
Analytical calculation of black hole spin using deformation of the shadow

Oleg Yu. Tsupko*

Space Research Institute of Russian Academy of Sciences, Profsoyuznaya 84/32, Moscow 117997, Russia
and National Research Nuclear University MEPhI (Moscow Engineering Physics Institute),

Kashirskoe Shosse 31, Moscow 115409, Russia
(Received 30 January 2017; published 31 May 2017)

We succeed to find compact analytical expressions which allow one to easily extract the black hole
spin from observations of its shadow, without need to construct or model the entire curve of the
shadow. The deformation of the Kerr black hole shadow can be characterized in a simple way by
oblateness (the ratio of the horizontal and vertical angular diameters which are supposed to be
measured by an observer). The deformation is significant in case the black hole is nearly extreme and
the observer is not so far from the equatorial plane. In this approximation, we present: (i) the spin lower
limit via oblateness, (ii) the spin via oblateness and viewing angle, in case the latter is known from
other observations.
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I. INTRODUCTION

For a distant observer, a black hole (BH) should be seen
as a dark spot in the sky which is referred to as a “BH
shadow.”More rigorously, the shadow can be defined as the
region of the observer’s sky that is left dark if there are light
sources distributed everywhere but not between the
observer and the BH [1]. Size and shape of the shadow
are determined by parameters of the BH and the observer
position. At present, an increasing interest concerning
investigations of the shadow is connected with the chal-
lenging perspective of possible observation of the shadow
of the supermassive BH in the center of our Galaxy. Two
projects are under way now to observe this shadow: the
Event Horizon Telescope [2] and the BlackHoleCam [3].
Using estimates of the BH mass, we can calculate the

assumed size of its shadow (if the BH-observer distance is
also known). Vice versa, what we can get from observation
of the shadow angular radius is the BH mass.
If a BH is rotating, the shadow is not circular, but oblate

and deformed. The second thing we could hope to measure
is the oblateness (the ratio of the horizontal and vertical
angular diameters) of the shadow, see Fig. 1. The oblate-
ness can give us information about the BH spin. It is
important also that the deformation depends on the viewing
angle of the observer: for the equatorial observer the
deformation is strongest, while for the polar observer the
deformation is absent.
Shadow was extensively studied in literature, which

includes analytical investigations and numerical simula-
tions (for example, see [1,4–24]). Extraction of the spin
from the shadow deformation was discussed in a number of
papers [15–21], starting from work of Hioki and Maeda
[15] with distortion parameter. These works imply the use

of numerical calculations at some stage, and to the best of
our knowledge, there is no fully analytical treatment of the
problem. We believe that an explicit analytical dependence
of the spin on some parameter characterizing the shadow
nonsphericity and observer viewing angle would be very
useful as a first step in the development of more complex
models.
Analytical investigations of the BH shadow start from

work of Synge [4], where the angular radius of the shadow
was calculated for the Schwarzschild BH, as a function of
the BH mass and of the radial coordinate of the observer.
The shape of the Kerr BH shadow was calculated by
Bardeen [5]. In the paper [1], the size and the shape of the
shadow were calculated for the whole class of Plebański-
Demiański spacetimes.

FIG. 1. The simplest way to characterize the deformation of the
shadow is to use oblateness, the ratio of horizontal (Δx) and
vertical (Δy) diameters of the shadow which are supposed to be
measured by an observer (Δx ≤ Δy). The oblateness k ¼ Δx=Δy
ranges from 1 (Schwarzschild, no deformation) to

ffiffiffi
3

p
=2 (extreme

Kerr, the strongest deformation). For analytical calculation of
diameters, we need to know the left and the right horizontal
borders of the shadow, xL and xR, and the vertical border, ym.
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Results of the paper [1] allow anyone to calculate the
shadow of Kerr BH for any position of the observer,
which means arbitrary radial distance from BH and
arbitrary inclination of observer. Nevertheless, analytical
calculation of the horizontal and vertical angular diam-
eters in the general case is complicated. Analytical
calculation of the shadow means the following: every
point of the curve is evaluated as an analytical function of
a special parameter, see details below. This parameter is
changed in some range, and boundaries of this range are
also the subject of evaluation. Namely, we need to find
zeros of high-order polynomials. Therefore in the general
case results for diameters cannot be presented in closed
analytical form (as explicit functions of spin and incli-
nation). Calculation of the horizontal and vertical angular
diameters is addressed in the paper [6]. The authors
consider the equatorial plane of the Kerr BH and explain
how to calculate the horizontal and vertical angular
diameters of the shadow as a function of the BH mass,
spin, and the radial coordinate of the observer. As an
example of the situation when results can be written
explicitly, the authors have calculated the horizontal and
vertical angular diameters of the shadow for extreme
Kerr BH.
Our goal is to obtain a simple analytical dependence of

oblateness on the spin and inclination which will be easy to
use. This goal is achieved by using the approximation of a
nearly extreme BH with a ¼ ð1 − δÞm, δ ≪ 1. In this
approximation, it becomes possible to obtain an explicit
dependence which, however, is still too cumbersome. For
further simplifications, we consider the case of the nearly
equatorial observer.
Remarkably, we obtain that the dependence of the

deformation on the spin is strong: the oblateness is propor-
tional to

ffiffiffi
δ

p
. It means that a small deviation of spin from

the extreme value leads to a notable change of the shadow.
At the same time, the dependence of deformation on the
viewing angle is quadratic and therefore not as important.
In practical situations, it is expected that the observer

could measure the horizontal and vertical angular diameters
of the BH, and knows the oblateness. Therefore we
reformulate our results as a technique of extraction of spin
by measuring the oblateness.
As a main result, we present compact formulas for:

(i) expression of the spin lower limit via oblateness,
(ii) direct calculation of the spin via oblateness and
viewing angle, in case the latter is known from other
observations.
The paper is organized as follows. In the next section we

explain how to calculate the shadowand extract theBHspin in
case of arbitrary observer’s inclination angle. In Sec. III we
find explicit dependence of spin on the oblateness and
observer’s viewing angle, for the case the black hole is nearly
extreme and the observer is near the equatorial plane; thenwe
come to Conclusions.

II. CONSTRUCTION OF THE SHADOW AND
EXTRACTION OF BH SPIN FOR ARBITRARY

OBSERVER’S INCLINATION ANGLE

We will work in the Kerr metric with G ¼ c ¼ 1:

ds2 ¼ −
�
1 −

2mr
ρ2

�
dt2 þ ρ2

Δ
dr2 þ ρ2dϑ2

þ sin2ϑ

�
r2 þ a2 þ 2mra2sin2ϑ

ρ2

�
dφ2

−
4mrasin2ϑ

ρ2
dtdφ; ð1Þ

where

Δ ¼ r2 þ a2 − 2mr; ρ2 ¼ r2 þ a2cos2ϑ: ð2Þ

We consider an observer at the position ðrO; ϑOÞ.
Equations for calculation of the shadow curve for this
observer can be found from Eqs. (24)–(26) of Grenzebach,
Perlick, Lämmerzahl [1] simplified for the Kerr metric:

sinΘðrÞ ¼ 2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2 − 2mr

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2O þ a2 − 2mrO

p
r2Or − r2Omþ r3 − 3r2mþ 2ra2

; ð3Þ

sinΨðrÞ ¼ −
r3 − 3r2mþ ra2 þ a2mþ a2 sin2 ϑOðr−mÞ

2ar sinϑO
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2 − 2mr

p ;

ð4Þ

where Θ and Ψ are the celestial coordinates for our
observer, see Fig. 2. These two angles determine the shape
of the shadow as a function of the parameter r which means
the radius of critical spherical photon orbit. Parameter r is
changed from its minimal rmin to maximum rmax value; they
are found from

sinΨðrÞ ¼ 1 for rmin; and ð5Þ

sinΨðrÞ ¼ −1 for rmax: ð6Þ

We restrict ourselves to the consideration of the
distant observer, and for rO ≫ m, the formula (3) can be
simplified:

sinΘðrÞ ¼ 2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2 − 2mr

p

rOðr −mÞ : ð7Þ

It is convenient to use dimensionless Cartesian coordi-
nates in the observer sky (see [1]):

x ¼ −2 tanðΘ=2Þ sinΨ; y ¼ −2 tanðΘ=2Þ cosΨ: ð8Þ

For rO ≫ m angular size of the shadow is very small,
Θ ≪ 1, and in this approximation we can write for
convenience that
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x ¼ − sinΘ sinΨ; y ¼ − sinΘ cosΨ: ð9Þ

The shape of the shadow can be characterized by its left
border xL < 0, the right border xR > 0, and the maximum
value of the y-coordinate, ym, see Fig. 1. These values give
us the “horizontal” Δx ¼ xR − xL and “vertical” Δy ¼ 2ym
diameters of the shadow. We are interested in calculation of
oblateness k ¼ Δx=Δy.
Let us consider the equatorial observer. For the

Schwarzschild case, the shadow is circular and jxLj ¼ xR ¼
ym ¼ 3

ffiffiffi
3

p
m=rO.With increasing of a, the shadow is shifted

to the right, see Fig. 3 (left). At small a ≪ m, the left and
right borders are shifted equally, and the horizontal diameter
Δx ¼ 6

ffiffiffi
3

p
m=rO is not changing [7]. At a ¼ m, the borders

tend to xL ¼ −m=rO and xR ¼ 8m=rO.At the same time, the
vertical diameter stays constant Δy ¼ 6

ffiffiffi
3

p
m=rO for all

values of a [6]. Therefore, for the equatorial observer, the
oblateness ranges from 1 for the Schwarzschild case (a ¼ 0)
to

ffiffiffi
3

p
=2 for the extreme Kerr case (a ¼ m).

Let us now consider the nearly extreme Kerr BH
a ¼ ð1 − δÞm with δ ≪ 1. The remarkable thing we have
seen from plotting the shadow is that the displacement of
the left border in comparison with the extreme Kerr case is
proportional to

ffiffiffi
δ

p
:

xLja¼ð1−δÞm − xLja¼m ∝
ffiffiffi
δ

p
; ð10Þ

whereas the right border is shifting proportionally to δ:

xRja¼ð1−δÞm − xRja¼m ∝ δ; see Fig: 3 ðrightÞ: ð11Þ

The left-hand sides of these formulas are shown in Fig. 4.
With this in mind, we seek the solution of (5) in the form

rminðδ; ϑOÞ ¼ r0ðϑOÞ þ r1ðϑOÞ
ffiffiffi
δ

p
þ r2ðϑOÞδ; δ ≪ 1:

ð12Þ

FIG. 2. Geometry of the problem. (a) Position of the observer and the black hole. We assume that rO ≫ m. We denote ϑO the
inclination angle, and i the viewing angle. The main results are obtained for the nearly equatorial observer, which means that i ≪ 1. (b)
and (c) Celestial coordinates of the observer. Θ is the colatitude, and Ψ is the azimuthal angle, see also [1,6]. x and y are Cartesian
coordinates calculated for rO ≫ m by the formulas (9). Note that in our coordinates, the origin corresponds to a principal null ray, and in
figures in [5] the origin is determined by zero impact parameters. Therefore in our case the origin is horizontally shifted by the value
a sin ϑO in comparison with [5]. For example, for the extreme Kerr BH, the shadow is situated between −m=rO and 8m=rO in our paper,
whereas in [5] it lies between −2m and 7m. For details see [24].

FIG. 3. Left: The shadow curves for the distant equatorial observer for (from the leftmost to the rightmost) a ¼ 0, 0.1m, 0.6m,
0.9999m. Right: The shadow curves for a ¼ 0.97m, 0.99m, 0.9999m. There is a notable difference in location of left borders, whereas
the right borders are approximately at the same place; see (10) and (11).
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Substituting the expressions for a and rmin in Eq. (5) and
keeping the terms with

ffiffiffi
δ

p
and δ, we obtain the three

equations for the unknowns r0ðϑOÞ, r1ðϑOÞ, r2ðϑOÞ. The
equation for r0ðϑOÞ is polynomial and has several solu-
tions. We need to choose the one which is r0ðϑOÞ≳m and
tends to m when ϑO → π=2. We get that r0ðϑOÞ ¼ m,1 and
then find r1ðϑOÞ and r2ðϑOÞ. The left border of the shadow
is calculated as

xLðδ; ϑOÞ ¼ − sinΘðrminÞ: ð13Þ

In this manner, we find xL up to the terms ∝
ffiffiffi
δ

p
. The terms

∝
ffiffiffi
δ

p
are presented only in xL, δ-corrections in all other

expressions start from δ and therefore can be neglected. It
means that in all other values we can put a ¼ m.
Solving (6) for rmax with a ¼ m, we choose a root which

tends to 4m when ϑO → π=2:

rmaxðϑOÞ ¼ ðsin ϑO þ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinϑO þ 2

p
Þm: ð14Þ

The right border of the shadow is calculated as

xRðδ; ϑOÞ ¼ sinΘðrmaxÞ: ð15Þ

The horizontal size of the shadow has the form

Δx ¼ xR − xL ¼ F0ðϑOÞ þ F1ðϑOÞ
ffiffiffi
δ

p
; ð16Þ

where F0ðϑOÞ and F1ðϑOÞ are functions too cumbersome to
be written here.
The vertical size of the shadow can be found by

introducing the function fðrÞ:

fðrÞ ¼ y2 ¼ sin2 Θð1 − sin2ΨÞ: ð17Þ

Taking dfðrÞ=dr ¼ 0 with a ¼ m, we find ryðϑOÞ, and
then we obtain the maximum value of vertical coordinate:

ymðϑOÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
fðryÞ

q
: ð18Þ

The vertical size of the shadow is

Δy ¼ 2ymðϑOÞ: ð19Þ

We now find the deformation k as

kðδ; ϑOÞ ¼
Δx
Δy

¼ F0ðϑOÞ þ F1ðϑOÞ
ffiffiffi
δ

p

2yðϑOÞ
: ð20Þ

Supposing that the observer directly measures the value
of k and knows the angle ϑO, we can write that

δ ¼
�
2yðϑOÞk − F0ðϑOÞ

F1ðϑOÞ
�

2

: ð21Þ

III. CALCULATION OF BH SPIN FOR NEARLY
EQUATORIAL OBSERVER

Our purpose is to get compact formulas, hence further
we will consider the observer which is close to the
equatorial plane (π=2 − ϑO ≪ 1). We will use the viewing
angle i instead of the inclination angle ϑO: i ¼ π=2 − ϑO.
The angle i indicates the inclination of the observer with
respect to the equatorial plane; for the observer in the
equatorial plane i ¼ 0, for the polar observer i ¼ π=2. We
write in all formulas

sinϑO ¼ sinðπ=2 − iÞ ¼ cos i ¼ 1 −
i2

2
þ i4

24
þ � � � ð22Þ

and keep the small terms ∝ i2. We obtain

FIG. 4. Left: The left-hand side of (11) is plotted numerically as a function of δ. The change in position of the right border of the
shadow is small. Right: The left-hand side of (10) is plotted numerically as a function of

ffiffiffi
δ

p
, at the same range of δ as on the left figure.

There is a significant change in position of the left border of the shadow corresponding to the small change of δ.

1It should be noted that this is true only for arcsinð ffiffiffi
3

p
− 1Þ ≤

ϑO ≤ π=2 (see, for example, [22]), but it implies i < 43°, so it is
enough for our purposes.
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xLðδ; iÞ ¼
�
−m −

3

2
mi2 −

ffiffiffi
6

p
m

ffiffiffi
δ

p �
=rO; ð23Þ

xRðδ; iÞ ¼
�
8m −

3

2
mi2

�
=rO: ð24Þ

The horizontal size of the shadow is

Δx ¼ xR − xL ¼ ð9mþ
ffiffiffi
6

p
m

ffiffiffi
δ

p
Þ=rO: ð25Þ

We see that up to the terms proportional to i2, the horizontal
diameter of the BH does not depend on the viewing angle:
if the observer looks at the extreme Kerr BH shadow and
rises over the equatorial plane, the shadow is shifted to the
“left” as a whole. At the same time, the vertical diameter is
becoming smaller:

Δy ¼
�
6

ffiffiffi
3

p
m −

ffiffiffi
3

p

3
mi2

�
=rO: ð26Þ

For oblateness k ¼ Δx=Δy we obtain

kðδ; iÞ ¼
ffiffiffi
3

p

2
þ

ffiffiffiffiffi
18

p

18

ffiffiffi
δ

p
þ

ffiffiffi
3

p

36
i2 þ

ffiffiffiffiffi
18

p

324
i2

ffiffiffi
δ

p
: ð27Þ

The expression of the spin via oblateness and the viewing
angle is

δ ¼ 18

�
k −

ffiffiffi
3

p

2

�2

− 2k

�
k −

ffiffiffi
3

p

2

�
i2: ð28Þ

For the observer in the equatorial plane (ϑO ¼ π=2,
i ¼ 0), we have

kðδÞ ¼
ffiffiffi
3

p

2
þ

ffiffiffiffiffi
18

p

18

ffiffiffi
δ

p
; ð29Þ

and the BH spin is calculated as

a ¼ ð1 − δÞm; δ ¼ 18

�
k −

ffiffiffi
3

p

2

�2

; k ¼ Δx
Δy

:

ð30Þ

The value of a calculated for the equatorial plane is the
lower limit of the spin of the BH at a given oblateness k: if
the observer is not located in the equatorial plane, the larger
value of the spin is required to obtain the same deformation.
By the way, the particular case of the equatorial observer

can be easily checked in the frame of Bardeen’s approach
with using the photon impact parameters. It is known that
for the observer in the equatorial plane the impact param-
eters of the left and right borders depends on spin a as [22]

b1 ¼ aþ 8 cos3 ½ðπ − arccosðaÞÞ=3�; ð31Þ

b2 ¼ a − 8 cos3 ½ðarccosðaÞÞ=3�: ð32Þ

Taking into account that the vertical diameter equals to
6

ffiffiffi
3

p
m, and expanding with δ, we reproduce formula (30).

Let us now discuss in which range of parameters the
resulting formula can be applied. In Fig. 5 (left), we present
the calculation of spin a at given oblateness k for the
equatorial plane. The horizontal axis shows all possible
values of k. One curve represents the exact relation between
a and k which is obtained by construction of the number of
shadow curves for different a and evaluating their oblate-
nesses. Another curve shows the dependence of a on k
according to (30). It can be seen that for large values of a
the difference between two curves is very small. Speaking
about the possible range of k, we get that for the first half of
the possible range of oblateness (k≃ 0.866 ÷ 0.933, it
corresponds to δ≃ 0 ÷ 0.11) the error on the spin a, at
given the oblateness k, between the approximate analytic
result and the exact result does not exceed 3%.
In Fig. 5 (right), we present the exact and approximate

calculation of the spin a at given viewing angle i for BH
with a ¼ 0.99m. The exact curve is just a ¼ 0.99. To plot
the approximate curve for this spin value, we take some
value of i, construct the entire curve of the shadow, find the
oblateness, and then obtain the approximate value of the
spin with the use of formula (28) with these known values
of k and i. Formula (28) contains i2-terms, therefore the
difference between analytical and exact results is very small
even for relatively large values of i. For i ¼ 30° the error on
the spin a does not exceed 0.3%.

IV. CONCLUSIONS

Our conclusions are the following:
(i) In the approximation of the nearly extreme Kerr BH

with the spin a ¼ ð1 − δÞm and a nearly equatorial
observer with small i (actually, relatively large
values of i would be possible, see discussion above),
we have investigated the dependence of the defor-
mation on both the BH spin and the observer’s
viewing angle. Remarkably, we obtain that the
dependence of the deformation on the spin is strong:
the deformation is proportional to

ffiffiffi
δ

p
. It means that

a small difference of the spin from m can lead to a
notable deviation of the observed deformation from
the extreme value

ffiffiffi
3

p
=2, see Fig. 3, right.
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0.88 0.9 0.92 0.94 0.96 0.98 1

FIG. 5. Accuracy of determination of black hole spin by
formulas (28) and (30) in comparison with exact calculation,
see details in the text.
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(ii) Knowing the oblateness by measuring the hori-
zontal and vertical diameters of the shadow, one
can easily obtain the lower limit on the BH spin by
the formula (30), without a need to construct or
model the entire curve of the shadow.

(iii) If the viewing angle is known from other observa-
tions, one can directly calculate the spin using (28).

(iv) In all situations when the shadow curve is noticeably
different from the circular shape, our approximate
formulas provide a high accuracy of calculation.
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