N? + 968)(;

+ 21120N2(25N? — 11)2(40NS — 27N* + 124N? — 209)5).

(4.14)

We have checked that when we set N. = 3 in our general result for ds - in Eq. (4.14), the result agrees with our earlier

calculation of ds  in Eq. (5.20) of Ref. [13].

As observed above, the coefficients d, and d5 are manifestly positive for any G and R. We find that d, r and d;s  are
negative-definite for G = SU(N,) and all physical values of N. > 2. These results are summarized in Table VIL

. . . . . 5
We list below the explicit numerical expressions for fi to order Ay, denoted By

(N).F.A3° for the gauge groups SU(N )

with N. = 2, 3, 4, with fermions in the fundamental representation, to the indicated floating-point precision:

SU(2): ﬁ;R’F’A; = A7[(1.99750 x 1072 + (3.66583 x 107%) A, — (3.57303 x 107*)A% — (2.64908 x 10°)A}]  (4.15)
SUB3): Bier. 5= A7[(0.83074 x 107%) 4 (0.98343 x 1077 A, — (0.46342 x 107*)A7 — (0.56435 x 107°)A7] (4.16)
and

SU(4): ﬂ;R’F,A; = A7[(0.45701 x 1072) + (0.40140 x 107 A, — (0.12938 x 107*)A7 — (0.15498 x 107°)A}].  (4.17)

In Table VIII we list the (scheme-independent) values
that we calculate for ﬁ{R Far With 2 < p <4 for the
LBy

illustrative gauge groups G = SU(2), SU(3), and SU(4),
as functions of N in the respective intervals /g7 given in
Eq. (2.7). For comparison, we list the n-loop values of
P r.ne With the 2 < n < 4 from [13,20], where fig 15, and
Bix r 4, are computed in the MS scheme. Although, for
completeness, we list values of Sy, ,, with N extending
down to the lower end of the respective intervals gy for
each value of N, we caution that in a number of cases,
including N = 6 for SU(2), Ny = 9 for SU(3), and 10 <
N; <12 for SU(4), the corresponding values of ag s
(discussed further below) are too large for the perturbative
n-loop calculations to be applicable. Moreover, since for a
considerable range of values of N, € Iz for each N, the
five-loop beta function S5, calculated via the conventional
power series expansion has no physical IR zero, we restrict
the resultant Sy 1, evaluations to 1 < n <4 loops.

In Figs. 7-9 we plot the values of Sz, calculated to order
A}’ with2 < p <5, for R = F for the gauge groups SU(2),
SU(3), and SU4). In the general calculations of yr as a
series in powers of A, to maximal power p = 3 (i.e., order
A;-) in [12] and, for G = SU(3) and R = F, to maximal
power p = 4 in [14], it was found that, for a fixed value of
N f» OF equivalently, A fs in the interval Iz, these anoma-
lous dimensions increased monotonically as a function of
p. This feature motivated our extrapolation to p = oo in
[12] to obtain estimates for the exact yr. In contrast, here

we find that, for a fixed value of N, or equivalently, A, in
IRz, as a consequence of the fact that different coefficients

d,, do not all have the same sign, |, ,» is not a monotonic
B

function of p. Because of this nonmonotonicity, we do not
attempt to extrapolate our series to p = oo.

A lattice measurement of S has been reported in [83]
for the SU(3) theory with R = F and Ny = 12, namely
Pir = 0.26(2). The earlier higher-order values calculated
in [20] via n-loop expansions in the coupling are
Pir3e = 0.2955 and g 4, = 0.282, which agree with this
lattice measurement. As indicated in Table VIII, our
higher-order scheme-independent values for this theory
are B, .» =0.258, p 0.239, and p, ,s = 0.228.

By -

Given the possible contributions of higher-order terms

/ —
4=
IR,Af

TABLE VIL.  Signs of the d;y coefficients for 2 < j <5 for
gauge group G = SU(N,.) and fermion representations R equal to
F (fundamental), adj (adjoint), S,, and A, (symmetric and
antisymmetric rank-2 tensor). Note that d; = 0 for all G and
R. In the case R = A,, we restrict to N. > 3.

J djr d;.adj djs, dja,

2 + + - +

3 + + - -

4 - + + —forN.=3,4,5
+ for N. > 6

3 - - - -
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TABLE VIII. Scheme-independent values of ﬁ;R par With 2<p <4 for G = SU(2), SU(3), and SU4), as
functions of N in the respective intervals /1gz. For com}garison, we list the n-loop values of S ., With2 < n <5,

where fig ., with n = 3, 4, 5 are computed in the MS scheme. The notation ae-n means a x 107".

Ne Ny

" /
ﬂIR.F.Zf ﬂIR,F,3f,M75

/
2 IR.F 4¢ MS

/ / / /
IR,F.Aﬁ IR,F.A; IR,F,Aj IRA,F.A';

2 6 6.061 1.620 0.975 0.499 0.957 0.734 0.6515
2 7 1.202 0.728 0.677 0.320 0.554 0.463 0.436
2 8 0.400 0.318 0.300 0.180 0.279 0.250 0.243
2 9 0.126 0.115 0.110 0.0799 0.109 0.1035 0.103
2 10 0.0245 0.0239 0.0235 0.0200 0.0236 0.0233 0.0233
3 9 4.167 1.475 1.464 0.467 0.882 0.7355 0.602
3 10 1.523 0.872 0.853 0.351 0.621 0.538 0.473
3 11 0.720 0.517 0.498 0.251 0.415 0.3725 0.344
3 12 0.360 0.2955 0.282 0.168 0.258 0.239 0.228
3 13 0.174 0.1556 0.149 0.102 0.144 0.137 0.134
3 14 0.0737 0.0699 0.0678 0.0519 0.0673 0.0655 0.0649
3 15 0.0227 0.0223 0.0220 0.0187 0.0220 0.0218 0.0217
3 16 2.21e-3 2.20e-3 2.20e-3 2.08e-3 2.20e-3 2.20e-3 2.20e-3
4 11 16.338 2.189 2.189 0.553 1.087 0.898 0.648
4 12 3.756 1.430 1.429 0.457 0.858 0.729 0.574
4 13 1.767 0.965 0.955 0.370 0.663 0.578 0.486
4 14 0.984 0.655 0.639 0.292 0.498 0.445 0.394
4 15 0.581 0.440 0.424 0.224 0.362 0.331 0.3045
4 16 0.348 0.288 0.276 0.1645 0.251 0.234 0.222
4 17 0.204 0.180 0.1725 0.114 0.164 0.156 0.1515
4 18 0.113 0.105 0.101 0.0731 0.0988 0.0955 0.0939
4 19 0.0558 0.0536 0.0522 0.0411 0.0520 0.0509 0.0505
4 20 0.0222 0.0218 0.0215 0.0183 0.0215 0.0213 0.0212
4 21 5.01e-3 4.99¢-3 4.96e-3 4.57e-3 4.97e-3 4.96e-3 4.96e-3
%n the Ay expansign, we /conside.r that opr scheme- @ _ 8.447 for SU (3), (4.18)
independent calculation of fj; to this order is also con- ds
sistent with the lattice measurement from Ref. [83].
To get a rough estimate of the range of accuracy and d3.r =21.221 forSU (3) (4.19)
applicability of the series expansion for f3j; for this R = F |dy | ’
case, we can compute ratios of coefficients, as discussed
before. For the illustrative case of SU(3), we have and
N¢=2, Fundamentals N.=3, Fundamentals
1.0 1.0
0.8 0.8
0.6 0.6
B'r B'r
0.4 0.4
0.2 0.2
0.0% 7 8 9 10 11 000 41 12 13 14 15 16

N

FIG. 7. Plot of f; . ,» (labeled as fz on the vertical axis) for

N.=2and2<p< 5'as a function of Ny € Irz. From bottom

to top, the curves (with colors online) refer to /)’;R r a2 (red),
£y

ﬁ;R. Fal (green), ﬂ;RﬁF’ Al (blue), and ﬂiR,Fﬁ A (black).

N

FIG. 8. Plot of ﬁiR par fOr N =3and 2 < p <5 as a function
of Ny € Igz. From bottom  to top, the curves (with colors
online) refer to ﬁiR.F, A (red), ﬂéR’F. A (green), ﬁiR.F, Al (blue),
and ﬂiR.F, a3 (black).
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10 Ny=4, Fundamentals

0.8
0.6
.B'IR
0.4

0.2

0'012 14 16 18 20 22

Ny

FIG.9. Plot of #, par for No =4and 2 < p <5 as a function
of Ny € Ijrz. From bottom to top, the curves (with colors online)

refer to ﬂ;R, ra: (red), i A (green), ﬂiR, Fad (blue), and ﬂiR, ras
(black).

|dar|
|ds F|

Since N, = 16.5 and N, = 153/19 = 8.053 in this SU(3)
theory, the maximal value of A; in the interval Irz, as
given by (3.16), is

=8.2115 for SU (3). (4.20)

321

5 8.447 for SU(3),

(Af)max = Nf eIIRZ-

(4.21)
Therefore, these ratios suggest that the small-A ; expansion

may be reasonably reliable in most of this interval, Iz and
the associated non-Abelian Coulomb phase.

C. Py s in LNN limit

The appropriately rescaled beta function that is finite in
the LNN limit is

Be ds _ limN, . (4.22)

dt LNN

where & = 4zx = lim; yyaN,. was defined in Eq. (3.21).
This has the series expansion

dé 00 . ©
ﬂ§ = 7 = —871')(; bfxf = —2§; bfff (4.23)
where

(4.24)

and b, = b,/(4r)’. The b, with 1 < Z < 4 were analyzed
in [20,21] and are listed for the reader’s convenience in the
Appendix.

PHYSICAL REVIEW D 95, 105004 (2017)
From the recent calculation of bs in [17], for general G

and R, in the MS scheme [17], we calculate

. 8268479 38851 121
bhe = — =330
5 3888 T 162 2T g s

( 11204369 231619 71

4090
sisa 648 e éVf’)r

3952801 33125, 241, 1630, ,
7776 108 376 47 g &)

5173 1937 20 . 4
+ (‘m‘w% + 784 +?Cs>r

61 52\,
+<%'8_1C3>r

=2050.932 — 2105.880r + 645.7474r2
—26.23097 — 0.646187*.

(4.25)

(In this expression although {, could be expressed explic-
itly as 4 = 7*/90, we leave it in abstract form to be
parallel with the {3 and {5 terms.) We find that this
coefficient 35 is positive throughout the entire asymptoti-
cally free interval 0 < r < 5.5. (Considered formally as a
function of r € R, bs is negative for r < —58.609, positive
for —58.609 < r < 14.336, and negative for r > 14.336,
where the numbers are quoted to the given floating-point
accuracy.)
Since the derivative dff;/d¢ satisfies the relation

v_i_,

&~ da (4.26)

it follows that /8’ is finite in the LNN limit (3.21). In terms
of the variable x defined in Eq. (3.23), we have

pf=-2 f:(f + 1)byx’. (4.27)

=1

Because fjz is scheme-independent and is finite in
the LNN limit, one is motivated to calculate the LNN
limit of the scheme-independent expansion (1.3). For this
purpose, in addition to the rescaled quantities A, defined in
Eq. (3.30), we define the rescaled coefficient

dj,F - [1,1[{/1;\1/ N'édj’F, (428)

which is finite. Then each term
. 4 . AN .
an?v d; p A} = (Nld; ) (N—f> =d; pA} (4.29)

is finite in this limit. Thus, writing lim; v/ as fg ; vy for
this R = F case, we have
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TABLE IX. Scheme-independent values of g, ,, for 2 < p <5 in the LNN limit (3.21) as functions of
r =5.5— A,. For comparison, we also list the n-loop values f ,,, with 2 < n < 5, where B ,,, with n = 3,4, 5 are

computed in the MS scheme. The notation ae-n means a x 107",

r /ﬁR,zf ﬁ;R,3f ﬂ%RAf iR,Ag iR_Ag iR_A-j ;R. AS
2.8 8.100 1.918 1.913 0.518 1.004 0.851 0.583
3.0 3.333 1.376 1.379 0.444 0.830 0.717 0.535
32 1.856 1.006 1.003 0.376 0.676 0.596 0.4755
34 1.153 0.7395 0.729 0.314 0.542 0.486 0.410
3.6 0.752 0.542 0.527 0.257 0.426 0.388 0.342
3.8 0.500 0.393 0.378 0.2055 0.327 0.303 0.276
4.0 0.333 0.279 0.267 0.160 0.243 0.229 0.214
4.2 0.219 0.193 0.184 0.120 0.174 0.166 0.159
4.4 0.139 0.128 0.122 0.0860 0.119 0.115 0.112
4.6 0.0837 0.0792 0.0766 0.0576 0.0756 0.0737 0.0726
4.8 0.0460 0.0445 0.0435 0.0348 0.0433 0.0426 0.0423
5.0 0.0215 0.0212 0.0208 0.0178 0.0209 0.0207 0.0206
5.2 0.714e-2 0.710e-2 0.706e-2 0.640e-2 0.707e-2 0.704e-2 0.704e-3
5.4 0.737e-3 0.736e-3 0.7356e-3 0.7111e-3 0.7358e-3 0.7355e-3 0.7355e-3

Piriny = Z dj.FAj = Z le,FA{. (4.30)
j=1 Jj=1

We denote the value of f; ; vy obtained from this series
p /
calculated to order O(A}) as S v NS

From Egs. (4.5)—(4.8), we find that the approach to the
LNN limits for d ;r involves correction terms that vanish
like 1/N2. This is the same property that was found in
[20,21] and, in the same way, it means that the approach to
the LNN limit for finite N, and N ; with fixed r = N /N is
rather rapid, as discussed in [21]. In [13] we gave the d P
for 1 < n < 4;1in addition to d 1 = 0 (which holds for any G
and R), these are

numerical coefficients in the numerators of terms in
Eq. (4.34) do not, in general, have simple factorizations,
they do contain various powers of 2; for example, in 215‘ F
1444864 = 210 .17 - 83, etc. Thus, numerically, to order
Af, for the LNN limit of this theory with R = F, we have

Birowy = AZ[7.1111 x 1072 + (2.4652 x 1072)A,
— (2.8761 x 107)A2 — (1.8665 x 10-3)A3
+0(A7)], (4.35)

where the coefficients are given to the indicated floating-
point precision. We may again calculate ratios of successive
magnitudes of these coefficients to get a rough estimate of
the range over which the small-A, expansion is reliable in

N 24 this LNN limit. We find
d
. 416 =F — 2885, (4.36)
L= g = 2465185 X 107, (4.32) 3 F
d
and |213’F| — 8571, (4.37)
~ 5868512 5632 +F
p = e S S p = (2.876137 x 1073).  (4.33)
35 . 510 34 . 56 and
Here we give the next higher coefficient: |EZ |
4F| _
. 0542205632 1444864 360448 s (4.38)
dsp =~ 36.54  35.59 €3+35,58§5 ’
= —(1.866490 x 1073). (434) For relgy, the maximal value of A, is

In these equations we have indicated the simple factoriza-
tions of the denominators that were already evident in the
general analytic expressions (4.5)—(4.8). Although the

(A,)max = 75/26 = 2.885. The first two ratios, (4.36)
and (4.37), suggest that the A, expansion for fj; may
be reasonably reliable over a reasonable fraction of the
interval /gy . From the third ratio, (4.38), we infer that the
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expansion is expected to be more accurate in the upper
portion of the interval /gy, than the lower portion.

In Ref. [13] we presented a comparison of these scheme-
independent calculations of Sy ; vy calculated up to the A}
order with the results of conventional n-loop calculations,
denoted B .z ny> cOomputed up to the n = 4 loop order
for which the b, were known at that time. We refer the
reader to [13] for details of this discussion. Here we shall
extend this comparison to the A3 order. In Table IX we list
the numerical values of these conventional n-loop calcu-
lations up to n =4, in comparison with our scheme-
independent results calculated to O(AY) with p up to 5.
(The conventional 4-loop values Sy ,, for some values of r
toward the lower part of /g7 , supersede the corresponding
entries in Table II of [13].) Both B ,, and Sy A use, as
inputs, the coefficients of the beta function up to loop order
n, although P o» does this in a scheme-independent
manner. We see that, especially for r values in the upper
part of the interval /g7 g7 ,, the results are rather close, and,
furthermore, as expected, for a given r, the higher the loop
level n and the truncation order p in the respective
calculations of S ,, in the MS scheme and the scheme-
independent ﬂ;R, AP the better the agreement between these

two results. Toward the lower end of the interval Iz ,, both
the conventional expansion of gz and the scheme-
independent expansion of Sz in powers of A, become
less reliable, and hence it is understandable that the results
differ from each other in this lower part of Iz ,.

D. ﬂ’IR’A; for G=SU(N,) and R =adj
;R,Aj;

Jj =5 in the SU(N,) gauge theory with fermion represen-
tation R = adj. As was discussed above, in this case, the
interval gz contains the single Dirac value, N, = 2. For
this value of N, Eq. (3.60) yields A, = 3/4. We recall that
the d; for 2 < j < 4 are [13]

Here we calculate the d; and hence f for j up to

2\ 4
dyaj = <§> = 0.19753, (4.39)
28
ds 4aj = 37 = 011706, (4.40)
and
46871 2368
d4,adj = 7. 31_2 + W
= 0.022049 + 0.040102N ;2. (4.41)

Here, from our new general result (4.9) for ds, we obtain the
next coefficient for this case of the adjoint representation:

PHYSICAL REVIEW D 95, 105004 (2017)

7141205 5504
Ut = =55 316 T 3m 0

30928 465152 B
(e + e v

= —(0.828739 x 1072) — 0.357173N;2. (4.42)
While the d; ,4; with 2 < j <4 are positive-definite, we
thus find that ds ,,; is negative-definite. These results on
signs are listed in Table VII. In the N. — oo (LN) limit of
Eq. (3.22), the values of d i.aaj can be read off directly from
our general results in Eqs. (4.39)—(4.42); for example,
dyaqj = 46871/(2% - 312), etc.

With these coefficients, one can again compute ratios to
obtain a crude idea of the region over which the small-A,
series expansion is reliable. We have

drgsj 3
— = — = 1.687 4.43
d3,adj 24 ( )
and, taking the large-N, limit for simplicity,

d3 adj 35 : 2]0
— = =5.309 4.44
Nettody g 46871 (444)

dy g 7593102

lim — — =2.6606. (4.45)

Ne=oo|ds .q;] 7141205 — 35665925

Since Ay = 0.75 for N, = 2, these ratios indicate that the
small-A; expansion should be reasonably accurate here.

E. ﬁ/IR,A; for G=SU(N,) and R=S,, A,
Here we present our results for the d; coefficients and

hence ﬂ{R o With j up to 5 for G:'SU(NC) and N
Ay

fermions in the symmetric and antisymmetric rank-2 tensor
representations, S, and A,. As before with y;,, g, Al since

many formulas for these two cases are simply related to
each other by sign reversals in certain terms, it is convenient
to treat these two cases together, denoting them collectively
as T,. We recall that for R = A,, we restrict to N, > 3.

From our general formulas (4.5)-(4.9), we obtain the
following, where the upper and lower signs refer to the S,
and A, special cases of T,, respectively, and F, was
defined in Eq. (3.72):

23(N, +2)?
dyp =—c =2 4.46
2T F, (4.46)
24N, +£2)*(8N2+£3N,. -6
dS,TQ — ( C ) ( C C ) (447)

3N.FL
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(N, £2)
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dy7, = ~—S——"_[(1265517N? + 6305850N® + 8455112N7 F 18825808N¢ — 47225264N?

2 NS

+ 61021088N* + 70598528N3 F 72131840N? + 3066624N,. F 2044416)

+ 8448N2(N,. F 2)(18N2 £ 11N, — 22)(12N3 F 9N? + 308)%;3]

and

(N, +2)*

ds1, = >3 HT
* 2 30N3F],

(4.48)

[(—578437605N' F 2353001022N'? — 1643220810N!! + 1685855300N 0

4 12567177608 N? + 29240054768N8 — 75390007296N7 F 70417381376N® + 243309040128N?
F 27199484928 N* — 228577603584N? + 143780184064N2 — 38053396480N,. & 15221358592)
+27F (125388N!! 4-372762N!0 — 7324047N? F 9682414N8 + 52934332N7 F 12735976N*

— 192234240N? £ 112670976N* + 164609280N? F 111598080N2 + 2973696N, F 1486848)(;

+219.55N2(N,. F 2)F2(F 87N2 + 259N¥ £ 1134N? — 3600N2 F 5016N,. + 10032)(s).

We find that, in addition to the manifestly positive d; 7, , the
coefficient d3 7, is also positive for all relevant N .. Here, by
“relevant N.”, we mean N, > 2 for S, and N, > 3 for A,.
In contrast, while dy g, is positive for all relevant N, we
find that dy 4, is negative for N. = 3, 4, 5, passes through
zero at N. = 5.515, and is positive for N. > 6. Further, we
find that ds g, and ds 4, are both negative for their respective
physical ranges, N. > 2 and N, > 3. These sign properties
are listed in Table VIL

Some general comments are in order concerning these
d;r, expressions. These are analogous to the comments
that we made for the «; 7, coefficients. The property that
all of the d; 4, coefficients contain an overall factor of
(N, —2) (possibly raised to a power higher than 1), and
hence vanish for N, = 2, is a consequence of the fact that
for N. = 2, the A, representation is a singlet, so for SU(2),
fermions in the A, = singlet representation have no gauge
interactions and do not contribute to the beta function
or fig.

Furthermore, if N. = 2, then the S, representation is the
same as the adjoint representation, so the coefficients must
satisfy the equality d; 5, = d; ,4; for this SU(2) case, and
we have checked that they do. This equality requires (i) that
the term proportional to {3 in d4g, must be absent if
N. =2, since d, ,4; does not contain any {3 term, and this
is accomplished by the factor of (N, — 2) multiplying the
{3 term in dy g, ; and (ii) the term proportional to {5 in ds
must be absent if N. = 2, since ds ,4; does not contain any
{5 term, and this is accomplished by the factor (N. — 2)
multiplying this {5 term in dsg,. Similarly, as observed
before, if N, = 3, then the A, representation is the same as
the conjugate fundamental representation, F, so the

(4.49)

coefficients must satisfy the equality d; 4, = d; p for this
SU(3) case, and we have checked that they do.

In the LN limit (3.22), as discussed above in the case of
the anomalous dimension yg r,, the upper ends of the
interval Iz for the S, and A, theories approach the same
value, N, r,, given in Eq. (3.86), and similarly the lower
ends of this interval for these S, and A, theories approach
the same value, N, 7,, given in Eq. (3.87). We denote

d] T, — liI]{ll dj,Tz’ (450)
and we find
21]-,52 == A]A7, (451)

which we denote simply as d .r,- Hence,

: / — 15 /
lgg} Prs, = lilg} Prra,- (4.52)

Further, again in analogy with Eq. (3.98) and for the
same reasons concerning group invariants in the LN limit,
we have

A~

dir, =277d; 4. (4.53)
From our general expressions, we calculate
N 22
dyr, = o = 0.049383 (4.54)
N 25
dyr, = 7 = 1.46319 x 1072 (4.55)
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~ 46871
4.7, = 26—312 = 1.37806 x 1073 (4,56)
and
~ 7141205 172
5*T2:_28X316 W 3
= —(2.58981 X 10_4). (4.57)

To estimate the region over which the A, expansion

converges, we calculate the ratios of adjacent coefficients.
We have

3N.(18N? £ 11N, —22)
= E (4.58)
(N, +2)(8N%2 + 3N, —6)

dor,

dsr,

and similarly for the ratios d;_, ,/d; r, for j = 4, 5. For the
LN limit,

d 3
2 <§> =3.375 (4.59)
dyr, 2
dyr, 497664
e AR = 10.618 4.60
dyr, 46871 (4.60)
and
d
2D — 5321, (4.61)
|d5,72|
Since formally, (A),, =3.375 from Eq. (3.88)

and Ay =55 for Ny=2, these ratios indicate that
the A, expansion for the LN limit of this R =T, case
should be reasonably accurate in the interval Iz; for
this case.

V. IR ZERO OF g, IN THE LNN LIMIT

In this section we analyze the zeros of the rescaled five-
loop beta function in the LNN limit. This elucidates further
the result that we first found for a finite value of N, namely
N. =3, 1in [15], that for SU(3), the five-loop beta function
only has a physical IR zero in the upper range of the
interval /1gz. We denote the n-loop rescaled beta function
(4.22) in this LNN limit as f ., and its IR zero (if such a
zero exists) as &g ,» = 47xR ;. The analytic expressions
of &Ry and &3, were given in [21], together with
numerical values of & ,» for 1 < n < 4. Here we extend

these results to the five-loop level, using the coefficient 135
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in Eq. (4.25). As noted before, we use the l;n with 3 <
n < 5 calculated in the MS scheme. The reader is referred
to [21] for analysis of these zeros up to the four-loop level.

In general, the IR zero of the n-loop beta function, f; .,
is the positive real root closest to the origin (if such a root
exists) of the equation

(5.1)

n
E bfxf_l = 0,
=1

of degree n — 1 in the variable x. The roots of Eq. (5.1)
depend on the n—1 ratios b,/b, for 2<Z<n. In
particular, at the five-loop level, Eq. (5.1) is the quartic
equation

l;l + l;zx + 23X2 + lA)4x3 + lA)5x4 = 0 (52)

To analyze the roots of this equation, it is natural to start
with r in the vicinity of r, = 11/2, where b, — 0 and
hence one solution of Eq. (5.2) approaches zero, matching
the behavior of xg ,, for 2 <n <4 in this limit. As we
reduce r from the value r, in the interval /g ., we can thus
calculate how the physical IR root, x5, = &rse/(47),
changes. We find that, in contrast to the behavior of the IR
zero of the lower-loop beta functions f; ,, with 2 < n < 4,
here at the five-loop level, as r decreases past a certain value
Feer Eq. (5.2) (with b,, n =3, 4, 5 calculated in the MS
scheme) ceases to have a physical IR zero. We find that the
value of r., is

ro = 4.32264, (5.3)

TABLE X. Values of the IR zero &g .0 of the f3¢ ,» function in
the LNN limit for 2 < n < 5 and r € I,. Notation u (unphysical)
means that there is no physical IR zero £k 5. of the 5-loop beta
function.

r Eir o Eir3e ERae SR 5e
2.8 28.274 3.573 3.323 u
3.0 12.566 2.938 2.868 u
3.2 7.606 2.458 2.494 u
3.4 5.174 2.076 2.168 u
3.6 3.731 1.759 1.873 u
3.8 2.774 1.489 1.601 u
4.0 2.095 1.252 1.349 u
4.2 1.586 1.041 1.115 u
4.4 1.192 0.8490 0.9003 1.0353
4.6 0.8767 0.6725 0.7038 0.7439
4.8 0.6195 0.5083 0.5244 0.5364
5.0 0.4054 0.3538 0.3603 0.3630
5.2 0.2244 0.2074 0.2089 0.2093
5.4 0.06943 0.06769 0.06775 0.06776
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to the indicated floating-point accuracy. This is deter-
mined as the relevant root of the discriminant of Eq. (5.2),
which is a polynomial of degree 15 in the variable r. (The
discriminants of the corresponding equations at loop
levels 3 and 4 are polynomials of degree 3 and 8 in r.)
For example, for the illustrative value r = 5, near to the
upper end of the interval /1y ., Eq. (5.2) has the solutions
in x, expressed in terms of & =4zxx: &= 0.36300,
1.69540, and —1.48884 + 1.08446i. Of these, we identify
the first as the IR zero, &rs,. As r decreases and
approaches r., from above, the two real roots approach
a common value, £ = 1.312 and as r decreases below r_,,
Eq. (5.2) has only two complex-conjugate pairs of
solutions, roots, but no real positive solution. In
Table X we list our new results for &g 5., in comparison
with the previously calculated values of &g ,,» in the LNN
limit with 2 < n <4 from Table III of [21]. Although we
list &g ,, values extending to the lower part of the interval
I'rz., for completeness, it is clear that a number of these
values are too large for the perturbative calculations to be
reliable. For values of r where the five-loop beta function
(calculated in the MS scheme) has no physical IR zero, we
denote this as unphysical (u).

We note that the absence of a physical IR zero in the five-
loop beta function (calculated in the MS scheme) for N 7
values in the lower portion of the interval /gy does not
necessarily imply that higher-loop calculations would yield
similarly unphysical results. We gave an example of this in
Sec. VIII of the second paper in [38], using an illustra-
tive exact beta function. In this example, it was shown
that a certain order of truncation of the Taylor series
expansion in powers of a for this beta function did not
yield any physical IR zero, but higher orders did converge
toward this zero.

VI. A; EXPANSION FOR a1z TO O(A}‘)
A. General G and R

Since the exact agr (and also the n-loop approximation to
this exact ag) vanishes as functions of A, it follows that

PHYSICAL REVIEW D 95, 105004 (2017)

one can expand it as a power series in this variable.
This expansion was given above as Eq. (2.9), and it was
noted that the calculation of the coefficient a; requires, as
input, the Z-loop beta function coefficients b, with
1 <Z<j+ 1. We denote the truncation of this infinite
series (2.9) to maximal power j = p as ap AL Here we

present a calculation of this series to O(Aj‘,), which is the
highest order to which it has been calculated. Since agg is
scheme-dependent, it follows that the a; coefficients in
Eq. (2.9) are also scheme-dependent, in contrast to the
scheme-independent coefficients k; and d; in Egs. (1.2) and
(1.3). Nevertheless, it is still worthwhile to calculate these
coefficients a; and the resultant finite-order approximations
AR AL> for several reasons. First, this method has the

advantage that R.A7 is always physical and thus avoids

the problem that we found in [15] and have further studied
above, that the five-loop beta function calculated in the MS
scheme does not have a physical IR zero in the lower part of
the interval Izz. In [14], for the special case G = SU(3)
and R=F, we presented the a; (denoted a; there)
for1 <j<4.

Here, as a new result, we present the expressions for the
a; for arbitrary G and R, for 1 < j < 4. For this purpose, we
use the n-loop beta function coefficients b, with3 <n <5
calculated in the MS scheme. In particular, our result for a,
makes use of the recently calculated five-loop beta function
for general G and R [17].

For general G and R, recalling the definition of the

denominator factor D =7C4 + 11C; in Eq. (3.1),
we find

4T,
S/

= 6.1

T3¢0 (6.1)

272%(=287C% + 1208C,C; + 924C>
ay = HCTCA DBCG 4G ()

3$c2p3

2Tf 2 4 3 2 2 3 4
“ = 35 ps {CATJ-(—71491CA +372680C3 C; + 2102252C5 C2 + 835560C, C} + 836352C%)
abced jabed dabcd abcd dabcddabcd
—2560T3D —4—-A—+45056C, T ;D —-—4— - 170368C5T D L—F—
: dy d dy
dabcddabcd abcddabcd dabcdd?ebcd

+4224D {3c§T§.D(CA ~Cy) + 1674

and

A TA 104C, TR
d ATS

IR TA L g8C2 IR TR 6.3
4, +383C% 4, 3 (6.3)
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T2

a, = CAT%(194849725C2 - 684457480C3Cf + 4175949036Cf‘C§- + 13292017040C3C}

f
2.3'C3D’
+2617931536C5 C} + 8758858944C, C; + 85865472C%)

duhcddubcd
+2°7%D T(2128702 5504C,4Cy — 19140C7)

dalnddabcd
+ ZIOCATfDT( 194005C2 +253231C4Cy + 136488C2)

5 2 dabcddubcd ) )
+2°-11°C4 T(917CA—40412CACf+26796Cf)

- 23O4D[CATJ%D(15456C;“ - 75039Cin + 45716C§C§ + 23848CAC3 +21 12Cj,)

5 dabcd abed ) 5 dabcd abcd 5 5
+ 16T 7(8610C —15037C,C; — 14036C ) SCATfi (95984C; — 190355C,Cy — 135036C )
da da /

dabcddabcd

+ 88C% % (3199C% — 26004C,Cy — 17908C%)]¢5
A

dabcddabcd
+337920C, D? | -9C,T3D(C, — C7)(Cy +2C5) — 16072 4 7
dabcddabcd dabcddabcd
+ 80T (10C, + 3C;) =& T +440C,4(C4 —3Cy) %] 55] :
A A

(6.4)

We next specialize to the case G = SU(N,.) and give explicit reductions of these general formulas for the representations of

interest here.

B.R=F

For R = F, our general results (6.1)—(6.4) reduce to the following expressions:

4
LT 305N2 — 11)

4(548N* — 1066N? + 231)

CF =TSN (25N - 1)
23
= 730529N8 — 1105385N8 — 719758 N4 + 389235N?2 + 52272
as p 35N%(25N%— 11)5 [( c c e+ ¢t )
+ 1584N2(25N2 — 11)(25N* — 18N2 + 77);5)
and
22
agp = 5 [(2783259085N 2 — 7278665930N 0 + 4578046419N8 — 1719569282N¢

3’N3(25N2 - 11)
+2905511455N% — 1137735654N2 + 1341643)

+ 288(25N2 — 11)(548025N10 — 1857036N8 + 4694107NC — 5482510N* + 1098130N2 + 2904)( 5

— 190080N2(25N2 — 11)2(40NS — 27N* + 124N? — 209)(5].

(6.8)

We have checked that setting N. = 3 in our new a4 coefficient in Eq. (6.8) yields agreement with the value that we obtained

previously for this special case in [Eq. (14) of] Ref. [14].

We comment next on the signs of these coefficients. The coefficient a; is manifestly positive for arbitrary group G and
fermion representation R. We find that a, r and a5 j are also positive for all physical N. > 2. In contrast, we find that a, f is
negative for N. = 2 and positive for N. > 3. With N. generalized from positive integers to positive real numbers in the
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range N, > 2, we calculate that as N, increases through the value N. = 2.1184 (given to the indicated accuracy), a4

passes through zero with positive slope.

We list below the explicit numerical expressions for ag to order A%, for N, =2, 3,4 and R = F, given to the indicated

floating-point precision:

SU(2): amgrat = A[(0.18826 + (0.62521 x 1072)A; + (0.70548 x 1072)A7 — (0.45387 x 107)A3]

SU(3): ag pas = Af[(0.078295 + (2.2178 x 107)A, + (1.1314 x 107) A7 + (2.1932 x 107°) A}

and

SUM4): amgrat = Ar[(0:043072 + (0.97619 x 107) A + (0.33823 x 107)A% + (0.71999 x 107%)A3).

In Figs. 10-12 we show IR F.A” for N, =2, 3, 4 and

1 < p <4 as a function of N;. Note that in Fig. 10 the
curves for p =3 and p = 4 are so close as to be indis-
tinguishable for this range of N.

In Table XI we compare the values of the IR zero of the
n-loop beta function for 1 <n <4 from [19] with our
values of AR F.A” forl < p<4and N, = 2,3,4. Since the
calculation of o ,, uses the Z-loop beta function coef-
ficients b, with 1 <7 < n, while the calculation of ag_ A?
uses the b, for 1 < < p + 1, the closest comparison is of
aR.ne With R A2t which both use n-loop information
from the beta function. Although, for completeness, we
include values of ag », for N, extending down to the lower
end of the respective intervals Iz for each value of N, we
caution that in a number of cases, including Ny = 6 for
SU2), Ny =9 for SU(3), and 10 < N, < 12 for SU4),
these values of g, are too large for the perturbative

N,=2, Fundamentals

1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

Ny

FIG. 10. Plot of a ra» (denoted as ag on the vertical axis)
with 1 < p <4forG = §U(2), as functions of N € Irz. From
bottom to top, the curves (with colors online) refer to am r.a,
(red), aR . a2 (green), ag r. A (blue), and ag . At (black). Note
that the curves for AR .o and R at are SO close as to be

indistinguishable in this ﬁgure.

(6.9)

(6.10)

(6.11)

N.=3, Fundamentals

1.4
1.2
1.0
AR 0.8
0.6
0.4
0.2

0.0

9 10 11 12 13 14 15 16
N

FIG. 11. Plot of ag par with 1 < p <4 for G = SU(3), as
functions of Ny € I\gz. From bottom to top, the curves (with
colors online) refer to ag ra, (red), AR F.A2 (green), ap . A

(blue), and apg f. At (black).

N;=4, Fundamentals

1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

12 14 16 18 20 22
N

FIG. 12. Plot of ag par with 1 < p <4 for G = SU(4), as
functions of N; € Ijrz. From bottom to top, the curves (with
colors online) refer to ag ra, (red), AR F.A2 (green), ap f. IS

(blue), and apg . At (black).
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Values of AR.A? with1 < p <4forN.=2,3,4and R = F, as functions of Ny € Igyz, together with

ar 2 and MS values of n-loop ag ,» with 3 < n <4 from [19], for comparison.

N, Ny QAR 27 QAR 3¢ QAR 47 QIR A, AR A2 AR A2 iR A%
2 6 11.42 1.645 2.395 0.941 1.098 1.979 1.951
2 7 2.83 1.05 1.21 0.753 0.853 1.305 1.293
2 8 1.26 0.688 0.760 0.565 0.621 0.8115 0.808
2 9 0.595 0.418 0.444 0.377 0.402 0.458 0.457
2 10 0.231 0.196 0.200 0.188 0.1945 0.202 0.2015
3 9 5.24 1.028 1.072 0.587 0.712 1.19 1.26
3 10 2.21 0.764 0.815 0.509 0.603 0.913 0.952
3 11 1.23 0.578 0.626 0.431 0.498 0.686 0.706
3 12 0.754 0.435 0.470 0.352 0.397 0.500 0.509
3 13 0.468 0.317 0.337 0.274 0.301 0.350 0.353
3 14 0.278 0.215 0.224 0.196 0.210 0.227 0.228
3 15 0.143 0.123 0.126 0.117 0.122 0.126 0.126
3 16 0.0416 0.0397 0.0398 0.0391 0.0397 0.0398 0.0398
4 11 14.00 0.972 0.943 0.474 0.592 1.042 1.1475
4 12 3.54 0.754 0.759 0.431 0.528 0.867 0.939
4 13 1.85 0.6035 0.628 0.388 0.467 0.713 0.7605
4 14 1.16 0.489 0.521 0.345 0.407 0.580 0.610
4 15 0.783 0.397 0.428 0.3015 0.349 0.465 0.483
4 16 0.546 0.320 0.345 0.258 0.294 0.367 0.376
4 17 0.384 0.254 0.271 0.215 0.240 0.282 0.2865
4 18 0.266 0.194 0.205 0.172 0.188 0.210 0.211
4 19 0.175 0.140 0.145 0.129 0.138 0.147 0.148
4 20 0.105 0.091 0.092 0.0861 0.09005 0.0928 0.0929
4 21 0.0472 0.044 0.044 0.0431 0.04405 0.0444 0.0444

n-loop calculations to be reliable. Concerning the com- 5844232 1408

parison of the higher-order n-loop values of ag ,» withour a3 = 35510 + .56 {3 = 0.647460 x 1072 (6.16)

values of ag f. a7 We see that for a given N, and N, at the

upper end of the non-Abelian Coulomb phase, the values of ~ and

ag a1 and apg . are quite close to each other, but as N,

decréases in this NACP in the interval [ o _ 2226607268 | 935296 45056

RZ> R A7~ dgp = 37503 + 34510 {3 — 3. 58 {s
becomes slightly larger than apg .. — 0778770 x 10-3. (6.17)

In the LNN limit, for the IR zero of the rescaled beta
function, we write

Er =47 Y a;pAl  (LNNlimit),  (6.12)
=1
where
&j,F = P]{/I[%/Nlé+laj’1:' (613)
From our results for a; , we calculate
airp = = 0.053333 6.14
a|r 3.52 ( )
2192
a ————=10.519585 x 1072 (6.15)

o F = 33 . 56

Thus, in the LNN limit, the expansion of &g, to O(A%) is

Epas = 47A,[0.053333 + (0.519585 x 1072)A,
+ (0.647460 x 1072)A2 + (0.778770 x 1073)A}].
(6.18)

C. R =adj

For R = adj, our general results (6.1)—(6.4) reduce to the
following expressions:

2 0.074747
Madj = 35 T TN (6.19)
205 0.023434
Gat) =353 =N (6.20)
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49129 296
Badj =55 3TN T 3IN3

~0.017333 0.015038

N N (6.21)
and
38811689 40 1
Uadj =\ 5 355 "3 | N
3157 25616 1
- 313 312 3 ﬁ
0.0081230 0.055960
= 6.22
N. + N3 (6.22)

The coefficients a;,,; with j=1, 2, 4 are manifestly
positive, and we find that a3 ,4; is also positive forall N . > 2.

Since for the adjoint representation, R = adj, the upper
and lower boundaries of the interval I\gz, N, r, = 11/2 in
Eq. (3.58)and N, ,4; = 17/16in (3.59), are independent of
Ny, it follows that Ar = N, — N/ is also independent of
N.. From the general formula (2.9), in the LN limit of a
theory with fermions in a two-index representation R,,
including the adjoint and symmetric and antisymmetric
tensors, we can write

[Se]

PHYSICAL REVIEW D 95, 105004 (2017)

&stz = 1li‘r1\I/1NCaj!R2. (624)

From our calculations above, setting R, = adj, we have

ay qqj = % = 0.074747 (6.25)
Ay qaj = % = 0.023434 (6.26)
a3 44 = ;L;gl =0.017333 (6.27)
and
A4 gaj = % - §_8C3 = 0.0081230. (6.28)
D.R=S,, A,

For R equal to the symmetric or antisymmetric rank-2
tensor representations, S, and A,, we give the reductions of
our general results (6.1)—(6.4) next. As before, it is
convenient to consider these together, since many terms
differ only by sign reversal. As above, the upper and lower
signs refer to the S, and A, representations, respectively.
Also, as before, for A,, we require that N. > 3. Recalling
the definition of the denominator factor F in Eq. (3.72),

Er = 47 2 a; g, A% (LN limit), (623) e have
j:
2(N.+2)
ayp, =————= 6.29
where 1T, 3F. ( )
|
(N, £2)*(1845N? 4+ 3056N? — 5188N?%  3696N, + 3696)
aquz = 3 3 (630)
2-3°N.F-
N,.+2)?
asr, = 267) [(3979449N? + 16999002N8 + 761444N] F 52233472N° — 3099440N?
T2 T 52 NI
+ 11578144N% — 16368000N?3 4 36440448N?2 — 40144896N . & 26763264)
F 12672N%(N. F 2)F. (12N? F 9N2 + 308)¢5] (6.31)
and

(N, £2)}

a. = —
“ 25 3INIF

[(28293721281N"* 4 156860406306N % + 13832572748N!! F 547968555432N 0

— 929147053664N° -+ 428226859968 N8 + 2279581786496N & 586028410624NC — 4633121830656N°
+ 143588589056N* + 4686268342272N3 F 2321839534080N2 — 27476951040N,. £ 10990780416)

— 2304F, (131220N!! & 695898N10 — 6916683N° F 10687114N8 + 60333108N7 F 12100440N°®
—239418432N3 4 140804928N* + 208053120N3 F 140560640N2 + 2973696N, F 1486848)(;

+ 1013760N2(N, F 2)F2 (+87N5 — 259N* F 1134N3 + 3600N2 + 5016N, — 10032)(s].
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The same general comments that we made before
concerning factors in the k; 7, and d;r, coefficients also
apply here. Thus, for arbitrary j, the a;,, coefficients
contain at least one overall factor of (N, —2) and hence
vanish for N, = 2, as a result of the fact that for N, = 2, the
A, representation is a singlet, so for SU(2), fermions in
the A, = singlet representation are free fields and hence
make no contribution to the beta function. Moreover,
if N. =2, then the S, representation is the same as the
adjoint representation, so the a; coefficients must satisty
the equality a; g, = a; ,4; for this SU(2) case, and we have
checked that they do. Similarly, if N, = 3, then the A,
representation is the same as the conjugate fundamental
representation, F, so these coefficients must satisfy the
equality a;,, = a;p for this SU(3) case, and we have
checked that they do.

We next consider the LN limit of the theory with
fermions in the S, or A, representations. Using the
definition (6.24) with R, = §, and R, = A,, we find that

a5, =a; (6.33)

so we denote these simply as a; r,. In general, for the same
group-theoretical reasons as led to the LN relation k; 7, =
27/R; 4q; in Eq. (3.98) and the LN relation d; 7, = 27/d; ,4;
in Eq. (4.53), we have, in the LN limit,

aj.’rz — 2_j&j,adj‘ (634)
Explicitly, we calculate
N 1
ayr, = 7= 0.05333 (6.35)
205
arr, = 3= 0.58585 x 1072 (6.36)
49129
asr, = 27—311 =2.16668 x 1073 (6.37)
and
38811689 5 _
a4,T2 = 212 . 315 - 2 ] 39 C:‘, - 050769 X 10 3. (638)

VII. CONCLUSIONS

In conclusion, in this paper we have presented a number
of new results on scheme-independent calculations of
various quantities in an asymptotically free vectorial gauge
theory having an IR zero of the beta function. We have
presented scheme-independent series expansions of the
anomalous dimension y;,, g to 0(A4f) and the derivative

of the beta function, fg, to O(A}) for a theory with a
general gauge group G and N, fermions in a representation

PHYSICAL REVIEW D 95, 105004 (2017)

R of G. We have given reductions of our general formulas
for theories with G = SU(N,.) and R equal to the funda-
mental, adjoint, and symmetric and antisymmetric rank-2
tensor representations. We have compared our scheme-
independent calculations of y;, r and fi with previous
n-loop values of these quantities calculated via series
expansions in powers of the coupling. For a number of
specific theories we have also compared our new scheme-
independent calculations of y;, g and f with lattice
measurements. We have shown that for all of the repre-
sentations we have studied, and for the fullrange | < p <4
for which we have performed calculations, yg, r calcu-
lated to O(Aﬁ), denoted y;,, Ir. Al increases monotonically

with decreasing N r (i.e., increasing Af) and, for a fixed Nf,
Vi IR.ALS increases monotonically with the order p. For the

representation R = F, we have presented results for the
limit N, — co and Ny — oo with N;/N. fixed. These
higher-order results have been applied to obtain estimates
of the lower end of the (IR-conformal) non-Abelian
Coulomb phase. We have confirmed and extended our
earlier finding that our expansions in powers of A, should
be reasonably accurate throughout a substantial portion of
the non-Abelian Coulomb phase. We have also given
expansions for app calculated to O(A‘}) which provide a
useful complementary approach to calculating ar. Our
scheme-independent calculations of physical quantities at a
conformal IR fixed point yield new information about the
properties of a conformal field theory.
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APPENDIX: SERIES COEFFICIENTS
FOR ¢ AND y;, IN THE LNN LIMIT

For reference, we list here the rescaled series coefficients
for ; and yy,, in the LNN limit (3.21). From the (scheme-
independent) one-loop and two-loop coefficients in the beta

function [7,8], it follows that in the LNN limit the l;f with
£=1,2 are

A 1
bl 25(11—27‘)

= 3.667 — 0.667r (A1)
and
b, = % (34— 13r)
= 11.333 — 4.333r. (A2)
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The coefficients by and b, have been calculated in the MS

scheme [27,28]. With these inputs, one has [21]

.1
by = = (2857~ 1700r 4 1127?)
— 52.907 — 31.648r + 2.0747> (A3)
and
(1573 44, 485513 20,
4= \T486 "9 %3 1944 "9 °3)"
%_8$4+%£ L (130)
243 3 243)"
= 315.492 — 2524217 + 46.832r2 + 0.53501.  (A4)

The behavior of these coefficients lAa,g as functions of r was
discussed in [21] for 1 < Z < 4. The positivity of 131 is
equivalent to the asymptotic freedom of the theory, and
requires r to lie in the interval 0 < r < 11/2. The existence
of an IR zero in the two-loop beta function is equivalent to
the condition that 132 < 0, which, in turn, is equivalent to

PHYSICAL REVIEW D 95, 105004 (2017)

the condition that r € I}y, as given in Eq. (3.28). In this
interval, by is negative-definite, while b, is negative for
2.615 < r < 3.119 and positive for 3.119 < r < 5.5 [21].

For the coefficients ¢, in Eq. (3.33), from [31] and
references therein, one has [21]

6’1:3, (AS)
203 5
&y =" —Cr, A6
(&) 23 (A6)
11413 (1177 35
&y = + 12 - A
<708 (54 49? 5 @A)
and
460151 23816 899 , 83 |
= —rt—r =7
“T 756 sl 162" 81
1157 889
+ (T—Tr 20" +—7>C3
+ (66 — 12r)C4 + (=220 + 160r){s. (A8)

[1] Some early discussions of the renormalization group in
quantum field theory include E. C. G. Stueckelberg and A.
Peterman, Helv. Phys. Acta 26, 499 (1953); M. Gell-Mann
and F. Low, Phys. Rev. 95, 1300 (1954); N. N. Bogolubov
and D.V. Shirkov, Dokl. Akad. Nauk SSSR 103, 391
(1955); C.G. Callan, Phys. Rev. D 2, 1541 (1970); K.
Symanzik, Commun. Math. Phys. 18, 227 (1970); K.
Wilson, Phys. Rev. D 3, 1818 (1971).

[2] Some early analyses of connections between scale and
conformal invariance include A. Salam, Ann. Phys. (N.Y.)
53, 174 (1969); A. M. Polyakov, JETP Lett. 12, 381 (1970);
D.J. Gross and J. Wess, Phys. Rev. D 2, 753 (1970); C.G.
Callan, S. Coleman, and R. Jackiw, Ann. Phys. (N.Y.) 59, 42
(1970); More recent works include J. Polchinski, Nucl. Phys.
B303, 226 (1988); J.-F. Fortin, B. Grinstein, and A. Stergiou,
J. High Energy Phys. 01 (2013) 184; A. Dymarsky, Z
Komargodski, A. Schwimmer, and S. Thiessen, J. High
Energy Phys. 10 (2015) 171 and references therein.

[3] Note that our assumption that the fermions are massless
does not produce any loss of generality since if a fermion
had a nonzero mass m,, it would be integrated out of the
low-energy effective field theory at scales u < mg, and
hence would not affect the IR limit 4 — O under consid-
eration here.

Fully nonperturbative evidence for the non-Abelian Cou-

lomb phase comes from lattice simulations, as discussed

below. Furthermore, in the case where G = SU(N,.) and the
fermions are in the fundamental representation, one can take
the limit in Eq. (3.21), namely N, — oo and Ny — oo with

[4

—_

r=Ny/N, fixed and finite. In this case, ajr can be made
arbitrarily small so that strength of the gauge coupling at the
IR fixed point approaches arbitrarily close to zero.

[5] D.J. Gross, in Methods in Field Theory, Les Houches 1975,
edited by R. Balian and J. Zinn-Justin (North Holland,
Amsterdam, 1976), p. 141.

[6] The Casimir invariants C,(R) and T(R) are
defined as >, > Dg(T,);;Dr(T,)jx = C2(R)d; and
> Pr(Ta);jDr(Tp) ;i = T(R)S4p, Where R is the repre-
sentation, T, are the generators of G, normalized according
to Tr(T,T,) = (1/2)8,, and Dy, is the matrix representation
(Darstellung) of R. For the adjoint representation, we denote

C,(adj) = C,, and for fermions transforming according
to the representation R, we denote C,(R)=C, and
T(R)=T

[7]1 D.J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343
(1973); H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973);
G. 't Hooft (unpublished).

[8] W.E. Caswell, Phys. Rev. Lett. 33, 244 (1974); D.R. T.
Jones, Nucl. Phys. B75, 531 (1974).

[9] D.J. Gross and F. Wilczek, Phys. Rev. D 8, 3633 (1973).
[10] T. Banks and A. Zaks, Nucl. Phys. B196, 189 (1982).
[11] G. Grunberg, Phys. Rev. D 46, 2228 (1992).

[12] T. A. Ryttov, Phys. Rev. Lett. 117, 071601 (2016). Our
b, =2°B,_, in this paper.

[13] T. A. Ryttov and R. Shrock, Phys. Rev. D 94, 125005 (2016).

[14] T. A. Ryttov and R. Shrock, Phys. Rev. D 94, 105014
(2016).

105004-35


https://doi.org/10.1103/PhysRev.95.1300
https://doi.org/10.1103/PhysRevD.2.1541
https://doi.org/10.1007/BF01649434
https://doi.org/10.1103/PhysRevD.3.1818
https://doi.org/10.1016/0003-4916(69)90278-4
https://doi.org/10.1016/0003-4916(69)90278-4
https://doi.org/10.1103/PhysRevD.2.753
https://doi.org/10.1016/0003-4916(70)90394-5
https://doi.org/10.1016/0003-4916(70)90394-5
https://doi.org/10.1016/0550-3213(88)90179-4
https://doi.org/10.1016/0550-3213(88)90179-4
https://doi.org/10.1007/JHEP01(2013)184
https://doi.org/10.1007/JHEP10(2015)171
https://doi.org/10.1007/JHEP10(2015)171
https://doi.org/10.1103/PhysRevLett.30.1343
https://doi.org/10.1103/PhysRevLett.30.1343
https://doi.org/10.1103/PhysRevLett.30.1346
https://doi.org/10.1103/PhysRevLett.33.244
https://doi.org/10.1016/0550-3213(74)90093-5
https://doi.org/10.1103/PhysRevD.8.3633
https://doi.org/10.1016/0550-3213(82)90035-9
https://doi.org/10.1103/PhysRevD.46.2228
https://doi.org/10.1103/PhysRevLett.117.071601
https://doi.org/10.1103/PhysRevD.94.125005
https://doi.org/10.1103/PhysRevD.94.105014
https://doi.org/10.1103/PhysRevD.94.105014

THOMAS A. RYTTOV and ROBERT SHROCK

[15] T. A. Ryttov and R. Shrock, Phys. Rev. D 94, 105015
(2016).

[16] T. A. Ryttov and R. Shrock, Phys. Rev. D 95, 085012
(2017).

[17] F. Herzog, B. Ruijl, T. Ueda, J. A. M. Vermaseren, and A.
Vogt, J. High Energy Phys. 02 (2017) 090. Our b, = f,_; in
this paper.

[18] P. A. Baikov, K. G. Chetyrkin, and J. H. Kiihn, Phys. Rev.
Lett. 118, 082002 (2017). Our b, = 4°f3,_, in this paper.

[19] T. A. Ryttov and R. Shrock, Phys. Rev. D 83, 056011
(2011).

[20] R. Shrock, Phys. Rev. D 87, 105005 (2013).

[21] R. Shrock, Phys. Rev. D 87, 116007 (2013).

[22] See, e.g., talks in the CP3 Workshop at http://cp3-origins
.dk/events/meetings/mass2013; Lattice-2014 at https:/
www.bnl.gov/lattice2014;  SCGT15 at  http://www
.kmi.nagoya-u.ac.jp/workshop/SCGT15; Lattice-2015 at
http://www.aics.riken.jp/sympo/lattice2015;  Lattice-2016
at http://www.southampton.ac.uk/lattice2016; see also T.
Degrand, Rev. Mod. Phys. 88, 015001 (2016).

[23] Some recent reviews include S. Rychkov, arXiv:1601.05000;
D. Simmons-Duffin, arXiv:1602.07982; D. Poland, Nat.
Phys. 12, 535 (2016).

[24] B. Holdom, Phys. Lett. 150B, 301 (1985); K. Yamawaki, M.
Bando, and K. Matumoto, Phys. Rev. Lett. 56, 1335 (1986);
T. Appelquist, D. Karabali, and L.C.R. Wijewardhana,
Phys. Rev. Lett. 57, 957 (1986).

[25] C. Pica and F. Sannino, Phys. Rev. D 83, 035013 (2011).

[26] Some authors use the opposite sign convention for the
anomalous dimension writing Dy = Do free + 7. Our sign
convention is the same as the one used in [24] and the lattice
gauge theory literature.

[27] O. V. Tarasov, A. A. Vladimirov, and A. Yu. Zharkov, Phys.
Lett. 93B, 429 (1980); S. A. Larin and J. A. M. Vermaseren,
Phys. Lett. B 303, 334 (1993).

[28] T. van Ritbergen, J. A. M. Vermaseren, and S. A. Larin,
Phys. Lett. B 400, 379 (1997).

[29] M. Czakon, Nucl. Phys. B710, 485 (2005).

[30] W. A. Bardeen et al., Phys. Rev. D 18, 3998 (1978).

[31] K. G. Chetyrkin, Phys. Lett. B 404, 161 (1997); J. A.M.
Vermaseren, S. A. Larin, and T. van Ritbergen, Phys. Lett. B
405, 327 (1997).

[32] Here and below, if an expression for N, formally evaluates
to a nonintegral real value, it is understood implicitly that
one infers an appropriate integral value from it.

[33] N, and N, were denoted N ;. and N 5. in [19] and some
of our subsequent works. In principle, for an appropriate G
and R, between the confining phase with spontaneous chiral
symmetry breaking at small N and the (deconfined) non-
Abelian Coulomb phase at larger Ny < N, there could be
an intermediate phase with confinement but no chiral
symmetry breaking, provided that the 't Hooft anomaly-
matching conditions are satisfied (a necessary but not
sufficient condition for such a phase).

[34] E. Gardi and M. Karliner, Nucl. Phys. B529, 383 (1998); E.
Gardi and G. Grunberg, J. High Energy Phys. 03 (1999)
024.

[35] E. A. Chishtie, V. Elias, V. A. Miransky, and T. G. Steele,
Prog. Theor. Phys. 104, 603 (2000).

PHYSICAL REVIEW D 95, 105004 (2017)

[36] T. A. Ryttov and R. Shrock, Phys. Rev. D 85, 076009
(2012); A.L. Kataev and K. V. Stepanyantz, Phys. Lett. B
730, 184 (2014); Theor. Math. Phys. 181, 1531 (2014).

[37] R. Shrock, Phys. Rev. D 91, 125039 (2015); G. Choi and R.
Shrock, Phys. Rev. D 93, 065013 (2016).

[38] T. A. Ryttov and R. Shrock, Phys. Rev. D 86, 065032
(2012); 86, 085005 (2012).

[39] R. Shrock, Phys. Rev. D 88, 036003 (2013); 90, 045011
(2014); 91, 125039 (2015); G. Choi and R. Shrock, Phys.
Rev. D 90, 125029 (2014); 94, 065038 (2016); G. Choi,
T. A. Ryttov, and R. Shrock, Phys. Rev. D 95, 025012
(2017).

[40] T. A. Ryttov, Phys. Rev. D 89, 016013 (2014); 89, 056001
(2014); 90, 056007 (2014).

[41] J. A. Gracey and R. M. Simms, Phys. Rev. D 91, 085037
(2015).

[42] J. A. Gracey, Phys. Lett. B 488, 175 (2000).

[43] P. A. Baikov, K. G. Chetyrkin, and J. H. Kiihn, J. High
Energy Phys. 10 (2014) 076. Our ¢, = 2'*?y,_, in this
paper.

[44] G. Mack, Commun. Math. Phys. 55, 1 (1977); B. Grinstein,
K. Intriligator, and I. Rothstein, Phys. Lett. B 662, 367
(2008); Y. Nakayama, Phys. Rep. 569, 1 (2015).

[45] V. A. Novikov, M. A. Shifman, A.I. Vainshtein, and V.I.
Zakharov (NSVZ), Nucl. Phys. B229, 381 (1983); B229,
407 (1983).

[46] N. Seiberg, Phys. Rev. D 49, 6857 (1994).

[47] F. Sannino, Phys. Rev. D 79, 096007 (2009); M. Mojaza, C.
Pica, T. A. Ryttov, and F. Sannino, Phys. Rev. D 86, 076012
(2012).

[48] T. Appelquist et al. (LSD Collaboration), Phys. Rev. D 84,
054501 (2011).

[49] T. DeGrand, Phys. Rev. D 84, 116901 (2011).

[50] Y. Aoki et al. (LatKMI Collaboration), Phys. Rev. D 86,
054506 (2012).

[51] A.Hasenfratz, A. Cheng, G. Petropoulos, and D. Schaich, in
Proc. Sci., LATTICE2012 (2012) 034 [arXiv:1207.7162].

[52] A.Hasenfratz, A. Cheng, G. Petropoulos, and D. Schaich, in
Proc. Sci., LATTICE2013 (2014) 075 [arXiv:1310.1124].

[53] A. Hasenfratz and D. Schaich, arXiv:1610.10004 and
private communications.

[54] M. P. Lombardo, K. Miura, T.J. Nunes da Silva, and E.
Pallante, J. High Energy Phys. 12 (2014) 183.See also A.
Deuzeman, M. P. Lombardo, T. Nunes Da Silva, and E.
Pallante, Phys. Lett. B 720, 358 (2013); K. Miura, M. P.
Lombardo, and E. Pallante, Phys. Lett. B 710, 676 (2012).

[55] Z. Fodor, K. Holland, J. Kuti, D. Nogradi, C. Schroeder, and
C.H. Wong, in Proc. Sci., LATTICE2012 (2012) 279
[arXiv:1211.4238]; Z. Fodor, K. Holland, J. Kuti, S.
Mondal, D. Nogradi, and C. H. Wong, Phys. Rev. D 94
091501 (2016).

[56] T. Appelquist et al. (LSD Collaboration), arXiv:1204.6000.

[57] Y. Aoki et al. (LatKMI Collaboration), Phys. Rev. D 87,
094511 (2013); 89, 111502 (2014); Y. Aoki et al. (LatKMI
Collaboration), Nucl. Part. Phys. Proc. 270-272, 242
(2016).

[58] T. Appelquist et al. (LSD Collaboration), Phys. Rev. D 90,
114502 (2014); 93, 114514 (2016) and references therein.

[59] T. Appelquist, J. Ingoldby, and M. Piai, arXiv:1702.04410.

105004-36


https://doi.org/10.1103/PhysRevD.94.105015
https://doi.org/10.1103/PhysRevD.94.105015
https://doi.org/10.1103/PhysRevD.95.085012
https://doi.org/10.1103/PhysRevD.95.085012
https://doi.org/10.1007/JHEP02(2017)090
https://doi.org/10.1007/JHEP02(2017)090
https://doi.org/10.1007/JHEP02(2017)090
https://doi.org/10.1103/PhysRevLett.118.082002
https://doi.org/10.1103/PhysRevLett.118.082002
https://doi.org/10.1103/PhysRevD.83.056011
https://doi.org/10.1103/PhysRevD.83.056011
https://doi.org/10.1103/PhysRevD.87.105005
https://doi.org/10.1103/PhysRevD.87.116007
http://cp3-origins.dk/events/meetings/mass2013
http://cp3-origins.dk/events/meetings/mass2013
https://www.bnl.gov/lattice2014
https://www.bnl.gov/lattice2014
http://www.kmi.nagoya-u.ac.jp/workshop/SCGT15
http://www.kmi.nagoya-u.ac.jp/workshop/SCGT15
http://www.aics.riken.jp/sympo/lattice2015
http://www.southampton.ac.uk/lattice2016
https://doi.org/10.1103/RevModPhys.88.015001
http://arXiv.org/abs/1601.05000
http://arXiv.org/abs/1602.07982
https://doi.org/10.1016/0370-2693(85)91015-9
https://doi.org/10.1103/PhysRevLett.56.1335
https://doi.org/10.1103/PhysRevLett.57.957
https://doi.org/10.1103/PhysRevD.83.035013
https://doi.org/10.1016/0370-2693(80)90358-5
https://doi.org/10.1016/0370-2693(80)90358-5
https://doi.org/10.1016/0370-2693(93)91441-O
https://doi.org/10.1016/S0370-2693(97)00370-5
https://doi.org/10.1016/j.nuclphysb.2005.01.012
https://doi.org/10.1103/PhysRevD.18.3998
https://doi.org/10.1016/S0370-2693(97)00535-2
https://doi.org/10.1016/S0370-2693(97)00660-6
https://doi.org/10.1016/S0370-2693(97)00660-6
https://doi.org/10.1016/S0550-3213(98)00392-7
https://doi.org/10.1088/1126-6708/1999/03/024
https://doi.org/10.1088/1126-6708/1999/03/024
https://doi.org/10.1143/PTP.104.603
https://doi.org/10.1103/PhysRevD.85.076009
https://doi.org/10.1103/PhysRevD.85.076009
https://doi.org/10.1016/j.physletb.2014.01.053
https://doi.org/10.1016/j.physletb.2014.01.053
https://doi.org/10.1007/s11232-014-0233-3
https://doi.org/10.1103/PhysRevD.91.125039
https://doi.org/10.1103/PhysRevD.93.065013
https://doi.org/10.1103/PhysRevD.86.065032
https://doi.org/10.1103/PhysRevD.86.065032
https://doi.org/10.1103/PhysRevD.86.085005
https://doi.org/10.1103/PhysRevD.88.036003
https://doi.org/10.1103/PhysRevD.90.045011
https://doi.org/10.1103/PhysRevD.90.045011
https://doi.org/10.1103/PhysRevD.91.125039
https://doi.org/10.1103/PhysRevD.90.125029
https://doi.org/10.1103/PhysRevD.90.125029
https://doi.org/10.1103/PhysRevD.94.065038
https://doi.org/10.1103/PhysRevD.95.025012
https://doi.org/10.1103/PhysRevD.95.025012
https://doi.org/10.1103/PhysRevD.89.016013
https://doi.org/10.1103/PhysRevD.89.056001
https://doi.org/10.1103/PhysRevD.89.056001
https://doi.org/10.1103/PhysRevD.90.056007
https://doi.org/10.1103/PhysRevD.91.085037
https://doi.org/10.1103/PhysRevD.91.085037
https://doi.org/10.1016/S0370-2693(00)00859-5
https://doi.org/10.1007/JHEP10(2014)076
https://doi.org/10.1007/JHEP10(2014)076
https://doi.org/10.1007/JHEP10(2014)076
https://doi.org/10.1007/JHEP10(2014)076
https://doi.org/10.1007/BF01613145
https://doi.org/10.1016/j.physletb.2008.03.020
https://doi.org/10.1016/j.physletb.2008.03.020
https://doi.org/10.1016/j.physrep.2014.12.003
https://doi.org/10.1016/0550-3213(83)90338-3
https://doi.org/10.1016/0550-3213(83)90340-1
https://doi.org/10.1016/0550-3213(83)90340-1
https://doi.org/10.1103/PhysRevD.49.6857
https://doi.org/10.1103/PhysRevD.79.096007
https://doi.org/10.1103/PhysRevD.86.076012
https://doi.org/10.1103/PhysRevD.86.076012
https://doi.org/10.1103/PhysRevD.84.054501
https://doi.org/10.1103/PhysRevD.84.054501
https://doi.org/10.1103/PhysRevD.84.116901
https://doi.org/10.1103/PhysRevD.86.054506
https://doi.org/10.1103/PhysRevD.86.054506
http://arXiv.org/abs/1207.7162
http://arXiv.org/abs/1310.1124
http://arXiv.org/abs/1610.10004
http://arXiv.org/abs/1610.10004
https://doi.org/10.1007/JHEP12(2014)183
https://doi.org/10.1016/j.physletb.2013.02.030
https://doi.org/10.1016/j.physletb.2012.03.017
http://arXiv.org/abs/1211.4238
https://doi.org/10.1103/PhysRevD.94.091501
https://doi.org/10.1103/PhysRevD.94.091501
http://arXiv.org/abs/1204.6000
https://doi.org/10.1103/PhysRevD.87.094511
https://doi.org/10.1103/PhysRevD.87.094511
https://doi.org/10.1103/PhysRevD.89.111502
https://doi.org/10.1103/PhysRevD.90.114502
https://doi.org/10.1103/PhysRevD.90.114502
https://doi.org/10.1103/PhysRevD.93.114514
http://arXiv.org/abs/1702.04410

HIGHER-ORDER SCHEME-INDEPENDENT SERIES ...

[60] M. Hansen, K. Langz ble, and F. Sannino, Phys. Rev. D 95,
036005 (2017).

[61] A.D. Gasbarro and G.T. Fleming, Proc. Sci.,
LATTICE2016 (2017) 242 [arXiv:1702.00480].

[62] T. Appelquist and R. Shrock, Phys. Lett. B 548, 204 (2002);
Phys. Rev. Lett. 90, 201801 (2003); T. Appelquist, M. Piai,
and R. Shrock, Phys. Rev. D 69, 015002 (2004); N.C.
Christensen and R. Shrock, Phys. Rev. Lett. 94, 241801
(2005) and references therein.

[63] H. Ohki et al., Proc. Sci., LATTICE2010 (2010) 066,
arXiv:1011.0373; C.Y.-H. Huang et al, Proc. Sci.,
LATTICE2015 (2016) 224 [arXiv:1511.01968].

[64] V. Leino et al., arXiv:1701.04666.

[65] F. Bursa et al., Phys. Lett. B696, 374 (2011); T. Karavirta
et al., J. High Energy Phys. 05 (2012) 003; M. Tomii et al.,
Proc. Sci., LATTICE2013 (2014) 068 [arXiv:1311.0099];
T. Appelquist et al. (LSD Collaboration), Phys. Rev. Lett.
112, 111601 (2014).

[66] M. Hayakawa, K.-I. Ishikawa, S. Takeda, and N. Yamada,
Phys. Rev. D 88, 094504 (2013); 88, 094506 (2013).

[67] J.M. Suorsa et al., Proc. Sci., LATTICE2016 (2016) 389
[arXiv:1611.02022]; see also V. Leino et al., Proc. Sci.,
LATTICE2016 (2016) 218 [arXiv:1610.09989].

[68] P. M. Stevenson, Mod. Phys. Lett. A 31, 1650226 (2016).

[69] D.D. Dietrich and F. Sannino, Phys. Rev. D 75, 085018
(2007); S. Catterall and F. Sannino, Phys. Rev. D 76,
034504 (2007).

[70] S. Catterall, L. Del Debbio, J. Giedt, and L. Keegan, Proc.
Sci., LATTICE2010 (2010) 057 [arXiv:1010.5909].

[71] L. Del Debbio, B. Lucini, A. Patella, C. Pica, and A. Rago,
Phys. Rev. D 82, 014510 (2010).

PHYSICAL REVIEW D 95, 105004 (2017)

[72] T. DeGrand, Y. Shamir, and B. Svetitsky, Phys. Rev. D 83,
074507 (2011).

[73] T. Appelquist et al. (LSD Collaboration), Phys. Rev. D 84,
054501 (2011).

[74] L. Del Debbio, B. Lucini, A. Patella, C. Pica, and A. Rago,
Phys. Rev. D 93, 054505 (2016).

[75] J. Rantaharju, T. Rantalaiho, K. Rummukainen, and K.
Tuominen, Phys. Rev. D 93, 094509 (2016).

[76] J. Giedt, Int. J. Mod. Phys. A 31, 1630011 (2016).

[77] G. Bergner, P. Giudice, G. Miinster, I. Montvay, and S.
Piemonte, arXiv:1610.01576.

[78] T. DeGrand, Y. Shamir, and B. Svetitsky, Phys. Rev. D 87,
074507 (2013).

[79] Z. Fodor, K. Holland, J. Kuti, D. Nogradi, C. Schroeder, and
C. H. Wong, Phys. Lett. B 718, 657 (2012).

[80] J. B. Kogut and D. K. Sinclair, Phys. Rev. D 81, 114507
(2010); 92, 054508 (2015).

[81] S.L. Adler, J. C. Collins, and A. Duncan, Phys. Rev. D 15,
1712 (1977); J. C. Collins, A. Duncan, and S. Joglekar,
Phys. Rev. D 16, 438 (1977); N. K. Nielsen, Nucl. Phys.
B120, 212 (1977); see also H. Kluberg-Stern and J.-B.
Zuber, Phys. Rev. D 12, 467 (1975).

[82] See, e.g., S.S. Gubser, A. Nellore, S.S. Pufu, and E. D.
Rocha, Phys. Rev. Lett. 101, 131601 (2008); see also M.
Kurachi, S. Matsuzaki, and K. Yamawaki, Phys. Rev. D 90,
055028 (2014); R.J. Crewther and L. C. Tunstall, Phys.
Rev. D 91, 034016 (2015); See also T. Nunes da Silva, E.
Pallante, and L. Robroek, arXiv:1609.06298; arXiv:
1506.06396.

[83] A. Hasenfratz and D. Schaich, arXiv:1610.10004.

105004-37


https://doi.org/10.1103/PhysRevD.95.036005
https://doi.org/10.1103/PhysRevD.95.036005
http://arXiv.org/abs/1702.00480
https://doi.org/10.1016/S0370-2693(02)02854-X
https://doi.org/10.1103/PhysRevLett.90.201801
https://doi.org/10.1103/PhysRevD.69.015002
https://doi.org/10.1103/PhysRevLett.94.241801
https://doi.org/10.1103/PhysRevLett.94.241801
http://arXiv.org/abs/1011.0373
http://arXiv.org/abs/1511.01968
http://arXiv.org/abs/1701.04666
https://doi.org/10.1016/j.physletb.2010.12.050
https://doi.org/10.1007/JHEP05(2012)003
http://arXiv.org/abs/1311.0099
https://doi.org/10.1103/PhysRevLett.112.111601
https://doi.org/10.1103/PhysRevLett.112.111601
https://doi.org/10.1103/PhysRevD.88.094504
https://doi.org/10.1103/PhysRevD.88.094506
http://arXiv.org/abs/1611.02022
http://arXiv.org/abs/1610.09989
https://doi.org/10.1142/S0217732316502266
https://doi.org/10.1103/PhysRevD.75.085018
https://doi.org/10.1103/PhysRevD.75.085018
https://doi.org/10.1103/PhysRevD.76.034504
https://doi.org/10.1103/PhysRevD.76.034504
http://arXiv.org/abs/1010.5909
https://doi.org/10.1103/PhysRevD.82.014510
https://doi.org/10.1103/PhysRevD.83.074507
https://doi.org/10.1103/PhysRevD.83.074507
https://doi.org/10.1103/PhysRevD.84.054501
https://doi.org/10.1103/PhysRevD.84.054501
https://doi.org/10.1103/PhysRevD.93.054505
https://doi.org/10.1103/PhysRevD.93.094509
https://doi.org/10.1142/S0217751X16300118
http://arXiv.org/abs/1610.01576
https://doi.org/10.1103/PhysRevD.87.074507
https://doi.org/10.1103/PhysRevD.87.074507
https://doi.org/10.1016/j.physletb.2012.10.079
https://doi.org/10.1103/PhysRevD.81.114507
https://doi.org/10.1103/PhysRevD.81.114507
https://doi.org/10.1103/PhysRevD.92.054508
https://doi.org/10.1103/PhysRevD.15.1712
https://doi.org/10.1103/PhysRevD.15.1712
https://doi.org/10.1103/PhysRevD.16.438
https://doi.org/10.1016/0550-3213(77)90040-2
https://doi.org/10.1016/0550-3213(77)90040-2
https://doi.org/10.1103/PhysRevD.12.467
https://doi.org/10.1103/PhysRevLett.101.131601
https://doi.org/10.1103/PhysRevD.90.055028
https://doi.org/10.1103/PhysRevD.90.055028
http://arXiv.org/abs/1609.06298
http://arXiv.org/abs/1506.06396
http://arXiv.org/abs/1506.06396
http://arXiv.org/abs/1610.10004

