
Transient classification in LIGO data using difference boosting
neural network

N. Mukund,1,* S. Abraham,1,† S. Kandhasamy,2,‡ S. Mitra,1,§ and N. S. Philip3,∥
1Inter-University Centre for Astronomy and Astrophysics (IUCAA), Post Bag 4,

Ganeshkhind, Pune 411 007, India
2LIGO Livingston Observatory, Livingston, Louisiana 70754, USA

3Department of Physics, St. Thomas College, Kozhencherry, Kerala 689641, India
(Received 30 September 2016; published 31 May 2017)

Detection and classification of transients in data from gravitational wave detectors are crucial for
efficient searches for true astrophysical events and identification of noise sources. We present a hybrid
method for classification of short duration transients seen in gravitational wave data using both supervised
and unsupervised machine learning techniques. To train the classifiers, we use the relative wavelet energy
and the corresponding entropy obtained by applying one-dimensional wavelet decomposition on the data.
The prediction accuracy of the trained classifier on nine simulated classes of gravitational wave transients
and also LIGO’s sixth science run hardware injections are reported. Targeted searches for a couple of
known classes of nonastrophysical signals in the first observational run of Advanced LIGO data are also
presented. The ability to accurately identify transient classes using minimal training samples makes the
proposed method a useful tool for LIGO detector characterization as well as searches for short duration
gravitational wave signals.
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I. INTRODUCTION

Detection of short duration gravitational waves (GW)
in LIGO data requires reliable identification and removal
of noise transients produced by a variety of nonastro-
physical sources [1,2]. Noise transients present in the data
reduces the reliability of a GW detection by increasing its
false alarm probability. Mitigation of noise transients is a
major challenge in searches for GW, especially for short
duration events where the signal can be easily mimicked
by nonastrophysical transients of varied origin. These
often have a waveform morphology close to that of the
targeted signal, thus making the differentiation even more
difficult [3].
With the advent of big data analysis, machine learning

has emerged as a useful tool to handle huge volumes of data
and to interpret meaningful results from them. In the past
few decades, machine learning algorithms such as artificial
neural network (ANN) [4,5], support vector machines
[6,7], random forest [8], Gaussian mixture model [9] etc.
found many applications in astronomy and occasionally,
have been used for the study of noise artifacts in GW
analysis. Since the visual inspection of individual events
and their classification is time consuming and prone to
errors, machine learning methods are more effective and

reliable for the detection of hidden signatures of astro-
physical GW in the data.
We present a hybrid classifier that combines features

from supervised and unsupervised machine learning
algorithms to do the transient classification. Our classifier
performs an unsupervised hierarchical clustering on the
incoming data to identify possible groups and a super-
vised Bayesian [10] classifier to do the final classification.
The classifier code uses features extracted from wavelet
analysis of the data in a fast and efficient manner using
GPU and MPI parallelization techniques, whereby, mak-
ing it a good candidate for real-time burst trigger classi-
fication and detector characterization. When used to
predict the class labels for an input data, the classifier
ranks the most likely classes each with an associated
probability (confidence level) that may be used to set a
threshold to discard unreliable predictions. This multiple
class prediction is useful to identify borderline examples
in the feature space. In our study, the classifier was first
tested on simulated data consisting of astrophysical bursts
along with commonly observed instrumental glitches and
then on the LIGO sixth science run burst hardware
injections. Targeted searches for specific glitch types seen
in Advanced LIGO first observation data were also carried
out, and the results are reported. Recent methods like deep
learning [11,12] using convolutional neural networks
require large number of training data and are computa-
tionally expensive. The fact that we are able to represent
the transient classes with minimal features and fewer
training data samples makes our method less susceptible
to such issues and speeds up the training process, making
it suitable for realtime applications.
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II. TRANSIENT EVENTS IN GW DATA

Table I lists the transients used in our analysis. Standard
searches for compact binary coalescences use matched
filtering as the base algorithm [13], while the burst
searches primarily look for excess power in the data along
with the time coincidence to trigger a detection [14,15].
Both these searches are followed by extensive sanity
checks, where the auxiliary channels insensitive to astro-
physical signals are inspected to rule out possible terres-
trial coupling [3]. Auxiliary channels are often in the
thousands, and their coupling with the GW strain sensitive
channel is seen to fluctuate in time due to the dynamic
nature of the instrument. This often makes the auxiliary
channel veto procedure a daunting task. Incorporating a
machine learning based veto procedure to identify well-
known classes of nonastrophysical transients can help
discern the trigger right at the strain channel and thus
reduce false alarms.

III. FEATURE EXTRACTION

Raw time series is preprocessed by applying a whiten-
ing transformation, which enhances the short duration
features seen in the data. Transient signals occurring in
power systems and neuromagnetic brain responses have
structural and temporal similarities with the glitch signals
found in LIGO data streams. Wavelet based feature
extraction for classifying these transients are detailed
in [29,30]. A wavelet is a function having a smooth
oscillatory pattern which vanishes near the ends [29].
With its desirable qualities like good localization in time
and frequency domain, it seems to be a natural choice

for extracting information from transient signals. A
discrete wavelet transform results in sparser signal rep-
resentation consisting of a reduced feature set, but still
preserves information necessary to differentiate among
the classes.
The mother wavelet is defined as

ψa;bðtÞ ¼ jaj−1=2ψ
�
t − b
a

�
; ð1Þ

where a, b ∈ R and a ≠ 0 is scaled and time shifted to form
the wavelet family.
The orthonormal basis of Hilbert space L2ðRÞ consisting

of finite-energy signals is obtained by discretizing scale and
translation parameters aj ¼ 2−j and bj;k ¼ 2−jk giving the
family wavelet as

ψ j;kðtÞ ¼ 2j=2ψð2jt − kÞ with j; k ∈ Z: ð2Þ

The all resolution level wavelet decomposition of the
signal has the form,

SðtÞ¼
X−1
j¼−N

X
k

CjðkÞψj; kðtÞ¼
X−1
j¼−N

rjðtÞ; ð3Þ

where N ¼ log 2 (signal length).
The energy Ej at each resolution level is computed as

Ej ¼ krjk2 ¼
X
k

jCjðkÞj2: ð4Þ

The relative wavelet energy at each resolution level

pj ¼
Ej

Etot
; where Etot ¼

X
j<0

Ej: ð5Þ

Wavelet entropy SWE which encodes the degree of
disorder in a signal can be written as

SWE ¼ −
X
j<0

pj ln½pj�: ð6Þ

Here we carry out similar N-level one-dimensional
wavelet decomposition [31] using an appropriately chosen
mother wavelet. Feature extraction for simulated and LIGO
O1 data is done using a Daubechies 2 (db2) wavelet, while
for other search cases, a discrete Meyer (dmey) wavelet is
used. We useN ¼ 12 and 14, respectively, for data sampled
at 4 and 16 KHz. Energy in the detail levels and wavelet
entropy are then computed and are normalized to unity. In
addition, kurtosis of the whitened signal is also used as a
distinguishing feature. These features along with the class
labels form the input for our Bayesian classifier. Figure 1
shows typical transients and their detail coefficient wavelet
energy.

TABLE I. Details of transients used. A ¼ astrophysical,
NA ¼ nonastrophysical, O1: Advanced LIGO 1st science run,
S6 ¼ LIGO 6th science run, Sim ¼ simulated.

Transient Symbol Type Search type

Sine Gaussian [16,17] SG NA S6, Sim
Ring down [18] RD A S6, Sim
Gaussian [17,19] GA NA S6, Sim
Supernova [20,21] SN A S6, Sim
Cusp [22] CSP A S6, Sim
White burst noise [19] WNB NA S6, Sim
Black hole merger [23,24] LBM A S6, Sim
Chirping sine Gaussian [25] CSG NA Sim
Blip [3] Blip NA Sim
Scattering [3,26,27] SCT NA O1
Type A (low frequency) A NA O1
Type B B NA O1
Type C (blip, Fig. 6) [28] C NA O1
Type D D NA O1
Type E (koi fish) [28] E NA O1
Type F (needle) F NA O1
Type G G NA O1
Lightning [3] LGN NA Targeted
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IV. CLASSIFIER

Machine learning involves techniques which allow
systems to automatically learn and improve prediction
accuracies by exploring their past experiences on data.
It mimics human decision-making ability by discovering
the relationships between the variables of a system from a
given set of examples that have both the variables and the
observed outcomes. Here we use a hybrid classifier, a
supervised Bayesian [10] one called difference boosting
neural network (DBNN) [33,34] to classify the burst
signals.
The DBNN can impose conditional independence on

data without a loss of accuracy in the posterior computa-
tions. It does this by associating a threshold window with
each of the attribute values of the examples [35]. The
network is designed to work with discrete value input
features, while GW data features are continuous. A simple
method to deal with continuous feature value is to recast it
into a suitable number of bins. There is no fixed criteria for
the number of bins each feature may take. It might be
argued that smaller the bin size, conditions can be imposed
with better accuracy. However, in most practical situations,
the optimal bin size is close to the square root of N, where
N represents the number of discrete values present in the
data for that variable. Once the bins are defined, for each
feature bin and the given classes, the allowed ranges for all
the remaining features are registered.
The DBNN, being a supervised neural network, requires

a training data to configure the network before it can be
used for classification of unseen data. The learning takes
place by highlighting the difference between the features in
two or more classes [35] by using Bayesian probability as
its central rule for decision making. The confidence in a
prediction [36] is the value of the posterior Bayesian
probability for a given set of input features.
The working of DBNN can be divided into three units:

Bayesian probability estimator, gradient descent boosting

algorithm, and a discriminant function estimator [35].
The network starts with a flat prior for all the classes
PðCkÞ ¼ 1=N, preventing the training from being biased to
any specific prior distribution. The first unit in DBNN
(executed by option 0 in the implementation) computes
Bayesian probability and the threshold function for each of
the training sample by constructing a grid for each class
with columns representing the attributes and rows their
respective values. The bin location for each attribute value
is decided such that the full range of values can be
uniformly covered by the set number of bins for that
attribute across the classes. Initially, the content in attribute
bins are all set to one. The training examples are taken one
by one, and the bin corresponding to each attribute value
for it’s class is incremented by one. This sampled data is
used to compute the likelihood for an attribute value to
favor a class, PðUmjCkÞ, as the ratio of occurrences
(counts) in it’s bin for the class CK to the total counts in
all k classes for the same bin number that Um holds for that
attribute. The classifier also makes notes for each attribute
value and it’s class, the allowed maximum and minimum
values taken by the remaining attributes in the entire
training sample. This information is used to negate the
possibility that the value of one feature may favor multiple
classes, unless all other features also have values in the
same range across the classes.
Though we started with a flat prior, to compute the

Bayesian probability, we need to estimate the actual prior.
In the Bayesian framework, prior has no special meaning.
It is a weighted bias (belief) about the probable outcome of
an experiment based on experiences in the past. In the
second unit (executed by option 1 in the implementation),
the DBNN estimates prior based on it’s experience with the
given training data. The DBNN does not make any change
in the prior for correctly classified examples. In the case
of failed examples, it attaches an additional weight to
the attributes so that, it may also get correctly classified.
To avoid random fluctuations due to the introduction

FIG. 1. Left panel depicts typical transient events (SNR set to 50 for better visualization). Wavelet energy median distribution for
simulated data (SNR varied from 8 to 100) shown in the right panel.
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of arbitrary priers, this is done by modifying the flat
prior incrementally by ΔWm ¼ αð1 − Pk

Pk�
Þ through a set

of repeated rounds on the training data until the example
gets correctly classified. That is, until PðUjCkÞ ¼
ΠmPðUmjCÞ goes to a maximum for the true class
represented by the data. Here Pk and Pk� , respectively,
represent the calculated Bayesian probability for the true
class and the wrongly estimated class, and α is a fraction
called the learning rate [36]. Since the ratio of the
probabilities are taken, this is much like the way humans
arrive at their decisions based on their cumulative experi-
ences in the past. This process is called training, and after
training, the estimated likelihoods and prior are saved for
future use. The assumption during the training process is
that a representative training data is available that has
suitable examples to represent all the variants in the target
space.
The third unit (executed by options 2 and 3 in the

implementation) computes the discriminant function.
According to Bayesian theorem, the updated belief or
the posterior is the product of the prior, and the evidence
normalized over all possibilities. This can be written as

PðCkjUÞ ¼
Q

mðPðUmjCkÞWmP
k

Q
mðPðUmjCkÞWm

; ð7Þ

where Wm represent the prior weight vector.
DBNN has been successfully applied to many astro-

nomical problems such as star-galaxy classification [35],
classification of point sources such as quasars, stars, and
unresolved galaxies [37], transient classification [38] to
indicate a few.
As for the case of all supervised networks, the accuracy

of the predictions depend on the initial class selection and
quality of the training data sets. When encountering real
instrument data where it is difficult to know beforehand the
actual groups present, running an unsupervised classifier
prior to the Wavelet-DBNN classifier was seen to vastly
improve the results. This step becomes more relevant for
targeted searches looking for a particular transient class
where unsupervised learning can yield insights into con-
tamination from other glitch classes. Prior information
about other glitches with very similar morphology can
be made use of by the network to learn to differentiate
between them whereby improving the accuracy.
We run an unsupervised classifier using Hierarchical

clustering on the data to get an idea about the possible
transient groups currently present in the data and their
respective distribution (see Fig. 2). Classifier trained this
way is observed to outperform the other scenarios where
class selection is done either by visual inspection or by
using predefined classes.
We employ a bottom up agglomerate clustering where the

pairwise distance is calculated using the Mahalanobis
distance measure [39]. The criterion for estimating the

linkage between the clusters is based on the average distance
between pairs of signals among the clusters, weighted by the
numbers of elements in each cluster. Cluster linkage at each
level of dendrogram is calculated recursively whose value
for a given pair of clusters is given by

dðr; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nrns

ðnr þ nsÞ

s
k~xr − ~xsk2: ð8Þ

The optimal distance measure used for linkage and the
original mother wavelet used for decomposition are both
selected based on the value of the cophenetic correlation
coefficient, c [40], with a value close to unity being ideal.

c ¼
P

i<jðYij − yÞðZij − zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i<jðYij − yÞ2Pi<jðZij − zÞ2

q : ð9Þ

Yij is the pairwise distance between parametrized wave-
forms while Zij is their linkage distance. y, z, respectively,
represent the average value of the corresponding distance
measures.
Optimal leaf ordering of the resulting dendrogram is

achieved by maximizing the sum of similarities between
adjacent leaves [41]. This step is carried out to identify the
relationship between the various clusters and to locate
possible subgroups. For example, in Fig. 2, transients at
both ends are least related to each other. The schematic of
the hybrid classifier useful for real time transient classi-
fication is shown in Fig. 3.
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FIG. 2. Dendrogram showing hierarchical clustering of 1000
transient triggers identified in O1 Data from Hanford observatory
by the Omicron algorithm [32]. The transient morphology
changes progressively from left to right.
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V. SIMULATED DATA

A simulated data set consists of 49845 transients from
ten classes (refer to Table I) whose SNR is varied uniformly
between 8 and 100 by means of Gaussian white noise
addition. Signals in each class are generated for different
values of parameters sampled from a wide range. Details of
bursts used in simulation are given below (to is set
to 0.5 Sec).

(i) Gaussian (GN)
These broadband nonastrophysical signals are

modeled as simple Gaussians with a duration
parameter τ taking values 0.0005, 0.001, 0.0025,
0.005, 0.0075, 0.01, 0.02, and 0.05 [17].

sðtÞ ¼ exp

�
−
ðt − toÞ2

τ2

�

(ii) Sine-Gaussian (SG)
SG models a nonastrophysical glitch which pro-

duces significant triggers inmatched filtering analysis
for coalescing compact binaries [16]. τ is set to 2=fo
with a central frequency (fo) logarithmically span-
ning from 100 Hz to 2000 Hz.

sðtÞ ¼ exp

�
−
ðt − toÞ2

τ2

�
sinð2πfoðt − toÞÞ

(iii) Ringdown (RG)
RG signals have a longer duration but a shorter

bandwidth and are modeled as damped sinusoids.
They are produced from quasinormal modes of a
final black hole formed from coalescing compact

binaries [18]. Here we set τ ¼ 4=fo with fo similar
to that of sine-Gaussian data set.

sðtÞ¼
�
sðtÞ¼expð−ðt−toÞ

τ Þcosð2πfoðt−toÞÞ if t≥ to
0 if t≤ to

(iv) Chirping sine Gaussian (CSG)
CSG is similar to SGs but with an additional

chirping parameter [25]. This signal closely models
the whistle glitches frequently seen in LIGO detector
data. The equation below gives the waveform model
where each of the parameter is varied as follows:
fo∶f5; 100g, α∶f10; 100g and τ∶f0.001; 0.025g

sðtÞ ¼
exp ð−ð1−1iαÞðt−toÞ2ð4τ2Þ þ 2πiðt − toÞfoÞ

ð2πτ2Þ14

(v) Supernova (SN)
Zwerger-Mueller waveforms [20], one of the

Supernova waveforms, are produced by an axisym-
metric core collapse of supernovae. These are
obtained by hydrodynamical simulations of the
stellar core collapse by varying the initial conditions
like adiabatic index, spin, and differential rotation
profile. We incorporate 78 models (with varying
SNR) consisting of a simple analytic equation of
state. We also make use of Ott-Burrows supernova
waveforms [21] in our analysis.

(vi) Cusp (CSP)
Symmetry breaking phase transitions in the early

Universe could generate cosmic strings [22] with a
cusplike signal, hðfÞ ¼ AðfÞf−4=3. Such waveforms
are simulated with an exponential roll off after a
cutoff frequency fo which is varied from 50 Hz to
2000 Hz.

(vii) White noise bursts (WBN)
WBN have in general very complex time-

frequency morphology. Their spectra is white in
the specified band and zero outside [19]. Here we
construct a set of burst signals which have central
frequency spanning from 50–300 Hz, bandwidth 50
to 150 Hz and duration 0.1 to 0.4 seconds.

(viii) Black hole merger (LBM)
Thesewaveforms capture the coalescence radiation

emitted from a merger of binary black hole systems
using Lazarus approach [23]. Analytic approximation
[24] is used to construct time domain templates to
replicate the merger scenarios. We considered black
hole binaries with a chirp mass in range f20; 50g
and cosine of inclination angle varied between zero
and one.

(ix) Blip (Blip)
Blips are observed frequently in both LIGO de-

tectors but their origin is not well understood [28].
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FIG. 3. Block diagram of the proposed hybrid classifier.
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Hardware injections carried out at the observatories
sometimes hit the saturation limit of the actuator
resulting in signals which look similar to blips. Hence
we simulate them by clipping sine-Gaussians at a few
percent level around the mean amplitude.

While sampling the parameters, care was taken to ensure
that the signals within a class are significantly different.
Table II shows the performance of a Wavelet-DBNN
classifier. Total number of samples, size of training set, true
positives (TP), false positives (FP), precision, sensitivity, and
specificity are reported (see [42] for terms definition). The
resulting confusion matrix is shown on the right panel of
Fig. 4.
For comparison with a standard classifier, we use publicly

available support vector machine (SVM) implementation
LIBSVM [7,43] on the samewavelet decomposed parameter
sets. Figure 4 clearly shows how our Wavelet-DBNN
classifier outperforms the traditional classifier. Stark differ-
ence is observed for Supernova signals where the SVM
shows a very high misclassification, most likely due to the
limited number of data samples and the inherent diversity in
their morphology.

VI. S6 HARDWARE INJECTIONS

To check the performance of our classifier on the real
data, we use the classifier on the LIGO strain data obtained
from the sixth science run [44]. We apply our classifier to
six different classes of hardware injected short duration
transient signals as given in Table III. The strain data is
whitened to better identify the transients and then down
sampled to 4096 Hz. 1634 transients with SNR greater than
10 are used in the analysis. Table III gives the results after
classification.

VII. TARGETED SEARCH:
LIGO STRAIN CHANNEL

Detector characterization studies revealed several
kinds of nonastrophysical transients in the Advanced
LIGO’s strain data during its first observation run [3].
Identification of these transients and establishment of their
nonastrophysical originwere crucial for the detection ofGW
signal [1–3]. For those known classes, if we could automate
their detection using machine learning methods, it will
reduce the noise background in the astrophysical GW
searches.We used LIGOHanfordObservatory (LHO) strain
data (September 18 to January 12) consisting of 28354
transient triggers [32] with SNR ranging from 8 to 100 and
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FIG. 4. Confusion matrix for simulated data: Results from traditional SVM (left) and DBNN (right) classifiers. The closer a diagonal
element is to unity, the better is the classification for the corresponding type. Accuracy of our method is thus evident.

TABLE II. Simulated transient signals.

Name Total Train. TP FP Preci. Sensi. Speci.

SG 5000 552 4991 22 0.99 0.99 1.00
RG 5000 311 4984 16 0.99 0.99 1.00
GA 5000 155 5000 0 1.00 1.00 1.00
SN 745 313 702 14 0.98 0.94 1.00
RN 5000 114 4992 19 0.99 0.99 1.00
CSP 5000 14 5000 0 1.00 1.00 1.00
WNB 10000 421 9994 15 0.99 0.99 1.00
LBM 5000 586 4999 31 0.99 1.00 0.99
CSG 5000 378 4969 0 1.00 0.99 1.00
BLIP 4100 153 4097 0 1.00 0.99 1.00

TABLE III. S6 hardware injections.

Name Total Train. TP FP Preci. Sensi. Speci

SG 1476 69 1476 10 0.99 1.00 0.94
RG 36 25 33 0 1.00 0.92 1.00
GA 46 38 44 8 0.85 0.96 1.00
SN 41 34 33 4 1.00 0.86 1.00
CSP 28 27 24 0 1.00 0.86 1.00
WNB 29 27 24 0 1.00 0.83 1.00
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having a maximum frequency of 2096 Hz. Our classifier is
then used to search for eventswhich look similar to themajor
transient classes (see Table I) evident from the initial
hierarchical clustering. Several of these could potentially
limit generic burst searches, in particular, cosmic cusps and
supernova events. One second whitened data around the
trigger is used for feature extraction. Training set consisted
of minimal samples ranging from five to ten per class.
Figure 5 shows the distribution of classified transients with a
similar morphology as the training set.
We also did the analysis with LIGO Livingston data for

triggers in SNR range 10–100 and obtained comparable
results. Classifier found a strong presence of glitches caused
due to previously proposed scattering mechanism [26,27].
We observe coincidence (within one second) between some
of the classified scattering glitches and the triggers seen in
LIGO’s auxiliary angular length sensing channels. These
auxiliary channels carry information about the motion of
signal recycling cavity optics. The coupling was seen to
occur predominantly from the pitch and yaw degrees of
freedom with a respective contribution of 17.3% and 12.5%

with 50% of the glitches coincidentally seen in both the
channels. Scattering happens when an off axis beam gets
reflected back from the beam tube and recombines with the
main beam. These morphology based identification coupled
with coincident analysis would help one to narrow down to
the region mostly likely to cause the transients and also help
in applying appropriate data quality vetoes.

VIII. TARGETED SEARCH:
LIGO AUXILIARY CHANNELS

Severe weather conditions can affect both the detectors
and, if not properly vetoed, can be misinterpreted as a true
signal. Variation in the ambient magnetic field during
lightning and a thunderstorm around LIGO can affect
sensors and actuators present in multistage suspension
systems that isolate and control the LIGO test mass.
They are seen in magnetometers with a very distinct
time-frequency morphology (Fig. 6, right panel). These
also induce currents in the beam tube and are detected by on
site clamp meters. Here we apply our classifier to separate

FIG. 5. Donut chart shows the distribution of O1 transients classified by DBNN-Wavelet classifier into the major classes identified by
hierarchical clustering. Representative transients from each class (sampled at 4096 Hz) are also shown.
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out lightning events from the other transients seen in the
magnetometer data. We use LIGO Livingston Observatory
(LLO) Y-arm magnetometer Omicron triggers generated
from 16∶00:00 to 23∶00:00 UTC of December 16, 2015.
Hierarchical clustering on the first 30 minutes of data
generates the training set, which is fed to the supervised
classifier that performs the final targeted search. Triggers
with SNR 15 to 1000 and frequency 1 to 1024 Hz are used
for the analysis. 42 out of 689 such triggers are identified to
be caused by lightning. Similar search carried out in LLO
X-arm magnetometer data for the same period identifies 45
lightning triggers. Our results are consistent with the local
weather data, which reported lightning activity during the
same period. Number of misclassifications in these cases
turned out to be only one and six, respectively.

IX. CONCLUSIONS

We have convincingly demonstrated the resourcefulness
of machine learning in detector characterization and burst
signal analysis in LIGO like complex instruments. We
showed that an effective feature extraction technique, in
conjunction with an efficient classifier, can be used to
classify a variety of transients in practical situation involv-
ing real data. We used relative wavelet energy, wavelet
entropy, and kurtosis as a possible parameter set for
classifier input. This, coupled with a difference boosting
neural network, was very accurate in discerning between
classes with slightly different morphology and possibly
different physical origin. The usefulness of the method was
shown in our analysis where we could do an accurate
targeted search for a specific glitch using minimal training
sets. The parameter set used here can be expanded to
include other features which can aid the classification even
when the corresponding values are unavailable for other

classes. The special construction of the classifier makes
sure that it does not suffer from the curse of dimensionality
unlike most neural network classifiers. Hence, the feature
set can be expanded in future without causing much
computational overhead. Combining class information
along with multichannel coincidence analysis will help
to narrow down to the cause for a particular kind of
transient present in the data. If there is a good enough
reason to believe that the trigger is nonastrophysical then
glitch based vetoes can be applied to those times. This
would lower background triggers in search pipelines thus
enhancing confidence in the true detections. We plan to
develop such a data quality vector which can be used to
directly veto low latency triggers produced by search
pipelines looking for astrophysical signals.
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FIG. 6. OmegaScan: Type C glitch in LHO strain channel (left) and lightning glitch in LLO magnetometer (right). Plots generated
through LIGOdv-web [45].
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