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Exact resurgent trans-series and multibion contributions to all orders
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The full resurgent trans-series is found exactly in near-supersymmetric CP! quantum mechanics.
By expanding in powers of the supersymmetry-breaking deformation parameter, we obtain the first and
second expansion coefficients of the ground-state energy. They are an absolutely convergent series of
nonperturbative exponentials corresponding to multibions with perturbation series on those backgrounds.
We obtain all multibion exact solutions for a finite time interval in the complexified theory. We sum the
semiclassical multibion contributions that reproduce the exact result supporting the resurgence to all orders.
We also discuss the similar resurgence structure in CPY~! (N > 2) models. This is the first result in
the quantum-mechanical model where the resurgent trans-series structure is verified to all orders in

nonperturbative multibion contributions.
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I. INTRODUCTION

The path integral has been extremely useful in many
areas of quantum physics through perturbative and non-
perturbative analysis. It is crucial to understand contribu-
tions from all of the complex saddle points based on the
thimble analysis in the path integral in order to give a
proper foundation of quantum theories. The resurgence
theory gives a stringent relation between a divergent
perturbation series and a nonperturbative exponential term,
which often allows for the reconstruction of one from the
other [1-5]. Resurgence was originally developed by
studying ordinary differential equations and provides a
trans-series, which contains infinitely many nonperturba-
tive exponentials and divergent perturbation series [6]. The
intimate relation between these infinitely many nonpertur-
bative contributions and perturbative ones is expected to
provide an unambiguous definition of quantum theories.
A mathematically rigorous foundation of the path integral
can now be envisaged [7-9]. Resurgence has been most
precisely studied recently in quantum mechanics (QM) to
systematically yield relations between nonperturbative and
perturbative contributions [10-29], two-dimensional quan-
tum field theories (QFTs) [30—41], four-dimensional QFTs
[42-48], supersymmetric (SUSY) gauge theories [49-53],
the matrix models, and topological string theory [54—62].

In the resurgent trans-series for theories with degenerate
vacua, one needs to take account of configurations called
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“bions” consisting of an instanton and an anti-instanton
[2,10], which give imaginary ambiguities that cancel those
of non-Borel-summable perturbation series. Recently, sin-
gle-bion configurations were identified as saddle points in
the complexified path integral [21]. Exact solutions of the
holomorphic equations of motion (complex and real bion
solutions) were found in the complexified path integral of
double-well, sine-Gordon, and CP! quantum-mechanical
models with fermionic degrees of freedom (incorporated as
the parameter €) [21,25]. CP! quantum mechanics is a
dimensional reduction of the two-dimensional CP! sigma
model, which shows asymptotic freedom, dimensional
transmutation, and the existence of instantons akin to
four-dimensional QCD. Contributions from these solutions
were evaluated based on Lefschetz-thimble integrals and it
was shown that the combined contributions vanish for the
SUSY case ¢ = 1, in conformity with the exact results of
SUSY [25]. On the other hand, for the non-SUSY case
€ # 1, the result contains the imaginary ambiguity, which is
expected to be canceled by that arising from the Borel
resummation of perturbation series.

Trans-series generically contain high powers of non-
perturbative exponentials, which may correspond to multi-
ple bions. Non-SUSY models including CPV~! quantum
mechanics have been worked out explicitly to several low
orders, but it has been difficult to explicitly reveal the full
trans-series to all powers of nonperturbative exponentials
and to ascertain their resurgence structure [2,19,20].
Localization in SUSY models helped to uncover the full
trans-series, but so far their resurgence structures have been
found to be trivial without imaginary ambiguities [49,53].

The purpose of this work is to present and verify the
complete resurgence structure of the trans-series in
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CP' QM (and partly CPY~! QM), focusing on the near-
SUSY regime ¢~ 1 where we can obtain exact results
which exhibit resurgence structure to infinitely high powers
of nonperturbative exponentials. We will show that the
contributions from an infinite tower of multibion solutions
yield all of these nonperturbative exponentials. This is the
first result revealing the thimble structure of all of the
complex saddle points, which is useful not only to under-
stand the resurgence structure in quantum theories but also
to study complex path integrals, including the real-time
formalism and finite-density systems in condensed and
nuclear matter [63—-68].

II. EXACT GROUND-STATE ENERGY

We first consider the (Lorentzian) CP' quantum
mechanics described by the Lagrangian

2
PL = Gllowl* ~ |mel® + igDay] ~ eﬁw, (1)
where ¢ is the inhomogeneous coordinate, G =
0,0, 1og(1 + |p|?) is the Fubini-Study metric, D, = 9, +
0,90, 10g G is the pull-back of the covariant derivative, and
u=m|p|*/(1+ |@|*) is the moment map associated with
the U(1) symmetry ¢ — ep. The parameter € is the
boson-fermion coupling and the Lagrangian becomes
supersymmetric at € = 1. Since the fermion number F =
Gy commutes with the Hamiltonian, the Hilbert space
can be decomposed into two subspaces with F =1 and
F = 0. By projecting quantum states onto the subspace
which contains the ground state (/' = 1), we obtain the
bosonic Lagrangian

2
L — |at§0| _ V, (2)

(*(1+10*)?)
with the potential

L m?lg?
V== —em
g (1 + o)

We note that (= — 2arctan |p|) = 0,7 are global and
metastable vacua, respectively.

For e = 1, the ground-state wave function ¥, preserving
SUSY is given as a zero-energy solution of the Schrodinger
equation

o 0
P+ pP)? o+ Ve [$o=0.  (4)

Hé':l\PO = 8§0 aq—o

It is exactly solved as

¥y = (@|0) = exp(—u/g?). (5)
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For e~ 1, the leading-order correction to the ground-
state wave function can be obtained by expanding the
Schrodinger equation with respect to small e =€ — 1 as
(@|6¥). Correspondingly, the ground-state energy E can
also be expanded:

E = 6¢EV) 4+ 62E?) + - - . (6)

These expansion coefficients can be determined by the
standard Rayleigh-Schrodinger perturbation theory as

1y _ (0j6H|0)
EM _W, (7)
EQ) __W,m, (8)

with 6H = H — H,_,. We find that these coefficients E(*)
are real without imaginary ambiguities and can be
expanded in absolutely convergent power series with
respect to the nonperturbative exponential exp(—2m/g?),

EO =" EY exp(=2pm/g?). 9)
p=0
where the zeroth term E(()i) corresponds to the perturbative
contributions on the trivial vacuum (perturbative vacuum).
The coefficients of E() [25] are
EV =-m+@  EV=-2m.  (p=1). (10)
If the coefficients of E() are expanded in powers of ¢, they
give factorially divergent asymptotic series, which can be
Borel-resummed. Hence, we rewrite the coefficient in the
form of the Borel transform (see Appendix A for the details
of the calculations) as

) —t
EY = p +2m/ dt— (11)
0 t_ngio

0 1 2 -1 2
E? —om / dte"{(p +2m) L 2,3 }

0 - g +i0 I+ ?
i

—), (p>1). (12)

2
+4mp? <y + log—’?ﬂ:
g 2

Note that the imaginary ambiguities associated to the Borel

resummation are manifest in the first term of E<p2> with
g* £ i0, which is compensated by the imaginary part iz /2
)

p+1°
precisely. In the present case, we only have poles in the Borel
plane, while cuts are expected for general cases. We also

note that in Ref. [27] the perturbation series on a zero-bion

in the last term of E reproducing the original real E(?)
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background including the level number information has been
shown to give all p-bion contributions.

We can now recognize the full resurgence structure to all
orders of the nonperturbative exponential: the imaginary
ambiguity of the non-Borel summable divergent perturbation
series on the p-bion background in the first term of E;,z) is
canceled by the imaginary ambiguity of the classical con-
tribution of the (p + 1)-bion contribution in the last term of

E@

pt1
ambiguity, which will allow us to recover non-Borel sum-
mable perturbation series on the p-bion background com-
pletely from the (p + 1)-bion contribution through the
dispersion relation, without computing perturbative correc-
tions around the multibion background explicitly. Moreover,
if we observe that E(?) /m is an even function of m/ ¢, we can
also understand the presence of the Borel-summable part
[second term of the first line in Eq. (12)]. Thus, all of the
terms can now be reproduced through the resurgence relation
and the sign change of m/¢?, if we can compute all of the
semiclassical p-bion contributions.

We note the absence of powers of ¢> in the imaginary

III. MULTIBION SOLUTIONS

Nonperturbative contributions to the ground-state energy
come from the saddle points of the path integral Z =
| DepDpe=Se ~ ePE (for large f), where we have com-
plexified the degrees of freedom by regarding ¢ = ¢ +
it and ¢ = ¢% — ip% as independent holomorphic vari-
ables, and imposed the periodic boundary condition
@(7+ f) = ¢(z) and for ¢. The Euclidean action

5p = / ’ del0,00,) (21 + 09)?) + V(ed)]  (13)

has two conserved Noether charges associated with the
complexification of the Euclidean time translation 7 —
t+a and the phase rotation (¢,p) — (e’p,e @)
(a,b € C). Using the corresponding conservation laws,
we can obtain the following solution of the equation of

motion with a nontrivial contribution in a # — oo limit:

_ ei¢f f(T - Tc)

2

- 6‘0 — e—i(]ﬁc f(T_ TC) , (14)
siIn~a

4 .
sin’a
where (7., ¢.) are complex moduli parameters associated

with the symmetry and f(7) is the elliptic function

f(z) =cs(Qz, k) = cn(Qr, k) /sn(Qz, k),  (15)
which satisfies the differential equation
0 =2+ (2 +1-k). (16)

Solutions are characterized by two integers (p, ¢) for the
period
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2pK + 4igK'
ﬁ:%’ (17)

where 2K (k) and 4iK’ (K’ = K(V'1 — k?)) are the periods
of the doubly periodic functions. The parameters (a, Q, k)
are given in terms of the period f, and their asymptotic
forms for large # (see Appendix B for the details of the
calculations) are given by

_wp-2niq
k~1—-8e 7 ,

2 2 .
W° + m*  _wp-2qiq
Qrowll + 8 ) e P s
W~ —m

m 8m? _wp=2rig
cosa~—|1— 5 € 7 ,
w w-—m

where @ = m+/1 + 2eg?>/m and (p, q) are arbitrary inte-
gers such that 0 < g < p. The asymptotic value of the

action for the (p, ¢) solution is given by

(18)

. 2m w-+m
S & pSpion + 27iel, Spion = —5 + 2elog——,
g w—m

(19)

where we have ignored the vacuum value of the action.
The imaginary part 2ziel is related to the so-called hidden
topological angle [39] and the integer / is zero or the
greatest common divisor of p and 2¢ depending on the
value of Imz,.. We see that the integer p is the number of
bions, and that the nth kink and antikink are located at 7,
and 7;;, with

, 1 4o
(C()ﬂ - Zﬂlq) + %logm .

n—1
wp

Tr:t: =17, + (20)

There are p bions (pairs of kink-antikink) equally spaced
on S'. In Fig. 1, we depict the profile of the complexified
height function

ReX ;

FIG. 1. Multibion solution: Kink profile of Z(7) = (1 — ¢¢)/
(14 @) for (p,q) = (3,1),e=1,m =1, g= 1/200, # = 100
and 7. =0. £ = =+1 (dashed lines) correspond to north and
south poles (global and local minima) of CP'.
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FIG. 2. Multibion solution: 6 = —2arctan |¢| for (p,q) =
(2,0) (top) and for (p,q) = (2,1) (bottom). The other param-
eters are the same as those in Fig. 1. 6 =0,27,... and 0 =
7,37, ... correspond to north and south poles of CP!.

of the (p,q) = (3,1) solution. It illustrates that general
(p,q) solutions are intrinsically complex, and are not a
mere repetition of single (real or complex) bions. In Fig. 2
we depict other solutions [(p,q) = (2,0) and (p,q) =
(2,1)] in terms of @ = —2arctan|¢p|, which visualizes
patterns of transition between the (metastable) vacua.
Although our solutions are not solutions of the SUSY
theory with fermions, they are composite configurations of
instantons and anti-instantons which are typically non-
BPS. This fact implies that the non-BPS configurations
play a vital role in the semiclassics in the path integral
formalism of quantum theories.

IV. MULTIBION CONTRIBUTIONS

The contributions from the p-bion solutions can be
calculated by performing the Lefschetz thimble integral
associated with the saddle points. In the weak-coupling
limit g — 0, we can use the Gaussian approximation for the
fluctuation modes from the saddle points, except for the
nearly massless modes parametrized by the quasimoduli
parameters (z;, ;). Thus, we can simplify the Lefschetz
thimble analysis by reducing the degrees of freedom onto
the quasimoduli space.
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The leading-order contributions come from the region
around the saddle points, where all the kinks are well
separated in the weak-coupling limit. Therefore, the effec-
tive potential can be approximated by that for well-
separated kinks,

2p
SE g Veff = —meﬁ + Z <’gn2 + V,) N (22)
i=1

where V; is the asymptotic interaction potential between
neighboring kink-antikink pairs [34],

v, 4

7. — 1. —_ _ omm(ri—tiy) — . 23
m €z<Tz Tz—l) 92 e COS(¢1 ¢z—1)7 ( )
with Ton—1 = Tj» Top = T;r’ To = T2p _ﬂ’ ¢0 = ¢2p

(mod 27), €5,_; = 0, and €,,, = 2¢. We find that the saddle
points of Vg are consistent with 7;~ in Eq. (20) for large f3
and small g. We introduce a Lagrange multiplier ¢ to
impose the periodicity as

276 <Zq - ﬁ) =m / do exp [ima (ZT,. - ﬂ)] .

i

(24)

By generalizing the Lefschetz thimble analysis in Ref. [25]
to the multibion contribution

2p
Zpoc/HdTidqﬁi’eXP(_Veff)’ (25)
i=1

we obtain the following p-bion contribution to the
partition function (see Appendix C for the details of the
calculations):

zZ 21mﬁ 2pm
Ly T Res { ~imfo I,] , 26
Z ) H (26)
with
;=2 (2_’" ei%) 7 _ei=io)/2) o
9 \7 I'(1- (e —io)/2)

The sign =+ is associated with arg[g?] = +0. This gives a
polynomial of 5, whose leading term is of order 37,

é ~ i |:2mﬂr(€) e‘%%ﬂe <2m> 2(1—6):| 17’ (28)

Zy p'|T(1—¢) 7

consistent with the dilute gas approximation: Z,/Z, =
(Z1/Zy)?/p! + O(BP~"). From the p-bion contribution
(26) and the perturbative contribution (p = 0), the
ground-state energy £ = —limg_, %log Z can be obtained as

105001-4



EXACT RESURGENT TRANS-SERIES AND MULTIBION ...
1 > 7
E =E,— lim —log <1+ —p>
poo p ; Zy

By taking the logarithm, contributions of high powers of j
such as #? for p > 1 should be canceled, and the ground-
state energy is obtained from the remaining contributions of
order f. Fortunately, most of these contributions with high
powers of 3 disappear near the SUSY case thanks to the zero
in 1/T(1 — (e; —ic)/2). As a result, we find that the first
derivative is proportional to f and gives the near-SUSY
ground-state energy E(),

(29)

am 102
EV = —¢7 lim lim -~ — 27 =

= —2m,
e—»l[}—woﬁaezo "

(30)

verifying the exact result (10). The second derivative in €
turns out to be quadratic in f, and

2pm

e 1\ [z, &= z . 7z
lim lim — | 222 - N9, 22709, 21 (31
2 Jll?ﬂin;ﬂ{ “Z ; A

EY = -
is calculated as

N
EY = dmp? (y +log 5 + ’;’) , (32)
g

in complete agreement with the exact result (12). We have
obtained the classical contributions to all orders of multi-
bions, which provide all of the terms needed for the full
resurgence structure of our model, although it is difficult to
check the divergent perturbation series on the p-bion back-
ground directly, except for the trivial vacuum (p = 0).

V. PERTURBATION SERIES ON THE
TRIVIAL VACUUM

We obtain the perturbation series on the trivial back-
ground (p = 0) by using the Bender-Wu method [26,69].
We first expand the energy and the wave function as

E= mZAlﬂzlv (33)
I

Y= CXP(—XZ)ZBz,kﬂZIXZka
Lk

with |p| =nx and #*> = ¢g*/m. Then, the Schrodinger
equation reduces to a (Bender-Wu) recursive equation
for A; and B;,, which gives the leading asymptotic
behavior (see Appendix D for the details of the calcula-
tions) as

I +2(1-¢))

A~ve— = T
P21 - €)?

(for large 7).  (34)

Since the coefficients A; grow factorially for large /, we
obtain the perturbative part of the ground-state energy by
using the Borel resummation

PHYSICAL REVIEW D 95, 105001 (2017)

2 0 2m\ !
EON—mZ/ dte~'*1=¢) t——T . (35)
I(1—¢€)*Jo g

The Borel resummation gives a finite result with the
imaginary ambiguity

2m g2 2(e=1) o
ImEy = —" (L
M2 =F F—ep <2m> ¢’

with — (+) on the right-hand side for Img? = 40 (=0).
This imaginary ambiguity of the perturbation series in the
trivial vacuum (p = 0) cancels that of the single-bion sector
[Eq. (28) with p = 1]. Therefore, combining these two
contributions gives an unambiguous real result. This result
explicitly verifies the resurgence for arbitrary values of ¢
including the non-SUSY case, although only to the leading
order of the nonperturbative exponential.

For the near-SUSY case, we can obtain the perturbation
series on the trivial vacuum exactly to all orders in g7, by
exactly solving the Bender-Wu recursion relation to the
second order of de as

) 2\ !
Ey = (¢* — m)de — 2m I'(/ g Ser 4 - --. 37
o= = mae=am ) (7)o (50

This agrees completely with the exact results E(()l) in

Eq. (10) and E(()z) in Eq. (11) after Borel resummation.

VI. SUMMARY AND DISCUSSION

In conclusion:

(1) We have derived the exact expansion coefficients of
the ground-state energy to the second order of the
SUSY-breaking deformation parameter de. The re-
sult shows a resurgent trans-series structure to all
orders of the nonperturbative exponential.

(i) We have derived nonperturbative multibion contri-

butions with imaginary ambiguities in the weak-

coupling limit and found that they agree with the
corresponding parts in the exact result.

At least for near-SUSY CP' QM, by assuming the

cancellation of imaginary ambiguities (resurgence

structure) and an even function of m/ gz, we have
recovered the entire trans-series which agrees with
the exact result of the near-SUSY case.

With the Bender-Wu recursion relation, we have

obtained the perturbation series on the zero-bion

vacuum to all orders, which gives an imaginary
ambiguity when Borel-resummed, and have verified
the cancellation with that of the single-bion sector
for a general deformation parameter e including the
non-SUSY case.

The exact result in Eq. (12) shows that the imaginary
ambiguities have no ¢? corrections in CP! QM. This fact
enabled us to recover the entire trans-series from the

(iii)

@iv)
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semiclassical multibion contributions only. In other models
such as sine-Gordon QM, imaginary ambiguities from the
multibion contribution have perturbative corrections in
powers of ¢ [20]. Then these perturbative corrections
are needed in order to recover the full resurgent trans-series.
The same resurgence structure exists in CPY~! models
with N > 2. Similarly to N =2, we obtain a O(5¢?)
perturbative contribution with the imaginary ambiguity

2m

ImES :F—ZmAe 7, (38)

N-1 m;
J=1j# m—m;

reduced from the two-dimensional CPY¥~! model with
twisted boundary conditions. We also calculate the
O(5¢*) single-bion contribution

where A; = and the mass parameters m; are

2m; 2
ZNZmAe ra <y+1o 7 %) (39)

The imaginary ambiguities cancel each other. As for the
convergence of the de expansion, we observe that each of
the p-bion semiclassical contributions has a convergent
expansion for any p.

Focusing on the near-SUSY regime can be extended to the
solvable models (including localizable SUSY theories
[49,53] and quasi-solvable models [28]) by softly breaking
the solvable condition and expanding the physical quantities
with respect to the deformation parameter. This is because
these models have a similar resurgence property as the
present CP! model, where the resurgence structure becomes
trivial without cancellation of the imaginary ambiguity at
localization-applicable or quasi-exactly-solvable regimes.
We also notice that the localization technique is applicable in
CPN=! QM to compute the first-order ground-state energy

) but not the second order. Recent results on volume
independence [41] should be useful in extending our study
to QFT, which may also require a more refined thimble
analysis, as has been studied intensively [64—68].

Regarding non-SUSY gauge theories, complex instanton
solutions were discussed in gauge theories with complexi-
fied gauge groups decades ago [70,71]. It would be
important to discuss contributions from these complex
solutions in terms of resurgence theory.
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APPENDIX A: EXACT GROUND-STATE ENERGY

In this appendix we show details of the calculations in
Sec. II. The leading-order correction to the ground-state
wave function and energy for CP' quantum mechanics in
Egs. (1)and (3) can be obtained by solving the O(d¢) part of
the Schrodinger equation,

(1) 1 - |€0|2
H._|6¥) = EV + m1 P |0), (A1)
=g -m cothﬂ2
g
2pm
=-m+¢g* - Z 2me 7. (A2)

p=1

From this expanded form, we can read off the expansion
coefficients in Eq. (10). The above differential equation can
be exactly solved as

_a [u d/,[/ l—e?—é
@|6¥ :egz/ 7(}!/—1’” m). A3
o) =P [ (w-m =) )

Then we find the second-order correction to the ground-
state energy as

(0¥[H i |6Y)
(0/0)

cosh ;"2 / smh2 £

E? = _

= A4
7 smh3 m (A4)

Using the hyperbolic cosine integral Chi(z) defined by

- dt
Chi(z) =y +logz— /27(1 —cosht), (AS)
0

we can rewrite E?) as

cosh 3 2m 2m
E® = f# - I |Chi( = ) —y —log=—|. A6
! ’”sinh3;’s[ ‘<g2> ’ °g92} (A0
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By using the relation
2m 1 [ e’ . mi
Chi| —- :——/ dte"< + ) F =
(g2> 2 Jo t- s ) 2

E® can be expanded as

E® = @ 4 om / ® dre~t
0

_ 2m
g +i0

X _m 2m | wi
+4m) e 7 {pz(y—ﬁ—log—:{:—)
= T
I [e (p+1? (p—1)
+ 2/ dte™ [ 2m + . (AS)
0 FEi0

t+ zg—’Z’
From this expanded form, we can read off the expansion
coefficients Eqgs. (11) and (12).

APPENDIX B: MULTIBION SOLUTIONS

In this appendix we summarize the basic properties of
the multibion solution (14),

¢ = ei(/)f f(T'_ Tc) i
sin o
(;b _ e_,'(p(, f(T-_ Tc) ,
S o
f(z) = cs(Qu. k), (B1)

where the parameters are related as

2
k* =1 — tan? 0{<cos2 a— %)

2
Q:a)\/l -1 —|—secza)<1 —m—zsecza>, (B2)
w
2
w=m ”1+€_g
m

This is a periodic solution, whose period is given by

with

(B3)

p= %@f Q \/f2+1f2+1—k2) (B4)

where we have used the relation (9,f)% = Q2(f*> +1)
(f> + 1 — k?). There are four branch points corresponding
to the turning points (0,9 = 9, = 0),

PHYSICAL REVIEW D 95, 105001 (2017)

f=+i, +iV1-k. (BS)

Let us introduce two branch cuts on the lines from =i to

+iV'1 — k? in the complex f plane. Let C, be the cycle
from Ref = —oo to Ref = oo which does not pass through
the branch cuts and let Cy be the cycle surrounding the two

branch points iVl — k*. Their periods are
2K (k) 4iK (V1 - k?)

h="q - F=Tg

where K (k) = F

the first kind,
x de
F(x, k) = / _
0 V1—k*sin%20

The period of the solution winding the cycle pC, +
qCg(p,q € Z) is given by

(B6)

(7/2, k) is the complete elliptic integral of

(B7)

2pK(k) + 4qiK(V1 —k?)

b= Q

p.qeZ. (BS8)
Solving this equation and Eq. (B3), we can determine the
parameters (a,,k) for each pair of integers (p,q).
The f — oo limit of the (p,g) = (1,0) solution is given
by the known one-bion solution for an infinite time interval
with

k=1, s Q= w.

E = me, cosa =

813

(B9)

We need the # — oo limit, keeping (p, ¢) fixed. Expanding
the period with respect to 6k = k — 1, we find that

= é [_p log <_ ‘Z‘) + 2ﬂiq} + O(5klog k). (B10)

Therefore, the asymptotic form of 6k for large f is

wp-2mig

Sk~ —8e™ 7 (B11)

We can also show that the asymptotic forms of the other
parameters are

3
Am? 2 wp-2rig
Sa ~ 5 e 7,
w- —m

2 2 )
w” + m*°  _op-2ig
0Q=8w——5e 7,
w°—m
8w? w? _wp-dniq
OFE = —- e (B12)
2 2 .2
g o —m

We read Eq. (18) from these equations. Note that Eq. (B10)
implies that the solution exists only for 0 < g < p in the
large-f limit.
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The action for this solution is given by

s Q
Seo1 = / dTLsol = —mef + T%dfx(f)v (B13)
0 Y
where the function X(f) can be written as

0 w? —m? (F(x,k)
7w o

cos’a
B k) - fP+1-k fcos’a
’ 241 f2+sin’a
0 [0? —m? , -k ,
——la[T{F(y,k)—H<smza,y,k>}

fJU”+UU”+1—Hq,

2+ sin’a

X =

— tan’all(cos’a, x, k)}

+F(y, k') = E(y, k') +i

(B14)

with x = arcsin ﬁ y = arcsin 4 /%, and k' =
V1 — k2. Then we obtain

1 [_1—k2
VD@ +1-R) L sina

2sin’a

X(f) =
+ (D) + 1=k

There are contributions from C,, Cp, and the poles at
f = £isina (more precisely, integration cycles should be
defined on the torus with two punctures):

le”.

S = —mef + pSy + qSp + 27ilS,, (B16)

Explicitly, S,.s = € and S, and Sy are given by

S, = 2Q {“’2 —m’ { KK _ tan2all(cos?a, k)} + E(k)} ,

7 Q? cos’a

4iQ [w? — m? 1— k2
Sp=— | KK -T1 K
? 92[ o { (&) (sinza )}

L KW) - E(k’)] ,

(B17)

where E(k) = E(5.k) and II(a, k) =I(a,5.k) are the

complete elliptic integrals of the second and third kind,

E(x,k):/xde
0
T 0 /x do 1
a, x =
o 0 V1—Kk’sin2@1l —asin*0’

and k' = V1 — k2. For large f,

1 — k?sin? 6,

(B1S)
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w +

i I
w—m

2
S~ —mef+ p —620—1—2610g (B19)
g

from which we read Eq. (19). This implies that the integer p
corresponds to the number of bions.
Focusing on the region around

=B n=0,1,...p—1), (B20)
p
we can approximate the solution for large f# as
2 2 -1
h(7) ~ f)z[sinh {w(r - nﬁ) + man )
w"—m p P
(B21)

where we have used cs(x,1) =1/sinhx. Therefore,
the solution in this region looks like the single-bion
configuration,

QR (ew(f_y;r) —+ e_w(‘hLS’;))_l’
P~ (e ) 4 emolrty)) =l (B22)
with
) n 2ring 2
oyF = wt, + i, +—wp — +log\/——
p w*—m
(mod 2xi), (B23)
27 40?
a)j}ni :wrc_i¢c+ﬁwﬂ_ ”lnq:tlog 2 @ 2
p ' —m
(mod 27i). (B24)

From this asymptotic form, we can read off the positions
T = (Ypo_1 +3,_1)/2 and phases ¢ = (v, = ¥,_,)/2i
of the component kinks. The nth kink (4) and antikink (—)
locations [Eq. (20)] are given by

n—1 . 1 2
=1, + op (wf —2miq) + %log el (B25)
The poles of the Lagrangian are located at
n 2ring
prole,nj: N WT, + _wﬁ -
p
w? i .
=+ arccoshy [—— — + 5 (mod 7i).
(B26)

These poles pass through the real 7 axis for certain values of
Imz,, at which the value of the action jumps discontinu-
ously. When one of the poles—for example, 7, ,—1is on
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the real 7 axis, then 7+ With ' = n 4 kp/ ged(p,2q)
[k=0,...,gcd(p,2q) — 1] are also on the real 7 axis,
where ged(p,2q) is the greatest common divisor of p
and 2q. Therefore, the discontinuity of the action when the
poles pass through the real 7 axis is

AS = +2zie ged(p, 2q). (B27)

APPENDIX C: MULTIBION CONTRIBUTIONS

In this appendix we explicitly evaluate the quasimoduli
integral for the chain of p kinks and p antikinks alternately
aligned on S' with period 8. The effective potential consists
of the nearest-neighbor interactions

2p
m
Ver = —mef+ <? + v,»>, (C1)
i=1
where V; is the interaction potential
4
Vi=me(t; —1,_;) ——Te_m(f"_f’ Veos(¢p; — dii),
g
(C2)

where (7;, ¢;) are quasimoduli parameters corresponding to
the position and phase of the ith (anti)kink (zg = 75, —
p. o = ¢, mod 27) and

2¢ forie?2Z,
€ = . (C3)
0 forie2Z+1.

mp—. 7mq

—log< (Z—ﬁ)z—f—e
i =

We note that the Lagrange multiplier ¢ is expressed in
terms of the other parameters on the saddle points. This is
consistent with the weak-coupling limit g> — 0 of Eq. (20)
with 2, /0 = 7,7 — 7, and 2y, /0 =7, | —7;}.

The p-bion contribution to the partition function is
given by

__%/H[dr Ad¢, exp( gﬂ_viﬂ’ (C8)

where the factor > is the one- -loop determinant from the

massive modes around each kink and the factor 1/p is
inserted since the bions are indistinguishable. The integra-
tion measure can be rewritten as

i) zlogf;”%

2.2 _mp=2riq )
€g €9
— log < (M) +e r = m)
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It is convenient to redefine the relative quasimoduli
parameters as

—7ioy) +i(di — bir)s
- Ti—l) - i(‘f’i - 45[—1)-

Note that the imaginary parts of z; and Z; are phases defined
modulo 27z. The complex variables z; and z; are subject to
the constraints

2P ,"‘r~,' 2 i L
SR Y=

zi = m(z

i = m(Ti

(C4)

(C5)

which are expressed by the integral forms of delta functions
as functions of ¢ and s,

2p . ~.
(- m)

i=1

1 & 3 — Z i
- . Co6

=2 () e
The saddle points (¢ =0,1,..., p— 1) which give non-
trivial contributions to the ground-state energy are
located at

(for i € 27),
(C7)
—10g%2+mﬂ_72’”q (for i €27 +1).
|
2p 2p i
drt; AN dep; = mdr, A dp,. N\ —dz; N dz;
g Tl ¢l m TL ¢L <];112m Zl Zl>
2p ~
i t+2;
5 —
<o 355 m)
Lz — %
1) X9 , Cc9
o(yiEm) @

where 7. and ¢,. are the overall moduli parameters. We can
rewrite the p-bion contribution as

Z

2 2p/n o A 2P
2= ”mﬂ Y s / doe=m [ 1., (C10)
0 i=1

S‘*—Oo
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where

im

L="" [ dz; A dz;exp(=V,) exp(=V,).  (Cl1)
”9
with

2 1

V,' = —g—TE_Zi +§(€i -5 — iG)Zi,

~ 2m

Vi=-"e 4o (6 + 5 —i0)Z;. (C12)
g

We can show that the p-bion contribution satisfies the
following differential equation:

s2— (e, —i6)2  (2m omp| (120
s S . m, 0’
DI 4 <92 ) ] (ﬂ Zo)

.10
6= TR (C13)

There are 4 p linearly independent solutions, whose asymp-
totic forms for large S are given by

1_17 ~ ﬁqe—(Zeis)m/i or ﬁqeismﬁ
P Zy

(g=0,....,p—1). (C14)

Since the leading behavior of the p-bion contribution for
large B should be Z,/Z,~ f”, the above asymptotic
solutions imply that the term with s = 0 gives the leading
contribution for large /. In the following, we only consider
the term with s = 0. For fixed values of o, the saddle points

of V; and f)i are

am 1
log< m >+m(21 —1),
G e —i
am 1 -
— log ( " > +7i(2l - 1),  (CI5)
g € —io

where [;,1; are integers labeling the saddle points. It is
convenient to shift the integration contour for ¢ so that
Re(e; — io) > 0 for all i. Then, the integration over the
thimble J LI associated with the saddle point labeled by

(1,.1;) gives

/ dz; A de >
Jl I;

2m N A
= i(lH,=1) ri- . (c1e
(o) r(5r)s e

The saddle points which contribute to the partition function
can be determined by the Lefschetz thimble method.

PHYSICAL REVIEW D 95, 105001 (2017)
In Ref. [25], we have shown that when €; — ic is a positive
real number, the thimbles which contribute to the partition
function are

{ Ji1—Tio Img* =40,
C[R —

(C17)
jO,l - j0,0

Img?> = —0.

As long as Re(e; — i) > 0, we can show that the same
thimbles provide contributions to the partition function.
Thus, we obtain

I = 2m <2_’;’ ei%') o LT“)M
s (1 -372)

g
where we have used the reflection formula for the gamma
function

(C18)

T

r-x)

Then, the contour integral for the p-bion contribution

sin(zx)'(x) = (C19)

Z 2pm
Zp P v'/ —wmﬂHuyo (C20)

m
o P
can be evaluated by picking up the poles at o = —2ik

and 6 = =2i(e + k) (k € Z5(). In the f — oo limit, the
pth-order pole at 6 = 0 gives the leading-order term (26),

Z l ﬁ 2pm

P 2
e eqRese”""ﬂ”I
ZO |: P ’S O:|

|:8im2 wm/}<2m ol 2(ioc—e)
X e r 5
g

r Ly T'(1=-9)]r
Frl-e+9)T(1+%)
The leading-order term (28) is
ﬁzi 2mpr(e) o4 e 2m\ A1) p‘ (c22)
Zy p!'|I'(1-¢) s

This is consistent with the dilute gas approximation. In the
supersymmetric case ¢ =1, Z,/Z, vanishes due to the
factor 1/I(1 —¢). In the near-SUSY case, we obtain

a Z 2p2m
m&—o ~2mpe 7, (C23)

where we have used
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limd, ! = 1.

x—0 F(.X) (C24)

Then we obtain

. . 1 = Z,
i = e i (132

2, pm

= im0, Eper, — Ze 2 (2m+0O(FP).  (C25)
p=1

This is consistent with the exact result.
relation

Using the

1 X p
— 11m8211m8p L P —
p'€—>1 o—0 F(1—€+%)

' -1
— hmllmp(;X)p [(p+ Dy=2(p-1)id, — 20X,

=100
(C26)
we can show that
1 Z, _2pm 2 ]
Slimd2 =L~ —2mpe” [2 e (y +log = + ”—’)
2¢-1 " Z g 2
—(p-1)m ] (C27)

Therefore, the second-order coefficient of the ground-state
energy in Eq. (20) is given by

(_ % 70?7 — (aez)2>

1 1
—1im02E = ~lim lim 5
V4

2e—1 26—>1ﬁ—>oo

2, pm

2m
—Z4me 7 p [y+logg—i + O(g )}

(C28)

APPENDIX D: PERTURBATION SERIES ON
THE TRIVIAL VACUUM

In this appendix we derive the perturbative part of the
ground-state energy by using the Bender-Wu method.
Since the ground state is invariant under the phase rotation
@ — e’ g, the corresponding wave function ¥ is a function
of |¢|. By redefining the wave function and the coordinate
as

¥ = ey (), (D1)

ol =nx.  n=—L
v

the Schrodinger equation can be rewritten as

PHYSICAL REVIEW D 95, 105001 (2017)

1 o0? 10
——(1 2,2\2) = 1-4 AN
m{ 4( +nx){8x2+( x)xﬁx}
+ V(x)] v = Ey, (D2)
where the potential is
2 1 — 22
Vix) = (1 =x)(1 2.2\2 x _ n
() = (1= B4R+ e s
(D3)

Let us expand the energy and the wave function with
respect to #:

3t

= i": Al”IZZ,
=0

Then, the Schrodinger equation (H —
expanded as

E)y =0 can be

=25 ( ) o 1

—4(1 - xz)llfz—i]

l

+ ZAI(II/H + 207y + Xy )
i=0
+ (e =)y — xtey ., (D5)

where y; = 0 for [ < 0. Setting y, = 1, we can solve these
equations order by order. It is not difficult to show that v,
are polynomials of the form

1.2F
B T, €=2+6
[ T TETTRTTRT
e=1+6

0.9f i
0.8 . _.-"".e= 0+6
o7k - |

‘ 20 40 60 80 700
FIG. 3. The asymptotic behavior of the ratio A;/

[2,‘]W](z < 100) for 0<e<2 (e=n/5.n=0,...,10).

5 is a regularization parameter (5 = 10710).
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21

_ 2k

V= E Bl,kx .
k=0

We can always fix the normalization of the wave function
as ‘P(x = 0) = 1, i.e., BO,O = 1, Bl,O = 0(l ?é O) The
Schrodinger equation reduces to

A./4
0= ;( ; ) [(k—i41)*B_;j_is1

— (2k =20 + 1)B_jj—i + Bi_jk—i-1]
!

(D6)

+ Ai(Bi_ig + 2By o1 + Bi_i_a42)

i=1

= Bjo1 +€(Bix — Bi_pi—2) (D7)

where B, =0ifl <0, k <0, k > 2/. As shown in Fig. 3,
the asymptotic behavior (34) for 0 < e < 2 is consistent
with

PHYSICAL REVIEW D 95, 105001 (2017)
1 T(I+2(1-¢))

A ~— D8
T2 T(1—€)? (D8)
The Borel resummation of the right-hand side gives
1 DI +2(1-€) 5
—-m) g a2 N
;21 Lor(1—e)?
Borel 92 © _ - _ 7’]2 !
=2 [ dtey 079 ¢
r(1—e)? A ¢ ZZO: 2
2m o 2(1-¢)
= dte™! . D9
r(l—e)ZA T (b9)

Therefore, the imaginary ambiguity [Eq. (22)] from the
perturbative part is

2m PN\
mE, =% —— (L 2. (D10
M2 =F Fi1—ep <2m) ¢ (D10)
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