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When a small, uncharged, compact object is immersed in an external background spacetime, at zeroth
order in its mass, it moves as a test particle in the background. At linear order, its own gravitational field
alters the geometry around it, and it moves instead as a test particle in a certain effective metric satisfying
the linearized vacuum Einstein equation. In the letter [Phys. Rev. Lett. 109, 051101 (2012)], using a method
of matched asymptotic expansions, I showed that the same statement holds true at second order: if the
object’s leading-order spin and quadrupole moment vanish, then through second order in its mass, it moves
on a geodesic of a certain smooth, locally causal vacuum metric defined in its local neighborhood. Here I
present the complete details of the derivation of that result. In addition, I extend the result, which had
previously been derived in gauges smoothly related to Lorenz, to a class of highly regular gauges that
should be optimal for numerical self-force computations.
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I. INTRODUCTION

Over the last two decades, there has been renewed interest
in a fundamental question of general relativity: How does a
small object movewhen immersed in an external spacetime?
In other words, how is the object’s motion altered from the
test-particle description when one accounts for the object’s
own gravitational field, finite size, and internal composition?
This question is now of astrophysical interest, due to the
advent of gravitational wave astronomy. Binaries of compact
objects with dissimilar masses will directly exhibit correc-
tions to the test-particle approximation. This is true even of
the intermediate-mass-ratio binaries that should be detected
[1] by second-generation ground-based detectors such as
Advanced LIGO [2] and Virgo [3]. It is doubly true of
extreme-mass-ratio inspirals (EMRIs), in which a stellar-
mass black hole or neutron star spirals into a supermassive
black hole in a galactic core; the clear separation of scales in
these systemswill allow a precise delineation of the post-test-
particle effects in the smaller object’s motion. EMRIs, while
outside the frequency band of LIGO and Virgo, will be key
sources for the planned space-based detector LISA [4].
The principal approach to modeling these systems is self-

force theory, which seeks to describe a small object’s
motion by treating it as a source of perturbation hμν of an
external background spacetime gμν [5–7]. In this descrip-
tion, the object is accelerated by the self-force, the back-
reaction of the object’s field on its own motion. The
formalism in this approach is now on a sound theoretical
basis [8–10], has well-developed computational methods
[11,12], has yielded a range of physical predictions
[5,7,13], and has had impact on binary modeling outside
the EMRI regime, providing important input for post-
Newtonian theory, fully nonlinear numerical relativity, and
effective one-body theory [14–18].

A. The generalized equivalence principle
in self-force theory

Until recently, self-force theory has focused on linear
perturbation theory. At that level, the primary result of the
self-force program is a generalized equivalence principle (a
phrase I adopt from Ref. [19]). The ordinary equivalence
principle dictates that all freely falling test masses, given
identical initial conditions, follow the same geodesic
trajectory in an external gravitational field, regardless of
their inertial mass or internal composition. The generalized
equivalence principle extends that statement to gravitating
objects: neglecting finite-size effects, isolated small com-
pact objects, be they material bodies or black holes, follow
geodesic paths in a certain effective metric geffμν ¼ gμν þ hR1μν
that satisfies the vacuum Einstein field equation (EFE),
where the Detweiler-Whiting regular field hR1μν is a certain
piece of the perturbation hμν [20,21]. Unlike the ordinary
equivalence principle, the generalized principle does not
suggest that the motion is identical for all bodies. They all
move on geodesics, but they move on geodesics of different
geometries, because hR1μν is proportional to their own
gravitational mass and determined by their own past
histories [21]. However, the sense of the equivalence
principle is preserved, in that each object feels no gravi-
tational force, instead falling freely in what it sees as an
“external” gravitational field—even though it is responsible
for a piece of that field.
On the face of it, the conclusion that an object’s world-

line is a geodesic in some effective metric might not seem
especially meaningful or useful; any equation of motion
can be written as the geodesic equation in some effective
metric [6]. However, the statement is both meaningful and
useful if the effective metric satisfies suitable conditions,
such as the following:
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(1) The effective metric is “physical,” in the sense that it
satisfies the vacuum EFE, and on the worldline it
(and its derivatives) depend only on the causal past.

(2) There is a practical way to actually calculate the
effective metric and solve the self-forced equation of
motion.

At first order, these conditions are both met by gμν þ hR1μν .
Beyond first order, several foundational analyses have

been performed [6,10,22–27]. Harte has established [10]
that even in a completely nonperturbative description of a
material object, one can construct an effective metric in
which the object moves as a test body, subject to forces
only due to finite-size effects. However, besides the
limitation to material bodies, which excludes black holes,
Harte’s effective metric is not a solution to the vacuum
EFE, and there is no immediate means of calculating it
numerically. Fortunately, perturbative approaches have
overcome both of these restrictions, at least through second
order in the small object’s mass. As a practical way of
computing the effective metric, all authors, beginning with
Rosenthal [22], have proposed some variant of a “puncture
scheme” [11,28,29], in which a local expansion of the
metric near the small object (valid for both black holes and
material bodies) is converted into a singular “puncture.”
The curvature of the puncture is then treated as a source for
the effective metric. In Ref. [25], I presented a definition of
an effective metric satisyfing the “physical” conditions
described above, and I showed that if the object is
approximately nonspinning and spherical, then through
second order it moves on a geodesic of this effective metric,
thereby extending the generalized equivalence principle to
second order. I stress that this is a derived result involving
no “regularization” and no presumed relationship between
the motion and the effective metric.
Due to the space constraints of a letter, Ref. [25]

necessarily omitted many details. References [6,27] filled
in some of those details, specifically the explicit form of the
puncture and effective metric, the effective metric’s cau-
sality on the worldline, and the nature of the puncture
scheme. The present paper covers the other half of the
problem, detailing the derivation of the equation of motion.
It also extends the result to a class of highly regular gauges
that should prove useful in numerical implementations.

B. Equations of motion from matched
asymptotic expansions

In Newtonian mechanics, we typically wish to use as
little information as possible to describe extended objects—
for example, by treating them as point particles. Similarly,
in self-force theory our primary goal is to determine the
motion of a small object and obtain the metric outside of it,
without having to concern ourselves with its potentially
complicated internal dynamics. In the perturbative context,
this is achieved with the method of matched asymptotic
expansions [30,31] (e.g., in Refs. [8,9,20,32–35] and the

second-and-higher-order self-force literature). Before lad-
ening the reader with the detailed application of this
method in deriving the second-order equation of motion,
I first provide an overview of the derivation strategy I
follow.
We suppose that the small object is in a spacetime with

metric gμνðϵÞ, where the parameter ϵ encodes the depend-
ence on the object’s mass m and size l; we can think of ϵ
being proportional tom, though it will be convenient to use
it as a formal expansion parameter and set it equal to 1 at
the end of the calculation. We take the object to be compact,
such that m ∼ l. In the “self-consistent” approach [9], the
metric outside the object is expanded as

gμν ¼ gμν þ ϵh1μν½γ� þ ϵ2h2μν½γ� þ � � � : ð1Þ

The object creates perturbations hnμν of the external back-
ground metric gμν, and those perturbations are functionals
of the object’s motion, as represented by an ϵ-dependent
worldline γ in the background manifold. For simplicity, I
take the object to be in a vacuum region, such that gμν is a
vacuum metric.
Near γ, at distances r ∼ ϵ, the gravity of the small object

begins to dominate over the background, and the expansion
(1) ceases to be accurate. Hence, we introduce a different
expansion in this region. We first rescale the distance r to
~r ≔ r=ϵ, such that ~r ∼ 1 when r ∼ ϵ. We then expand in the
limit ϵ → 0 at fixed ~r:

gμνðr; ϵÞ ¼ gobjμν ð~rÞ þ ϵH1
μνð~rÞ þ ϵ2H2

μνð~rÞ þ � � � : ð2Þ

Here the background metric becomes gobjμν , the metric of the
object if it were isolated, and the perturbations are produced
by the external background field (and the object’s inter-
actions with that field). While the expansion (1) lets the
object shrink to zero mass and size while holding external
distances fixed, the expansion at fixed ~r zooms in on the
object, keeping its mass and size fixed while other distances
are blown up. I refer to Eq. (1) as the “outer expansion” and
to Eq. (2) as the “inner expansion.”
Since both are expansions of the same metric, they must

agree (given a suitably well-behaved gμν [30]). More
precisely, if we reexpand the outer expansion for small
r—i.e., near the worldline—then we obtain a double
expansion in powers of ϵ and r. If we reexpress the inner
expansion in terms of r ¼ ϵ~r and then reexpand for small ϵ
at fixed r—i.e., for distances ~r ≫ 1, relatively far from the
small object—then we obtain another such double expan-
sion. These two double expansions, which can be expected
to be accurate in a “buffer region” ϵ ≪ r ≪ 1, must agree
order by order in ϵ and r.
The existence of a well-behaved inner expansion con-

strains hnμν to have the form
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hnμν ¼
X
p≥−n

rphn;pμν ð3Þ

when expanded for small r (allowing for logarithms of r in
the coefficients). In other words, hnμν ∼ 1

rn. Any more
negative power of r would lead to a poorly behaved inner
expansion with negative powers of ϵ; for example, if
hnμν ∼ 1

rnþ1, then a term like ϵnhnμν ∼ ϵn

rnþ1 in Eq. (1) would
correspond to a term ∼ 1

ϵ~rnþ1 in the inner expansion. gμν is
likewise constrained to take the form

gμν ¼
X
p≥0

rpgpμν; ð4Þ

which also follows from gμν being a smooth vacuummetric.
Analogously, the existence of a well-behaved outer

expansion constrains gobjμν and Hn
μν to have the forms

gobjμν ¼
X
p≥0

1

~rp
gobj;pμν ð5Þ

and

Hn
μν ¼

X
p≥−n

1

~rp
Hnp

μν ð6Þ

when expanded for large ~r (allowing for logarithms of ~r in
the coefficients). This implies that gobjμν is asymptotically
flat. It is also quasistationary (see Sec. III). Hence, in the
buffer region it can be expressed in terms of its multipole
moments. If we introduce a Cartesian coordinate system
ðt; xiÞ centered on γ, where xi ¼ rni, with ni ¼ ðnx; ny; nzÞ
being orthogonal unit vectors, then the expansion in the
buffer region looks schematically like

gobjμν ∼ 1þm
~r
þMini þ ϵijkSjnk

~r2

þMijninj þ ϵijkSjqnknq

~r3
þ � � � : ð7Þ

Here m is gobjμν ’s Arnowitt-Deser-Misner (ADM) mass, Mi

its mass dipole moment, Si its ADM angular momentum,
and Mij and Sij its mass and current quadrupole moments.
(I omit terms like m2=~r2 and mMi=~r3 for visual clarity.)
gobjμν ’s moments encode the internal composition of the

object, and they determine the most negative powers of r in
the outer perturbations hnμν. For example, when rewritten
in terms of r, the m

~r term in Eq. (7) becomes ϵm
r , which

fixes the 1=r term in h1μν. Hence, h1μν has the form

h1μν ∼
m
r
þOðr0Þ: ð8Þ

Similarly,

h2μν ∼
m2 þMini þ ϵijkSjnk

r2
þOðr−1Þ ð9Þ

(now keeping the m2=r2 term for completeness), and so on
for the higher-order perturbations hnμν. The fact that the nth
moments scale as ϵn, and hence first appear in the nth-order
perturbation, is a consequence of the object’s assumed
compactness.
In short, the perturbations hnμν are locally determined by

the object’s first n multipole moments. This means that
rather than requiring a full model of the object’s internal
dynamics, to obtain a finite order of approximation we
merely need to specify a finite number of moments. This
simplification is closely tied to the point-particle approxi-
mation: as first shown by D’Eath [32] (see also Refs. [8,9]),
the more explicit form of Eq. (8) suffices to show that h1μν is
identical to the linear perturbation produced by a point
mass m moving on γ.
So far in this description, I have said nothing of the

object’s motion. All we know is that it lies somewhere near
some worldline γ, in the region r ∼ ϵ.1 To fix γ to be a good
representative of the object’s position, we recall that a mass
dipole moment can be interpreted as a displacement δzi ¼
Mi=m of the center of mass from the origin of the
coordinates; equivalently, it is generated if we begin in a
mass-centered coordinate system and perform a small
coordinate transformation xi → xi þMi=m. Since our
coordinates are centered on γ, a nonzeroMi would indicate
that γ does not represent the object’s center of mass. Hence,
we set Mi to zero. This ensures that γ is at the center of
mass of the leading-order metric gobjμν . To constrain γ at
higher orders, similar conditions must also be imposed on
the perturbationsHn

μν; these will be discussed momentarily.
With this minimal setup in place, there are two ways to

determine the equation of motion governing γ. One route,
detailed in Ref. [27] (following Ref. [9]), is to solve the
vacuum EFE (outside the object) for the perturbations hnμν
order by order in ϵ and r, beginning with expansions of the
form (3). Solving the EFE in this way, combined with a
center-of-mass condition, determines the acceleration of γ.
(It also provides a local expansion of hnμν near γ, written in
terms of the object’s multipole moments, which can be used
to define a puncture for use in practical computations.)
More concretely, if we expand γ’s acceleration as
aμ ¼ fμ0 þ ϵfμ1 þ � � �, then an equation for the nth-order

1Note that γ need not be “inside” the object, which would not
be sensible for a black hole. In general, γ exists in the background
manifold on which gμν is the metric, not in the manifold on which
gobjμν is the metric. γ is then approximately associated with the
object’s “position” through the existence of the inner expansion,
and more closely associated with its center-of-mass “position”
through the properties of the metric in the buffer region.
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force (per unit mass) fμn follows from the field equation for
hnþ1
μν . The fact that fμ0 ¼ 0 (i.e., that the motion is

approximately geodesic in gμν) follows from the equations
for h1μν; the standard result for the first-order self-force, fμ1,
follows from the equations for h2μν; and the second-order
self-force, fμ2, which is the order of interest in this paper,
would follow from the equations for h3μν. However, solving
the third-order field equations in the outer expansion is
quite burdensome.
Fortunately, there is a second, easier path. First, calculate

the metric in the inner expansion in a “rest gauge,” in which
the object is manifestly at rest on γ. (More generally, if the
object is spinning and nonspherical, it should move as a test
body on γ in this gauge, but I will nevertheless refer to it as
a rest gauge.) Next, reexpress this expansion as an outer
expansion in the buffer region, and then transform to
whichever gauge is desired for the outer expansion—call
it the “practical gauge”. The existence of a rest gauge is
intimately related to the fact that there is some effective
metric in which γ is a geodesic; the transformation
identifies which effective metric that is. A key to this
approach is that the gauge transformation must be con-
strained to preserve the location of the center of mass on γ.
To apply this procedure to determine fμ1, we must specify

that Mi vanishes in the rest gauge, as described above. To
apply it to determine fμ2, we require the next-order extension
of this condition. The natural choice is to impose that the
mass dipole moment in H1

μν vanishes. In an appropriate
gauge, H1

μν can be written in the form

H1
μν ∼ ~raini þ ~r0δut þ δm

~r

þ δMini þ ϵijkδSjnk

~r2
þ � � � ; ð10Þ

where ai can be interpreted as an acceleration of the ~r → ∞
asymptotic frame relative to the rest frame of the object, δut

as a mismatch between the proper times of the two frames,
and δm, δMi, and δSi as corrections to the mass, mass dipole
moment, and spin. We can then naturally set δMi ¼ 0 as our
center-of-mass condition. Because the metric gobjμν þ ϵH1

μν

appears not to be asymptotically flat, this δMi does not
strictly correspond to the standard multipole moments
defined for stationary, asymptotically flat spacetimes
[36,37]. Nevertheless, δMi ¼ 0 is a natural center-of-mass
condition: δMi appears as part of a gauge perturbation that is
easily isolated from the rest ofH1

μν, and it would arise from a
small coordinate translation in precisely the same manner as
Mi. However, though that argument would become impor-
tant at higher orders,where it becomes impossible towrite the
metric in asymptotically flat form, it need not be stressed at
this order, because the first two terms in Eq. (10) are pure
gauge, meaning gobjμν þ ϵH1

μν is asymptotically flat. In fact,

the only gauge-invariant content inH1
μν corresponds to trivial

corrections to the multipole moments of gobjμν , meaning the
entirety of H1

μν can be set to zero by absorbing those trivial
corrections into the background.
When the metric of the inner expansion is reexpanded in

the buffer region, it yields an outer expansion in the rest
gauge:

gμν ¼ gμν þ ϵh1
0

μν½γ� þ ϵ2h2
0

μν½γ� þ � � � ; ð11Þ

where each of the terms is expressed as an expansion for
small r. If the rest gauge and the gauge of Eq. (1) are fully
fixed, then there must exist a unique gauge transformation
between them, subject to the crucial condition that the
transformation does not induce a nonzero Mi or δMi. This
condition ensures that the object remains centered on the
same worldline γ after the transformation. I will refer to a
transformation satisfying it as worldline preserving. For the
calculations in this paper, the condition reduces to a simple
form: a transformation with the coordinate representation

x0μ ¼ xμ − ϵξμ1 − ϵ2
�
ξμ2 −

1

2
ξν1∂νξ

μ
1

�
þOðϵ3Þ ð12Þ

is worldline preserving if and only if

lim
r→0

I
S

dS
r2

ξan ¼ 0; ð13Þ

at all times t, whereS is a small sphere of radius r around γðtÞ.
In other words, ξμn must have no net direction on the
worldline.
The condition (13) is intuitively meaningful, as a gauge

transformation violating it would manifestly move the
origin of the coordinate system. Hence, we could impose
this condition without making any reference to the mass
dipole moment. However, tying it to the mass dipole
moment helps to clarify what may appear to be a mysteri-
ous elimination of one whole order of calculation. The first-
order equation of motion can be derived as a consequence
of the second-order EFE, and the second-order equation of
motion as a consequence of the third-order EFE. Yet by
referring to the transformation from a rest gauge, we seem
able to derive the first-order equation of motion solely from
the first-order metric, and the second-order equation from
the second-order metric, effectively saving an order. We can
understand this by noting that what the second-order EFE
actually determines is an evolution equation forMi relative
to any given worldline [9]; setting Mi ¼ 0 for all time then
picks out the first-order acceleration of the correct center-
of-mass worldline. Analogously, the third-order EFE deter-
mines the evolution of δMi, and setting δMi ¼ 0 picks out
the second-order acceleration of this worldline. But we also
have that the mass dipole momentMi, which appears in the
second-order metric perturbation, is fully determined by the

ADAM POUND PHYSICAL REVIEW D 95, 104056 (2017)

104056-4



first-order gauge: if we transform away from a rest gauge,
then Mi ¼ −mξi1. The first-order gauge transformation
therefore determines the same information as the second-
order field equation. In the same way, δMi ¼ −mξi2 (if
ξi1 ¼ 0). This is an illustration of the deep connection
between gauge and motion in perturbation theory
[26,38–40].
This strategy of transforming from a rest gauge to a

practical gauge, although not as intuitively clear as the direct
derivation of the equation of motion from the EFE for hnμν,
underlies many derivations in the literature. Mino, Sasaki,
and Tanaka [35] used it in essentially the same way as I do
here in their original derivation of the first-order equation of
motion. Rosenthal [23] used similar ideas in his derivation of
a second-order equation of motion. However, he relied on an
axiomatic list of possible ingredients in the self-force, rather
than the first-principles approach I take here, and his
formulation ended with an equation of motion in an
impractical form in which the first-order perturbation is
required to remain in a rest gauge.Detweiler [24] argued that,
given the form of the metric in a rest gauge, the motion must
be geodesic in some suitable effective metric, though he did
not consider the problem of transforming to a practical gauge
and identifying the effective metric in it. Most recently,
shortly after my letter [25], Gralla [26] used a closely related
method in his derivation of a second-order equation of
motion. His formulation was somewhat different in that he
did not seek an effective metric in which the motion is
geodesic. But a more important distinction is that in both his
and Rosenthal’s approaches, their rest gauges refer to a
different representative worldline. Gralla explicitly uses a
perturbative description, in which the worldline is expanded
as γ ¼ γ0 þ ϵγ1 þ ϵ2γ2 þ � � �, with γ0 being a background
geodesic and γ1 and γ2 being small deviation vectors defined
on that geodesic.2 This description is sensible on time scales
of order ϵ0, because if the acceleration is of order ϵ, then the
deviation of the accelerated object from a background
geodesic is also of order ϵ. In this treatment, the “rest gauge”
puts the center of mass at rest on a background geodesic γ0,
such that γ1 ¼ γ2 ¼ 0. Rather than being worldline preserv-
ing, the transformation to a practical gauge is then allowed to
be arbitrary, and the evolution equations for γ1 and γ2 (or,
equivalently,Mi and δMi) are derived from the evolution of
ξμ1 and ξ

μ
2 along γ0. AlthoughRosenthal does not use this type

of description, he likewise uses a rest gauge in which the
object moves on a geodesic of gμν and a transformation that
translates the object onto an accelerated path. In both cases,
these approaches are restricted to timescales of order ϵ0,
meaning they cannot accurately describe effects such as the
inspiral of an EMRI, which occurs on the timescale 1=ϵ. The
treatment here avoids that restriction.

C. Outline of this paper

In the bulk of the paper, I work through each step of the
derivation outlined above, specializing to an object with
vanishing spin and quadrupole moments at leading order.
Sections II and III present the form of the metric perturba-
tion through second order, with Sec. II summarizing the
calculation in the Lorenz gauge, and Sec. III the calculation
in a rest gauge. Section IV presents the gauge trans-
formation between the two solutions, which leads to the
equation of motion. This stage of the derivation also
illustrates an ambiguity in the definition of the self-induced
tidal moments acting on the body, as first computed by
Dolan etal. [41] and Bini and Damour [42].
In Sec. V, I show that the derived equation of motion is

equivalent to geodesic motion in the effective metric gμν þ
hRμν defined in Refs. [25,27].
Section VI extends this result to non-Lorenz gauges.

After a brief review of the extension to gauges smoothly
related to Lorenz, the bulk of this section is devoted to a
derivation in a class of highly regular gauges. These gauges
remove the dominant, m2=r2 part of the metric at second
order, circumventing many challenges that generically arise
in second-order numerical schemes.
The final section of the paper summarizes my results and

discusses the prospects for numerical computations in these
highly regular gauges.
Throughout, I work in units with G ¼ c ¼ 1. Greek

indices range from 0 to 3 and are raised and lowered with
the background metric gμν. Lowercase latin indices refer to
spatial coordinates xa ¼ ðx; y; zÞ in the outer expansion.
Lowercase sans-serif indices refer to spatial coordinates
xa ¼ ðx; y; zÞ in the inner expansion. Both are raised and
lowered with the flat-space Euclidean metric δij. Uppercase
latin indices denote multi-indices, as in L ≔ i1…il, and an
expression such as AjLj−1 denotes Ai1…ijlj−1 . Parentheses
around indices indicate symmetrization; square brackets,
antisymmetrization. Angular parentheses, as in habci,
indicate the symmetric trace-free (STF) combination of
the enclosed indices, where the trace is taken with δab. A
hat over a tensor, as in T̂abc, likewise indicates that the
tensor is STF with respect to δab. ∇ and a semicolon both
denote covariant derivatives compatible with gμν. An over-
bar, as in h̄μν, denotes trace reversal with gμν, as in h̄μν ¼
hμν − 1

2
gμνgρσhρσ.

II. OUTER EXPANSION IN THE LORENZ GAUGE

This section reviews the outer expansion through second
order. Further details can be found in Refs. [6,9,27].

A. Form of the expansion

To find the outer expansion, I utilize the self-consistent
framework developed in Ref. [9]. The metric is written as

2See Refs. [6,9,40] for in-depth discussions of the relationship
between this approximation and the self-consistent one I use
throughout this paper.
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gμνðx; ϵÞ ¼ gμνðxÞ þ hμνðx; ϵ; γÞ; ð14Þ

where x denotes any suitable set of coordinates that do not
depend on γ, and the semicolon is used as a compact
alternative to hμν½γ�ðxÞ. The metric perturbation is
expanded while holding the ϵ-dependent worldline γ fixed:

hμνðx; ϵ; γÞ ¼
X
n≥1

ϵnhnμνðx; γÞ: ð15Þ

This expansion self-consistently incorporates the metric’s
dependence on the long-term evolution of the worldline
such as, for example, the inspiral in an EMRI.
By imposing the gauge condition ∇νh̄μν ¼ 0, I reduce

the vacuum EFE Rμν½g� ¼ 0 outside the object to the
weakly nonlinear wave equation

Eμν½h� ¼ 2δ2Rμν½h� þOðh3Þ; ð16Þ

where Eμν is the relativistic wave operator

Eμν½h� ¼ ðgρμgσν∇γ∇γ þ 2Rμ
ρ
ν
σÞhρσ; ð17Þ

with Rμ
ρ
ν
σ being the Riemann tensor of gμν, and δ2Rμν is

the second-order Ricci tensor, given by

δ2Rαβ½h� ¼ −
1

2
h̄μν;νð2hμðα;βÞ − hαβ;μÞ þ

1

4
hμν;αhμν;β

þ 1

2
hμβ ;νðhμα;ν − hνα;μÞ

−
1

2
hμνð2hμðα;βÞν − hαβ;μν − hμν;αβÞ: ð18Þ

Equation (16) can be expanded and solved order by order in
ϵ while holding γ fixed, leading to a sequence of wave
equations beginning with

Eμν½h1� ¼ 0; ð19Þ

Eμν½h2� ¼ 2δ2Rμν½h1�: ð20Þ

Each of these equations can be solved for an arbitrary γ, and
for an arbitrary set of multipole moments defined on γ. The
evolution equations governing γ and the moments are then
found by imposing the gauge condition in the buffer region.
Because the wave equation is constraint preserving, these
evolution equations (together with suitable initial data)
suffice to enforce the gauge condition globally [27].

B. General solution in the buffer region

Here we are only interested in the form of the solution
near γ. I transform away from the global coordinates x to
local coordinates that are dependent on the worldline:
Fermi-Walker coordinates ðt; xaÞ centered on γ. These are
defined such that xi ¼ rni, where r is the proper distance

from γ along a spatial geodesic that is sent out from γ
perpendicularly, and ni is a unit radial vector that labels the
direction along which the geodesic is sent out. For a given
point z on γ, the set of all such geodesics form a three-
dimensional spatial surface. Each such surface is labeled
with a coordinate time t, equal to the proper time on γ at the
point z. Reference [5] contains a pedagogical introduction.
Because the self-forcewill naturally involve a derivative of

h2μν (thinking naively of hμν as a potential and its derivative as
a force), to derive the equation of motion we will require h2μν
throughorder r in these coordinates. Sinceh2μν begins at order
r−2 according to Eq. (9), this implies that we need a total of
four orders in r: that is,h1μν throughorder r2, because it begins
at order 1=r according to Eq. (8), and gμν through order r3,
because it begins at order r0. Through that order, the
background metric is given by

gtt ¼ −1 − 2aixi − ðRtitj þ aiajÞxixj

−
1

3
ð4Rtitjak þ Rtitj;kÞxixjxk þOðr4Þ; ð21aÞ

gta ¼ −
2

3
Rtiajxixj −

1

3
Rtiajakxixjxk

−
1

4
Rtiaj;kxixjxk þOðr4Þ; ð21bÞ

gab ¼ δab −
1

3
Raibjxixj −

1

6
Raibj;kxixjxk

þOðr4Þ; ð21cÞ

where aμ ≔ Duμ
dt ¼ ð0; aiÞ is the acceleration of the world-

line [with uμ ¼ ð1; 0; 0; 0Þ the normalized four-velocity],
the Riemann tensor and its derivatives are evaluated on the
worldline, and a quantity such as Raibj;k denotes a compo-
nent of a covariant derivative rather than a derivative of a
component. The metric takes the form of Minkowski along
the worldline, plus corrections away from the worldline due
to acceleration and curvature.
Because gμν is Ricci flat, the components of the Riemann

tensor and its first derivatives can be written in terms of STF
tensors Eab, Bab, Eabc, and Babc, which I define as

Eab ≔ Rtatb; ð22Þ

Bab ≔
1

2
ϵpqðaRbÞtpq; ð23Þ

Eabc ≔ STFabcRtatb;c; ð24Þ

Babc ≔
3

8
STFabcϵpqaRbtpq;c; ð25Þ

where “STF” indicates the STF combination of the speci-
fied indices. Eab and Bab are the electric- and magnetic-type
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tidal quadrupole moments of the background spacetime,
and Eabc and Babc are the electric- and magnetic-type
tidal octupole moments. Appendix D3 of Ref. [43] provides
identities for decomposing each component of the
Riemann tensor and its derivatives in terms of these tidal
moments.
In these coordinates, the fields hnμν near γ can be found

by substituting Eq. (3) into the EFE. Because spatial
derivatives reduce the power of r by one while temporal
derivatives do not, the wave operator becomes Eμν½h� ¼
∂i∂ihμν þOðh=rÞ, and solving order by order in r
reduces to solving a sequence of flat-space Poisson
equations.
This procedure is facilitated by adopting the more

specific expansion

hnμν ¼
X

p≥−n;q≥0;l≥0
rpðln rÞqhðn;p;qÞμνL ðtÞn̂L; ð26Þ

where n̂L ≔ nhLi ≔ nhi1…nili, and for brevity, in later

expressions I will write hðn;p;0ÞμνL ¼ hðn;pÞμνL . The quantity n̂L

plays the same role as a scalar spherical harmonic: it satisfies
the eigenvalue equation r2∂i∂in̂L ¼ −lðlþ 1Þn̂L, thereby
reducing the Poisson equations to algebraic equations.
It also satisfies the useful identities ∂ar ¼ na, na∂an̂L¼0,
and ∂a∂aðrpn̂LÞ¼ðp−lÞðpþlþ1Þrp−2n̂L. I refer to
Ref. [44] for others.
At each order in r, a new homogeneous solution arises,

corresponding to one of the standard solutions rl or 1=rlþ1 to
the Laplace equation. The solution to all orders in ϵ and r can
then bewritten in terms of the coefficients of these solutions,

hðn;pÞμνP for p ≥ 0 and hðn;pÞμνjPj−1 for p < 0 [27]. For p ¼ −n,
these coefficients correspond to the multipole moments of
gobjμν ; for−n < p < 0, they correspond to (potentially gauge)
corrections to those moments; for p ≥ 0 they together make
up a smooth solution to the vacuum field equation even at
r ¼ 0. If no additional boundary conditions are specified,

then the non-negative-p coefficients hðn;pÞμνP remain entirely
arbitrary (up to relationships imposed by the gauge con-
dition). They become determined when global (e.g.,
retarded) boundary conditions are imposed.
Motivated by this division of terms, I split hnμν into a

“self-field” hSnμν and an “effective field” hRnμν , as defined in
Ref. [25]. The effective field I define to be the piece of the
total solution containing none of the negative-p coefficients

hðn;pÞμνjPj−1; this makes gμν þ
P

nϵ
nhRnμν a smooth vacuum

metric at r ¼ 0, determined by global boundary conditions.
The self-field I define to be the remainder of the full field; it
carries the local information about the object, and at r ¼ 0
it diverges as r−n. Due to their behaviors at the origin, I
refer to hSnμν and hRnμν as the singular and regular fields,
respectively. While r ¼ 0 is outside the domain of validity
of the outer expansion, this extension of the fields to all

points r > 0 (and to r ¼ 0 in the case of the regular field)
has no impact on the field in the region r ≫ ϵ, and it is
essential in practice: at first order it is used to show that h1μν
is identical to the field of a point mass; and at higher orders
it allows us to define practical puncture schemes that can
compute the metric outside the object while bypassing its
internal dynamics [6,27].
At first order, the above definitions lead to a singular

field in which each term is explicitly proportional to the
object’s mass m. It is given by

hS1tt ¼ 2m
r

þ 3maini þ
5

3
mrEabn̂ab

þ 7

12
mr2Eabcn̂abc þOðr3; r2a; ra2Þ; ð27aÞ

hS1ta ¼ mr

�
2

3
Bbcϵacdn̂bd − 2_aa

�
−mr2

�
19

30
_Eabn̂b

þ 1

18
_Ebcn̂abc þ

2

9
Bbcdϵab

in̂cdi

�

þOðr3; r2a; ra2Þ; ð27bÞ

hS1ab ¼
2mδab

r
−mδabaini −mr

�
38

9
Eab −

4

3
Eðacn̂bÞc

þ δabEcdn̂cd
�
−mr2

��
31

15
Eabc þ

68

45
_Bða

dϵbÞcd

�
n̂c

−
2

3
Eðacdn̂bÞcd −

2

9
_Bcdϵicðan̂bÞdi þ

5

12
δabEcdin̂cdi

�

þOðr3; r2a; ra2Þ; ð27cÞ

where an overdot denotes differentiation with respect to t,
as in _ai ¼ dai

dt . The gauge condition determines the evolu-
tion equations _m ¼ 0 and aμ ¼ OðϵÞ. Because aμ ¼ OðϵÞ,
I have omitted terms that will be unnecessary for the
matching procedure; the complete expression is given in
the Supplemental Material [45].
The first-order regular field is given by

hR1μν ¼ hð1;0Þμν þ rhð1;1Þμνi ni

þ r2ðhð1;2Þμνij n̂
ij þ hð1;2Þμν Þ þOðr3Þ: ð28Þ

In the order-by-order solution described above, the wave
equation leads to hð1;2Þμν ¼ 1

6
ðhð1;0Þμν;tt − 2Rμ

α
ν
βjγhð1;0Þαβ Þ, such

that all the coefficients in Eq. (28) are written entirely in

terms of the coefficients hðn;pÞμνP . We can also write the
regular field as the Taylor series

hR1μν ¼ hR1μν jγ þ hR1μν;ijγxi

þ 1

2
hR1μν;ijjγxixj þOðr3Þ; ð29Þ
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where the coefficients are related to the pieces of the full
metric as

hR1μν jγ ¼ hð1;0Þμν ; ð30Þ

hR1μν;ijγ ¼ hð1;1Þμνi ; ð31Þ

hR1μν;hijijγ ¼ 2hð1;2Þμνij ; ð32Þ

hR1μν;i
ij
γ
¼ 6hð1;2Þμν : ð33Þ

The first-order singular and regular fields defined this
way agree with the Detweiler-Whiting definitions [21] at
least through the displayed orders in r [46].
At second order in ϵ, the singular field generically

involves the object’s mass dipole moment and spin, as
in Eq. (9). With those moments set to zero, the singular
field has three pieces:

hS2μν ¼ hSSμν þ hSRμν þ hδmμν : ð34Þ

The first piece comprises terms explicitly proportional
to m2:

hSStt ¼ −
2m2

r2
−
7

3
m2Eabn̂ab −

3

2
m2rEabcn̂abc

þOðr2 ln r; aÞ; ð35aÞ

hSSta ¼ −
10

3
m2Bbcϵacdn̂bd þ

26

15
m2r log r _Eain̂i

−
1

45
m2rð31_Ebcn̂abc þ 100Bbcdϵab

in̂cdiÞ
þOðr2 ln r; aÞ; ð35bÞ

hSSab ¼
8
3
m2δab − 7m2n̂ab

r2
þm2

�
4Ecðan̂bÞc

−
4

3
δabEcdn̂cd þ

7

5
Ecdn̂abcd

�
−
16

15
m2Eab ln r

−m2r log r

�
4

5
Eabcn̂c þ

12

5
_Bða

dϵbÞcdn̂c
�

þm2r

�
493

180
Eðacdn̂bÞcd þ

52

45
_Bcdϵicðan̂bÞdi

−
131

108
δabEcdin̂cdi þ

1

3
Ecdin̂abcdi

�

þOðr2 ln r; aÞ: ð35cÞ

Here I have dropped all acceleration terms, which can be
found in the Supplemental Material. This field satisfies
Eμν½hSS� ¼ 2δ2Rμν½hS1� pointwise away from r ¼ 0;

because the source is quadratic in hS1μν , the equation is
not distributionally well defined on regions that
include r ¼ 0.
The second piece comprises terms of the form mhR1.

Because the explicit expressions are very lengthy, I give
only the leading order:

hSRtt ¼ −
mhR1ab n̂

ab

r
þOðr0Þ; ð36aÞ

hSRta ¼ −
mhR1tb n̂a

b

r
þOðr0Þ; ð36bÞ

hSRab ¼ m
r
½2hR1cðan̂bÞc − δabhR1cd n̂

cd

− ðhR1ij δij þ hR1tt Þn̂ab� þOðr0Þ; ð36cÞ

where components of hR1μν are evaluated at r ¼ 0. The
subleading terms, which are shown in the Supplemental
Material, are of the form mr∂hR1 and mr2∂2hR1. This field
satisfies Eμν½hSR� ¼ 2δ2Rμν½hS1; hR1� þ 2δ2Rμν½hR1; hS1�
pointwise away from r ¼ 0, where I have written δ2Rμν

as a bilinear operator in the natural way. Because the source
is a linear operator acting on the singular field, this equation
is distributionally well defined even if r ¼ 0 is included;
however, I have not confirmed that its two sides are equal as
distributions.
The final piece of the singular field is the δm term:

hδmtt ¼ δmtt

r
þ r

�
5

6
δmttEabn̂ab − Bbcδmt

aϵacdn̂bd

þ 1

2
δ̈mtt

�
þOðr2; aÞ; ð37aÞ

hδmta ¼ δmta

r
þ r

�
1

3
δmt

bEðbcn̂aÞc −
19

18
δmt

bEab

− Bbcδmb
dϵacd þ

1

6
δmtaEbcn̂bc þ

1

6
Bbcδmttϵacdn̂bd

þ 1

2
Bbcδma

dϵcdin̂bi þ
1

2
δ̈mta

�
þOðr2; aÞ; ð37bÞ

hδmab ¼ δmab

r
þ r

�
17

9
δmðacEbÞc − δmc

cEab − δmttEab

þ 2δmt
cBðadϵbÞcd − δmcdEcdδab þ

1

3
Ec

dδmðacn̂bÞd

þ 1

3
δmðacEbÞdn̂cd −

1

2
δmabEcdn̂cd

þ 1

3
BcdδmtðaϵbÞdin̂ci þ

1

2
δ̈mab

�
þOðr2; aÞ; ð37cÞ

where the acceleration terms are given in the Supplemental
Material. δmμν is a tensor on γ that can be thought of as a
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mass correction (though only in the loosest sense),3 the
same that appears in Eq. (10). Its components, as deter-
mined by the gauge condition, are

δmtt ¼ −
1

3
mhR1abδ

ab − 2mhR1tt ; ð38aÞ

δmta ¼ −
4

3
mhR1ta ; ð38bÞ

δmab ¼
2

3
mhR1ab þ

1

3
mδabhR1cd δ

cd

þ 2

3
mδabhR1tt ; ð38cÞ

where all components of the regular field are evaluated at
r ¼ 0. This “mass correction” is pure gauge, as we will see
in the matching procedure. It can be freely altered by
adding a term of the form 2δmδμν that contains invariant
mass, but I absorb that term intom. hδmμν satisfies Eμν½hδm� ¼
0 at points away from r ¼ 0, and it satisfies the point-
particle-like equation

Eμν½hδm� ¼ − 4πδmμνðtÞδ3ðxiÞ ð39Þ

on a region that includes r ¼ 0.
In addition to determining δmμν, the gauge condition

(together with the center-of-mass condition Mi ¼ 0) deter-
mines that the worldline γ has acceleration

aa ¼ ϵ

�
1

2
∂ahR1tt − ∂thR1ta

�
þOðϵ2Þ; ð40Þ

which can be written in the covariant form

aμ ¼ ϵ

2
PμνðhR1σλ;ν − 2hR1νσ;λÞuσuλ þOðϵ2Þ; ð41Þ

where Pμν ≔ gμν þ uμuν. This is the usual result for the
first-order equation of motion. If gobjμν had spin, then this
equation would include the Papapetrou spin force [8,9].

Finally, the second-order regular field is given by

hR2μν ¼ hð2;0Þμν þ rhð2;1Þμνi ni þOðr2Þ: ð42Þ

Note that in this paper, I have followed Ref. [25] (and the
earlier Ref. [9]) by defining the second-order singular and
regular fields based on a multipole decomposition of the
metric perturbation. This differs slightly from the definition
in Ref. [27], which instead defined the singular and regular
fields based on the exactly analogous multipole decom-
position of the trace-reversed second-order field h̄μν2 . These
definitions are not quite equivalent. That is, if hR2μν is as

defined here and h̄Rρσ2 is as defined in Ref. [27], then
hR2μν ≠ gμαgνβðh̄Rαβ2 − 1

2
gαβgρσh̄

Rρσ
2 Þ. The relationship

between the two can be found by calculating the trace
reverse of h̄μν2 and decomposing the result into the form
(26). The uniqueness of the decomposition allows one to
read off the pieces of h̄Rμν2 and h̄Sμν2 appearing in

hR2μν ¼ hð2;0Þμν þ rhð2;1Þμνi ni þOðr2Þ. The results of that pro-
cedure are shown in Appendix B.

C. Expanding the acceleration

The Fermi-Walker coordinates I use are tethered to an ϵ-
dependent worldline. This introduces an ϵ dependence that
would not appear in the original coordinates x of Eq. (14).
Even the background gμν hence inherits a dependence on ϵ
in this coordinate system. This dependence comes in two
forms: implicitly within any function of t, since a tensor
evaluated at γðtÞ automatically inherits γðtÞ’s ϵ dependence;
and explicitly in the overt appearance of the accelera-
tion aμ ∼ ϵ.
Working in a system that moves with the accelerating

worldline necessitates holding the implicit ϵ dependence
unexpanded; expanding it would effectively expand tensors
around their values on a nearby, ϵ-independent geodesic.
However, it is natural to expand the explicit ϵ dependence,
as locally there is no way to distinguish between a small
term that comes from aμ and a small term that comes from
hnμν. Indeed, the inner expansion will not make this
distinction.
Hence, prior to matching the metrics, I substitute the

expansion aμ ¼ P
n>0ϵ

nfμn into gμν and hnμν and regroup
terms. I write this reexpansion as, for example,
gμν ¼ 0gμν þ ϵ1gμν þ ϵ22gμν þOðϵ3Þ. Explicitly, the terms
in the expansion of gμν are

0gtt ¼ −1 − r2Eabn̂ab − r3
1

3
Eabcn̂abc þOðr4Þ; ð43aÞ

0gta ¼ −
2

3
r2Bbcϵacdn̂bd þ

1

20
r3 _Eabn̂b −

1

12
r3 _Ebcn̂abc

−
1

3
r3Bbcdϵab

in̂cdi þOðr4Þ; ð43bÞ

3Besides being pure gauge, hδmμν corresponds to an l ¼ 0
perturbation only in terms of scalar harmonics; Eq. (26) is
equivalent to a scalar-harmonic expansion of each Cartesian
component. In terms of tensor harmonics, hδmμν ’s ta component is
l ¼ 1, and the trace-free part of its ab component is l ¼ 2 [44].
However, it is nevertheless useful to separate hδmμν from hSRμν
because it satisfies Eq. (39). If we view the right-hand side of that
equation as a stress-energy tensor, we see that the trace part of
δmab can naively be interpreted as a kinetic energy on the
worldline; the ta, l ¼ 1 piece as a flux of energy out of the
worldline; and the trace-free, l ¼ 2 part as a flux of momentum.
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0gab ¼ δab −
1

9
r2ðEab − 6Eðacn̂bÞc þ 3Ecdδabn̂cdÞ

þ 1

90
r3ð30Eðacdn̂bÞcd − 3Eabcn̂c − 8 _Bða

dϵbÞcdn̂c

þ10 _Bcdϵcðain̂bÞdi − 15Ecdiδabn̂cdiÞ þOðr4Þ; ð43cÞ

and

1gμν ¼ − 2f1i x
iδtμδ

t
ν þOðr3Þ; ð44Þ

2gμν ¼ − 2f2i x
iδtμδ

t
ν þOðr2Þ: ð45Þ

The linear term in the expansion h1μν ¼ 0h1μν þ ϵ1h1μν þ
Oðϵ2Þ is

1h1tt ¼ 1hð1;0Þtt þ 1hð1;1Þtti xi þ 3ma1i n
i þOðr2Þ; ð46aÞ

1h1ta ¼ 1hð1;0Þta þ 1hð1;1Þtai xi − 2mr _a1a þOðr2Þ; ð46bÞ

1h1ab ¼ 1hð1;0Þab þ 1hð1;1Þabi xi − δabma1i n
i þOðr2Þ: ð46cÞ

Since hð1;pÞμνP is undetermined until global boundary con-
ditions are imposed, we cannot always necessarily find

exact expressions for the 1hð1;pÞμνP terms in the above
equations. However, if we assume retarded boundary
conditions, these quantities can be obtained from an
analytical expansion of the retarded integral; the results
of that expansion are given in Eqs. (B9) and (B10). At
present, there is no such analytical form at second order,

and we cannot provide explicit results for khð2;pÞμνP . But such
expressions will not be necessary.
Given these expansions, the metric can be written as

gμν ¼ 0gμν þ ϵh1†μν þ ϵ2h2†μν þOðϵ3Þ: ð47Þ

The first-order perturbation becomes

h1†μν ¼ 0hS1μν þ 0hR1μν þ 1gμν; ð48Þ

where hS1μν and hR1μν are given by Eqs. (27) and (28), and 1gμν
by Eq. (44). Last, the second subleading perturbation
becomes

h2†μν ¼ 0hSSμν þ 0hSRμν þ 0hδmμν þ 0hR2μν þ 1h1μν þ 2gμν; ð49Þ

where hSSμν , hSRμν , hδmμν , and hR2μν are given by Eqs. (35) and
(36), (37), and (42), 1h1μν by Eq. (46), and 2gμν by Eq. (45).
To obtain a unique gauge transformation between this

expansion and that in the rest gauge, it will be useful to
decompose the coefficients that appear in the regular field (at
both first and second order) into irreducible form. This
decomposition is described in Appendix A, and it is given by

hðn;pÞttP ¼ Âðn;pÞ
P ; ð50aÞ

hðn;pÞtaP ¼ Ĉðn;pÞ
aP þ ϵjahipD̂

ðn;pÞ
P−1ij þ δahip B̂

ðn;pÞ
P−1i; ð50bÞ

hðn;pÞabP ¼ δabK̂
ðn;pÞ
P þ Ĥðn;pÞ

abP þ STFabðϵcaip Îðn;pÞbcP−1

þ δaipF̂
ðn;pÞ
bP−1 þ δaipϵ

c
bip−1Ĝ

ðn;pÞ
cP−2

þ δaipδbip−1Ê
ðn;pÞ
P−2 Þ: ð50cÞ

For brevity, after expanding the acceleration I combine STF

tensors as, for example, Âð2;pÞ†
P ≔ 0Âð2;pÞ

P þ 1Âð1;pÞ
P . The

wave equation leaves each of these STF tensors to be freely
specified by boundary conditions. However, the gauge
condition imposes the following relationships between them:

0B̂ð1;1Þ ¼ 1

6
∂t

0Âð1;0Þ þ 1

2
∂t

0K̂ð1;0Þ; ð51aÞ

0F̂ð1;1Þ
a ¼ −

3

10
0Âð1;1Þ

a þ 3

10
0K̂ð1;1Þ

a þ 3

5
∂t

0Ĉð1;0Þ
a ; ð51bÞ

0Âð1;2Þ
ab ¼ 2

3
0Âð1;0ÞEab −

4

3
BðadϵbÞcd

0Ĉð1;0Þ
c −

7

6
0F̂ð1;2Þ

ab

−
13

9
Ehac0Ĥ

ð1;0Þ
bic þ 5

9
Eab

0K̂ð1;0Þ þ 0K̂ð1;2Þ
ab

þ ∂t
0Ĉð1;1Þ

ab −
1

3
∂t∂t

0Ĥð1;0Þ
ab ; ð51cÞ

0B̂ð1;2Þ
a ¼ 2

15
0Ĉð1;0Þ

b Ea
b þ 1

5
Bbcϵac

d0Ĥð1;0Þ
bd þ 3

20
∂t

0Âð1;1Þ
a

þ 9

20
∂t

0K̂ð1;1Þ
a −

1

10
∂t∂t

0Ĉð1;0Þ
a ; ð51dÞ

0Êð1;2Þ ¼ 1

45
Eab0Ĥð1;0Þ

ab þ 1

5
∂t∂t

0K̂ð1;0Þ; ð51eÞ

0Ĝð1;2Þ
a ¼ 1

15
Eb
cϵa

cd0Ĥð1;0Þ
db þ 2

5
∂t

0D̂ð1;1Þ
a ; ð51fÞ

and

B̂ð2;1Þ† ¼ 1

6
∂tÂ

ð2;0Þ† þ 1

2
∂tK̂

ð2;0Þ† −
1

3
0Ĉð1;0Þ

a fa1; ð52aÞ

F̂ð2;1Þ†
a ¼ −

3

10
Âð2;1Þ†
a þ 3

10
K̂ð2;1Þ†

a þ 3

5
∂tĈ

ð2;0Þ†
a

−
3

5
fb1

0Ĥð1;0Þ
ab −

3

5
f1a

0K̂ð1;0Þ: ð52bÞ

III. INNER EXPANSION IN A REST GAUGE

With the outer expansion determined in the buffer region,
the goal is now to find an inner expansion that is compatible
with the outer, that describes the metric in a rest gauge, and
that is sufficiently general for the matching calculation.
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A. Form of the expansion

We could obtain the inner expansion directly in terms of
scaled Fermi-Walker coordinates ðt; ~xaÞ. However, it is more
convenient to work in a coordinate system tailored to the
inner expansion. So let xα ¼ ðt; xaÞ be some quasi-Cartesian
coordinate system centered on the object, introduce the
scaled coordinates ~xa ¼ xa=ϵ, and assume the expansion

gμνðxα; ϵÞ ¼ gobjμν ðt; ~xaÞ þ
X
n≥1

ϵnHn
μνðt; ~xaÞ: ð53Þ

Here all quantities with indices, such as gobjμν ðt; ~xaÞ, are the
components of tensors, such as gobjμν ðt; ~xaÞdxμdxν, in unscaled
coordinates xα, but expressed as functions of the scaled
coordinates ðt; ~xaÞ. One could equivalently write the expan-
sion for the components in the scaled coordinates, in which
case overall factors of ϵ and ϵ2would be introduced into time-
space and space-space components, respectively.4

For this expansion to be appropriately related to the outer
one, I will enforce three conditions: (a) there is no mass
dipole moment in the metric, such that the object is
effectively mass centered at ~x ¼ 0; (b) the transformation
from xa to Fermi-Walker coordinates xa does not change
the position of the origin, such that the center-of-mass
position ~xa ¼ 0 can be identified with γ; and (c) the
transformation is the form xα ¼ xα0ðxβÞ þOðϵÞ, with no
negative powers of ϵ, such that the inner expansion
correctly refers to an expansion at fixed xa=ϵ rather than,
say, at fixed xa=ϵ2. Furthermore, for the expansions to
match, it is understood that any dependence on t can
include some dependence on ϵ in the same manner as the
outer expansion, folding in the ϵ dependence of γ.
Although an inner expansion can be used to find an

accurate metric even in the object’s interior, here I am only
interested in the metric in the buffer region. Hence, I seek a
solution to the EFE in a vacuum region outside the object.
Substituting Eq. (53) into the vacuum EFE leads to

0 ¼ Gμν½gobj� þ ϵδGμν½H1� þ ϵ2δGμν½H2� þ ϵ3δGμν½H3�
þ ϵ2δ2Gμν½H1� þ ϵ3δ2Gμν½H1; H2�
þ ϵ3δ2Gμν½H2; H1� þ ϵ3δ3Gμν½H1� � � � ; ð54Þ

where δnGμν½H� contains n powers of Hμν and its deriv-
atives. Now note that derivatives with respect to t are
suppressed by a factor of ϵ compared to derivatives with
respect to xa. Hence,

Gμν ¼ ϵ−2ðGð0Þ
μν þ ϵGð1Þ

μν þ ϵ2Gð2Þ
μν Þ; ð55Þ

δkGμν ¼ ϵ−2ðδkGð0Þ
μν þ ϵδkGð1Þ

μν þ ϵ2δkGð2Þ
μν Þ; ð56Þ

where the overall factors of ϵ−2 result from the rescaling
~x ¼ x=ϵ, and GðnÞ

μν and δkGðnÞ
μν contain n derivatives with

respect to t. Picking off coefficients of ϵn in Eq. (54)
therefore leads to a sequence of linear equations for the
perturbations Hn

μν,

Gð0Þ
μν ½gobj� ¼ 0; ð57Þ

δGð0Þ
μν ½H1� ¼ −Gð1Þ

μν ½gobj�; ð58Þ

δGð0Þ
μν ½H2� ¼ −δ2Gð0Þ

μν ½H1� − δGð1Þ
μν ½H1�

−Gð2Þ
μν ½gobj�; ð59Þ

δGð0Þ
μν ½H3� ¼ −δ3Gð0Þ

μν ½H1� − δ2Gð0Þ
μν ½H1; H2�

− δ2Gð0Þ
μν ½H2; H1� − δ2Gð1Þ

μν ½H1�
− δGð2Þ

μν ½H1� − δGð1Þ
μν ½H2�: ð60Þ

Equating explicit powers of ϵ in this way, despite the implicit
ϵ dependence contained in functions of t, applies the same
rules as were used in the reexpansion of the outer expansion
in the buffer region: implicit functional dependences on γ are
held fixed during the expansion procedure, while quantities
with explict powers of ϵ, such as the acceleration terms in the
outer expansion, are not. The dependence on t will be
determined by the matching procedure and by the time
derivatives in Eqs. (57)–(60); while each of these is a linear
equation for a given Hn

μν, it is also an equation for the time
evolution of lower-order terms.

B. General solution in the buffer region

In most self-force derivations using matched asymptotic
expansions, authors take the inner background gobjμν to be the
spacetime of a Schwarzschild black hole, and they construct
the perturbations from the tidal moments of the “external”
gravitational field (which implicitly includes some piece of
hμν, to be determined through matching to the outer
expansion). Here I will do likewise, but I stress that there
is no loss of generality in doing so: I am only interested in the
solution in the buffer region, where the tidally perturbed
Schwarzschild metric describes the spacetime outside any
nearly spherical, nearly static, compact object.
Before presenting the metric, I review its derivation, with

an eye toward its generality. First, I specialize to anobject that
is approximately spherical. Specifically, I impose that all the
l > 0 moments of the background metric gobjμν vanish, such
that in the exterior of the object, gobjμν is the Schwarzschild
metric in mass-centered coordinates. In principle, because
the background metric is only required to satisfy the

4These overall factors are not of practical relevance, but they
do mean that in the limit ϵ → 0 in these coordinates, the metric
becomes one-dimensional, similar to the behavior of the metric in
the post-Newtonian limit. If a regular limit is desired, it can be
obtained by rescaling time as well, such that ~t ¼ ðt − t0Þ=ϵ, and
then introducing a conformally rescaled metric ~gμν ¼ 1

ϵ2
gμν, as

was done by D’Eath [32] and later by Gralla and Wald [8]. In that
approach, the inner expansion zooms in not only on a small
region around the object, but also on a small interval of time.
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time-independent Eq. (57), the mass of gobjμν could be allowed
to depend on t. However, we already know that this mass is
equal to the parameter m in the outer expansion, and so we
can appeal to the previous result thatm is constant in time; or
we can establish that the mass is constant directly from
Eq. (58) [47]. Intuitively, this follows from the fact that there
is nothing to source a growth in the mass.

WithGð1Þ
μν ½gobj� ¼ 0 in Eq. (58), the first-order perturbation

H1
μν is left to satisfy the time-independent linearized vacuum

equation δGð0Þ
μν ½H1� ¼ 0 on a Schwarzschild background.

FromEq. (6), we also requireH1
μν to be nomore than linear in

~r at large ~r. A linear term ∼ϵ~r would have to match an ϵ-
independent term ∼ϵ0r in the outer expansion, but the only
such term is the zeroth-order acceleration term f0i x

i in 0gμν,
which we know to vanish. As with the time independence of
m, this is also easily established entirely within the inner
expansion: The well-known linear-in-~r solution [48,49] is
time dependent, with the acceleration coefficient correspond-
ing to the second time derivative of a mass dipole moment.
Because of its time dependence, this fails to satisfy Eq. (58)
(and in any case, we would demand that it vanish because of
its inclusion of a mass dipole moment). More generally, for
stationary solutions that grow no faster than ~r, standard results
[48,50] show that the only invariant content of the perturba-
tion consists of corrections to the background moments. The
mass can be straightforwardly found to be constant from
Eq. (59), in the same manner asm can be from Eq. (58), and
then absorbed intom. Again keeping the object spherical, I set
all higher moments to zero. At higher order, effects such as
tidal heating and torquing [51] will force the moments to
become time dependent, preventing us from making this
choice, but that complication does not arise at the orders
considered here. (Though we could also straightforwardly
relax this choice without affecting our results; see footnote5)
We hence have H1

μν ¼ 0.

At second order, we again arrive at a time-independent
linearized vacuum equation, δGð0Þ

μν ½H2� ¼ 0. From Eq. (6),
H2

μν can now grow as ~r2. Again referring to standard results,
we find that the invariant content in a solution with this
behavior is purely quadrupolar, with even- and odd-parity
pieces. We can write these pieces in terms of two rank-2 STF
tensors, and matching to the outer expansion dictates that
they be the tidal moments Eab and Bab; see Ref. [47] for a
first-principles construction. In addition, H2

μν once again
contains gauge solutions and corrections to the object’s
intrinsic moments, and I again freely set them to zero.
At third order, the perturbtion H3

μν must satisfy Eq. (60),
which now becomes the time-independent inhomogeneous

equation δGð0Þ
μν ½H3� ¼ −δGð1Þ

μν ½H2�. From Eq. (6), H2
μν can

now grow as ~r3, and standard results show that this behavior
corresponds to a purely octupolar perturbation. This can be
written in terms of two rank-3 STF tensors, which matching
will dictate to be the tidal moments Eabc and Babc. We also
have both homogeneous and inhomogeneous quadrupolar
solutions. I write the former in terms of STF tensors δEab
and δBab that represent corrections to gμν’s tidal moments.

The latter will be written in terms of time derivatives _Eab

and _Bab. I once again freely set all other solutions to zero.
None of the above has any dependence on the nature of the

object, except insofar as it is sufficiently spherical. Hence, I
can freely take asmy solution themetric of a tidally perturbed
black hole, which has exactly the form just described. In
Ref. [54], Poisson provides such a metric in a convenient
form. It is written in advanced Eddington-Finkelstein coor-
dinates ðv; ~xaÞ, in which the background metric reads

gobjvv ¼ −f; ð61aÞ
gobjva ¼ na; ð61bÞ
gobjab ¼ δab − nab; ð61cÞ

where f ≔ 1 − 2m=~r. Poisson’s metric was originally given
in spherical polar coordinates; here I have converted to
Cartesian coordinates ~xa in the standard Euclidean way.
Like in Fermi coordinates, na ¼ ~xa

~r ¼ xa
r and δabnanb ¼ 1.

The perturbations are written in a light-cone gauge,
which sets Hn

αr ¼ 0, or in the Cartesian coordinates used
here, Hn

αana ¼ 0. This gauge choice preserves the geomet-
rical meaning of the advanced coordinates in the perturbed
spacetime: v is constant on each ingoing light cone, ~r is an
affine parameter on ingoing light rays, and na labels each
ray’s direction. In this gauge, the perturbations are given by

H1
μν ¼ 0; ð62Þ

H2
vv ¼ −~r2e1E ijnij; ð63aÞ

H2
va ¼ −

2

3
~r2½e4ðδca − nacÞEcdnd − b4ϵapqB

q
cnpc�; ð63bÞ

5We could relax this condition to instead only specify that gobjμν ’s
spin, mass dipole moment, and quadrupole moments vanish. These
moments are the only ones that would affect the acceleration at the
orders of interest. The spin would couple to the tidal momentBab to
generate an acceleration term of the form ∼ϵ2ai ~xi in ϵ2H2

μν,
corresponding to a first-order acceleration term ∼ϵaixi that would
appear in ϵ1gμν in the outer expansion. Similarly, the quadrupole
moments would couple to the tidal moments Eabc and Babc to
generate an acceleration term in ϵ3H3

μν, corresponding to a second-
order acceleration term in ϵ22gμν. The spin-induced force is the
standard Papapetrou spin force, rederived in self-force contexts in
Refs. [8,9,52]. The quadrupole-induced forces, although not yet
derived consistently within the type of perturbative expansion used
here, can be expected to agreewith the test-body-type forces derived
invarious contexts by, e.g., Dixon [53], Thorne andHartle [34], and
Harte [10]. Any moments in gobjμν higher than quadrupolar would
impact the outer expansion at too high an order to be relevant in the
present analysis. Analogously, thoughH1

μν can include corrections
to the moments, the only relevant one would be the spin; and in
Hn>1

μν , not even a correction to the spin would be relevant.
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H2
ab ¼ −

1

3
~r2½e7ð2Eab − 4E iðanbÞ i þ E ijnabij

þδabE ijnijÞ − 2b7ϵpqðaðδcbÞ − ncbÞÞnpBq
c �; ð63cÞ

and

H3
vv ¼

1

3
~r3ðe2 _E ijnij − e3E ijknijkÞ − ~r2e1δE ijnij; ð64aÞ

H3
va ¼ ~r3

�
1

3
½e5ðδca − nacÞ _Ecdnd − b5ϵapq _B

q
cnpc�

−
1

4
½e6ðδca − nacÞEcdindi −

4

3
b6ϵapqB

q
cdn

pcd�
�

−
2

3
~r2½e4ðδca − nacÞδEcdnd − b4ϵapqδB

q
cnpc�; ð64bÞ

H3
ab ¼ ~r3

�
5

18
½e8ð2_Eab − 4_E iðanbÞ i þ _E ijnabij

þ δab _E ijnijÞ − 2b8ϵpqðaðδcbÞ − ncbÞÞnp _Bq
c �

−
1

6
½e9ð2Eabk − 4EkiðanbÞi þ E ijknabij

þ δabE ijknijÞnk −
8

3
b9ϵpqðaðδcbÞ

− ncbÞÞnpjBq
cj�
�
−
1

3
~r2½e7ð2δEab − 4δE iðanbÞi

þ δE ijnabij þ δabδE ijnijÞ
−2b7ϵpqðaðδcbÞ − ncbÞÞnpδBq

c �; ð64cÞ

where eið~rÞ and bið~rÞ are given in Appendix C. In addition
to rewriting Poisson’s metric in Cartesian coordinates, I
have added the solution involving δEab and δBab; these
would otherwise be absorbed into the moments in H2

μν,
which would then no longer equal the moments Eab and
Bab of gμν.
The coefficients eið~rÞ and bið~rÞ all go to 1 at ~r → ∞, and

the numerical normalizations of the solutions ensure that in
that limit, the metric reduces to that of a generic vacuum
spacetime in local advanced coordinates centered on some
worldline [55]. However, it reduces to 0gμν, not to gμν; as
anticipated in Sec. II, the inner expansion automatically
expands the acceleration. But our gauge choices have
eliminated all acceleration terms from the perturbations,
and we can see by inspection that the object is manifestly at
rest at the origin of the coordinate system. Hence, we have
found a solution in a rest gauge, as desired. This rest-gauge
form of the metric makes clear that locally, the object is
only perturbed by tidal fields (through order ϵ3). Matching
to the outer expansion in the Lorenz gauge will reveal the
origin of these tidal fields. With the chosen normalization
of the solutions, Eab, Bab, Eabc, and Babc will trivially agree
with the tidal moments of gμν. The subleading moments

δEab and δBab will be found to be intimately related to the
regular field hR1μν , and Eab þ ϵδEab and Bab þ ϵδBab will be
nearly (but not identically) the tidal moments of the
“external” effective metric gμν þ ϵhR1μν .
I remind the reader that I do not take the metric in

Eqs. (61)–(64) to be valid for all ~r. I only take it to be valid
once it has been reexpanded for large ~r (or equivalently, for
small ϵ at fixed r); once in that expanded form, it is no
longer specific to a black hole, but instead describes the
spacetime around any object that is sufficiently spherical in
the sense described above. More concretely, the tidally
perturbed metric is only specific to a black hole because it
contains an event horizon and its construction has imposed
regularity on the horizon as a boundary condition. But the
horizon is irrelevant in the buffer region, and the horizon
regularity only serves to eliminate higher moments in the
perturbations, which in specializing to a spherical object, I
have set to zero in any case.

C. Preliminary transformation

At this stage we could rewrite the inner expansion in
terms of r ¼ ϵ~r and reexpand in ϵ to obtain the outer
expansion (11). We could then seek the transformation to
the metric in the Lorenz gauge. However, we can also guess
part of that transformation in advance.
First, note that the coordinates of the inner expansion are

based on ingoing null geodesics, while the coordinates in
the outer expansion are based on spatial geodesics orthogo-
nal to the worldline. Hence, the transformation must
account for this difference. This implies that in the m →
0 limit, the transformation will have to reduce to the one
between advanced local coordinates centered on γ and
Fermi-Walker coordinates. That transformation, which can
be obtained following the method in Sec. 13 of Ref. [5], is
given by

v ¼ tþ rþ Δv0; ð65aÞ

xa ¼ xa þ Δxa0; ð65bÞ

where

Δv0¼−
1

6
r3Eijnij−

1

24
r4ð _EijnijþEijknijkÞþOðr5Þ; ð66Þ

and

Δxa0 ¼ r3
�
1

6
Ea

ini −
1

3
Bi

bϵajbnij
�
þ r4

�
1

18
_Ea

ini

þ 1

24
Ea

ijnij −
1

9
_Bi

kϵajknij þ
1

36
_Eijnaij

−
1

9
Bij

bϵakbnijk
�
þOðr5Þ: ð67Þ

The radial functions are related as r ¼ rþ Δr0, with
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Δr0 ¼
1

6
r3Eijnijþ

1

24
r4ð2_EijnijþEijknijkÞþOðr5Þ: ð68Þ

(In these formulas I have omitted acceleration terms.)
If we first reexpand our inner expansion in the buffer

region and then apply the above transformation, then the
zeroth-order term in the expansion (11) will correctly match
the background metric gμν (or more precisely, 0gμν) in
Fermi-Walker coordinates. But again, I opt to guess more
of the transformation. In the inner expansion, the back-
ground metric gobjμν is expressed in ingoing Eddington-
Finkelstein coordinates, which when converted to an outer
expansion will yield h1

0
μν ¼ 2m

r δvμδ
v
ν . In the Lorenz gauge, on

the other hand, we have h1μν ¼ 2m
r δμν þOðr0Þ in Fermi-

Walker coordinates. To match that form, we can change to
coordinates in which gobjμν ¼ 2m

~r δμν þOð1=~r2Þ. One way of
accomplishing that is by transforming to harmonic coor-
dinates, using

v ¼ tþ ϵ

�
~rþmþ 2m ln

�
~r −m
2m

��
; ð69aÞ

~xa ¼ ~xa þmna; ð69bÞ

with ~r ¼ ~rþm. This transformation would put the inner
background in the form

gobjtt ¼ −f; ð70aÞ

gobjt ~a ¼ 0; ð70bÞ

gobj
~a ~b

¼ ð1þm=~rÞ2ðδ ~a ~b − n ~a ~bÞ þ f−1n ~a ~b; ð70cÞ

where f ¼ 1�2m=~r ¼ ~r−m
~rþm.

To combine the transformations (65) and (69), I consider
a small change in Eq. (69), leading to

Δv ¼ Δtþ Δrþ 2mf−1
Δr
r
; ð71Þ

Δxa ¼ Δxa −m
Δxa

r
þmna

Δr
r
: ð72Þ

I then define a gauge vector with components ξt ¼ Δtþ
2mf−1 Δr

r and ξa ¼ Δxa, with Δt ¼ Δv0 − Δr0,
Δxa ¼ Δxa0, and Δr ¼ Δr0, and with Δv0, Δxa0 , and Δr0
given by Eqs. (66)–(68) with r replaced by r; at the end, all
quantities are then expressed in terms of the scaled
coordinates. This construction may (rightly) be deemed
to be adhoc, but since any worldline-preserving trans-
formation can be chosen, the choice is ultimately imma-
terial; in practice, the results of this choice are marginally
simpler than some other alternatives, such as simply using
Eqs. (66)–(68) as the gauge transformation.

Concretely, I perform the background transformation
(69) in conjunction with a gauge transformation
ϵ2H2

μν þ ϵ3H3
μν → ϵ2H2

μν þ ϵ3H3
μν þ Lξg

obj
μν , where ξμ ¼

ϵ3ξμ3 þ ϵ4ξμ4 is given by

ξt3 ¼ −
1

3
~r3Eijnij þ

1

3
mf−1~r2Eijnij; ð73Þ

ξa3 ¼ ~r3ð1 −m=~rÞ
�
1

6
Ea

ini −
1

3
Bi

kϵajknij
�

þ 1

6
m~r2Eijnaij; ð74Þ

and

ξt4 ¼ −
1

8
~r4 _Eijnij −

1

12
~r4Eijknijk

þ 1

12
mf−1~r3ð2 _Eijnij þ EijknijkÞ; ð75Þ

ξa4 ¼ m~r3
�
1

12
_Eijnaij þ

1

24
Eijknaijk

�

þ ~r4ð1 −m=~rÞ
�
1

18
_Ea

ini þ
1

24
Ea

ijnij −
1

9
_Bi

kϵajknij

þ 1

36
_Eijnaij −

1

9
Bij

bϵakbnijk
�
; ð76Þ

with ~r ¼ ~rþm. Note that the gauge vectors begin one
order higher than their effects, because the xa derivatives
in Lξg

obj
μν reduce the order by 1. Also note that after

performing the background transformation, functions of v
need to be expanded around their values at t. Finally,
note that the transformation is worldline preserving:
because it contains no order-ϵ or ϵ2 pieces, it trivially
preserves the condition H1

μν ¼ 0, and therefore pre-
serves δMi ¼ 0.
After performing the transformation, I convert to the

unscaled coordinate r ¼ ϵ~r and reexpand for small ϵ. For
example,

gobjtt ¼ −
~r −m
~rþm

ð77aÞ

¼ −
r − ϵm
rþ ϵm

ð77bÞ

¼ −1þ 2ϵm
r

−
2ϵ2m2

r2
þOðϵ3Þ: ð77cÞ

The end result is a new expression for the metric in the
outer expansion in the buffer region,

gμν ¼ g0μν þ ϵh1
0
μν þ ϵ2h2

0
μν þOðϵ3Þ; ð78Þ
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where g0μν ¼ 0gμν is given by Eq. (43), and the perturbations
are

h1
0

tt ¼
2m
r

þ 5

3
mrEain̂ai þ r2

�
2m _Eain̂ai − δEain̂ai

þ 7

12
mEaijn̂aij

�
þOðr3Þ; ð79aÞ

h1
0

ta ¼ −
2

3
mrðEabn̂b þ Bbiϵaijn̂bjÞ þ r2

�
49

30
m _Eabn̂b

þ 13

9
m _Bbiϵaijn̂bj −

2

3
δBbiϵaijn̂bj þ

1

12
mEabin̂bi

þ 1

18
m _Ebin̂abi −

2

9
mBbijϵab

kn̂ijk

�
þOðr3Þ; ð79bÞ

h1
0

ab ¼
2mδab

r
þmr

�
2

45
Eabþ

88

21
Eðacn̂bÞc−

9

7
Ecdδabn̂cd

þ1

3
Ecdn̂abcd

�
þ1

9
r2
�
16m _Eab−δEab

þ141

35
mEabcn̂c−

74

5
m _Bða

dϵbÞcdn̂cþ6δEðacn̂bÞc

−3δEcdδabn̂cdþ8m _Ecdδabn̂cd−8mBcðaiϵbÞdin̂cd

þ14mEðacdn̂bÞcdþm _Bcdϵcðain̂bÞdi

−
53

12
mEcdiδabn̂cdiþ

3

4
mEcdin̂abcdi

�
þOðr3Þ; ð79cÞ

and

h2
0
tt ¼ −

2m2

r2
−
4

3
m2Eain̂ai þmr

�
5

3
δEain̂ai

−
20

3
m _Eain̂ai −

1

2
mEaijn̂aij

�
þOðr2Þ; ð80aÞ

h2
0

ta ¼ −
2

15
m2ð6Eabn̂b − 5Bbiϵaijn̂bj − 10Ebin̂abiÞ

þmr

�
1

5
m _Eabn̂b −

2

3
δEabn̂b þ

31

9
m _Bbiϵaijn̂bj

−
2

3
δBbiϵaijn̂bj −

8

21
mEabin̂bi −

13

9
m _Ebin̂abi

þ 4

9
mBbijϵab

kn̂ijk þ
1

12
mEbijn̂abij

�

þOðr2Þ; ð80bÞ

h2
0

ab ¼
m2ð4

3
δab þ n̂abÞ
r2

þm2

�
68

45
Eab −

16

5
BðadϵbÞcdn̂c

þ 136

21
Eðacn̂bÞc −

29

21
Ecdδabn̂cd −

1

3
Ecdn̂abcd

þ 4Bcdϵcðain̂bÞdi

�
þmr

�
2

45
δEab þ

256

45
m _Eab

þ 68

35
mEabcn̂c −

70

9
m _Bða

dϵbÞcdn̂c þ
88

21
δEðacn̂bÞc

−
32

7
m _Eða

cn̂bÞc −
9

7
δEcdδabn̂cd þ

208

63
m _Ecdδabn̂cd

−
208

63
mBcðaiϵbÞdin̂cd þ

41

18
mEðacdn̂bÞcd

−
10

27
mEcdiδabn̂cdi þ

1

3
δEcdn̂abcd −

16

9
m _Ecdn̂abcd

þ 8

9
mBcdiϵcðajn̂bÞdij −

1

3
mEcdin̂abcdi

þ 20

9
m _Bcdϵcðain̂bÞdi

�
þOðr2Þ: ð80cÞ

This is the final form of the metric in the rest gauge. It has
several important properties, already mentioned in the
previous section, but reiterated here for emphasis. First,
there is no explicit appearance of the regular field; it has
been entirely bundled into the tidal moments δEij and δBij.
Next, there is no mass dipole moment term ∼Mini=r2 in
h2μν, and although I do not display h3μν, there is no dipole
moment term δMini=r2 in it either, as such a moment could
only come from the expansion of H1

μν. Hence, the object is
mass-centered on γ. Finally, there is no acceleration term
∼aixi in either the background or the perturbations. This
tells us that the object is not only centered on γ, but also at
rest there; since the expansion here is around 0gμν rather
than gμν, one can imagine that in an expansion around gμν,
the perturbations h1μν and h2μν in this gauge would contain
terms þ2f1i x

iuμuν and þ2f2i x
iuμuν that exactly cancel the

acceleration term −2aixiuμuν in gμν.
As we shall see in the next section, the transformation to

the Lorenz gauge unspools the regular field throughout the
metric, determines how it relates to the tidal moments δEij
and δBij, and most importantly, determines in which piece
of the Lorenz-gauge metric the motion is geodesic.

IV. TRANSFORMATION FROM REST
GAUGE TO LORENZ GAUGE

With the metric determined in both the Lorenz gauge and
the rest gauge, we are now in a position to find the
transformation between them—and thereby determine
the acceleration of γ in the Lorenz gauge. The two metrics
already agree at leading order, implying that the perturba-
tions must be related by a gauge transformation. In the rest
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gauge, the first- and second-order perturbations h1
0

μν and h2
0

μν

are given in Eqs. (79) and (80). In the Lorenz gauge, the
first- and second-order perturbations h1†μν and h2†μν are given
in Eqs. (48) and (49).

A. Form of transformation

Under a gauge transformation generated by a small
vector ξμ, a metric gμν can be expanded along the flow
lines of ξμ as

gμν → gμν þ Lξgμν þ
1

2
L2
ξgμν þ � � � : ð81Þ

Substituting ξμ ¼ ϵξμ1 þ ϵ2ξμ2 þ � � � and gμν ¼ gμν þ ϵh1μν þ
ϵ2h2μν þ � � � yields a transformation law for each of the
perturbations:

hn;newμν ¼ hn;oldμν þ Δhnμν; ð82Þ

where

Δh1μν ¼ Lξ1gμν; ð83Þ

Δh2μν ¼ Lξ2gμν þ
1

2
L2
ξ1
gμν þ Lξ1h

1;old
μν : ð84Þ

In a chart, the gauge vectors ξμ1 and ξμ2 correspond to the
coordinate transformation (12) [56].
A transformation from the rest gauge to the Lorenz

gauge must therefore satisfy

h1†μν ¼ h1
0

μν þ Lξ1
0gμν; ð85Þ

h2†μν ¼ h2
0
μν þ Lξ2

0gμν þ
1

2
L2
ξ1
0gμν þ Lξ1h

10
μν: ð86Þ

I will solve these equations for ξμn order by order in r.
However, ensuring that the transformation is worldline
preserving requires that we also consider the transformation
of the third-order field; recall that a subleading dipole
moment would appear as a term of the form ϵ3δMini=r2 in
the outer expansion. The transformation of the third-order
perturbation is easily derived by adding the next term,
1
6
L3
ξgμν, to Eq. (81). The result is

Δh3μν ¼ Lξ3gμν þ
1

2
ðLξ1Lξ2 þ Lξ2Lξ1Þgμν þ

1

6
L3
ξ1
gμν

þ 1

2
L2
ξ1
h1;oldμν þ Lξ2h

1;old
μν þ Lξ1h

2;old
μν : ð87Þ

To keep the object centered on γ, I demand that the gauge
transformation not induce a dipole term of the form
δMini=r2 in Δh3μν (equivalently, if one converts the trans-
formation to scaled coordinates ~xa ¼ xa=ϵ, I demand that
no δMini=~r2 term appear in ΔH1

μν). But I do not otherwise

seek to control the gauge of the third-order perturbation,
leaving it in the form h3

0
μν þ Δh3μν with ξμ3 ¼ 0.

To solve Eqs. (85) and (86) I assume an expansion

ξnα ¼
X

p≥−nþ1

X
q;l≥0

rpðln rÞqξðn;p;qÞαL n̂L; ð88Þ

where ξðn;p;qÞαL is STF in the indices L, and I assume that for
a given p, there exists a finite maximum q. As with the

metric perturbations, I abbreviate ξðn;p;0ÞαL as ξðn;pÞαL . The
expansion (88) might not be the most general gauge vector
possible, but it is likely the most general transformation that
preserves the form (26) of the metric perturbations. In terms
of this expansion, the worldline-preserving condition (13)
becomes

ξðn;0Þa ¼ 0: ð89Þ

The transformation (88) will be found to be unique if and
only if this condition is imposed, and this condition will
suffice to preserve the center-of-mass condition δMi ¼ 0.
Finding ξnα now reduces to a straightforward procedure of

substituting the expansion (88) into Eqs. (85) and (86) and

finding the coefficients ξðn;p;qÞαL . At each order in r, ξðn;p;qÞαL is
found by decomposing the equation into coefficients of the
STF tensors n̂L. Because these tensors n̂L form an
orthogonal basis, from an equation of the formP

laPhLin̂L ¼ P
lbPhLin̂L, one can equate aPhLi with

bPhLi. Even after equating coefficients of n̂L, it is some-

times nontrivial to solve for the tensors ξðn;p;qÞαL , since they
can be contracted with other tensors. In those instances, it is
necessary to take a final step of writing aPhLi and bPhLi in
irreducible form, using Eqs. (A3) and (A5). Since the
decomposition into irreducible pieces is again unique, one
can equate the terms in the decomposition of aPhLi with
those in the decomposition of bPhLi. To facilitate this

process, I use Eq. (A3) to write ξðn;p;qÞaL itself in the
irreducible form

ξðn;p;qÞaL ¼ ϒ̂ðn;p;qÞ
aL þ ϵahii

jΛ̂ðn;p;qÞ
L−1ij

þ δahi1Ψ̂
ðn;p;qÞ
L−1i ; ð90Þ

where ϒ̂ðn;p;qÞ
Lþ1 , Λ̂ðn;p;qÞ

L , and Ψ̂ðn;p;qÞ
L−1 are STF tensors. In

terms of this decomposition, the condition (89)
becomes ϒ̂ðn;0Þ

a ¼ 0.
The main result of the calculation is that the metrics in

the two gauges are related by a worldline-preserving gauge
transformation if and only if the forces fa1 and fa2 satisfy
Eqs. (40) and (99). To understand how this comes about,
consider the order-r, l ¼ 1 piece of the tt component of
Eq. (85). The left-hand side reads simply 0hR1tt;ix

i − 2f1i x
i,

and when the worldline-preserving condition is imposed on
the right-hand side, this piece of Eq. (85) becomes an
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equation for f1i . Analogously, the order-r, l ¼ 1 piece of the
tt component of Eq. (86) becomes an equation for f2i . In a
similar manner, the calculation yields formulas for the tidal
moments δEab and δBab; these expressions for δEab and
δBab, although derived in Ref. [25], appear here explicitly
for the first time.

B. Transformation at first order

I first consider the solution to Eq. (85). The worldline-
preserving order-ϵ transformation satisfying this equation is
given in Eq. (D1). It has been simplified using the gauge
conditions (51). Since each step of the calculation is
straightforward (if lengthy), I will omit most of the details
and instead describe, order by order in r, the effect of the
transformation and its implications.

1. Order 1=r

Because of the preliminary transformation in Sec. III C, the
1=r terms in Eqs. (79) and (27) agree. This determines that

ξð1;p;qÞμL ¼ 0 for p < 0, and ξð1;0;qÞμL ¼ 0 for all l > 0 for any q;

ξð1;0;qÞμL are involved at this order, because ∂a ln r ∼ ∂ani∼
1=r. Hence, we have ξ1μ ¼ ξð1;0Þμ ðtÞ þOðr ln rÞ. ξð1;0Þa will
eventually be set to zero due to the condition (89), but for the
moment I leave it arbitrary to better illustrate its role.

2. Order r0

The metric (79) in the rest gauge contains no terms of
order r0, while the metric (48) contains terms at this order
comprising hR1μν jγ . The transformation hence serves to
introduce the regular field on the worldline. Specifically,
the order-r0 term in Eq. (D1) introduces hR1tt jγ (≔ Âð1;0Þ),

and the nonintegral order-r terms introduce hR1ta jγ (≔ Ĉð1;0Þ
a )

and hR1ab jγ (≔ δabK̂
ð1;0Þ þ Ĥð1;0Þ

ab ). Of these effects, the
transformation ξ1t ¼ 1

2

R
dthR1tt is especially significant: it

is an adjustment of the proper time along the worldline,
telling us that the proper time in the black hole’s rest frame
is the proper time in the metric gμν þ ϵhR1μν ; the quantity
1
2
hR1tt in the integrand of the transformation is the Detweiler

redshift [57], which has played an important role in
interfacing self-force with post-Newtonian theory [16]
and has recently been computed for the first time in
numerical relativity [18].
At this stage, the antisymmetric piece of ξð1;1Þai , encoded

in the vector Λ̂ð1;1Þ
i , is undetermined, and the vector ξð1;0Þa

remains arbitrary. Each of these quantities will carry a
dynamical meaning.

3. Order r

At order r, the metric (79) in the rest gauge contains
terms of the formmEab andmBab. The metric (48) contains
terms of this form, but in addition it contains terms ∼∂hR1μν jγ

and an explicit appearance of the first-order acceleration fa1
(via 1gμν). The order-r2 piece of the transformation brings
the mEab and mBab terms into agreement and introduces
the ∼∂hR1μν jγ terms into the metric. Most significantly, at this

order, the vectors Λ̂ð1;1Þ
i and ξð1;0Þa are determined.

The Λ̂ð1;1Þ
i term in the transformation appears as the

integral in the order-r piece of Eq. (D1b), which can be
written as

R
dt∂ ½ahR1b�tx

b. This indicates that the rest frame of
the object rotates relative to the Fermi-Walker frame (which
is parallel-propagated with respect to gμν along γ).

Finally, one finds that the vector ξð1;0Þa must satisfy

ξ̈ð1;0Þa ¼ − Ea
iξð1;0Þi þ f1a −

1

2
∂a

0hR1tt þ ∂t
0hR1ta ; ð91Þ

where the derivatives of the regular field are evaluated at

r ¼ 0. Given the worldline-preserving condition ξð1;0Þa ¼ 0,
this equation yields the standard formula (40) for the first-
order self-force. It is worth mentioning that Eq. (91) can be
derived in only a few lines of calculation. As stated in the
opening of this section, we know in advance which piece of
Eq. (85) determines fa1: the order-r, l ¼ 1 piece of the tt
component. That piece of Eq. (85) is easily found to be

ð∂a
0hR1tt − 2f1aÞxa ¼ − 2ð_ξð1;1Þta þ ξð1;0Þi Ei

aÞxa: ð92Þ

_ξð1;1Þta is determined from the order-r0, l ¼ 0 piece of the ta

component of Eq. (85), which reads 0hR1ta ¼ _ξð1;0Þa − ξð1;1Þta .

Solving for ξð1;1Þta and substituting this into Eq. (92)
returns Eq. (91).
If we had not imposed the worldline-preserving con-

dition, then the gauge vector ξð1;0Þa , via the Lξ1h
10
μν term in

Eq. (86), would produce a term Δh2tt ¼ − 2mξð1;0Þa na

r2 in the
second-order field, corresponding to a mass dipole moment

Ma ¼ −mξð1;0Þa . Equation (91) would then tell us how the
object’s Lorenz-gauge center of mass moves relative to a
nearby worldline with arbitrary acceleration fa1 (refer to
Ref. [9] for a discussion). But sinceMa has been set to zero
in both the rest gauge and the Lorenz gauge, Eq. (86) can

only be satisfied if ξð1;0Þa ¼ 0. That is, as was anticipated in
the Introduction, even though the equation of motion (91) is
a consequence of the second-order field equations in the
outer expansion, knowing that Ma ¼ 0 in the second-order
field allows us to obtain that equation of motion without
performing any (nontrivial) second-order computations.
Appendix E makes some additional comments on the
ramifications of this fact.

4. Order r2

At order r2, both the rest-gauge metric (79) and the
Lorenz-gauge metric (48) contain m _Eab, m _Bab, mEabc, and
mBabc terms. The order-r3 terms in ξ1μ bring these terms
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into agreement. More significantly, the rest-gauge metric
contains δEab and δBab terms, while the Lorenz-gauge
metric contains ∂∂hR1μν terms. The transformation partially
serves to introduce the ∂∂hR1μν terms into the metric, but the
transformation is only possible if, as anticipated in Sec. III,
δEab and δBab are closely related to the tidal moments of
hR1μν . Specifically, one finds that the metrics can be matched
if and only if δEab and δBab are related to ∂∂hR andmE and
mB by

δEab ¼ −
1

2
hR1tt;habi þ hR1tt Eab þ

8

3
m _Eab − Ei

hah
R1
bii

þ 2STFabEi
a

Z
hR1t½b;i�dtþ hR1tha;bit

þ 1

2
_Eab

Z
hR1tt dt −

1

2
hR1habi;tt; ð93Þ

δBab ¼
13

6
m _Bab þ STFabϵaijhR1i½t;b�j − hR1ti EjðaϵbÞij

−
1

2
Babδ

ijhR1ij þ 2STFabBi
a

Z
hR1t½b;i� þ

1

2
BabhR1tt

þ 1

2
_Bab

Z
hR1tt dt: ð94Þ

I omit the implied left-superscript 0 on all regular-
field terms.
The meaning of these results is not especially trans-

parent. However, we can make it clearer by noting two
simplifications. First, all the ∂∂hR1μν terms in Eq. (93) can be
written as δRatbt½hR1�, and all those in Eq. (94) as
1
2
ϵpqðaδRbÞtpq½hR1�, where

δRαβγδ½h� ¼ hμ½αRμ
β�γδ − hγ½α;β�δ þ hδ½α;β�γ ð95Þ

is the linearized Riemann tensor associated with a pertur-
bation hμν. Next, all the terms involving zeroth or first
derivatives of hR1μν in Eq. (93) can be written as −ðLξ1RÞtatb,
and those in Eq. (94) as − 1

2
ϵpqðaðLξ1RÞbÞtpq. Noting that

Lξ1Rαβγδ ¼ δRαβγδ½Lξ1g�, we obtain the much simpler
formulas

δEab ¼ δRtatb½hR1 − Lξ1g� þ
8

3
m _Eab; ð96Þ

δBab ¼
1

2
ϵpqðaδRbÞtpq½hR1 − Lξ1g� þ

13

6
m _Bab: ð97Þ

Equations (96) and (97) almost have a simple interpre-
tation: δEab and δBab are almost the tidal moments of the
regular field hR1μν , up to gauge. But due to the presence of the

m _Eab and m _Bab terms, these interpretations are not quite
correct. This tells us that we cannot always safely interpret
the effective metric gμν þ hRμν as the “external” metric that

the object feels. In particular, the tidal quantities defined in
Refs. [41,42], which are computed from hR1μν alone, cannot
always be associated with the tidal moments that appear in
the metric of a tidally perturbed black hole or material body
(see Refs. [58,59] and references therein for a review of
such metrics). This likely stems from there being some
degree of ambiguity in the split between ð _Eab; _BabÞ and
ðδEab; δBabÞ; as one can see in Eq. (79), they ultimately
appear in similar ways in the second-order metric pertur-
bation. In fact, by making the redefinitions δEab → δEab −
8
3
m _Eab and δBab → δBab − 13

6
m _Bab, we would ensure that

δEab and δBab precisely correspond to the moments of hR1μν
(up to gauge). Indeed, in Ref. [26], Gralla defines his
regular field such that this is true. However, since he does
not show that his first-order regular field agrees with the
Detweiler-Whiting field (while the one I use here does at
least through order r2), it is not clear whether it is his
regular field or his tidal moments that differ from the ones
used here.
Besides this ambiguity in the definitions of tidal

moments, the above results point to a limitation in the
typical construction of metrics of tidally perturbed objects.
Equations (93) and (94) show that these metrics are
generically nonuniform in time. For example, imagine that
the small object moves on a quasicircular orbit around a
much larger black hole. Then hR1μν and its derivatives are
approximately constant in time, and the tidal moments
defined in the object’s rest gauge grow approximately
linearly with time. Therefore, a single inner expansion of
this sort is unlikely to serve well on long time scales in a
binary inspiral. Since the growth is a natural effect of the
growing mismatch between the object’s rest frame and the
background Fermi-Walker frame, one should construct a
new rest gauge every so often, effectively resetting the
frame’s clocks and gyroscopes.

C. Transformation at second order

Solving the second-order Eq. (86) proceeds in the same
way as at first order, and Eq. (D2) gives the final result for
the worldline-preserving order-ϵ2 transformation.

1. Order 1=r2

Unlike at first order, the leading terms in the second-
order perturbations (80) and (49) do not agree. The m2=r
term in Eq. (D2b) brings them into agreement. Note that
although the leading-order terms superficially appear to
lack spherical symmetry, this is an artifact of using
Cartesian coordinates: in terms of tensor harmonics, they
are purely l ¼ 0. This can be seen either from using the
irreducible STF decomposition in Ref. [44] or by con-
verting to polar coordinates ðt; r; θAÞ using h2αr ¼ h2αana,
h2αA ¼ h2αa ∂xa

∂θA, δab
∂xa
∂θA

∂xb
∂θB ¼ r2ΩAB (whereΩAB is the metric

on the unit two-sphere), and na ∂xa
∂θA ¼ 0. At order 1=r2, the
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mixed terms h2tA and h2rA vanish, h2rr is independent of θA,
and h2AB is proportional to ΩAB. Similarly, the gauge vector
corresponds to a monopolar radial transformation
r → r − ξr, with ξr ¼ ξana.

2. Order 1=r

The rest-gauge metric (80) contains no terms at order
1=r. The Lorenz-gauge metric (49), on the other hand,
contains terms of the formmhR1μν in both hSRμν and hδmμν . Some
terms of that form arise from the first-order transformation,
by virtue of the Lξ1h

10
μν term in Eq. (85), but additional

terms are required in ξ2μ. These appear as the order-r0 terms
in Eq. (D2).

3. Order r0

At order r0, the rest-gauge metric (80) and Lorenz-gauge
metric (49) both contain terms of the form m2Eab and
m2Bab, while the Lorenz-gauge metric in addition contains
hR2μν and m∂hR1μν , the latter through hSRμν as well as 1h1μν. ξ2μ
brings the m2Eab and m2Bab terms into agreement, intro-
duces hR2μν exactly as at first order, and further introduces the
m∂hR1μν terms. It also serves to remove terms of the form
ðhR1μν Þ2 that appear via L2

ξ1
0gμν in Eq. (86).

4. Order r

Finally, at order r, Eq. (86) determines the second-order
force fa2 . This result follows from the tt component of
Eq. (86), and I do not seek to solve the remaining

components of the equation, leaving one piece of ξð2;1Þa

and all of ξð2;2Þμ undetermined.
The equation for fa2 comes in the same form as Eq. (91):

as a differential equation satisfied by the translation ξð2;0Þa . It
reads

ξ̈ð2;0Þa ¼ −Ea
iξð2;0Þi þ f2a −

1

2
∂að0hR2tt þ 1hR1tt Þ

þ ∂tð0hR2ta þ 1hR1ta Þ þ
1

2
∂t

0hR1tt 0hR1ta ; ð98Þ

where all quantities are evaluated at r ¼ 0. As at first order,
this equation is specifically the order-r, l ¼ 1 piece of the tt
component of Eq. (86); though unlike at first order,
explicitly evaluating that piece to arrive at the above
equation is nontrivial, complicated as it is by the Lξ1h

10
μν

term in Eq. (86) and the presence of negative powers of r
in ξ2a.
Just as at first order, I now impose the worldline-

preserving condition ξð2;0Þa ¼ 0. This prevents a mass dipole
moment δMi from appearing via the Lξ2h

1;old
μν term in

Eq. (87). We can directly confirm that the entirety of the
gauge transformation then leaves δMi ¼ 0. One way of
doing this is by substituting the explicit results for ξμ1 and ξ

μ
2

into Eq. (87), but a more efficient way is by converting to
scaled coordinates ~xa and computing ΔH1

μν. Because xa

derivatives lower the power of ϵ by 1, ΔH1
μν gets con-

tributions from both the linear- and quadratic-in-ϵ pieces of
the scaled transformation. The powers of ϵ in the trans-
formation ~ξμð~rÞ ¼ ϵξμ1ð~rÞ þ ϵ2ξμ2ð~rÞ can be obtained by
adding p to n in Eq. (88). Referring to Eqs. (D1) and (D2),
we find ~ξμ1 ¼ ~r0ξαð1;0Þ þ 1

~r ξ
μi
ð2;−1Þni and ~ξμ2 ¼ ~rξμið1;1Þniþ

~r0ðξμð2;0Þ þξμið2;0ÞniÞ, with ξað1;0Þ ¼ ξað2;0Þ ¼ 0. The coefficient

of the order-ϵ piece of L~ξg
obj
μν has components

ΔH1
tt ¼ ~ξa2∂ ~ag

obj
tt þ 2~ξt1;tg

obj
tt , ΔH1

ta ¼ ~ξt2; ~ag
obj
tt , and

ΔH1
ab ¼ ~ξc2∂ ~cg

obj
ab þ 2~ξc2;ð ~ag

obj
bÞc, where I have omitted van-

ishing t derivatives. It is now easy to see thatΔH1
μν contains

only even values of l, and so in particular, no terms
with l ¼ 1.
So, confidently imposing ξð2;0Þa ¼ 0, we find that Eq. (98)

becomes

f2a ¼
1

2
∂a

0hR2tt − ∂t
0hR2ta þ 1

2
∂a

1hR1tt − ∂t
1hR1ta

−
1

2
∂t

0hR1tt 0hR1ta : ð99Þ

One can verify that this is equivalent to Eq. (16) of Ref. [25]
using Eqs. (B9a), (B9b), and (B10a) (with hR1tt jγ ¼ Âð1;0Þ,

hR1ta jγ ¼ Ĉð1;0Þ
a , and hR1tt;ajγ ¼ Âð1;0Þ

a ).
With this, we have found the first two terms in the

acceleration aμ ¼ ϵfμ1 þ ϵ2fμ2 þOðϵ3Þ. Summing the two
terms, we find that the result can be written in the compact
covariant form

aμ ¼ −
1

2
Pμνðgνρ − hRρν Þð2hRρσ;λ − hRσλ;ρÞuσuλ

þOðϵ3Þ; ð100Þ

where hRμν ¼ ϵhR1μν þ ϵ2hR2μν . If g
obj
μν had spin and quadrupole

moments, then this equation would be expected to include
the standard test-body-type quadrupole forces [10,34,53] as
well as a correction to the Papapetrou spin force. We may
be able to correctly extract those forces from Harte’s fully
nonlinear equations [10], though it is unclear whether the
moments he defines would correspond to the ones defined
from matched expansions.

V. GEODESIC MOTION IN AN
EFFECTIVE SPACETIME

I opened this paper by promising that the second-order
equation of motion was equivalent to the second-order
geodesic equation in a meaningful effective metric. In this
section, I show that Eq. (100) is in fact equivalent to the
geodesic equations in gμν þ ϵhR1μν þ ϵ2hR2μν .
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An appropriate expansion of the geodesic equation can
be found in Sec. III. A. 1 of Ref. [40], but I reproduce it here
for the reader’s convenience. In a metric gμν ¼ gμν þ hμν,
the geodesic equation reads d_zμ

dλ þ gΓμ
νρ _zν _zρ ¼ κ_zμ, where λ

is a potentially nonaffine parameter on the geodesic,
zμðλÞ are the geodesic’s coordinates, _zμ ¼ dzμ

dλ is its tangent
vector field, gΓμ

νρ is the Christoffel symbol corresponding to
gμν, and κ ¼ d

dλ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνuμuν

p
. If we take λ ¼ τ

(¼ Fermi-Walker coordinate t), the proper time on γ in
gμν, then the geodesic equation becomes

aμ ¼ − Cμ
νρuνuρ þ κuμ; ð101Þ

where aμ ¼ Duμ
dτ , and

Cα
βγ ≡ gΓα

βγ − Γα
βγ ð102Þ

¼ 1

2
gαδð2hδðβ;γÞ − hβγ;δÞ ð103Þ

is the difference between the Christoffel symbols in the full
metric gμν and in the background gμν. With τ as a parameter,
κ becomes

κ ¼
d
dτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − hμνuμuν

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − hμνuμuν

p : ð104Þ

So far, Eq. (101) is exact. I now expand Cμ
νρ and κ in

powers of hμν, yielding

aα ¼ −
1

2
ðgαδ − hαδÞð2hδðβ;γÞ − hβγ;δÞuβuγ

−
1

2
hβγ;δuαuβuγuδ −

1

2
hμνhβγ;δuαuβuγuδuμuν

− hβγuαaβuγ þOðh3Þ: ð105Þ

This equation is complicated by the fact that the accel-
eration appears on both sides in a nontrivial way. To
disentangle the acceleration from the perturbation, I assume
that aμ, too, has an expansion in powers of hμν,

aμ ¼ aμlin þ aμquad þOðh3Þ; ð106Þ

where aμlin is linear in hμν and aμquad is quadratic in it.
Substituting this expansion into Eq. (105), one finds

aμlin ¼ −
1

2
Pαδð2hδðβ;γÞ − hβγ;δÞuβuγ; ð107Þ

aμquad ¼ −
1

2
Pαμhδμð2hδðβ;γÞ − hβγ;δÞuβuγ: ð108Þ

Summing these yields the compact form

aμ ¼ −
1

2
Pαμðgδμ − hδμÞð2hδðβ;γÞ − hβγ;δÞuβuγ

þOðh3Þ: ð109Þ

Comparing Eq. (109) to Eq. (100), we see that, up to
terms cubic in hRμν, the second-order self-forced motion is,
as promised, identical to geodesic motion in the effective
metric gμν þ hRμν.

VI. MOTION IN ALTERNATIVE GAUGES

The equation of motion (100) is specific to the Lorenz
gauge, but in practice we may wish to work in other gauges.
In this section, I first describe how it applies in gauges
smoothly related to Lorenz. I then show, more promisingly,
how it applies in a highly regular gauge with a different
singularity structure than Lorenz.

A. Motion in gauges smoothly related to Lorenz

In Ref. [6], I described how to transform between
smoothly related gauges, given a specification, in the initial
gauge, of a singular-regular split for which the motion is
geodesic in gμν þ hRμν. I only briefly reiterate that prescrip-
tion here.
Consider a transformation away from Lorenz generated

by arbitrary smooth vectors ξμ1 and ξμ2. At first order we
have h1μν → h1μν þ Lξ1gμν. Since the transformation is
smooth, we can naturally assign its effect to the regular
field, such that in the new gauge we have

hR1
0

μν ¼ hR1μν þ Lξ1gμν; ð110Þ

hS1
0

μν ¼ hS1μν : ð111Þ

(Here primes denote perturbations in the new gauge, not
perturbations in the rest gauge as they did in previous
sections.) At second order we have h2μν → h2μν þ Δh2μν, with
Δh2μν given by Eq. (84). This transformation includes a
singular term Lξ1h

S1
μν , but we can again assign the smooth

remainder to the regular field:

hR2
0

μν ¼ Lξ2gμν þ
1

2
L2
ξ1
gμν þ Lξ1h

R1
μν ; ð112Þ

hS2
0

μν ¼ hS2μν þ Lξ1h
S1
μν : ð113Þ

With these transformation laws, the effective metric gμν þ
ϵhR1μν þ ϵ2hR2μν transforms as any ordinary smooth metric
would, thus ensuring that it remains a vacuum metric in the
new gauge. We also see that we can freely choose the gauge
of the regular field, while the form of the singular field is
dictated by (a) its form in the Lorenz gauge and (b) the
gauge of hR1

0
μν (through hS2

0
μν ’s dependence on ξμ1). Because

ξμ1 is associated with hR1μν , we can think of hSSμν , like hS1μν , as
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being invariant under smooth transformations, while the
“singular times regular” pieces of the metric, hSRμν and hδmμν ,
are altered by Lξ1h

S1
μν.

Here I consider a generic smooth transformation, not a
worldline-preserving one, meaning it alters the worldline as
well. Specifically, the coordinate description of the world-
line changes as any coordinates do6:

zμ → zμ − ϵξμ1 − ϵ2
�
ξμ2 −

1

2
ξν1∂νξ

μ
1

�
þOðϵ3Þ: ð114Þ

Now note that under a coordinate transformation, a
geodesic of a given metric remains a geodesic of that
metric, given that the metric transforms as an ordinary
tensor under that transformation. Since the regular fields
have been defined to transform as ordinary metric pertur-
bations, it follows that the transformed worldline is a
geodesic of the transformed effective metric. Hence, the
equation of motion (100) applies in all gauges smoothly
related to Lorenz, with the regular field defined to trans-
form according to Eqs. (110) and (112).

B. Motion in a highly regular gauge

n the bulk of the paper, I have treated the Lorenz gauge
as the “practical gauge,” defining a regular field within it
and transforming from the rest gauge to it. The preceding
section extended the results to other gauges, but only those
that share the same singularity structure as the Lorenz
gauge (specifically, the same hSSμν ). In this Sec. I will show
that there are more advantageous practical gauges, and I
will derive the equation of motion in them.
To see why superior choices of gauge exist, recall that, as

described in the Introduction, the most singular ∼mn=rn

terms in the outer perturbations hnμν correspond to terms in

the inner background metric gobjμν . For a spherical object, g
obj
μν

in the buffer region is simply the Schwarzschild metric.
Generically, it will contain all powers of m=r. But in light-
cone coordinates, such as are used in Eq. (61), the
Schwarzschild metric is linear in m=r. This has dramatic
consequences: if we simply take the inner expansion gobjμν þP

ϵnHn
μν from Eqs. (61)–(64) and reexpand it in the buffer

region, we obtain an outer expansion in a gauge that has
eliminated the most singular pieces of the metric. I now

show how to transform to a class of practical gauges that
preserve this property. This has potentially significant
benefits, described in Sec. VII below.

1. Outer expansion in the light-cone rest gauge

Before proceeding to transform to the practical gauge, I
first present the explicit form of the outer expansion in the
original light-cone gauge. I begin with the inner metric of
Eqs. (61)–(64), reexpand for small ϵ at fixed r, and then apply
the transformation (65) from advanced coordinates to Fermi-
Walker coordinates. Unlike in Sec. III C, I do not combine
this with the transformation (69). The result is a new, light-
cone rest-gauge metric 0gμν þ ϵh1

0
μν þ ϵ2h2

0
μν, similar in form

to (but less singular than) the onegiven inEq. (78).At the first
few orders in r, the perturbations read

h1
0

tt ¼
2m
r

þ 11

3
mrEijn̂ij þOðr2 ln rÞ; ð115aÞ

h1
0

ta ¼
2m
r

na þmr

�
22

15
Eaini þ

4

3
Bcdϵadin̂ci þ 2Eijn̂aij

�

þOðr2 ln rÞ; ð115bÞ

h1
0

ab ¼
2m
r

nab þmr

�
22

45
Eab −

8

15
BðadϵbÞcdn̂c

þ 32

21
Eðacn̂bÞc −

8

3
Bcdϵcðain̂bÞdi þ

1

21
δabn̂cdEcd

þ 1

3
Ecdn̂abcd

�
þOðr2 ln rÞ; ð115cÞ

and

h2
0

tt ¼ −4m2Eijn̂ij þ
11

3
mrδEijn̂ij −m2r

�
44

3
_Ecin̂ci

− 8_Eci lnð2m=rÞn̂ci þ
8

3
Ecijn̂cij

�

þOðr2 ln rÞ; ð116aÞ

h2
0

ta ¼ −
4

15
ð6Eacn̂c þ 5Bcdϵadin̂ci þ 15Ecdn̂acdÞ

þmr

�
22

15
δEaini þ

4

3
δBcdϵadin̂ci þ 2δEijn̂aij

�

þm2r

�
24

5
_Eac½lnð2m=rÞ − 2�n̂c − 32

21
Eacdn̂cd

þ 8

9
_Bcdϵadi½3 logð2m=rÞ − 4�n̂ci −

8

9
Bcdiϵac

jn̂dij

þ 4

9
_Ecd½12 lnð2m=rÞ − 19�n̂acd − 2Ecdin̂acdi

�

þOðr2 ln rÞ; ð116bÞ

6Because of this, the transformation laws (112) and (113), as
written, will introduce a mass dipole moment into hS2

0
μν , via the

term Lξ1h
S1
μν . However, in the self-consistent approximation, the

metric perturbations are functionals of the worldline, and
Eqs. (112) and (113) as written leave the metric in the new
gauge as functionals of the worldline in the old gauge. To make
them functionals of the new worldline, the perturbations hnμν½z� on
the right-hand sides of the transformation laws should be
expanded around hnμν½z0�, shifting the worldline on which the
singular field diverges and leading to additional terms in
Eqs. (112) and (113). The additional term in Eq. (113) eliminates
the dipole moment. I refer the reader to Sec. IV B of Ref. [40] for
a detailed discussion.
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h2
0

ab ¼ −
2

21
ð28BðadϵbÞcdn̂c þ 48Eðacn̂bÞc − 2Ecdδabn̂cd

− 70Bcdϵcðain̂bÞdi þ 35Ecdn̂abcdÞ þmr

�
22

45
δEab

−
8

15
δBðadϵbÞcdn̂c þ

32

21
δEðacn̂bÞc −

8

3
δBcdϵcðain̂bÞdi

þ 1

21
δabn̂cdδEcd þ 1

3
δEcdn̂abcd

�

þm2r

�
8

45
_Eab½12 lnð2m=rÞ − 31� − 16

21
Eabcn̂c

−
16

45
_Bða

dϵbÞcd½3 lnð2m=rÞ − 4�n̂c

þ 16

7
_Eða

c½3 lnð2m=rÞ − 4�n̂bÞc þ
32

63
BcðaiϵbÞdin̂cd

−
20

9
Eðacdn̂bÞcd −

16

9
_Bcd½3 lnð2m=rÞ − 4�ϵcðain̂bÞdi

þ 4

63
_Ecdðδab½6 lnð2m=rÞ − 29�n̂cd

þ 14½3 lnð2m=rÞ − 4�n̂abcdÞ þ
16

9
Bcdiϵcðajn̂bÞdij

−
4

27
Ecdiðδabn̂cdi þ 9n̂abcdiÞ

�
þOðr2 ln rÞ: ð116cÞ

Unlike the second-order field in the Lorenz gauge (and
indeed, in all gauges previously considered in the liter-
ature), which diverges as 1=r2 at r ¼ 0, the second-order
field in the light-cone gauge is actually finite at r ¼ 0.

2. Singular and regular fields

We can naturally divide the perturbations in the light-
cone gauge into singular and regular pieces, though this
division will ultimately differ from the one in the Lorenz
gauge. At order r2, h1

0
μν contains the tidal moments δEab and

δBab [this order is omitted for brevity in Eq. (115), but it
looks schematically the same as in Eq. (79)]; at order r3, it
would contain octupolar moments δEabc and δBabc; and so
on. In accordance with the fact that these terms take an
identical form in h1

0
μν as in the external background 0gμν, and

the idea that the effective metric 0gμν þ hR
0

μν is perceived as
the external metric in the neighborhood of the object, we
can define hR1

0
μν to comprise everything in h1

0
μν involving

these moments. Explicitly, it is then given by

hR1
0

tt ¼ −r2δEijn̂ij þOðr3Þ; ð117aÞ

hR1
0

ta ¼ −
2

3
r2ϵadiδBcdn̂ci þOðr3Þ; ð117bÞ

hR1
0

ab ¼ −
1

9
r2ðδEab − 6δEðacn̂bÞc þ 3δEcdδabn̂cdÞ

þOðr3Þ: ð117cÞ

The singular field hS1
0

μν then consists of all terms with an
explicit factor of m. Through order r, it is the whole of h1

0
μν,

given by Eq. (115).
Similarly, at second order, second-order moments δ2Eab,

δ2Bab, etc. appear, along with terms quadratic in the first-
order moments δEab, δBab, etc. I define the second-order
regular field to comprise all such terms. This guarantees
that it is a vacuum metric, satisfying the vacuum EFE

δRμν½hR10 � þ δRμν½hR20 � þ δ2Rμν½hR10 � ¼ Oðϵ3Þ ð118Þ

to all orders in r. And since the tidal terms begin at order r2,
we have

hR2
0

μν ¼ Oðr2Þ: ð119Þ

Everything else in h2
0

μν should go into hS2
0

μν . In analogy with
the hSRμν terms in the Lorenz gauge, this should include the
“singular times regular” terms such as mδEab and mδBab,
which appear at order r in Eq. (116); if these were included
in the regular field, then it would cease to satisfy Eq. (118).
Hence, through order r, hS2

0
μν is the whole of h2

0
μν, given

by Eq. (116).

3. Transformation to a smoothly related practical gauge

At this stage, although we have a natural split into
singular and regular fields, the metric in this rest gauge is
not fit for practical use. It constrains the form of the regular
field, forcing the regular field and its first derivative to
vanish on the worldline and its second derivatives to take a
particular form. It is not obvious how one would impose
such a gauge condition in a global numerical scheme.
Furthermore, the metric in this gauge is not uniform in
time: as described in Sec. IV B 4, the tidal moments δEab
and δBab grow large with time.
In order to transform to a practical gauge without losing

the advantages of the light-cone gauge, I transform the
gauge of the regular field while, insofar as is possible,
leaving the gauge of the singular field intact. This can be
done as described in Sec. VI A. However, as when I
transformed to the Lorenz gauge, here I wish to ensure
that the transformation does not alter the worldline. So I
begin with smooth vectors ξμ1 and ξμ2 that satisfy the
worldline-preserving condition (13) but are otherwise
arbitrary. For smooth vectors, the condition (13) reduces to

ξanjγ ¼ 0: ð120Þ

Given that, as in Sec. III, the metric 0gμν þ ϵh1
0

μν þ ϵ2h2
0

μν

includes an expansion of the acceleration, a transformation
will bring it to a metric 0gμν þ ϵh1†μν þ ϵ2h2†μν, that is likewise
expanded. The transformation laws are then (85) and (86).
Splitting them into laws for the singular and regular fields,
as in Eqs. (110)–(113), we have
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hR1†μν ¼ hR1
0

μν þ Lξ1
0gμν; ð121Þ

hS1†μν ¼ hS1
0

μν ; ð122Þ

hR2†μν ¼ Lξ2
0gμν þ

1

2
L2
ξ1
0gμν þ Lξ1h

R10
μν ; ð123Þ

hS2†μν ¼ hS2
0

μν þ Lξ1h
S10
μν : ð124Þ

If hRnμν are the “exact” regular fields in the new practical
gauge, with no expansion of the acceleration, then the
daggered fields are

hR1†μν ≔ 0hR1μν þ 0gμν; ð125Þ

hR2†μν ≔ 0hR2μν þ 1hR1μν þ 2gμν: ð126Þ

Similarly,

hS1†μν ≔ 0hS1μν ; ð127Þ

hS2†μν ≔ 0hS2μν þ 1hS1μν : ð128Þ

Note that I group the background terms ngμν with the
regular fields hRn†μν ; this again corresponds to the idea that
the background plus regular field together form the
“external metric.”
I now adopt Gralla’s approach from Ref. [26]. The key

realization in his approach is that we do not need to
explicitly impose any given gauge condition in the target
gauge. Instead, we can take the regular fields hRnμν as given,
to be determined in any desired gauge by a puncture
scheme, and express ξμn (and the “singular times regular”
piece of hS2μν) in terms of them. As in the derivation in the
Lorenz gauge, the worldline-preserving condition ξanjγ ¼ 0

will suffice to determine an equation of motion; here my
approach differs from Gralla’s, corresponding to my self-
consistent (i.e., unexpanded) treatment of the worldline.
On the worldline, given that ξa1jγ ¼ 0, that 1gμν ¼ OðrÞ,

and that hR1
0

μν ¼ Oðr2Þ, Eq. (121) reads

d
dt

ξ1t jγ ¼
1

2
0hR1tt jγ; ð129Þ

∂aξ
1
t jγjγ ¼ 0hR1ta jγ; ð130Þ

∂ðaξ1bÞjγ ¼
1

2
0hR1ab jγ: ð131Þ

These, together with ξa1jγ ¼ 0, determine all components of
ξ1μ and ∂aξ

1
μ on the worldline, with the exception of ∂ ½aξ1b�.

That remaining piece can be obtained from the formula

0∇α
0∇βξ

1
γ þ 0Rβγα

δξ1δ ¼ δΓγαβ½ΔhR1�; ð132Þ

where ΔhR1μν ≔ hR1†μν − hR1
0

μν , δΓγαβ½h� ¼ 1
2
ð2hγðα;βÞ − hαβ;γÞ

is the standard correction to the Christoffel symbol (with its
first index down), and all covariant derivatives and the
Riemann tensor are compatible with 0gμν. (Note that on γ,
0Rβγαδ ¼ Rβγαδ.) Equation (132) can be derived by writing
20∇½α0∇β�ξ1γ ¼ 0Rαβγ

δξ1δ, using Eq. (121) to replace 0∇αξ
1
γ

with ΔhR1γα − 0∇γξ
1
γ , and then adding the resulting equation

to its cyclic permutations αβγ → γαβ and αβγ → βγα.
On γ, the tab component of Eq. (132) reads

d
dt ξ

1
b;a ¼ ∂ ½ah

R1†
b�t þ 1

2
∂th

R1†
ab . Substituting Eqs. (125) and

(131), we obtain a formula for the remaining piece of ∂aξ
1
μ,

d
dt

ξ1½a;b�jγ ¼ − ∂ ½a0hR1b�tjγ: ð133Þ

The tta component of Eq. (132) will be discussed below.
Using these results for ξ1μ, we can now write the Lξ1h

S10
μν

term in the second-order singular field (124) in terms of the
regular field. Equation (115) with Eqs. (129)–(131) and
(133) together yield

Lξ1h
S10
tt ¼ −

2m
r

�
0hR1tt þ 1

2
0hR1ij n

ij

�
þOðr0Þ; ð134aÞ

Lξ1h
S10
ta ¼ −

2m
r

�
0hR1ta þ 1

2
0hR1tt na − 0hR1ai n

i þ 0hR1ij na
ij

�

þOðr0Þ; ð134bÞ

Lξ1h
S10
ab ¼ −

2m
r

�
3

2
0hR1ab þ 20hR1tðanbÞ − 20hR1iðanbÞ

i

�

þOðr0Þ: ð134cÞ

Note that this introduces a divergent, 1=r term into the
singular field, making it less regular than in the original
light-cone gauge. However, it remains less singular than the
Lorenz gauge, and since the Lorenz gauge itself is often
considered “regular” in comparison to highly singular
gauges like the radiation gauge [60], the title “highly
regular” remains apt. I will discuss practical implications
of this in Sec. VII.
Terms higher order in r in Lξ1h

S10
μν can be obtained from

higher derivatives of ξ1μ, which can be found by expanding
Eq. (132) in powers of r. Alternatively, if we impose the
Lorenz-gauge condition on hR1μν , we can simply set m ¼ 0

in the gauge vector (D1) and straightforwardly com-
pute Lξ1h

S10
μν .

This still leaves hS2μν dependent on the regular field in
the old gauge, through the δEab and δBab terms in Eq. (116).
We can express the moments in terms of the regular field
in the new gauge by writing them as δEab ¼ δRtatb½hR10 �jγ
and δBab ¼ 1

2
ϵpqðaδRbÞtpq½hR10 �jγ . Using Eq. (121),

δRαβγδ½Lξ1
0g� ¼ Lξ1

0Rαβγδ, andRαβγδ½1g�jγ ¼ 0, we arrive at
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δEab ¼ δRtatb½0hR1� − ðLξ1RÞtatb; ð135Þ

δBab ¼
1

2
ϵpqðafδRbÞtpq½0hR1� − ðLξ1RÞbÞtpqg; ð136Þ

where all quantities are evaluated on γ. These are given more
explicitly by Eqs. (93) and (94) with _Eab and _Bab set to zero;
since Eqs. (93) and (94) differ from Eqs. (135) and (136) by
those _Eab and _Bab terms, this tells us that beginning at order
r2, the regular fields in the Lorenz gauge and highly regular
gauge differ by more than a gauge transformation. To avoid
this disagreement, we could make the redefinitions δEab →

δEab − 8
3
m _Eab and δBab → δBab − 13

6
m _Bab (with a corre-

sponding change to the singular field).
We now have a practical formulation with a convenient

split into singular and regular fields. Through order r, the
singular field is given by

hS1μν ¼ h1
0
μν þOðr2Þ; ð137Þ

hS2μν ¼ h2
0

μν þ Lξ1h
S10
μν þOðr2Þ; ð138Þ

with Eqs. (115), (116), (134), (135), and (136). Here I have
cavalierly discarded the † notation, with the understanding
that in these singular fields, acceleration terms have been
implicitly moved from hS1μν into hS2μν . In analogy with the
notation in the Lorenz gauge, we can write

hS2μν ¼ hSSμν þ hSRμν ; ð139Þ

where hSSμν comprises all terms in h2
0

μν explicitly proportional
to m2, and hSRμν ¼ hSR

0
μν þ Lξ1h

S10
μν , with hSR

0
μν comprising all

terms in h2
0

μν proportional to mδEab, mδBab, mδEabc,
mδBabc, etc. These fields behave as hSSμν ∼m2r0

and hSRμν ∼mhR1μν =r.
With the singular fields defined, the regular fields can be

written implicitly, as the difference

hRnμν ¼ hnμν − hSnμν : ð140Þ

This regular field, like the one defined in the Lorenz gauge,
is a “physical” field, causal on the worldline and satisfying
the vacuum EFE. Its causality on the worldline follows
from the same argument given for the Lorenz-gauge field in
Ref. [6]. It satisfying the vacuum equation follows immedi-
ately from it being a gauge transformation of the regular
field defined in Sec. VI B 2.
In the above, I have made no mention of finding the

second-order gauge vector ξ2μ. We can express ξ2μ in terms of
hR1μν and hR2μν in a similar way as we did for ξ1μ, but doing so
is not necessary: with the regular field defined implicitly
through Eq. (140), all we require explicitly is an expression
for the singular field, and for that, ξ1μ suffices. However, one

may need to consider ξ2μ if one needs to refine the form of
hS2μν . That might be necessary if, for example, higher-order
terms in Eq. (134) are found to grow large with time. Such
growth is highly possible, given that Eqs. (129) and (133)
dictate that ξμ1 will generically grow large on long time
scales. Indeed, Gralla’s singular field in Ref. [26] appears to
contain numerous terms that grow with time, stemming
from the growth of his gauge vector (in addition to, and
distinct from, the growth associated with his use of an
expanded worldline). If growing terms arise in the highly
regular gauge, they will have to be eliminated with a
second-order gauge refinement.

4. Equation of motion

All that remains to be determined in the new practical
gauge is the equation of motion governing γ.
At first order, the equation can be obtained fromEq. (132).

Given the worldline-preserving condition ξ1ajγ ¼ 0, on γ the
tta component of Eq. (132) reads simply 0¼
∂tΔhR1ta − 1

2
∂aΔhR1tt . Noting thatΔhR1μν ¼ hR1μν − 2f1axaδtμδtνþ

Oðr2Þ, we find that this is the standard formula for the first-
order self-force:

f1a ¼
1

2
∂ahR1tt − ∂thR1ta : ð141Þ

At second order, the analog of Eq. (132) is

0∇α
0∇βξ

2
γ þ 0Rβγα

δξ2δ ¼ δΓγαβ½k�; ð142Þ

where kαβ ¼ hR2†αβ − hR2
0

αβ − 1
2
L2
ξ1
gαβ − Lξ1h

R10
αβ . Given the

worldline-preserving condition ξ2ajγ ¼ 0, on γ the tta
component reads 0 ¼ ∂tkta − 1

2
∂aktt. Noting that hR2

0
μν ¼

Oðr2Þ and evaluating the Lie derivatives, we find the simple
formula 0 ¼ ∂th

R2†
ta − 1

2
∂ah

R2†
tt þ 1

2
∂t

0hR1tt 0hR1ta . Since
hR2†μν ¼ 0hR2μν þ 1hR1μν − 2f1axaδtμδtν þOðr2Þ, we recover
Eq. (99) for the second-order self-force:

f2a ¼
1

2
∂a

0hR2tt − ∂t
0hR2ta þ 1

2
∂a

1hR1tt − ∂t
1hR1ta

−
1

2
∂t

0hR1tt 0hR1ta : ð143Þ

Therefore, the expanded geodesic Eq. (100) holds true in
the highly regular gauge, with the regular field given by
Eqs. (137)–(140). Since the gauge of the regular field is
unspecified, this formulation in fact applies to a class of
smoothly related highly regular gauges.
Before concluding, I make two remarks. First, we could

have established in advance, without performing any
calculations, that Eq. (100) would hold true, as it follows
from the same argument given in Sec. VI A: the motion is
trivially geodesic in 0gμν þ hR

0
μν because uμ ¼ δμt and the

Christoffel symbols of this metric vanish on γ; and the
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geodesic equation is preserved under the transformation
laws (121) and (123). The second remark relates to Gralla’s
results. Although I utilized key aspects of his methods in
this section, I seem to have arrived at a different conclusion.
He uses an expanded form of the worldline, zμ0 þ ϵzμ1 þ
ϵ2zμ2 þOðϵ3Þ in coordinate form, and begins in a rest gauge
centered on the background geodesic γ0 ¼ fzμ0g, such that
zμ1 ¼ zμ2 ¼ 0. In that context, when transforming to a
practical gauge, ξμ1 and ξμ2 are allowed to take arbitrary
values on γ0, introducing deviation vectors z

μ
1 ¼ −ξμ1jγ0 and

zμ2 ¼ ð−ξμ2 þ 1
2
ξν1∂νξ

μ
1Þjγ0 that point toward the accelerated

worldline in the new gauge.7 He then finds evolution
equations for zμ1 and zμ2 that are not equivalent to the
geodesic equation in his effective metric, seemingly
contrary to my results. However, this outward discrepancy
stems from his definition of his singular and regular
fields. Instead of Eqs. (123) and (124), he effectively
makes the choice hR2μν ¼ hR2

0
μν þLξ2gμνþ 1

2
L2
ξ1
gμν and hS2μν ¼

hS2
0

μν þ Lξ1h
10
μν. (Since the rest gauge is centered on a

background geodesic, there is no need for daggers or
left-superscripts here.) By including the term Lξ1h

R10
μν in

the singular field instead of the regular field, he arrives at an
effective metric gμν þ hRμν that is not a vacuummetric and in
which the motion is not geodesic.

VII. SUMMARY AND DISCUSSION

The primary result of this paper is the second-order
equation of motion (100) for a small, compact, approx-
imately spherical and nonspinning object, whether a black
hole, a neutron star, or something more exotic. It is
equivalent to the geodesic equation in the effective metric
gμν þ hRμν defined in Sec. II. This metric satisfies “physical”
properties: it is a vacuum solution, and if the full metric
satisfies retarded boundary conditions, then the effective
metric and its derivatives on the worldline depend only on
the causal past. Therefore, Eq. (100) represents a gener-
alized equivalence principle of the sort described in the
Introduction.
Equation (100) also has more pragmatic consequences.

As discussed in Refs. [25,27,46], the equation of motion
can be combined with the field equations in a puncture
scheme. Suppose we truncate the local expansion of the
singular fields (27) and (34) at a some order in r and then
attenuate them in some appropriate way away from the
worldline. This defines puncture fields hPnμν , which locally
agree with hSnμν , and residual fields hRn ≔ hnμν − hPnμν , which
locally agree with hRnμν . If the truncation of hSnμν is of
sufficiently high order in r, then we can replace hRnμν with
hRn
μν in the equation of motion without introducing any

error. We can also rewrite the field Eqs. (19) and (20) as
equations for the first- and second-order residual fields8:

Eμν½hR1� ¼ − Eμν½hP1�; ð144Þ

Eμν½hR2� ¼ 2δ2Rμν½h1� − Eμν½hP2�: ð145Þ

The coupled system of Eqs. (100), (144), and (145), with
the punctures moving on the worldline determined by
(100), provides a way of finding the physical fields hnμν ¼
hRn
μν þ hPnμν globally and the effective fields and their

derivatives ∂α1���αph
Rn
μν jγ ¼ ∂α1���αph

Rn
μν jγ on the worldline

(up to a maximum p corresponding to the power of r at
which the singular field was truncated). By construction,
the metric gμν þ ϵh1μν þ ϵ2h2μν obtained in this way is
guaranteed to agree locally, near γ, with the physical metric
outside a compact object. Practical, covariant forms of the
singular fields hSnμν are available in Ref. [46] for use in such
a scheme.

A. Self-force computations in a highly regular gauge

The above results were previously derived in the Lorenz
gauge [25] and smoothly related gauges [40]. In the present
paper, I derived a promising extension to a class of highly
regular gauges, in which the singular field is given by
Eqs. (137) and (138), and the gauge of the regular field is
freely specified. We can formulate a puncture scheme in
these gauges by truncating and attenuating the singular
fields, as described above, and then, rather than imposing a
gauge condition on the exact regular field, imposing it on
the residual field. There are some subtleties in imposing
gauge conditions in the self-consistent context [6], but there
should be no obstacle to imposing the Lorenz-gauge
condition, for example, on the total residual fieldP

nϵ
nhRn

μν . We can then write the field equations as

Eμν½hR1� ¼ − δRμν½hP1�; ð146Þ

Eμν½hR2� ¼ 2δ2Rμν½h1� − δRμν½hP2�; ð147Þ

coupled, as above, to the equation of motion (100).
Directly specifying the gauge of the residual field in this

way, while leaving the puncture in any convenient gauge,
was previously advocated by Gralla [26]. Along the same
lines, we could use the Lorenz-gauge puncture to compute
a residual field that satisfies a gauge condition more
convenient for black-hole perturbation theory, such as
the radiation-gauge condition that has been critical for
self-force computations in a Kerr background [12].

7Compare to Eq. (114). These formulas differ from Gralla’s
due to our differing conventions.

8Typically a point-particle stress-energy tensor would be
included on the right-hand side of Eq. (144), but here I follow
Ref. [26] by defining the right-hand sides of these equations
pointwise off γ. They can then be defined on γ by continuity.
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However, the highly regular puncture in Eqs. (137) and
(138) should provide significant advantages over the
puncture in the Lorenz gauge (or in any gauge with a
generic, 1=r2 divergence in h2μν, including Gralla’s).
The most obvious benefit of this gauge is simply that

with its weaker divergences, the numerical cancellations
between the two source terms in Eq. (147) will be less
delicate. But it has many other merits. To see this, consider
the source δ2Rμν½h1� ¼ δ2Rμν½hS1� þ δ2Rμν½hS1; hR1� þ
δ2Rμν½hR1; hS1� þ δ2Rμν½hR1� in Eq. (147). With a first-
order singular field given by Eq. (137), the source
δ2Rμν½hS1� diverges as 1=r2. We can see this from the fact
that δ2Rμν½hS1� is the source for the hSSμν term in h2μν,
described below Eq. (139): since hSSμν ∼ r0, we have
δ2Rμν½hS1� ¼ −δRμν½hSS� ∼ 1=r2. In a generic gauge,
δ2Rμν½hS1� is far more singular, behaving as 1=r4, and
worse, it is not well defined as a distribution.9 But 1=r2 is
integrable, meaning δ2Rμν½hS1� in the highly regular gauge
is a well-defined distribution. Also, although the “singular
times regular” source δ2Rμν½hS1; hR1� þ δ2Rμν½hR1; hS1�
diverges as 1=r3, it too is a well-defined distribution
because it is a linear operator acting on the integrable
function hS1μν . (This is true in a generic gauge, not only the
highly regular gauge.) Therefore, in the highly regular
gauge we can write down a distributional equation for the
second-order field h2μν. The equation will likely contain a δ
function source in addition to δ2Rμν½h1�; the correct source
should be found by analyzing δRμν½hS2� as a distribution, in
the same manner that the point-particle stress-energy tensor
is obtained from δRμν½hS1� [8]. Once the correct source is
found, we can develop numerical schemes to solve for h2μν
directly, rather than via the puncture scheme (147). In that
case, the regular field could be extracted after the fact, by
subtracting hS2μν from h2μν using, for example, mode-sum
regularization [7,11]. Having a distributionally well-
defined equation for h2μν would also allow us to straight-
forwardly write down solutions in terms of Green’s
functions. From them, we will be able to define quasilocal
singular and regular fields analogous to the Detweiler-
Whiting definitions at first order (while ensuring, of course,
that these definitions reduce to the purely local ones used
here). These Green’s function representations would pro-
vide yet another way of computing both the full field h2μν
and the regular field [61]. Working in the highly regular
gauge should also reduce a computational difficulty that
arises in generic gauges. If one uses a spherical-harmonic
decomposition to solve the field equations, then computing
any given mode of δ2Rμν½h1� near the worldline becomes

laborious [62]. The diminished singularity in the highly
regular gauge should ameliorate the problem.
Considerable effort will be required to bring the highly

regular gauge to the same state of development as the
Lorenz gauge. Since a puncture scheme capable of com-
puting the self-force requires a puncture through order r
(such that first derivatives of hR2μν can be computed), a first
concrete step would be to calculate the singular field (138)
to order r. This would require continuing the expansion of
Eq. (134) to that order. As discussed in Sec. VI B 3,
additional gauge refinements may also be necessary if
secularly growing terms arise in the puncture. Once that
step is complete, the puncture can be written in covariant
form using the methods of Ref. [46] and then expanded in
harmonic modes for use in a mode decomposition of the
field Eqs. (147) [63].

B. Rest gauges and effective metrics

Regardless of which of the two classes of gauges one
uses, the underlying method of derivation is the same. It
begins with the construction of a local metric in a gauge in
which (a) the object is centered on some worldline γ, and
(b) the regular field and its first derivatives vanish on that
worldline. If the object is nonspinning and spherical, then
in this gauge it appears to be manifestly at rest on γ,
perturbed only by tidal fields. The existence of this gauge
implies that for the nonspinning, spherical object, the
worldline is a geodesic in some effective metric, and the
heart of the derivation then becomes a matter of trans-
forming to a more practical gauge and determining which
piece of the full metric, in the practical gauge, constitutes
that effective metric.
As alluded to in the Introduction, this method is closely

related to many others, both at first and second order. In
particular, the basic form of the rest-gauge metric recurs
throughout the literature on equations of motion. It was
used in derivations of the first-order self-forced equation
of motion [20,35,64,65]. At second order, it has appeared
as Gralla’s “P gauge” [26], Rosenthal’s “Fermi gauge”
[22], and the gauge that Detweiler uses in his Eq. (21) to
define his singular field [24]. Even before any derivations
of the gravitational self-force, a rest-gauge metric was
used by Thorne and Hartle [34] in their derivation of
equations of motion for compact objects immersed in
some external gravitational field. Indeed, the self-force
problem of “determining which piece of the full metric
constitutes the effective metric” could be phrased as
“finding the ‘external’ metric in which Thorne and
Hartle’s equations of motion are valid,” a point discussed
at length in Ref. [6] (and in a different way by
Detweiler [20,65]).
However, any description of finding “the” effective

metric is only heuristic. In fact, there is no one unique
effective metric. Various choices of gμν þ hRμν would lead to
the same generalized equivalence principle and could be

9Though once hSSμν is known in a given gauge, we might be able
to define δ2Rμν½hS1� distributionally as −δRμν½hSS�, which, as a
linear operator acting on an integrable function, is well defined as
a distribution.
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used in an equally practical puncture scheme. An illus-
tration of this is provided by my derivations in the Lorenz
gauge and in the highly regular gauge: I utilized two
different regular fields, which differ at order r2, but which
possess all the same essential “physical” properties. We
might think that one cannot choose an alternative regular
field at order r0 and r, since the self-force involves those
orders. But the equation of motion (100) only involves
specific components of hRμν and its derivatives on the
worldline, and one could easily move portions of hRμν into
hSμν, thereby defining new singular and regular fields, while
leaving Eq. (100) intact. Hence, there is always a potential
danger of ascribing too much physical meaning (or too
specific an interpretation) to any one choice of effective
metric.
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APPENDIX A: STF DECOMPOSITIONS

This appendix reproduces standard formulas from
Ref. [44].
Any Cartesian tensor TSðt; r; θ;ϕÞ can be expanded as

TSðt; r; θ;ϕÞ ¼
X
l≥0

TShLiðt; rÞn̂L; ðA1Þ

with coefficients given by

TShLiðt; rÞ ¼ ð2lþ 1Þ!!
4πl!

Z
TSðt; r; θ;ϕÞn̂LdΩ; ðA2Þ

where x!! ¼ xðx − 2Þ � � � 1.
For s ¼ 1 and 2, the coefficients can be put in irreducible

form using

TahLi ¼ T̂aL
ðþÞ þ ϵjahil T̂L−1i

ð0Þ jþ δahil T̂L−1i
ð−Þ ; ðA3Þ

where

T̂Lþ1
ðþÞ ≡ ThLþ1i; ðA4aÞ

T̂L
ð0Þ ≡ l

lþ 1
TpqhL−1ϵilipq; ðA4bÞ

T̂L−1
ð−Þ ≡ 2l − 1

2lþ 1
Tj

jL−1; ðA4cÞ

and

TabhLi ¼ δabK̂L þ T̂ðþ2Þ
abL

þ STFLSTFabðϵpail T̂ðþ1Þ
bpL−1 þ δail T̂

ð0Þ
bL−1

þ δailϵ
p
bil−1 T̂

ð−1Þ
pL−2 þ δailδbil−1 T̂

ð−2Þ
L−2 Þ; ðA5Þ

where

T̂ðþ2Þ
Lþ2 ≡ ThLþ2i; ðA6aÞ

T̂ðþ1Þ
Lþ1 ≡ 2l

lþ 2
STFLþ1ðThpiliqL−1ϵilþ1

pqÞ; ðA6bÞ

T̂ð0Þ
L ≡ 6lð2l − 1Þ

ðlþ 1Þð2lþ 3Þ STFLðThjili
j
L−1Þ; ðA6cÞ

T̂ð−1Þ
L−1 ≡ 2ðl − 1Þð2l − 1Þ

ðlþ 1Þð2lþ 1Þ STFL−1ðThjpiqjL−2ϵil−1
pqÞ;

ðA6dÞ

T̂ð−2Þ
L−2 ≡ 2l − 3

2lþ 1
ThjkijkL−2 ðA6eÞ

K̂L ≡ 1

3
Tj

jL: ðA6fÞ

APPENDIX B: DECOMPOSITION OF THE
REGULAR FIELD

1. STF decomposition

In Sec. II, I decompose the regular field into irreducible
STF pieces. Specifically, according to Eq. (50), the func-

tions 1
p! h

Rn
μν;hLi ¼ hðn;lÞμνL have the following irreducible

decompositions:

hðn;0Þtt ¼ Âðn;0Þ; ðB1aÞ

hðn;0Þta ¼ Ĉðn;0Þ
a ; ðB1bÞ

hðn;0Þab ¼ δabK̂
ðn;0Þ þ Ĥðn;0Þ

ab ; ðB1cÞ

hðn;1Þtti ¼ Âðn;1Þ
i ; ðB2aÞ

hðn;1Þtai ¼ Ĉðn;1Þ
ai þ ϵbaiD̂

ðn;1Þ
b þ δaiB̂

ðn;1Þ; ðB2bÞ

hðn;1Þabi ¼ δabK̂
ðn;1Þ
i þ Ĥðn;1Þ

abi þ ϵi
cðaÎ

ðn;1Þ
bÞc

þ δihaF̂
ðn;1Þ
bi ; ðB2cÞ
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and

hðn;2Þttij ¼ Âðn;2Þ
ij ; ðB3aÞ

hðn;2Þtaij ¼ Ĉðn;2Þ
aij þ ϵbahiD̂

ðn;2Þ
jib þ δahiB̂

ðn;2Þ
ji ; ðB3bÞ

hðn;2Þabij ¼ δabK̂
ðn;2Þ
ij þ Ĥðn;2Þ

abij þ STFijðϵichaÎðn;2Þbicj

þ δihaF̂
ðn;2Þ
bij þ δihaϵcbijĜ

ðn;2Þ
c

þ δihaδbijÊðn;2ÞÞ: ðB3cÞ

We can invert these relationships using Eqs. (A4) and (A6)
to express the STF tensors in terms of hR1μν :

Âð1;0Þ ¼ hR1tt ; ðB4aÞ

Ĉð1;0Þ
a ¼ hR1ta ; ðB4bÞ

Ĥð1;0Þ
ab ¼ hR1habi; ðB4cÞ

K̂ð1;0Þ ¼ 1

3
δijhR1ij ; ðB4dÞ

and

Âð1;1Þ
a ¼ hR1tt;a; ðB5aÞ

B̂ð1;1Þ ¼ 1

3
hR1at ;a; ðB5bÞ

Ĉð1;1Þ
ab ¼ hR1tha;bi; ðB5cÞ

D̂ð1;1Þ
a ¼ 1

2
ϵa

bchR1tb;c; ðB5dÞ

F̂ð1;1Þ
a ¼ 3

5
δbchR1habi;c; ðB5eÞ

Ĥð1;1Þ
abc ¼ hR1hab;ci; ðB5fÞ

Îð1;1Þab ¼ 2

3
hR1c;dða ϵbÞcd; ðB5gÞ

K̂ð1;1Þ
a ¼ 1

6
hR1bb ;a; ðB5hÞ

where hR1μν and ∂ρhR1μν are evaluated on γ. I forgo writing the

similar but lengthier relationships for the pieces of hð1;2Þμνij .
At second order, the decompositions (B1)–(B3) can be

inverted to express the STF tensors in terms of hR2μν in
precise analogy with Eqs. (B4)–(B5).
As mentioned in Sec. II, the regular field used here

differs from the regular field h̄Rμν2 defined in Ref. [27]; the
two are not simply the trace reversals of one another. This

difference can be determined by taking the trace reversal of

h̄2μν, decomposing the result into coefficients hð2;pÞμνL , and

picking out the particular coefficients hð2;pÞμνP that determine
the regular field. After further decomposing those coef-
ficients into irreducible pieces, one finds

Âð2;0Þ ¼ −
59

6
m2aaaa þ

1

2
h̄Ra2 a þ

1

2
h̄Rtt2 ; ðB6aÞ

Ĉð2;0Þ
a ¼ −h̄Rt2 a; ðB6bÞ

Ĥð2;0Þ
ab ¼ −

5

9
m2Eab þ h̄R

2habi; ðB6cÞ

K̂ð2;0Þ ¼ −
31

6
m2aaaa −

1

6
h̄Ra2 a þ

1

2
h̄Rtt2 ; ðB6dÞ

and

Âð2;1Þ
a ¼ 1

2
h̄Rb2 b;a þ

1

2
h̄Rtt2 ;a −

317

45
m2Eabab

−
601

90
m2aaabab þ aah̄Rb2 b þ 2aah̄Rtt2 ; ðB7aÞ

B̂ð2;1Þ ¼ −
1

3
h̄Rta2 ;a −

2

3
aah̄Rt2 a þ

2

9
m2aa _aa; ðB7bÞ

Ĉð2;1Þ
ab ¼ −h̄Rt2 ha;bi þ

1

10
m2 _Eab þ

68

45
m2BðadϵbÞcdac

− 2ahah̄Rt2 bi þ
1

15
m2aha _abi; ðB7cÞ

D̂ð2;1Þ
a ¼ −

1

2
h̄Rtb;c2 ϵabc þ

47

15
m2Babab þ ϵabcabh̄Rtc2

þ 1

6
m2ϵab

cab _ac; ðB7dÞ

F̂ð2;1Þ
a ¼ 3

5
h̄Rb2 a;b −

1

5
h̄Rb2 b;a −

67

90
m2Eabab; ðB7eÞ

Ĥð2;1Þ
abc ¼ h̄R

2hab;ci −
1

6
m2Eabc þ

7

9
m2ahaEbci; ðB7fÞ

Îð2;1Þab ¼ −
4

9
m2 _Bab þ

2

3
h̄R
2ða

c;dϵbÞcd

−
319

135
m2EðadϵbÞcdac; ðB7gÞ

K̂ð2;1Þ
a ¼ −

1

6
h̄Rb2 b;a þ

1

2
h̄Rtt2 ;a −

437

135
m2Eabab

þ 89

18
m2aaabab þ aah̄Rtt2 : ðB7hÞ

The fact that the two regular fields are not simple trace
reversals of one another is manifested by the explicit
presence of m in these relationships.
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2. Acceleration terms

Equation (46) involves the terms in the first-order regular
field that are linear in the acceleration. If we assume that the
full metric satisfies retarded boundary conditions, then
these acceleration terms can be obtained from the analytical
form of the retarded field [5],

h1μν ¼ 4m
Z
γ
Ḡμνμ0ν0uμ

0
uν

0
dt0; ðB8Þ

where Gμνμ0ν0 is the retarded Green’s function, and primed
indices refer to the point γðt0Þ. By expanding this integral
near the worldline using standard methods reviewed in
Ref. [5], one can read off the various STF tensors appearing
in the regular field.
The results, taken from Ref. [47] (and reproduced in

Ref. [5]), are10

Âð1;0Þ ¼ htailtt ; ðB9aÞ

Ĉð1;0Þ
a ¼ htailta þ 4maa; ðB9bÞ

K̂ð1;0Þ ¼ 1

3
δabhtailab ; ðB9cÞ

Ĥð1;0Þ
ab ¼ htailhabi; ðB9dÞ

and

Âð1;1Þ
a ¼ htailtta þ 2htailtt aa þ

2

3
m _aa; ðB10aÞ

B̂ð1;1Þ ¼ 1

3
htailtij δ

ij þ 1

3
htailti a

i; ðB10bÞ

Ĉð1;1Þ
ab ¼ htailthabi þ 2mEab þ htailthaabi; ðB10cÞ

D̂ð1;1Þ
a ¼ 1

2
ϵa

bcðhtailtbc þ htailtb acÞ; ðB10dÞ

Ĥð1;1Þ
abc ¼ htailhabci; ðB10eÞ

F̂ð1;1Þ
a ¼ 3

5
δijhtailhiaij; ðB10fÞ

Îð1;1Þab ¼ 2

3
STFabðϵbijhtailhaiijÞ; ðB10gÞ

K̂ð1;1Þ
a ¼ 1

3
δbchtailbca þ

2

3
m _aa: ðB10hÞ

Here I have defined the tail integrals

htailμν ðtÞ ¼ 4m
Z

t−

−∞
Ḡμνμ0ν0uμ

0
uν

0
dt0; ðB11Þ

htailμνρðtÞ ¼ 4m
Z

t−

−∞
∇ρḠμνμ0ν0uμ

0
uν

0
dt0; ðB12Þ

which are tensors on the worldline. t− ¼ t − 0þ indicates
that the integral covers the past history t0 < t but
excludes t0 ¼ t.
The terms linear in ai in Eq. (B9) constitute the term

1hð1;0Þμν in Eq. (46), and those in Eq. (B10) constitute the

term 1hð1;1Þμνi .

APPENDIX C: RADIAL FUNCTIONS
IN TIDALLY PERTURBED
BLACK HOLE METRIC

In this appendix, I list the functions ek and bk
appearing in Eqs. (63) and (64). With ζ ≔ 2m=~r and
f ¼ 1 − ζ,

e1 ¼ f2 ðC1aÞ

e2 ¼ f

�
1þ 1

4
ζð5 − 12 ln ζÞ − 3

4
ζ2ð9 − 4 ln ζÞ

þ 7

4
ζ3 þ 3

4
ζ4
�
; ðC1bÞ

e3 ¼ f2
�
1 −

1

2
ζ

�
; ðC1cÞ

e4 ¼ f; ðC1dÞ

e5 ¼ f

�
1þ1

6
ζð13−12 lnζÞ−5

2
ζ2−

3

2
ζ3−

1

2
ζ4
�
; ðC1eÞ

e6 ¼ f

�
1 −

2

3
ζ

�
; ðC1fÞ

e7 ¼ 1 −
1

2
ζ2; ðC1gÞ

e8 ¼ 1þ 2

5
ζð4 − 3 ln ζÞ − 9

5
ζ2 −

1

5
ζ3ð7 − 3 ln ζÞ

þ 3

5
ζ4; ðC1hÞ

e9 ¼ f þ 1

10
ζ3; ðC1iÞ

10Table I in Ref. [47] and Table II in Ref. [5] are missing a
factor of 4 from the maa term in Ĉð1;0Þ

a . The factor appears
correctly in Eq. (E.9) of the former reference and (23.10) of the
latter.
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and

b4 ¼ f; ðC2aÞ

b5 ¼ f
�
1þ 1

6
ζð7 − 12 ln ζÞ − 3

2
ζ2 −

1

2
ζ3 −

1

6
ζ4
�
; ðC2bÞ

b6 ¼ f

�
1 −

2

3
ζ

�
; ðC2cÞ

b7 ¼ 1 −
3

2
ζ2; ðC2dÞ

b8 ¼ 1þ 1

5
ζð5 − 6 ln ζÞ − 9

5
ζ2 −

1

5
ζ3ð2 − 3 ln ζÞ þ 1

5
ζ4;

ðC2eÞ

b9 ¼ f −
1

10
ζ3: ðC2fÞ

APPENDIX D: GAUGE TRANSFORMATION

The transformation from the rest gauge to the Lorenz
gauge, described in Sec. IV, is given by the following
expansion for small r:

ξ1t ¼
1

2

Z
dtÂð1;0Þ þ rĈð1;0Þ

a n̂a − r2
�
−

1

12
∂tÂ

ð1;0Þ þ 1

2

�
1

2
∂tĤ

ð1;0Þ
ab −

2

3
mEab − Eab

Z
dtÂð1;0Þ − Ĉð1;1Þ

ab

�
n̂ab

�

− r3
�
5

18
m _Ebcn̂bc −

�
1

3
Ĉð1;2Þ
ijk −

2

3
Bij

Z
dtD̂ð1;1Þ

k þ 2

3
Ĉð1;0Þ
k Eij þ

1

3
Bq

jϵq
p
iĤ

ð1;0Þ
kp

�
n̂ijk

�
þOðr4Þ; ðD1aÞ

ξ1a ¼ r

�
1

2
K̂ð1;0Þn̂a þ ϵab

c

Z
dtD̂ð1;1Þ

c n̂b þ 1

2
Ĥð1;0Þ

ad n̂d
�
− r2

�
1

12
K̂ð1;1Þ

a −
5

18
F̂ð1;1Þ
a þ 8

5
mEadn̂d −

1

4
Ĥð1;1Þ

adi n̂di

þ 1

6
F̂ð1;1Þ
d n̂ad −

1

2
K̂ð1;1Þ

d n̂ad −
1

2
ϵab

cÎð1;1Þcd n̂bd −
1

6
mEdin̂adi þ

1

3
Bcdϵabc

Z
dtÂð1;0Þn̂bd

�

− r3
��

1

10
Bb

dĈð1;0Þbϵacd −
1

15
BðadϵcÞbdĈð1;0Þb −

7

30
Ebdϵacd

Z
dtD̂ð1;1Þ

b

�
n̂c þ 1

18
m _Bbcϵacdn̂bd þ

11

21
mEabcn̂bc

−
1

9

�
Ecd

Z
dtD̂ð1;1Þ

b − 4BcdĈð1;0Þ
b

�
ϵbc

in̂adi þ
1

3
Eb½cĤ

ð1;0Þ
a�d n̂bcd −

2

9

�
Ecd

Z
dtD̂ð1;1Þb þ BcdĈð1;0Þb

�
ϵac

in̂bdi

−
1

6
Ĥð1;2Þ

abcdn̂
bcd þ

�
2

9
mBbcdϵab

i −
1

9
BcdĈð1;0Þbϵabi þ

1

4
ϵa

bcÎð1;2Þdib −
1

9
Ecdϵa

bi

Z
dtD̂ð1;1Þ

b −
1

6
Bbcdϵab

i

Z
dtÂð1;0Þ

�
n̂cdi

−
1

24
mEbcdn̂abcd þ

�
1

9
EbcK̂ð1;0Þ −

1

3
Âð1;2Þbc −

5

12
F̂ð1;2Þbc −

1

24
_Ebc

Z
dtÂð1;0Þ þ 1

6
EbcÂð1;0Þ

�
n̂abc −

5

9
EbcĤð1;0Þ

bd n̂acd

þ
�
1

10
Âð1;0ÞEab −

1

30
δEab þ

8

15
m _Eab −

1

30
EðbcĤ

ð1;0Þ
aÞc þ 1

15
EabK̂

ð1;0Þ þ 1

24
_Eab

Z
dtÂð1;0Þ −

1

10
ϵab

c∂tD̂
ð1;1Þ
c

−
1

20
∂2
t Ĥ

ð1;0Þ
ab

�
n̂b þ

�
1

3
∂tĈ

ð1;1Þ
bc −

1

12
∂2
t Ĥ

ð1;0Þ
bc

�
n̂abc þ

�
1

30
EbcĤð1;0Þ

bc −
1

20
∂2
t K̂

ð1;0Þ
�
n̂a

�
þOðr4Þ; ðD1bÞ

and

ξ2t ¼
1

2

Z �
Âð2;0Þ þ 1

4
Âð1;0ÞÂð1;0Þ

�
dtþ 1

8
Âð1;0Þ

Z
Âð1;0ÞdtþmĈð1;0Þ

a n̂a þ r

��
1

2
mĈð1;1Þbc þ 4

3
m2Ebc

�
n̂bc

−
�
1

4
Ĉð1;0ÞbĤð1;0Þ

ab −
1

4
∂tĈ

ð1;0Þ
a

Z
Âð1;0Þdt −

3

4
Âð1;0ÞĈð1;0Þ

a − Ĉð2;0Þ
a þ 1

4
Ĉð1;0Þ

aK̂
ð1;0Þ

−
1

2
Ĉð1;0Þbϵabc

Z
D̂ð1;1Þ

c dt

�
n̂a −

1

6
m∂tÂ

ð1;0Þ −
1

2
m∂tK̂

ð1;0Þ
�
þOðr2 ln rÞ; ðD2aÞ
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ξ2a ¼
2m2n̂a

r
þ 1

2
mÂð1;0Þn̂a þ

1

2
mK̂ð1;0Þn̂a −mĤð1;0Þ

ab n̂b −
8

15
m2r ln rEaini − r

�
1

3
mÂð1;1Þ

a −
1

2
Ĉð1;0Þ
a Ĉð1;0Þ

b n̂b

þ 1

2
mĤð1;1Þ

abc n̂bc þ
�
1

2
ϵbdðcĤ

ð1;0Þ
aÞd

Z
D̂ð1;1Þ

b dtþ ϵa
b
cΛ

ð2;1Þ
b

�
n̂c −

1

40
ð11mÂð1;1Þ

b þ 9mK̂ð1;1Þ
b Þn̂ba þ

3

5
m2Ebcn̂abc

þ
�
2m2Bbc −

1

4
mÎð1;1Þbc

�
ϵa

c
dn̂bd þ

1

20
m∂tĈ

ð1;0Þ
bn̂ab þ

�
1

4
K̂ð1;0ÞK̂ð1;0Þ −

1

2
K̂ð2;0Þ −

1

8
∂tK̂

ð1;0Þ
Z

Âð1;0Þdt
�
n̂a

þ
�
1

4
Ĥð1;0Þc

a Ĥð1;0Þ
bc −

178

45
m2Eab −

1

2
Ĥð2;0Þ

ab þ 1

2
Ĥð1;0Þ

ab K̂ð1;0Þ −
1

8
∂tĤ

ð1;0Þ
ab

Z
Âð1;0Þdt

�
n̂b −

1

3
m∂tĈ

ð1;0Þ
a

�

þOðr2 ln rÞ: ðD2bÞ

Here, Λð2;1Þ
b is an unknown function of time that would

be fixed by the ta component of the order-ϵ2r matching
condition. For the sake of visual clarity, I have omitted
superscript 0’s and †’s. To accord with the notation of
Sec. II C, in the above expressions all uppercase latin
tensors with n ¼ 1 (e.g., Âð1;0Þ) should have a left-super-
script 0, and all those with n ¼ 2 (e.g., Âð2;0Þ) should have a
superscript †.

APPENDIX E: SUPERTRANSLATIONS

An interesting consequence of the calculation in Sec. IV
is that I only have to impose the worldline-preserving
condition (13). This is a restriction on ordinary translations
xa → xa − ϒ̂aðtÞ. Yet “supertranslations” of the form xa →
xa − Ψ̂bðtÞn̂ab also generate mass dipole moments, given
by − 2

3
mΨ̂a (as compared to −mϒ̂a). We may have

surmised that first-order supertranslations, like ordinary
translations, would only be ruled out once we impose the
condition Ma ¼ 0. But in fact, they are found to be zero
simply from the transformation Eq. (85). In the same
way, second-order supertranslations are ruled out by
Eq. (86) alone.
Consider the first-order case for simplicity. A nonzero

supertranslation would be required in one particular sce-
nario: if the rest gauge were parity regular in the sense of
Gralla [39], and the target gauge were parity irregular,
or vice versa. For example, this would be the case
if h1ab ¼ 2mδab

r þOðr0Þ in the rest gauge and h1ab ¼
2mδabþcabiniþdabijkn̂ijk

r þOðr0Þ, for some cabi and dabijk, in
the target gauge. But even in that situation, the first-order
metric would dictate the supertranslation. No worldline-
preserving condition would need to be imposed to con-
strain it.

On the other hand, if one were to transform away from
the rest gauge with no specified target gauge in mind, then
the supertranslation would be arbitrary. Consider starting
from the field (79) and performing a transformation
generated by ξa1 ¼ Ψin̂ia plus an arbitrary smooth vector.
In the new gauge, the field’s leading behavior is

h1ab ¼
ð2mþ 6

5
ΨiniÞδab þ 2

5
ΨðanbÞ − 4Ψin̂abi

r
þOðr0Þ; ðE1Þ

with the tt and ta components unchanged at this order. If
we continue to define hR1μν according to Eq. (28) in this new
gauge, then a short calculation shows that Eq. (91) is
unchanged except for the addition of a term − 1

15
EaiΨi to

the right-hand side. If we also impose the conditionMi ¼ 0

in this new gauge, then instead of ϒ̂ð1;0Þ
a ¼ 0, we have the

relation ϒ̂ð1;0Þ
a ¼ − 2

3
Ψ̂a. Rearranging the new version of

Eq. (91) to solve for fa1 yields

f1a ¼
1

2
∂ahR1tt þ ∂thR1ta −

2

3

̈Ψ̂a −
3

5
Ea

iΨ̂i; ðE2Þ

a self-force that depends on the supertranslation in addition
to the regular field. Since Ψa forms a part of the singular
field in this gauge, there is a sense in which the self-force
depends on both the singular and regular fields. One might
still be able to preserve the generalized equivalence
principle, but to do so, one would have to adopt a less
natural definition of hR1μν in this gauge [by adding appro-
priate terms to ∂ahR1tt jγ, for example, and subtracting them
from hS1μν , meaning that in the expansion (26), hS1μν would

include some of the smooth term rhð1;1Þμνi ni].
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