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Nonlinear gravitational self-force: Second-order equation of motion
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When a small, uncharged, compact object is immersed in an external background spacetime, at zeroth
order in its mass, it moves as a test particle in the background. At linear order, its own gravitational field
alters the geometry around it, and it moves instead as a test particle in a certain effective metric satisfying
the linearized vacuum Einstein equation. In the letter [Phys. Rev. Lett. 109, 051101 (2012)], using a method
of matched asymptotic expansions, I showed that the same statement holds true at second order: if the
object’s leading-order spin and quadrupole moment vanish, then through second order in its mass, it moves
on a geodesic of a certain smooth, locally causal vacuum metric defined in its local neighborhood. Here I
present the complete details of the derivation of that result. In addition, I extend the result, which had
previously been derived in gauges smoothly related to Lorenz, to a class of highly regular gauges that
should be optimal for numerical self-force computations.
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I. INTRODUCTION

Over the last two decades, there has been renewed interest
in a fundamental question of general relativity: How does a
small object move when immersed in an external spacetime?
In other words, how is the object’s motion altered from the
test-particle description when one accounts for the object’s
own gravitational field, finite size, and internal composition?
This question is now of astrophysical interest, due to the
advent of gravitational wave astronomy. Binaries of compact
objects with dissimilar masses will directly exhibit correc-
tions to the test-particle approximation. This is true even of
the intermediate-mass-ratio binaries that should be detected
[1] by second-generation ground-based detectors such as
Advanced LIGO [2] and Virgo [3]. It is doubly true of
extreme-mass-ratio inspirals (EMRIs), in which a stellar-
mass black hole or neutron star spirals into a supermassive
black hole in a galactic core; the clear separation of scales in
these systems will allow a precise delineation of the post-test-
particle effects in the smaller object’s motion. EMRIs, while
outside the frequency band of LIGO and Virgo, will be key
sources for the planned space-based detector LISA [4].

The principal approach to modeling these systems is self-
force theory, which seeks to describe a small object’s
motion by treating it as a source of perturbation 4, of an
external background spacetime g, [5-7]. In this descrip-
tion, the object is accelerated by the self-force, the back-
reaction of the object’s field on its own motion. The
formalism in this approach is now on a sound theoretical
basis [8-10], has well-developed computational methods
[11,12], has yielded a range of physical predictions
[5,7,13], and has had impact on binary modeling outside
the EMRI regime, providing important input for post-
Newtonian theory, fully nonlinear numerical relativity, and
effective one-body theory [14—18].
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A. The generalized equivalence principle
in self-force theory

Until recently, self-force theory has focused on linear
perturbation theory. At that level, the primary result of the
self-force program is a generalized equivalence principle (a
phrase I adopt from Ref. [19]). The ordinary equivalence
principle dictates that all freely falling test masses, given
identical initial conditions, follow the same geodesic
trajectory in an external gravitational field, regardless of
their inertial mass or internal composition. The generalized
equivalence principle extends that statement to gravitating
objects: neglecting finite-size effects, isolated small com-
pact objects, be they material bodies or black holes, follow
geodesic paths in a certain effective metric g = g,, + hi}
that satisfies the vacuum Einstein field equation (EFE),
where the Detweiler-Whiting regular field hy,) is a certain
piece of the perturbation A, [20,21]. Unlike the ordinary
equivalence principle, the generalized principle does not
suggest that the motion is identical for all bodies. They all
move on geodesics, but they move on geodesics of different
geometries, because h}f} is proportional to their own
gravitational mass and determined by their own past
histories [21]. However, the sense of the equivalence
principle is preserved, in that each object feels no gravi-
tational force, instead falling freely in what it sees as an
“external” gravitational field—even though it is responsible
for a piece of that field.

On the face of it, the conclusion that an object’s world-
line is a geodesic in some effective metric might not seem
especially meaningful or useful; any equation of motion
can be written as the geodesic equation in some effective
metric [6]. However, the statement is both meaningful and
useful if the effective metric satisfies suitable conditions,
such as the following:
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(1) The effective metric is “physical,” in the sense that it

satisfies the vacuum EFE, and on the worldline it

(and its derivatives) depend only on the causal past.

(2) There is a practical way to actually calculate the

effective metric and solve the self-forced equation of
motion.

At first order, these conditions are both met by g,, + hf.

Beyond first order, several foundational analyses have
been performed [6,10,22-27]. Harte has established [10]
that even in a completely nonperturbative description of a
material object, one can construct an effective metric in
which the object moves as a test body, subject to forces
only due to finite-size effects. However, besides the
limitation to material bodies, which excludes black holes,
Harte’s effective metric is not a solution to the vacuum
EFE, and there is no immediate means of calculating it
numerically. Fortunately, perturbative approaches have
overcome both of these restrictions, at least through second
order in the small object’s mass. As a practical way of
computing the effective metric, all authors, beginning with
Rosenthal [22], have proposed some variant of a “puncture
scheme” [11,28,29], in which a local expansion of the
metric near the small object (valid for both black holes and
material bodies) is converted into a singular “puncture.”
The curvature of the puncture is then treated as a source for
the effective metric. In Ref. [25], I presented a definition of
an effective metric satisyfing the “physical” conditions
described above, and I showed that if the object is
approximately nonspinning and spherical, then through
second order it moves on a geodesic of this effective metric,
thereby extending the generalized equivalence principle to
second order. I stress that this is a derived result involving
no “regularization” and no presumed relationship between
the motion and the effective metric.

Due to the space constraints of a letter, Ref. [25]
necessarily omitted many details. References [6,27] filled
in some of those details, specifically the explicit form of the
puncture and effective metric, the effective metric’s cau-
sality on the worldline, and the nature of the puncture
scheme. The present paper covers the other half of the
problem, detailing the derivation of the equation of motion.
It also extends the result to a class of highly regular gauges
that should prove useful in numerical implementations.

B. Equations of motion from matched
asymptotic expansions

In Newtonian mechanics, we typically wish to use as
little information as possible to describe extended objects—
for example, by treating them as point particles. Similarly,
in self-force theory our primary goal is to determine the
motion of a small object and obtain the metric outside of it,
without having to concern ourselves with its potentially
complicated internal dynamics. In the perturbative context,
this is achieved with the method of matched asymptotic
expansions [30,31] (e.g., in Refs. [8,9,20,32-35] and the
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second-and-higher-order self-force literature). Before lad-
ening the reader with the detailed application of this
method in deriving the second-order equation of motion,
I first provide an overview of the derivation strategy I
follow.

We suppose that the small object is in a spacetime with
metric g, (€), where the parameter € encodes the depend-
ence on the object’s mass m and size £; we can think of ¢
being proportional to m, though it will be convenient to use
it as a formal expansion parameter and set it equal to 1 at
the end of the calculation. We take the object to be compact,
such that m ~ Z. In the “self-consistent” approach [9], the
metric outside the object is expanded as

O = G + €M) + EMg[y] + - - (1)

The object creates perturbations 4y, of the external back-
ground metric g,,, and those perturbations are functionals
of the object’s motion, as represented by an e-dependent
worldline y in the background manifold. For simplicity, I
take the object to be in a vacuum region, such that g,, is a
vacuum metric.

Near y, at distances r ~ ¢, the gravity of the small object
begins to dominate over the background, and the expansion
(1) ceases to be accurate. Hence, we introduce a different
expansion in this region. We first rescale the distance r to
7 := r/e, such that ¥ ~ 1 when r ~ ¢. We then expand in the
limit ¢ — O at fixed 7:

g;w(r, €)= QZBj(f) + eHlldb(?) + €2Hﬁy(?) +--. (2)

Here the background metric becomes gﬁ'ﬁj, the metric of the
object if it were isolated, and the perturbations are produced
by the external background field (and the object’s inter-
actions with that field). While the expansion (1) lets the
object shrink to zero mass and size while holding external
distances fixed, the expansion at fixed 7 zooms in on the
object, keeping its mass and size fixed while other distances
are blown up. I refer to Eq. (1) as the “outer expansion” and
to Eq. (2) as the “inner expansion.”

Since both are expansions of the same metric, they must
agree (given a suitably well-behaved g,, [30]). More
precisely, if we reexpand the outer expansion for small
r—i.e., near the worldline—then we obtain a double
expansion in powers of ¢ and r. If we reexpress the inner
expansion in terms of 7 = 7 and then reexpand for small €
at fixed r—i.e., for distances 7 > 1, relatively far from the
small object—then we obtain another such double expan-
sion. These two double expansions, which can be expected
to be accurate in a “buffer region” € < r < 1, must agree
order by order in ¢ and r.

The existence of a well-behaved inner expansion con-
strains hy,, to have the form
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W= S i 3)

p=—n

when expanded for small r (allowing for logarithms of r in
the coefficients). In other words, hj, ~ rl Any more
negative power of r would lead to a poorly behaved inner
expansion with negative powers of e; for example, if
hyy ~ ,,H, then a term like €"hy, ~ nil in Eq. (1) would
correspond to a term ~€;,}+1 in the inner expansion. g,, is

likewise constrained to take the form

G = D "G, (4)

p>0

which also follows from g, being a smooth vacuum metric.
Analogously, the ex1stence of a well-behaved outer
expansion constrains g;w and Hj, to have the forms

1
obj obj
g;wJ = Z g;wJ P (5)

p>0

and

fz —H,! (6)

]7>n

when expanded for large 7 (allowing for logarithms of 7 in

the coefficients). This implies that gﬂy is asymptotically
flat. It is also quasistationary (see Sec. III). Hence, in the
buffer region it can be expressed in terms of its multipole
moments. If we introduce a Cartesian coordinate system
(¢, x") centered on y, where x' = rn!, with n' = (n*, n’, n%)
being orthogonal unit vectors, then the expansion in the
buffer region looks schematically like

m  M;n' + €S n*
QzEJNl—l— ~—2k
7
Mun n/ +€u S] nknq
ij ~31}k q 4, (7)

7

Here m is gﬁgj’s Arnowitt-Deser-Misner (ADM) mass, M;
its mass dipole moment, S’ its ADM angular momentum,
and M;; and S;; its mass and current quadrupole moments.
{ omlt terms hke m? /7 and mM; /7 for visual clarity.)

g,,,, ’s moments encode the internal composition of the
object, and they determine the most negative powers of r in
the outer perturbations /. For example, when rewritten
in terms of r, the Z term in Eq. (7) becomes €2, which
fixes the 1/r term in h;w' Hence, h}w has the fonn

m
Ry, ~ " + O(r°). (8)
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Similarly,

m? 4+ Mn' + €;;,S'n*
1, ~ O (9)

r

(now keeping the m?/r? term for completeness), and so on
for the higher-order perturbations 4;,. The fact that the nth
moments scale as €”, and hence first appear in the nth-order
perturbation, is a consequence of the object’s assumed
compactness.

In short, the perturbations £y, are locally determined by
the object’s first n multipole moments. This means that
rather than requiring a full model of the object’s internal
dynamics, to obtain a finite order of approximation we
merely need to specify a finite number of moments. This
simplification is closely tied to the point-particle approxi-
mation: as first shown by D’Eath [32] (see also Refs. [8,9]),
the more explicit form of Eq. (8) suffices to show that h,'w is
identical to the linear perturbation produced by a point
mass m moving on y.

So far in this description, I have said nothing of the
object’s motion. All we know is that it lies somewhere near
some worldline 7, in the region r ~ ¢.' To fix y to be a good
representative of the object’s position, we recall that a mass
dipole moment can be interpreted as a displacement 6z’ =
M'/m of the center of mass from the origin of the
coordinates; equivalently, it is generated if we begin in a
mass-centered coordinate system and perform a small
coordinate transformation x' — x' + M'/m. Since our
coordinates are centered on y, a nonzero M’ would indicate
that y does not represent the object’s center of mass. Hence,
we set M’ to zero. This ensures that y is at the center of

mass of the leading-order metric g,w. To constrain y at
higher orders, smnlar conditions must also be imposed on
the perturbations Hy,; these will be discussed momentarily.

With this minimal setup in place, there are two ways to
determine the equation of motion governing y. One route,
detailed in Ref. [27] (following Ref. [9]), is to solve the
vacuum EFE (outside the object) for the perturbations Ay,
order by order in € and r, beginning with expansions of the
form (3). Solving the EFE in this way, combined with a
center-of-mass condition, determines the acceleration of y.
(It also provides a local expansion of /iy, near y, written in
terms of the object’s multipole moments, which can be used
to define a puncture for use in practical computations.)
More concretely, if we expand p’s acceleration as
a* = fy +eff +---, then an equation for the nth-order

"Note that y need not be “inside” the object, which would not
be sensible for a black hole. In general, y exists in the background

manifold on which g, is the metric, not in the manifold on which

gﬁ,‘? is the metric. y is then approximately associated with the

object’s “position” through the existence of the inner expansion,
and more closely associated with its center-of-mass “position”
through the properties of the metric in the buffer region.
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force (per unit mass) f% follows from the field equation for
hii'. The fact that f{ =0 (ie., that the motion is
approximately geodesic in g,,) follows from the equations
for hpl”,; the standard result for the first-order self-force, f*,
follows from the equations for hfw; and the second-order
self-force, f45, which is the order of interest in this paper,
would follow from the equations for hfw. However, solving
the third-order field equations in the outer expansion is
quite burdensome.

Fortunately, there is a second, easier path. First, calculate
the metric in the inner expansion in a “rest gauge,” in which
the object is manifestly at rest on y. (More generally, if the
object is spinning and nonspherical, it should move as a test
body on y in this gauge, but I will nevertheless refer to it as
a rest gauge.) Next, reexpress this expansion as an outer
expansion in the buffer region, and then transform to
whichever gauge is desired for the outer expansion—call
it the “practical gauge”. The existence of a rest gauge is
intimately related to the fact that there is some effective
metric in which y is a geodesic; the transformation
identifies which effective metric that is. A key to this
approach is that the gauge transformation must be con-
strained to preserve the location of the center of mass on y.

To apply this procedure to determine f*%, we must specify
that M’ vanishes in the rest gauge, as described above. To
apply it to determine f%, we require the next-order extension
of this condition. The natural choice is to impose that the
mass dipole moment in H }w vanishes. In an appropriate

gauge, H,, can be written in the form

. om
Hbl, ~ Fa;n’ + O6u’ + —
7

5Mil’li + €ijk5Sjl’lk
+ = +oee

(10)

where a; can be interpreted as an acceleration of the 7 — oo
asymptotic frame relative to the rest frame of the object, du’
as a mismatch between the proper times of the two frames,
and 6m, M, and 6S' as corrections to the mass, mass dipole
moment, and spin. We can then naturally set SM' = 0 as our
center-of-mass condition. Because the metric gy’ + eH,
appears not to be asymptotically flat, this M’ does not
strictly correspond to the standard multipole moments
defined for stationary, asymptotically flat spacetimes
[36,37]. Nevertheless, SM! = 0 is a natural center-of-mass
condition: SM' appears as part of a gauge perturbation that is
easily isolated from the rest of H},,,, and it would arise from a
small coordinate translation in precisely the same manner as
M. However, though that argument would become impor-
tant athigher orders, where it becomes impossible to write the
metric in asymptotically flat form, it need not be stressed at
this order, because the first two terms in Eq. (10) are pure

gauge, meaning go + eH 4w s asymptotically flat. In fact,
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the only gauge-invariant content in H }w corresponds to trivial

corrections to the multipole moments of go, meaning the
entirety of H }w can be set to zero by absorbing those trivial
corrections into the background.

When the metric of the inner expansion is reexpanded in
the buffer region, it yields an outer expansion in the rest
gauge:

g/w :guv+€hﬁltlv[7/] +€2h/24/v[7] +oee (11)

where each of the terms is expressed as an expansion for
small r. If the rest gauge and the gauge of Eq. (1) are fully
fixed, then there must exist a unique gauge transformation
between them, subject to the crucial condition that the
transformation does not induce a nonzero M’ or SM'. This
condition ensures that the object remains centered on the
same worldline y after the transformation. I will refer to a
transformation satisfying it as worldline preserving. For the
calculations in this paper, the condition reduces to a simple
form: a transformation with the coordinate representation

1
M =3t — el — € <§’£ —557@5’{) + 0  (12)
is worldline preserving if and only if

_[dS
lim § 5 &5 =0, (13)

atall times ¢, where S is a small sphere of radius r around y (7).
In other words, &, must have no net direction on the
worldline.

The condition (13) is intuitively meaningful, as a gauge
transformation violating it would manifestly move the
origin of the coordinate system. Hence, we could impose
this condition without making any reference to the mass
dipole moment. However, tying it to the mass dipole
moment helps to clarify what may appear to be a mysteri-
ous elimination of one whole order of calculation. The first-
order equation of motion can be derived as a consequence
of the second-order EFE, and the second-order equation of
motion as a consequence of the third-order EFE. Yet by
referring to the transformation from a rest gauge, we seem
able to derive the first-order equation of motion solely from
the first-order metric, and the second-order equation from
the second-order metric, effectively saving an order. We can
understand this by noting that what the second-order EFE
actually determines is an evolution equation for M’ relative
to any given worldline [9]; setting M’ = 0 for all time then
picks out the first-order acceleration of the correct center-
of-mass worldline. Analogously, the third-order EFE deter-
mines the evolution of SM‘, and setting SM' = 0 picks out
the second-order acceleration of this worldline. But we also
have that the mass dipole moment M, which appears in the
second-order metric perturbation, is fully determined by the
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first-order gauge: if we transform away from a rest gauge,
then M' = —mé. The first-order gauge transformation
therefore determines the same information as the second-
order field equation. In the same way, M’ = —mé&) (if

i =0). This is an illustration of the deep connection
between gauge and motion in perturbation theory
[26,38-40].

This strategy of transforming from a rest gauge to a
practical gauge, although not as intuitively clear as the direct
derivation of the equation of motion from the EFE for £,
underlies many derivations in the literature. Mino, Sasaki,
and Tanaka [35] used it in essentially the same way as I do
here in their original derivation of the first-order equation of
motion. Rosenthal [23] used similar ideas in his derivation of
a second-order equation of motion. However, he relied on an
axiomatic list of possible ingredients in the self-force, rather
than the first-principles approach I take here, and his
formulation ended with an equation of motion in an
impractical form in which the first-order perturbation is
required to remain in a rest gauge. Detweiler [24] argued that,
given the form of the metric in a rest gauge, the motion must
be geodesic in some suitable effective metric, though he did
not consider the problem of transforming to a practical gauge
and identifying the effective metric in it. Most recently,
shortly after my letter [25], Gralla [26] used a closely related
method in his derivation of a second-order equation of
motion. His formulation was somewhat different in that he
did not seek an effective metric in which the motion is
geodesic. But a more important distinction is that in both his
and Rosenthal’s approaches, their rest gauges refer to a
different representative worldline. Gralla explicitly uses a
perturbative description, in which the worldline is expanded
as y =yy + ey, + €y, + - -+, with y, being a background
geodesic and y; and y, being small deviation vectors defined
on that geodesic.2 This description is sensible on time scales
of order €°, because if the acceleration is of order ¢, then the
deviation of the accelerated object from a background
geodesic is also of order €. In this treatment, the “rest gauge”
puts the center of mass at rest on a background geodesic y,
such that y; = y, = 0. Rather than being worldline preserv-
ing, the transformation to a practical gauge is then allowed to
be arbitrary, and the evolution equations for y; and y, (or,
equivalently, M’ and 5M") are derived from the evolution of
& and & along y,. Although Rosenthal does not use this type
of description, he likewise uses a rest gauge in which the
object moves on a geodesic of g, and a transformation that
translates the object onto an accelerated path. In both cases,
these approaches are restricted to timescales of order €°,
meaning they cannot accurately describe effects such as the
inspiral of an EMRI, which occurs on the timescale 1 /¢. The
treatment here avoids that restriction.

*See Refs. [6,9,40] for in-depth discussions of the relationship
between this approximation and the self-consistent one I use
throughout this paper.

PHYSICAL REVIEW D 95, 104056 (2017)

C. Outline of this paper

In the bulk of the paper, I work through each step of the
derivation outlined above, specializing to an object with
vanishing spin and quadrupole moments at leading order.
Sections II and III present the form of the metric perturba-
tion through second order, with Sec. II summarizing the
calculation in the Lorenz gauge, and Sec. III the calculation
in a rest gauge. Section IV presents the gauge trans-
formation between the two solutions, which leads to the
equation of motion. This stage of the derivation also
illustrates an ambiguity in the definition of the self-induced
tidal moments acting on the body, as first computed by
Dolan etal. [41] and Bini and Damour [42].

In Sec. V, I show that the derived equation of motion is
equivalent to geodesic motion in the effective metric g,, +
hR, defined in Refs. [25,27].

Section VI extends this result to non-Lorenz gauges.
After a brief review of the extension to gauges smoothly
related to Lorenz, the bulk of this section is devoted to a
derivation in a class of highly regular gauges. These gauges
remove the dominant, m?/r* part of the metric at second
order, circumventing many challenges that generically arise
in second-order numerical schemes.

The final section of the paper summarizes my results and
discusses the prospects for numerical computations in these
highly regular gauges.

Throughout, I work in units with G = ¢ = 1. Greek
indices range from O to 3 and are raised and lowered with
the background metric g,,. Lowercase latin indices refer to
spatial coordinates x“ = (x,y,z) in the outer expansion.
Lowercase sans-serif indices refer to spatial coordinates
X% = (X,Y, ) in the inner expansion. Both are raised and
lowered with the flat-space Euclidean metric 6;;. Uppercase
latin indices denote multi-indices, as in L := i;...i,, and an
expression such as Aj;_; denotes Ai]__,i‘ ot Parentheses
around indices indicate symmetrization; square brackets,
antisymmetrization. Angular parentheses, as in (abc),
indicate the symmetric trace-free (STF) combination of
the enclosed indices, where the trace is taken with §,,. A
hat over a tensor, as in T, likewise indicates that the
tensor is STF with respect to &,,. V and a semicolon both
denote covariant derivatives compatible with g,,. An over-

bar, as in h,,, denotes trace reversal with g,,, as in h,, =
1 c
h/u/ - §g;wgp hpa'

II. OUTER EXPANSION IN THE LORENZ GAUGE

This section reviews the outer expansion through second
order. Further details can be found in Refs. [6,9,27].

A. Form of the expansion

To find the outer expansion, I utilize the self-consistent
framework developed in Ref. [9]. The metric is written as
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g/u/(x’ 6) = g;w(x) + h;w(xv € }/)’ (14)

where x denotes any suitable set of coordinates that do not
depend on y, and the semicolon is used as a compact
alternative to /,,[y](x). The metric perturbation is
expanded while holding the e-dependent worldline y fixed:

= e"h(x:7). (15)

n>1

L(x,€:7)

This expansion self-consistently incorporates the metric’s
dependence on the long-term evolution of the worldline
such as, for example, the inspiral in an EMRI.

By imposing the gauge condition V”}_lﬂ,, =0, I reduce
the vacuum EFE R, [g] = 0 outside the object to the
weakly nonlinear wave equation
E,[h] = 252R,w[h] + O(h?), (16)

W

where E,, is the relativistic wave operator

Euh = (GugZV'V, + 2R, 7). (17)

with R,”  being the Riemann tensor of g,,, and 6°R,, is
v . . . ad s
the second-order Ricci tensor, given by

1- 1
52Raﬁ[h] = 2 hw;v(Zhu(a;ﬂ) - haﬁ;u) + Zhlw;ahﬂv;ﬁ

1 w
) W5 (e = o)

1
5 hﬂD(Zhﬂ(fl;ﬁ)v - ha/)’;ﬂv - huv;a/)’)- (1 8)

Equation (16) can be expanded and solved order by order in
e while holding y fixed, leading to a sequence of wave
equations beginning with

Eu[h'] =0, (19)
E,[h?]) = 26°R,, [1']. (20)

Each of these equations can be solved for an arbitrary y, and
for an arbitrary set of multipole moments defined on y. The
evolution equations governing y and the moments are then
found by imposing the gauge condition in the buffer region.
Because the wave equation is constraint preserving, these
evolution equations (together with suitable initial data)
suffice to enforce the gauge condition globally [27].

B. General solution in the buffer region

Here we are only interested in the form of the solution
near y. I transform away from the global coordinates x to
local coordinates that are dependent on the worldline:
Fermi-Walker coordinates (7, x“) centered on y. These are
defined such that x' = rn’, where r is the proper distance
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from y along a spatial geodesic that is sent out from y
perpendicularly, and ' is a unit radial vector that labels the
direction along which the geodesic is sent out. For a given
point z on y, the set of all such geodesics form a three-
dimensional spatial surface. Each such surface is labeled
with a coordinate time 7, equal to the proper time on y at the
point z. Reference [5] contains a pedagogical introduction.
Because the self-force will naturally involve a derivative of
hﬁ,, (thinking naively of &, as a potential and its derivative as
a force), to derive the equation of motion we will require hﬁ,,
through order r in these coordinates. Since /22, begins at order
r~2 according to Eq. (9), this implies that we need a total of
four orders in r: that s, 1}, through order r%, because it begins
at order 1/r according to Eq. (8) and g, through order r,
because it begins at order r°. Through that order, the
background metric is given by

g = =1 =2a;x" — (Ryyj + a;a;)x'x’
1
3 (4Rllt]ak + Rnt; k)x x]x + O( ) (213)
2 1 P
Gta = 3 llaj‘x )C] 3 Rtiajakx x/x
1 o
-2 ,mj;kx’x-’xk +O(r%), (21b)
1 i) ik
ab = Oap — gRaibjx X = gRaibj;kx XX
+ 00, (21c)

where a# := I = (0, a’) is the acceleration of the world-
line [with u* = (1,0,0,0) the normalized four-velocity],
the Riemann tensor and its derivatives are evaluated on the
worldline, and a quantity such as R, denotes a compo-
nent of a covariant derivative rather than a derivative of a
component. The metric takes the form of Minkowski along
the worldline, plus corrections away from the worldline due
to acceleration and curvature.

Because g, is Ricci flat, the components of the Riemann
tensor and its first derivatives can be written in terms of STF
tensors €5, Bups Eapes and By, which 1 define as

Sah = Rtathv (22)
1 Pq

Bab = Ee (aRb)tpqv (23)

gahc = STFabL'Rmth;cv (24)
3

Babc = gSTFabcepqaRbtpq;c’ (25)

where “STF” indicates the STF combination of the speci-
fied indices. £,;, and B, are the electric- and magnetic-type
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tidal quadrupole moments of the background spacetime,
and &,,. and B,,. are the electric- and magnetic-type
tidal octupole moments. Appendix D3 of Ref. [43] provides
identities for decomposing each component of the
Riemann tensor and its derivatives in terms of these tidal
moments.

In these coordinates, the fields Ay, near y can be found
by substituting Eq. (3) into the EFE. Because spatial
derivatives reduce the power of r by one while temporal
derivatives do not, the wave operator becomes E,, [h] =
9'0;hy,, + O(h/r), and solving order by order in r
reduces to solving a sequence of flat-space Poisson
equations.

This procedure is facilitated by adopting the more
specific expansion

hn, = rP(In el Rk, (26)
p=—n,q>0,1>0
where A :=nt) = plit  p'), and for brevity, in later

expressions I will write h(”p 0 — hf,';,f’ ). The quantity A"

plays the same role as a scalar spherical harmonic: it satisfies
the eigenvalue equation 29,0'al = —I(I + 1)a’, thereby
reducing the Poisson equations to algebraic equations.
It also satisfies the useful identities 0,7 = n,, n“d,n* =0,
and 9990, (rPak)=(p-1)(p+I+1)r’=2aL. 1 refer to
Ref. [44] for others.

At each order in r, a new homogeneous solution arises,
corresponding to one of the standard solutions 7/ or 1/r"*! to
the Laplace equation. The solution to all orders in € and r can
then be written in terms of the coefficients of these solutions,

h"p) for p > 0 and A |P)‘ , for p <0 [27]. For p = —

these coefficients correspond to the multipole moments of
G- for —n < p < 0, they correspond to (potentially gauge)
corrections to those moments; for p > 0 they together make

up a smooth solution to the vacuum field equation even at
r = 0. If no additional boundary conditions are specified,
then the non-negative-p coefficients hi;f) remain entirely
arbitrary (up to relationships imposed by the gauge con-
dition). They become determined when global (e.g.,
retarded) boundary conditions are imposed.
Motivated by this division of terms, I split 4j, into a
“self-field” hs” and an “effective field” h}},j’, as deﬁned in
Ref. [25]. The effective field I define to be the piece of the
total solution containing none of the negative- p coefficients

h;(:]];)\_r? this makes g,, +>_,€

metric at » = 0, determined by global boundary conditions.
The self-field I define to be the remainder of the full field; it
carries the local information about the object, and at r = 0
it diverges as r™". Due to their behaviors at the origin, I
refer to A5y and AN as the singular and regular fields,
respectively. While r = 0 is outside the domain of validity
of the outer expansion, this extension of the fields to all

n hRn

4 @ smooth vacuum
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points » > 0 (and to » = 0 in the case of the regular field)
has no impact on the field in the region r > ¢, and it is
essential in practice: at first order it is used to show that &,
is identical to the field of a point mass; and at higher orders
it allows us to define practical puncture schemes that can
compute the metric outside the object while bypassing its
internal dynamics [6,27].

At first order, the above definitions lead to a singular
field in which each term is explicitly proportional to the
object’s mass m. It is given by

2 .5
hyl = Tm +3ma;n’ + §mr5abﬁ“b

7
+ Emrzgabc A% + O(r*, r*a, ra®), (27a)
2 19 .
hil = mr(g Be, iyt — 2&0) — mr? (30 E it
1. C A 2 c in
+ ﬁgb Nape + §Bb e, ncdi)
+O(r3, r*a, ra?), (27b)
2ms,, . 4
nSl = . b mé,ya;n — mr( 5 Ew —gg(acnb)c

31 68 . .
+ 5ahgc.dfl6d> - mr2 [(ﬁgubc + EB(adeh)cd> ne

5
1A 501;5“1[ 7 cdz:|

~ 2. cdei o
- _S(aCdnb)cd - §B d€ c(alb)di 12

(27¢)

where an overdot denotes differentiation with respect to ¢,
asin a' = %. The gauge condition determines the evolu-
tion equations i = 0 and @ = O(¢). Because a* = O(e),
I have omitted terms that will be unnecessary for the
matching procedure; the complete expression is given in
the Supplemental Material [45].

The first-order regular field is given by

_ (10 D i
h/l}vl _hMV +r h/wt

+ 2D+ h) +00P). (28)
In the order-by- order solution descrrbed above( the wave
equation leads to hﬂ,, ) :é(h,(w i = 2R, P hyg L0 ), such
that all the coefficients in Eq. (28) are wrrtten entrrely in

(n.p)

terms of the coefficients &, p’. We can also write the

regular field as the Taylor series

hu = hl, +hﬂyl|x
1 o
2h51}11| x'xl + O(r), (29)
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where the coefficients are related to the pieces of the full
metric as

W1, = hiw?, (30)
MR = hg, (31)
Wl =2n(7, (32)
BRI = 6y (33)

The first-order singular and regular fields defined this
way agree with the Detweiler-Whiting definitions [21] at
least through the displayed orders in r [46].

At second order in e, the singular field generically
involves the object’s mass dipole moment and spin, as
in Eq. (9). With those moments set to zero, the singular
field has three pieces:

hip = 53 + hl + hiy. (34)

The first piece comprises terms explicitly proportional
to m?:

2m? 17 3
SS __ 2 ~ab ~abc
h” = —7—51’1’! gabl’l —Em ré'abc

+O(r?Inr, a), (35a)

10 26 .
h$S = ——m?Be .4 01,¢ + s m?rlog r& ;i

1 )
— 5" 2r(31EP A e + 10082 i i y;)

+O(rInr, a), (35b)

SS __
hab - 2

2
3m S,y — Ty, o <450
r

4 ot T ) 16
—§5ab55d7’lCd +§56dnab d) —Engab Inr

4 12 .
- mzrlog r(g guhcﬁc + ?B(adeh)cdﬁc>

4 L
+m l"(—g CdA )cd + Bcdé‘lc(al/’\lwdi

180

131
—@5 & ncder 5 ”abcdz>

+O(r*Inr,a). (35¢)
Here I have dropped all acceleration terms, which can be
found in the Supplemental Material. This field satisfies
E, [h55] = 26°R,, [hS'] pointwise away from r=0;
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because the source is quadratic in A5}
not distributionally well
include r = 0.

The second piece comprises terms of the form mhR!.
Because the explicit expressions are very lengthy, I give
only the leading order:

the equation is
regions that

o
defined on

Rl ~ab
mhj, i

it = === 4 O(r), (36a)
th ~ b
h[sf — _M + O(}’O), (36b)
r
hgh = [Zth ) = Baphly !
- (h}‘j‘ 87+ hig ap] + O(r°), (36¢)

where components of hR! are evaluated at r = 0. The
subleading terms, which are shown in the Supplemental
Material, are of the form mroAR! and mr>9*hR!. This field
satisfies  E,,, [hSR] = 26°R,, [hS!, hR] + 26°R,,[hR', hS!]
pointwise away from r = 0, where I have written 52R/w
as a bilinear operator in the natural way. Because the source
is a linear operator acting on the singular field, this equation
is distributionally well defined even if r = 0 is included;
however, I have not confirmed that its two sides are equal as
distributions.
The final piece of the singular field is the om term:

_omy,

5
. + r<65m,,5“bnab — Bbsm, %€ pqitp,?

1
+25mn> +O(r?, a), (37a)
Sy, 1 19
h%n = Tt + r<§5m,b5<b”na)c - E5mtb€ab

1 1
- Bbcémbdeacd + gamta'gbcﬁbc + 8 Bbcémlteacdﬁbd

1 o1
+§B”"5mad€cd,-ﬁb’ + 25mm> +O(r*,a), (37b)

5mab

om __
hah -

17
, 7"<3 5m<acgb)c - 5mccgab - 5m,t5ab

+ 26m,° B< €p)ea — OM° € .ibup + 5 5m fip)a

+ = 5m gb

3 Neg — §5mab56

1 A
+§BCd5mt(a€b)diﬁcl + §5mab> +0(r?,a), (37c)

where the acceleration terms are given in the Supplemental
Material. 6m,,, is a tensor on y that can be thought of as a
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mass correction (though only in the loosest sense),” the
same that appears in Eq. (10). Its components, as deter-
mined by the gauge condition, are

1
om, = —gmhfgé“h —2mhR1, (38a)
4 R
6mla = _gmhta ) (38b)
2 Ri ] Rl sed
omg, = gmhab + gméubhcdé
2
+ = mb,hR, (38¢)

3

where all components of the regular field are evaluated at
r = 0. This “mass correction” is pure gauge, as we will see
in the matching procedure. It can be freely altered by
adding a term of the form 26mg,, that contains invariant
mass, but I absorb that term into m. k32" satisfies E,, [h°"] =
0 at points away from r = 0, and it satisfies the point-
particle-like equation
E, [°"] = — 4ném,,, (1)8 (x') (39)
on a region that includes » = 0.
In addition to determining ém,,, the gauge condition

(together with the center-of-mass condition M’ = 0) deter-
mines that the worldline y has acceleration

1
a, = €|:E 8ah51 - 8th$al:| + 0(62), (40)
which can be written in the covariant form
@ = S P (hR), = 2RRLJurid + O(e),  (41)

where P := ¢ 4+ u#u”. This is the usual result for the

first-order equation of motion. If gﬁgj had spin, then this
equation would include the Papapetrou spin force [8,9].

*Besides being pure gauge, hf,’b” corresponds to an [ =0
perturbation only in terms of scalar harmonics; Eq. (26) is
equivalent to a scalar-harmonic expansion of each Cartesian
component. In terms of tensor harmonics, h%;’s ta component is
[ =1, and the trace-free part of its ab component is [ = 2 [44].
However, it is nevertheless useful to separate h% from Ay
because it satisfies Eq. (39). If we view the right-hand side of that
equation as a stress-energy tensor, we see that the trace part of
om,, can naively be interpreted as a kinetic energy on the
worldline; the ta, [ =1 piece as a flux of energy out of the

worldline; and the trace-free, [ = 2 part as a flux of momentum.

PHYSICAL REVIEW D 95, 104056 (2017)

Finally, the second-order regular field is given by

(2,0)

W2 = hG0 4+ rhni 4+ O(R).

uvi

(42)

Note that in this paper, I have followed Ref. [25] (and the
earlier Ref. [9]) by defining the second-order singular and
regular fields based on a multipole decomposition of the
metric perturbation. This differs slightly from the definition
in Ref. [27], which instead defined the singular and regular
fields based on the exactly analogous multipole decom-
position of the trace-reversed second-order field /5”. These
definitions are not quite equivalent. That is, if hf}f is as
defined here and l_zgp ® is as defined in Ref. [27], then
hY2 # gﬂagyﬁ(l_zzRaﬁ 397 gpgﬁg” ?).  The relationship
between the two can be found by calculating the trace
reverse of 75 and decomposing the result into the form
(26). The uniqueness of the decomposition allows one to

read off the pieces of A3 and A" appearing in

hR2 = hﬁ’o) + rhﬁ’il)ni + O(r?). The results of that pro-

cedure are shown in Appendix B.

C. Expanding the acceleration

The Fermi-Walker coordinates I use are tethered to an e-
dependent worldline. This introduces an ¢ dependence that
would not appear in the original coordinates x of Eq. (14).
Even the background g, hence inherits a dependence on e
in this coordinate system. This dependence comes in two
forms: implicitly within any function of ¢, since a tensor
evaluated at y(7) automatically inherits y(7)’s € dependence;
and explicitly in the overt appearance of the accelera-
tion a* ~ e.

Working in a system that moves with the accelerating
worldline necessitates holding the implicit ¢ dependence
unexpanded; expanding it would effectively expand tensors
around their values on a nearby, e-independent geodesic.
However, it is natural to expand the explicit € dependence,
as locally there is no way to distinguish between a small
term that comes from ¢* and a small term that comes from
hy,. Indeed, the inner expansion will not make this
distinction.

Hence, prior to matching the metrics, I substitute the
expansion a* =Y, _.€"fi into 9w and hy, and regroup
terms. I write this reexpansion as, for example,
G = "G + €' g, + €*%g,, + O(&*). Explicitly, the terms
in the expansion of g,, are

1
Ogtt = -1 ngab,’)lab — 3 ggabcﬁabc + 0(}’4), (43a)
2 i 1 oo 1 obe
Ogta = _ngBbceacdnbd + 2—Or35abnb — —12 I"SSb Nype
1 .
= P g + O, (@3b)
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*9ap = Ba —é ?(Eap = 68 (o Tipye +3E“Eaphcq)
90 1 (30E (“itp)ea = 3E gpeAC SB eb cdf€
+108“dec(aiﬁb)di - 1550di5a,,ﬁcd,~) +0O(r*), (43¢
and
L9 == 2f1X18.8, + O(r), (44)
20w = — 2f7x'8,8, + O(r?). (45)

The linear term in the expansion hj, =°h}l, +¢e'hl, +
O(e?) is

tpl, = 100 1V 4 3malni + O(2),  (46a)
thl, = A0 1p D ol + O(2),  (46b)
=Y N = 5 maln + O().  (46c)

Since hpr) is undetermined until global boundary con-

ditions are imposed, we cannot always necessarily find

lh(l p)

.wp terms in the above

exact expressions for the

equations. However, if we assume retarded boundary
conditions, these quantities can be obtained from an
analytical expansion of the retarded integral; the results
of that expansion are given in Eqs. (B9) and (B10). At
present, there is no such analytical form at second order,

and we cannot provide explicit results for khl(w » . But such
expressions will not be necessary.

Given these expansions, the metric can be written as
O = "G + €l + M + O()). (47
The first-order perturbation becomes
Iy = Oy + i)+ g, (48)

where 45} and AR} are given by Egs. (27) and (28), and 'g,,,
by Eq. (44). Last, the second subleading perturbation
becomes

2f _ 07SS 4 0pSR 4 0pdm | 07R2
hjw = "hyy +"h hy) +"hy,

+'hl, + %9, (49)

where A3y, hay, hoy', and Y7 are given by Eqs. (35) and
(36), (37), and (42), 'h), by Eq. (46), and ?g,, by Eq. (45).

To obtain a unique gauge transformation between this
expansion and that in the rest gauge, it will be useful to
decompose the coefficients that appear in the regular field (at
both first and second order) into irreducible form. This

decomposition is described in Appendix A, and it is given by
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hig? = AT, (50a)
h) = C" + €l DY)+ 6,4, BYh), (50b)
WD) = 8, KU+ AU 4 STF (e 1000,

+ 80y FUSTY + 641 €, G

+ 84 8y, ERD)). (50¢)

For brevity, after expanding the acceleration I combine STF
tensors as, for example, Af'p U= OAEE'P )4 IAS”’ ). The
wave equation leaves each of these STF tensors to be freely
specified by boundary conditions. However, the gauge

condition imposes the following relationships between them:

1

0p(LY — 63t0A(1.0) _i_%atO[A((l,O)’ (51a)
07(1.1) 3050 3 o0p0 010,
Bt = - OAY - ORS 39,064 (51b)
A 204 4 N Toa
oAl(llh,z) _ goA(l‘O)gab _ gB(ad%)chCEl’o) _ 6oFilb,z)
13 N 5 A N
O SR oKL
a 1 N
+o,0¢ M — 3 0,00, (51c)
~(12 (1.0) Lo ~(10) | 3 S04l
OB((l )_150C gb _Bb eachHl(yd)+2_OatoAt(l )
9
%801(” ——aaoc‘o (51d)
1 N
0f(12) — S“bOH +§ata,°1<<1’°>, (Sle)
0412 _ 1 p cangy(10) L 2 50010
Ga - Egcea Hdb +§at Dﬂ ) (Slf)
and
N 1 1. 4 1
Bt EG,A(ZO)T-FE&K(ZO)T 30C,(110) < (52a)
A1) 3200, 3 seni 34 A0
F, =——A, —K, -0,Cqy
10 10 59
3 3
~ S PH Y =S ROO (520)

III. INNER EXPANSION IN A REST GAUGE

With the outer expansion determined in the buffer region,
the goal is now to find an inner expansion that is compatible
with the outer, that describes the metric in a rest gauge, and
that is sufficiently general for the matching calculation.
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A. Form of the expansion

We could obtain the inner expansion directly in terms of
scaled Fermi-Walker coordinates (¢, X*). However, it is more
convenient to work in a coordinate system tailored to the
inner expansion. So let x* = (1, x*) be some quasi-Cartesian
coordinate system centered on the object, introduce the
scaled coordinates X* = x4 /¢, and assume the expansion

G (X% €) = gl (LX) + > e Hi, (1.X4).  (53)

n>1

Here all quantities with indices, such as gﬁ?j (t,x%), are the

components of tensors, such as gﬂl, (t X*)dxHdx”, in unscaled
coordinates X%, but expressed as functions of the scaled
coordinates (t,X%). One could equivalently write the expan-
sion for the components in the scaled coordinates, in which
case overall factors of € and €? would be introduced into time-
space and space-space components, respectively.4

For this expansion to be appropriately related to the outer
one, I will enforce three conditions: (a) there is no mass
dipole moment in the metric, such that the object is
effectively mass centered at X = 0; (b) the transformation
from x¢ to Fermi-Walker coordinates x* does not change
the position of the origin, such that the center-of-mass
position X4 =0 can be identified with y; and (c) the
transformation is the form x* = x%(x*) + O(e), with no
negative powers of ¢, such that the inner expansion
correctly refers to an expansion at fixed x“/e rather than,
say, at fixed x?/e®. Furthermore, for the expansions to
match, it is understood that any dependence on t can
include some dependence on ¢ in the same manner as the
outer expansion, folding in the ¢ dependence of y.

Although an inner expansion can be used to find an
accurate metric even in the object’s interior, here I am only
interested in the metric in the buffer region. Hence, I seek a
solution to the EFE in a vacuum region outside the object.
Substituting Eq. (53) into the vacuum EFE leads to

0=G, [g°%] + €6G,, [H'] + 626GW[H2} + 635GﬂU[H3]
+ €252GMD[H1] + 6352GﬂU[H1, HZ]
—|—€352GW[H2,H1} —|—€353GW[H1] cee (54)

where 6"G,,[H| contains n powers of H,, and its deriv-
atives. Now note that derivatives with respect to t are
suppressed by a factor of ¢ compared to derivatives with
respect to X“. Hence,

*These overall factors are not of practical relevance, but they
do mean that in the limit ¢ — 0 in these coordinates, the metric
becomes one-dimensional, similar to the behavior of the metric in
the post-Newtonian limit. If a regular limit is desired, it can be
obtained by rescaling time as well, such that t = (t—1,)/e, and
then introducing a conformally rescaled metric Q/w = el—zg/w, as
was done by D’Eath [32] and later by Gralla and Wald [8]. In that
approach, the inner expansion zooms in not only on a small
region around the object, but also on a small interval of time.

PHYSICAL REVIEW D 95, 104056 (2017)

G, = €2(GY) +eGlY) +e2G), (55)
5G,, = e2(5GY) + es'GlY) + &258GP),  (56)

where the overall factors of ¢

X = X/e, and G,&'L) and 5"G,<jf,> contain n derivatives with

respect to t. Picking off coefficients of €¢" in Eq. (54)
therefore leads to a sequence of linear equations for the
perturbations H/,

=2 result from the rescaling

Gi [9°] = 0, (57)
SGWH'] = — G [¢°™], (58)
8Gyu [H?] = ~5°Gyi)[H') = 6Gyu) [H']

-G g™, (59)

5GW |HY) = —8°Gly |H'| — 8G\) [H', H]

_ 52G£3) [HZ,HI] _ 52GLL) [Hl]
— 6G)[H'] - 6G\Y) [H?). (60)

Equating explicit powers of € in this way, despite the implicit
€ dependence contained in functions of t, applies the same
rules as were used in the reexpansion of the outer expansion
in the buffer region: implicit functional dependences on y are
held fixed during the expansion procedure, while quantities
with explict powers of €, such as the acceleration terms in the
outer expansion, are not. The dependence on t will be
determined by the matching procedure and by the time
derivatives in Egs. (57)—(60); while each of these is a linear
equation for a given Hj,, it is also an equation for the time
evolution of lower-order terms.

B. General solution in the buffer region

In most self-force derivations using matched asymptotlc
expansions, authors take the inner background g,w to be the
spacetime of a Schwarzschild black hole, and they construct
the perturbations from the tidal moments of the “external”
gravitational field (which implicitly includes some piece of
h,,, to be determined through matching to the outer
expansion). Here I will do likewise, but I stress that there
is no loss of generality in doing so: I am only interested in the
solution in the buffer region, where the tidally perturbed
Schwarzschild metric describes the spacetime outside any
nearly spherical, nearly static, compact object.

Before presenting the metric, I review its derivation, with
an eye toward its generality. First, I specialize to an object that
is approximately spherical. Specifically, I impose that all the

[ > 0 moments of the background metnc g,w vanish, such

that in the exterior of the object, g, L, is the Schwarzschild
metric in mass-centered coordinates. In principle, because
the background metric is only required to satisfy the
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time-independent Eq. (57), the mass of gﬁf,’l could be allowed
to depend on t. However, we already know that this mass is
equal to the parameter m in the outer expansion, and so we
can appeal to the previous result that m is constant in time; or
we can establish that the mass is constant directly from
Eq. (58) [47]. Intuitively, this follows from the fact that there
is nothing to source a growth in the mass.

With G\ [¢°%] = 0in Eq. (58), the first-order perturbation
H }w is left to satisfy the time-independent linearized vacuum

equation 6G,(3) [H'] =0 on a Schwarzschild background.

From Eq. (6), we also require H }w to be no more than linear in
r at large T. A linear term ~er would have to match an e-
independent term ~¢°r in the outer expansion, but the only
such term is the zeroth-order acceleration term f9x’ in ° >
which we know to vanish. As with the time independence of
m, this is also easily established entirely within the inner
expansion: The well-known linear-in-f solution [48,49] is
time dependent, with the acceleration coefficient correspond-
ing to the second time derivative of a mass dipole moment.
Because of its time dependence, this fails to satisfy Eq. (58)
(and in any case, we would demand that it vanish because of
its inclusion of a mass dipole moment). More generally, for
stationary solutions that grow no faster than r, standard results
[48,50] show that the only invariant content of the perturba-
tion consists of corrections to the background moments. The
mass can be straightforwardly found to be constant from
Eqg. (59), in the same manner as m can be from Eq. (58), and
then absorbed into m. Again keeping the object spherical, I set
all higher moments to zero. At higher order, effects such as
tidal heating and torquing [51] will force the moments to
become time dependent, preventing us from making this
choice, but that complication does not arise at the orders
considered here. (Though we could also straightforwardly
relax this choice without affecting our results; see footnotes)
We hence have H}, = 0.

>We could relax this condition to instead only specify that gﬁ},’j ’s

spin, mass dipole moment, and quadrupole moments vanish. These
moments are the only ones that would affect the acceleration at the
orders of interest. The spin would couple to the tidal moment 3, to
generate an acceleration term of the form ~e’aX' in €’HZ,
corresponding to a first-order acceleration term ~ea;X' that would
appear in €' gy 1n the outer expansion. Similarly, the quadrupole
moments would couple to the tidal moments &£,,. and B,,. to
generate an acceleration term in 3 H ,3”, corresponding to a second-
order acceleration term in ezzgm_ The spin-induced force is the
standard Papapetrou spin force, rederived in self-force contexts in
Refs. [8,9,52]. The quadrupole-induced forces, although not yet
derived consistently within the type of perturbative expansion used
here, can be expected to agree with the test-body-type forces derived
in various contexts by, e.g., Dixon [53], Thorne and Hartle [34], and
Harte [10]. Any moments in gﬁlﬁj higher than quadrupolar would
impact the outer expansion at too high an order to be relevant in the
present analysis. Analogously, though H ,lw can include corrections
to the moments, the only relevant one would be the spin; and in

H l’jj I not even a correction to the spin would be relevant.
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At second order, we again arrive at a time-independent
linearized vacuum equation, 6G,(4?,) [H?] = 0. From Eq. (6),
H,zw can now grow as I?. Again referring to standard results,
we find that the invariant content in a solution with this
behavior is purely quadrupolar, with even- and odd-parity
pieces. We can write these pieces in terms of two rank-2 STF
tensors, and matching to the outer expansion dictates that
they be the tidal moments £, and B,;,; see Ref. [47] for a
first-principles construction. In addition, Hﬁy once again
contains gauge solutions and corrections to the object’s
intrinsic moments, and I again freely set them to zero.

At third order, the perturbtion wa must satisfy Eq. (60),
which now becomes the time-independent inhomogeneous
equation 5G\0) [H3] = —5G\)) [H?]. From Eq. (6), H;, can
now grow as I°, and standard results show that this behavior
corresponds to a purely octupolar perturbation. This can be
written in terms of two rank-3 STF tensors, which matching
will dictate to be the tidal moments & ;. and B,,.. We also
have both homogeneous and inhomogeneous quadrupolar
solutions. I write the former in terms of STF tensors 6&,
and 61, that represent corrections to g,,’s tidal moments.

The latter will be written in terms of time derivatives é’ab

and Ba,,. I once again freely set all other solutions to zero.
None of the above has any dependence on the nature of the
object, except insofar as it is sufficiently spherical. Hence, I
can freely take as my solution the metric of a tidally perturbed
black hole, which has exactly the form just described. In
Ref. [54], Poisson provides such a metric in a convenient
form. It is written in advanced Eddington-Finkelstein coor-
dinates (v, x?), in which the background metric reads

98 = na, (61b)
g;gj = Oap — Naps (61C)

where f := 1 — 2m/T. Poisson’s metric was originally given
in spherical polar coordinates; here I have converted to
Cartesian coordinates X2 in the standard Euclidean way.
Like in Fermi coordinates, n? = ? = % and Sgpn?n® = 1.

The perturbations are written in a light-cone gauge,
which sets Hl, = 0, or in the Cartesian coordinates used
here, H,n? = 0. This gauge choice preserves the geomet-
rical meaning of the advanced coordinates in the perturbed
spacetime: V is constant on each ingoing light cone, T is an
affine parameter on ingoing light rays, and n? labels each
ray’s direction. In this gauge, the perturbations are given by

H}w =0, (62)

H\ZN = —erlé’ijnij, (638.)
2.

Hjy=— 3 r2[64<5g - ”ac)gcd”d - b4€apq82npc]’ (63b)
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1. ) .
H, = ~3 Ple7(2Eap — 4Ei(anp)’ + Eijnap’

+5abgijnij) - 2b7€pq(a(5cb) - ncb))ang], (630)

and

1. - . - .
H\’J;V = g r3<€2€iji’l” - e35ijkn”k) - rzelﬁé’ijn’/, (643)

1 -4
2 le6 (05 — nac)gcdi"dI - §b6€aquzdand]}

2.
-3 e4(85 — na°)0Ecqn® — byeapqdBanPe], (64b)

~[5 . . S N

H;b = r3{ﬁ [38(2gab - 4gi(al’lb)l + Eijnab”
+ 5abgijl’lij) - 2b8€pq(a<ég) - I’lcb))l’lpBg]

1 . ;

~¢ [e9(2E abk — 4Ekialtp)’ + Eijetap”

- 8
+ 5abgijkn”)nk - g b9€pq(a (53)

' 1. )
- I’lcb))np]ng}} — g r2 [67 (25‘€ab - 455i(al’lb)l

+ 6Ejnap) + SapSEn')
—2b7€pq(a(6%) — 1%))nPSBY), (64c)
where e;(r) and b;(T) are given in Appendix C. In addition
to rewriting Poisson’s metric in Cartesian coordinates, I
have added the solution involving 6&,, and 6B,,; these
would otherwise be absorbed into the moments in H,zw,
which would then no longer equal the moments &, and
Bab of G-

The coefficients e;(r) and b;(T) all goto 1 att — oo, and
the numerical normalizations of the solutions ensure that in
that limit, the metric reduces to that of a generic vacuum
spacetime in local advanced coordinates centered on some
worldline [55]. However, it reduces to Ogm,, not to g,,; as
anticipated in Sec. II, the inner expansion automatically
expands the acceleration. But our gauge choices have
eliminated all acceleration terms from the perturbations,
and we can see by inspection that the object is manifestly at
rest at the origin of the coordinate system. Hence, we have
found a solution in a rest gauge, as desired. This rest-gauge
form of the metric makes clear that locally, the object is
only perturbed by tidal fields (through order €?). Matching
to the outer expansion in the Lorenz gauge will reveal the
origin of these tidal fields. With the chosen normalization
of the solutions, &, By, Eape» and B, will trivially agree
with the tidal moments of g,,. The subleading moments
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o6& 4, and 61,,;, will be found to be intimately related to the
regular field AY!, and &, + €5E,;, and B,;, + €5B,,;, will be
nearly (but not identically) the tidal moments of the
“external” effective metric g, + ehk; .

I remind the reader that I do not take the metric in
Egs. (61)—(64) to be valid for all I. I only take it to be valid
once it has been reexpanded for large T (or equivalently, for
small e at fixed r); once in that expanded form, it is no
longer specific to a black hole, but instead describes the
spacetime around any object that is sufficiently spherical in
the sense described above. More concretely, the tidally
perturbed metric is only specific to a black hole because it
contains an event horizon and its construction has imposed
regularity on the horizon as a boundary condition. But the
horizon is irrelevant in the buffer region, and the horizon
regularity only serves to eliminate higher moments in the
perturbations, which in specializing to a spherical object, I
have set to zero in any case.

C. Preliminary transformation

At this stage we could rewrite the inner expansion in
terms of r=er and reexpand in € to obtain the outer
expansion (11). We could then seek the transformation to
the metric in the Lorenz gauge. However, we can also guess
part of that transformation in advance.

First, note that the coordinates of the inner expansion are
based on ingoing null geodesics, while the coordinates in
the outer expansion are based on spatial geodesics orthogo-
nal to the worldline. Hence, the transformation must
account for this difference. This implies that in the m —
0 limit, the transformation will have to reduce to the one
between advanced local coordinates centered on y and
Fermi-Walker coordinates. That transformation, which can
be obtained following the method in Sec. 13 of Ref. [5], is
given by

V=t+r+ Av, (65a)

X4 = x* + Axg, (65Db)
where

1 T y
A :_6r3gijnlj —ﬁr4(5ij”"+5ijk”ljk) +0(r),  (66)

and
Ax§=1r (l E4n' — lBibeajb""j) + r (iéai"i
6 3 18
n % €0, mi — é Bitet il + % £
- éBi/’beakb"Uk> +0(r). (67)

The radial functions are related as r = r + Arg, with
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1

6}’35,-]-11” +—r4(25,-jn’-’ +(c/‘ijk7’lljk) + O(rs). (68)

Ar, =
70 24

(In these formulas I have omitted acceleration terms.)

If we first reexpand our inner expansion in the buffer
region and then apply the above transformation, then the
zeroth-order term in the expansion (11) will correctly match
the background metric g,, (or more precisely, Ogm,) in
Fermi-Walker coordinates. But again, I opt to guess more
of the transformation. In the inner expansion, the back-
ground metric gﬁ',f] is expressed in ingoing Eddington-
Finkelstein coordinates, which when converted to an outer
expansion will yield h}l; = 27’" 0,6, In the Lorenz gauge, on
the other hand, we have h), =225, + O(°) in Fermi-
Walker coordinates. To match that form, we can change to
coordinates in which got = a5, +O(1/F). One way of
accomplishing that is by transforming to harmonic coor-
dinates, using

V= t+e[7’+m+2mln<r2_ m)] (69a)

m
X4 =X+ mn*, (69b)

with = 7 + m. This transformation would put the inner
background in the form

gl =~ (70a)
gz =0, (70b)

ggbg = (1+m/?)2(5&l~,—n&l;)—|—f‘lnw~,, (70¢)

where f = 1-2m/t = =2,

+m

To combine the transformations (65) and (69), I consider
a small change in Eq. (69), leading to

Ar
Av:At+Ar+2mf‘lT, (71)

AX? Ar

Ax? = AX* —m + mn® - (72)

I then define a gauge vector with components & = At +
2mf~'A and &= Ax9,  with  Ar = Ay, — Ar,
Ax* = Ax§, and Ar = Ary, and with Av,, Axg, and Ar
given by Egs. (66)-(68) with r replaced by r; at the end, all
quantities are then expressed in terms of the scaled
coordinates. This construction may (rightly) be deemed
to be adhoc, but since any worldline-preserving trans-
formation can be chosen, the choice is ultimately imma-
terial; in practice, the results of this choice are marginally
simpler than some other alternatives, such as simply using
Egs. (66)-(68) as the gauge transformation.
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Concretely, I perform the background transformation
(69) in conjunction with a gauge transformation

¢H, + €H;, — ¢H%, + € H;, + Legos), where & =
& + ¢*é, is given by

1. | - .
ég = - g I’35ijn” + gmf_l r2(€ijnl‘], (73)

~ - (1 | .
& =r0-m/r) (gé’”in’ —gBike"jkn”>
1

+ 3 mr2E;;n®, (74)
and
. . 1 y
Sh=- §r4€,-jn’-/ - Er‘*gijknuk
+11—2mf—1f3(2£’l_jnij + Ejent), (75)

& =mpr (%Eijn“ij + igijkn“"jk)
(1 —m/) <ié’“-n" g — LBk
18 247 Y 97"/
+igunaij —lBﬁeakbniﬂ‘) (76)
36 Y 9 ’

with T =7+ m. Note that the gauge vectors begin one
order higher than their effects, because the x* derivatives
in L:gg;(:l;] reduce the order by 1. Also note that after
performing the background transformation, functions of v
need to be expanded around their values at 7. Finally,
note that the transformation is worldline preserving:
because it contains no order-e or €* pieces, it trivially
preserves the condition H /ﬂ,, =0, and therefore pre-
serves oM; = 0.

After performing the transformation, I convert to the
unscaled coordinate r = €7 and reexpand for small €. For
example,

obj r—m
= - 77
9 7t m ( a)
__r—em (77b)
r+em
2em  2e*m?
=-14+—- 2 + O(&%). (77¢)

The end result is a new expression for the metric in the
outer expansion in the buffer region,

O = G + eh/ﬂ; + ezhﬁ; + O(e%), (78)
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where g, = 0 9w 18 given by Eq. (43), and the perturbations
are

2m

, 5 . .« . .
h}l‘ — T + gmrg‘”ﬁm» + r2 <2m5alﬁai - 55alﬁgi

7 .
+ Emé’“’/flaij> +O(r), (79a)

.2 o .
hia = —gmr(gab”b + BYeyiy') + r ( mé& "

13 ., 2 S
+3 mB" e, — g(szs’bfem. i + 15 ME ;A

1 2
+1_8m5blnabz _§mB ljeab nljk) + O( )’ (79b)

. 2mé 2
Bl = M0b |y Eu,,+ 5(
r

9. . A
45 _?5Ld5abncd

1 .
ECdnabcd> —|—§r2 <16m5ab _5€ab
141 74 . ..
+§m5abcn‘—?m8<ad€b)cdn +655(a }’lb)c
—35(€Cd5 bﬁcd—i—SmSCdéabﬁ d—SmBC(aieb)d,»ﬁCd
+14mé&, cdpy

53
_ngCdléahncdz +— mg cdif a/ndl) +O( )’ (79(:)

Ld+mB €c(a' Mp)di

and
’ 2m 4 ai 5 ai 7
h%t:—7—§m25 a,+mr(355 nai
20 1 .
=5 mE ", zmg“’fﬁaif> +0(P).  (80a)
o/ 2 bi bi
i = =1 m(6€ A" — 5B eqiy) — 108" )

1 . 2 31 . )
+ mr<§ mgabﬁb - §55abﬁb + EmeleaijﬁbJ
2 ) .8 13 .,
- géBhleaijﬁbJ ?mgabl,\hl _5mgblﬁabi
4 Biie ki 1 Shiij
+§m €ap Niji T 75 ME" Napij

+ O(r?), (80b)
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m2(48, + fgp) 68
2y 3%b ab _ Y nc
hab_—r2 +m <455ah 5 B
136 . 29
+ 51 EaMpye — ﬁg Sapfeq 35 Rapea
) 2 256 .
+ 4BCd€C(alﬁb)di) + mr<—55ab +—45 mgab
68 70 88
35 —m& i€ —mB eb call® + —55
32 . R 208 < N
— _mg - ?5€Cd5abl’lcd + amg déabncd
208 41
63 mB 617 d,nCd + Emg nb)cd
10 16
a ﬁmgc léabncdt + 55 Rabed = ‘S‘CdAabcd
8 cdz j 1
+ = 9 mB a’ Mbyaij — §m5 nabcdl

20 . .
+— mBCdec(a’ﬁb)

5 (80c¢)

di) + O(r?).

This is the final form of the metric in the rest gauge. It has
several important properties, already mentioned in the
previous section, but reiterated here for emphasis. First,
there is no explicit appearance of the regular field; it has
been entirely bundled into the tidal moments 6&;; and 65;;.
Next, there is no mass dipole moment term ~M;n'/r? in
hﬁ,,, and although I do not display hﬂy, there is no dipole
moment term M;n'/r? in it either, as such a moment could
only come from the expansion of H ,'w. Hence, the object is
mass-centered on y. Finally, there is no acceleration term
~a;x" in either the background or the perturbations. This
tells us that the object is not only centered on y, but also at
rest there; since the expansion here is around Ogﬂy rather
than g,,, one can imagine that in an expansion around g,,,,
the perturbations h}w and hﬁv in this gauge would contain
terms +2f}x'u,u, and +2f7x'u,u, that exactly cancel the
acceleration term —2a;x’ Uy, in g,,.

As we shall see in the next section, the transformation to
the Lorenz gauge unspools the regular field throughout the
metric, determines how it relates to the tidal moments 6&;;
and 613;;, and most importantly, determines in which piece
of the Lorenz-gauge metric the motion is geodesic.

IV. TRANSFORMATION FROM REST
GAUGE TO LORENZ GAUGE

With the metric determined in both the Lorenz gauge and
the rest gauge, we are now in a position to find the
transformation between them—and thereby determine
the acceleration of y in the Lorenz gauge. The two metrics
already agree at leading order, implying that the perturba-
tions must be related by a gauge transformation. In the rest
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gauge, the first- and second-order perturbations h},;, and hﬁ;
are given in Eqgs. (79) and (80). In the Lorenz gauge, the

first- and second-order perturbations hﬁ and hﬁ; are given
in Egs. (48) and (49).

A. Form of transformation

Under a gauge transformation generated by a small
vector &, a metric g, can be expanded along the flow
lines of & as

1
gm/ _)gyu+£§gﬂy+§£§g/4v+"" (81)

Substituting & = €& + €& + - - - and 9w = 9w + eh), +
ezhﬁ,, + --- yields a transformation law for each of the
perturbations:

hz;jnew _ hEbOld + Ahﬁw (82)
where
Ahyy, = Le g (83)
1 0
Al’llzw = Efzgﬂl/ + Eﬁé g’w + £§1 hllw ld. (84)

In a chart, the gauge vectors & and & correspond to the
coordinate transformation (12) [56].

A transformation from the rest gauge to the Lorenz
gauge must therefore satisfy

!

= i+ L2 (85)

!

1 ,
hﬁz = h;zw + [’ézog;w + 5[’4%1 Og;w + [’51 hflw‘ (86)

I will solve these equations for &, order by order in r.
However, ensuring that the transformation is worldline
preserving requires that we also consider the transformation
of the third-order field; recall that a subleading dipole
moment would appear as a term of the form e*M;n'/r* in
the outer expansion. The transformation of the third-order
perturbation is easily derived by adding the next term,
¢£19,,, to Eq. (81). The result is

1 1
Al = Lo u +5 (Lo Loy + Lo, Lo )G + 5 L2 G
1
+ S LR+ Loy + Lo ™. (87)

To keep the object centered on y, I demand that the gauge
transformation not induce a dipole term of the form
SM:n'/r* in Ah3, (equivalently, if one converts the trans-
formation to scaled coordinates x* = x“/¢, I demand that
no §M;n' /i term appear in AH,). But I do not otherwise
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seek to control the gauge of the third-order perturbation,
leaving it in the form £, + Ak, with & = 0.
To solve Egs. (85) and (86) I assume an expansion

g= Y S (et (88)

p=—n+1 q,1>0

where éfl'zp ) is STF in the indices L, and I assume that for
a given p, there exists a finite maximum ¢. As with the

metric perturbations, I abbreviate /7 as &) The
expansion (88) might not be the most general gauge vector
possible, but it is likely the most general transformation that
preserves the form (26) of the metric perturbations. In terms
of this expansion, the worldline-preserving condition (13)
becomes

(n,0)

fa = 0. (89)

The transformation (88) will be found to be unique if and
only if this condition is imposed, and this condition will
suffice to preserve the center-of-mass condition 6M; = 0.

Finding £ now reduces to a straightforward procedure of
substituting the expansion (88) into Eqgs. (85) and (86) and

finding the coefficients £477). At each order in r, &7 is

found by decomposing the equation into coefficients of the
STF tensors 7. Because these tensors A’ form an
orthogonal basis, from an equation of the form
S apyit =3 bpyit", one can equate apyy with
bp(ry- Even after equating coefficients of Ak, it is some-

times nontrivial to solve for the tensors £/+”%) since they

can be contracted with other tensors. In those instances, it is
necessary to take a final step of writing ap;) and bp(;) in
irreducible form, using Egs. (A3) and (AS). Since the
decomposition into irreducible pieces is again unique, one
can equate the terms in the decomposition of ap;;, with
those in the decomposition of bp;). To facilitate this

process, I use Eq. (A3) to write &7 itself in the
irreducible form

A

i =T+ e ALY

+ 8,0, P, (90)

where T(L"ﬂ’q), ArD - and §("749) are STF tensors. In
terms of this decomposition, the condition (89)
becomes T = 0.

The main result of the calculation is that the metrics in
the two gauges are related by a worldline-preserving gauge
transformation if and only if the forces f{ and f4 satisfy
Egs. (40) and (99). To understand how this comes about,
consider the order-r, / =1 piece of the ## component of
Eq. (85). The left-hand side reads simply *ARLx’ — 21!,
and when the worldline-preserving condition is imposed on
the right-hand side, this piece of Eq. (85) becomes an

104056-16



NONLINEAR GRAVITATIONAL SELF-FORCE: SECOND- ...

equation for f}. Analogously, the order-r, [ = 1 piece of the
tt component of Eq. (86) becomes an equation for f7. In a
similar manner, the calculation yields formulas for the tidal
moments 6&,, and 85,,; these expressions for 6&,, and
0B, although derived in Ref. [25], appear here explicitly
for the first time.

B. Transformation at first order

I first consider the solution to Eq. (85). The worldline-
preserving order-e transformation satisfying this equation is
given in Eq. (D1). It has been simplified using the gauge
conditions (51). Since each step of the calculation is
straightforward (if lengthy), I will omit most of the details
and instead describe, order by order in r, the effect of the
transformation and its implications.

1. Order 1/r
Because of the preliminary transformation in Sec. III C, the
1/r terms in Egs. (79) and (27) agree. This determines that
£y = 0for p < 0,and &;"" = 0 forall I > 0 forany g;

él(llLO ‘) are involved at this order, because d,Inr ~9d,ni~

1/r. Hence, we have &, = &' () + O(rInr). & will
eventually be set to zero due to the condition (89), but for the
moment I leave it arbitrary to better illustrate its role.

2. Order r°
The metn'c (79) in the rest gauge contains no terms of
order r°, while the metric (48) contains terms at this order
comprising /iy, |y The transformation hence serves to
introduce the regular field on the worldline. Specifically,

the order- term in Eq. (D1) introduces Aj'|, (:= A00),
and the nonintegral order-r terms introduce A/ |, (:= ( (1’0))

and hY)|, (=96, LRI04 H ) Of these effects, the
transformation &} = 5 L dz‘h}{,1 is especially significant: it
is an adjustment of the proper time along the worldline,
telling us that the proper time in the black hole’s rest frame
is the proper time in the metric g,, + ehﬂ,,, the quantity
;th in the integrand of the transformation is the Detweiler
redshift [57], which has played an important role in
interfacing self-force with post-Newtonian theory [16]
and has recently been computed for the first time in
numerical relativity [18].

At this stage, the antisymmetric piece of .f

in the vector Al(»1 1), is undetermined, and the vector éfll’m

remains arbitrary. Each of these quantities will carry a
dynamical meaning.

encoded

3. Order r

At order r, the metric (79) in the rest gauge contains
terms of the form m&,;, and mB,,,. The metric (48) contains
terms of this form, but in addition it contains terms ~hy) ,
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and an explicit appearance of the first-order acceleration f{
(via 'g,,). The order-r piece of the transformation brings
the m&,;, and mB,;, terms into agreement and introduces
the ~Ohy) |, terms into the metric. Most significantly, at this

order, the vectors A( and 5511’0) are determined.

The A( " term in the transformation appears as the
integral in the order-r piece of Eq. (D1b), which can be
written as [ dtd hl;]'t x?. This indicates that the rest frame of

the object rotates relative to the Fermi-Walker frame (which
is parallel-propagated with respect to g,, along y).

Finally, one finds that the vector 5((11’0) must satisfy

1
G =8 + fh =50 M5 + O KEL (9n)

where the derivatives of the regular field are evaluated at

r = 0. Given the worldline-preserving condition 52‘ 0 — 0,
this equation yields the standard formula (40) for the first-
order self-force. It is worth mentioning that Eq. (91) can be
derived in only a few lines of calculation. As stated in the
opening of this section, we know in advance which piece of
Eq. (85) determines f9: the order-r, [ = 1 piece of the ¢
component. That piece of Eq. (85) is easily found to be

2(E" + & . (92)

(0. " = 2f o) x* =

&5;’” is determined from the order-r°, I = 0 piece of the ta
component of Eq. (85), which reads °hR! = 553’0’ - fgzlz'”

Solving for gEJ” and substituting this into Eq. (92)
returns Eq. (91).

If we had not imposed the worldhne preservmg con-
dition, then the gauge vector 5,1 0 , via the £§ w term in

Eq. (86), would produce a term Ah?% = % in the

second-order field, corresponding to a mass dipole moment

M, = -mé"Y . Equation (91) would then tell us how the
object’s Lorenz-gauge center of mass moves relative to a
nearby worldline with arbitrary acceleration f{ (refer to
Ref. [9] for a discussion). But since M, has been set to zero
in both the rest gauge and the Lorenz gauge, Eq. (86) can

only be satisfied if 59’0) = 0. That is, as was anticipated in
the Introduction, even though the equation of motion (91) is
a consequence of the second-order field equations in the
outer expansion, knowing that M, = 0 in the second-order
field allows us to obtain that equation of motion without
performing any (nontrivial) second-order computations.
Appendix E makes some additional comments on the
ramifications of this fact.

4. Order r*

At order r?, both the rest- -gauge metric (79) and the

Lorenz-gauge metric (48) contain mc‘:ab, mBab, mé& gpe, and
mB,p, terms. The order-r> terms in 5/14 bring these terms
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into agreement. More significantly, the rest-gauge metric
contains 6€,, and 65, terms, while the Lorenz-gauge
metric contains O9hY, terms. The transformation partially
serves to introduce the JOhy,) terms into the metric, but the
transformation is only possible if, as anticipated in Sec. 111,
o€, and 0B, are closely related to the tidal moments of
h}}vl. Specifically, one finds that the metrics can be matched
if and only if € ,;, and 613,,,, are related to DOhR and m€& and
mbB by

1
58(117 - —th

8 . .
=5 Mitan) T hii'Eap + Emgab = &My

+2STF,, &, / Iyt + Mifa s

1. 1
+§gab hgldl‘——]’lRl

2 (ab),tt (93)

13 . iy
(SBab = FmBab + STFabeaUh?[,l’b]j - hg-lé'j(aeb)”

1 y . 1
-3 B, 8R! + 2STF,, B, / hﬁé,q +5 B,,h}!

1.
+§Ba,,

hRldt. (94)
I omit the implied left-superscript O on all regular-
field terms.

The meaning of these results is not especially trans-
parent. However, we can make it clearer by noting two
simplifications. First, all the d9hY,) terms in Eq. (93) can be
written as OR,;,[AR!], and all those in Eq. (94) as
1€P1,5R ), pg[AR'], Where

SRapyslh] = MuaR piys = Myjapis + hoiwpy — (95)
is the linearized Riemann tensor associated with a pertur-
bation h,,. Next, all the terms involving zeroth or first
derivatives of 4%} in Eq. (93) can be written as —(L¢, R) ;s
and those in Eq. (94) as —%qu(a(ﬁgl R)p)ipq- Noting that
Le: Ropys = 0Ryp,5(Le 9], we obtain the much simpler
formulas

8 .
5511!) = 5Rtatb [th - ££lg] + gm“:ab’ (96)

1 13 .
5Bab = Eepq(a(SRb)tpq[th - ﬁglg] + FmBab. (97)

Equations (96) and (97) almost have a simple interpre-
tation: 6&,;, and 68, are almost the tidal moments of the

regular field /13, up to gauge. But due to the presence of the

méab and mBab terms, these interpretations are not quite
correct. This tells us that we cannot always safely interpret
the effective metric g, + h}}y as the “external” metric that
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the object feels. In particular, the tidal quantities defined in
Refs. [41,42], which are computed from AY} alone, cannot
always be associated with the tidal moments that appear in
the metric of a tidally perturbed black hole or material body
(see Refs. [58,59] and references therein for a review of
such metrics). This likely stems from there being some

degree of ambiguity in the split between (Eab,Bab) and
(6E 4p, 6B,p); as one can see in Eq. (79), they ultimately
appear in similar ways in the second-order metric pertur-

bation. In fact, by making the redefinitions 6&,, — 6€,;, —

%mé’ab and 68,;, — 6B, — %mBab, we would ensure that
6 ., and 6B, precisely correspond to the moments of h}f)
(up to gauge). Indeed, in Ref. [26], Gralla defines his
regular field such that this is true. However, since he does
not show that his first-order regular field agrees with the
Detweiler-Whiting field (while the one I use here does at
least through order r?), it is not clear whether it is his
regular field or his tidal moments that differ from the ones
used here.

Besides this ambiguity in the definitions of tidal
moments, the above results point to a limitation in the
typical construction of metrics of tidally perturbed objects.
Equations (93) and (94) show that these metrics are
generically nonuniform in time. For example, imagine that
the small object moves on a quasicircular orbit around a
much larger black hole. Then A} and its derivatives are
approximately constant in time, and the tidal moments
defined in the object’s rest gauge grow approximately
linearly with time. Therefore, a single inner expansion of
this sort is unlikely to serve well on long time scales in a
binary inspiral. Since the growth is a natural effect of the
growing mismatch between the object’s rest frame and the
background Fermi-Walker frame, one should construct a
new rest gauge every so often, effectively resetting the
frame’s clocks and gyroscopes.

C. Transformation at second order

Solving the second-order Eq. (86) proceeds in the same
way as at first order, and Eq. (D2) gives the final result for
the worldline-preserving order-¢* transformation.

1. Order 1/r*

Unlike at first order, the leading terms in the second-
order perturbations (80) and (49) do not agree. The m?/r
term in Eq. (D2b) brings them into agreement. Note that
although the leading-order terms superficially appear to
lack spherical symmetry, this is an artifact of using
Cartesian coordinates: in terms of tensor harmonics, they
are purely / = 0. This can be seen either from using the
irreducible STF decomposition in Ref. [44] or by con-
verting to polar coordinates (t,r,64) using h2, = h2,n,

9x® 9xb

2y = Mo 85, 80y 95 25 = r7Q,p (Where Q5 is the metric

on the unit two-sphere), and 7, (‘% = 0. At order 1/7%, the
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mixed terms h2, and h2, vanish, 42, is independent of 64,
and h?, is proportional to Q5. Similarly, the gauge vector

corresponds to a monopolar radial transformation
r—r—=¢, with & = &n,.
2. Order 1/r

The rest-gauge metric (80) contains no terms at order
1/r. The Lorenz-gauge metric (49), on the other hand,
contains terms of the form mhY} in both AR and A% Some
terms of that form arise from the first-order transformation,
by virtue of the L. h/LL term in Eq. (85), but additional
terms are required in 5;2,. These appear as the order-r” terms
in Eq. (D2).

3. Order 1°

At order r°, the rest-gauge metric (80) and Lorenz-gauge
metric (49) both contain terms of the form m?&,, and
m?B,,, while the Lorenz-gauge metric in addition contains
hR2 and mOhR!, the latter through A58 as well as 'h},. &
brings the m?E,, and m>B,;, terms into agreement, intro-
duces h}}f exactly as at first order, and further introduces the
mah}fy‘ terms. It also serves to remove terms of the form

(hy)? that appear via £ g, in Eq. (86).

4. Order r

Finally, at order r, Eq. (86) determines the second-order
force f4. This result follows from the ¢ component of
Eq. (86), and I do not seek to solve the remaining

components of the equation, leaving one piece of 553’”

and all of 5,(,2‘2) undetermined.
The equation for f4 comes in the same form as Eq. (91):

as a differential equation satisfied by the translation 5512‘0). It
reads

. 1
800 = =8/ + o= 5 0uCHE? + IR

FOCHE 4 W)+ OSEORY, (98)
where all quantities are evaluated at r = 0. As at first order,
this equation is specifically the order-r, [ = 1 piece of the #¢
component of Eq. (86); though unlike at first order,
explicitly evaluating that piece to arrive at the above
equation is nontrivial, complicated as it is by the L h}t;
term in Eq. (86) and the presence of negative powers of r
in £,

Just as at first order, I now impose the worldline-
preserving condition 55,2’(” = 0. This prevents a mass dipole
moment M’ from appearing via the Eézh,l,;f)ld term in
Eq. (87). We can directly confirm that the entirety of the
gauge transformation then leaves M’ = 0. One way of
doing this is by substituting the explicit results for & and &
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into Eq. (87), but a more efficient way is by converting to
scaled coordinates x“ and computing AH}“,. Because x*¢
derivatives lower the power of € by 1, AH ;,U gets con-
tributions from both the linear- and quadratic-in-¢ pieces of
the scaled transformation. The powers of ¢ in the trans-
formation & (7) = €& (F) + €*&(¥) can be obtained by
adding p to n in Eq. (88). Referring to Egs. (D1) and (D2),
we find &} = P& o)+ 18y and & =T | ni+
70(5’(‘2_0) + fléﬁo)n,-), with &f, o) = 5?2,0)_ = 0. The coefficient
of the order-e piece of Eggﬁ];] has components
% bj | A%t obj %t obj
AHY, = Boagi? +28 g, AHY, =B,
AH!, = Ed:.g + 255_@9(;}% , where I have omitted van-
ishing ¢ derivatives. It is now easy to see that AH }‘w contains
only even values of [, and so in particular, no terms
with [ = 1.
So, confidently imposing gﬁf’(’) = 0, we find that Eq. (98)
becomes

and

1 1
12 = 30,0 — DN + 30, 0! 0, HE)

1
_ iatohgloh?[)' (99)

One can verify that this is equivalent to Eq. (16) of Ref. [25]
using Egs. (B9a), (B9b), and (B10a) (with AR'|, = A0,
R, = &M and ARL[, = AL,

With this, we have found the first two terms in the
acceleration a@* = ef!| + €*f5 + O(¢?). Summing the two
terms, we find that the result can be written in the compact
covariant form

R 6,4
—hd;p)u u

1 » Rp
a' =— EP’w(gu/ - hl// )(21’1/}}0;2

+ O(€?), (100)
where /R, = ehR! 4 e2hR2. If g0t had spin and quadrupole
moments, then this equation would be expected to include
the standard test-body-type quadrupole forces [10,34,53] as
well as a correction to the Papapetrou spin force. We may
be able to correctly extract those forces from Harte’s fully
nonlinear equations [10], though it is unclear whether the
moments he defines would correspond to the ones defined
from matched expansions.

V. GEODESIC MOTION IN AN
EFFECTIVE SPACETIME

I opened this paper by promising that the second-order
equation of motion was equivalent to the second-order
geodesic equation in a meaningful effective metric. In this
section, I show that Eq. (100) is in fact equivalent to the
geodesic equations in g,, + ehl, + €*hRZ.
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An appropriate expansion of the geodesic equation can
be found in Sec. I1I. A. 1 of Ref. [40], but I reproduce it here
for the reader’s convenience. In a metric g, = g,, + h,,
the geodesic equation reads % + gFf,',,Z”Zp = kz#, where A
is a potentially nonaffine parameter on the geodesic,

_ dzt

() are the geodesic’s coordinates, 7 = 7 is its tangent

vector field, 917, is the Christoffel symbol corresponding to
Ou. and k=%In /=g, uu”. If we take A=1
(= Fermi-Walker coordinate ), the proper time on y in
9 then the geodesic equation becomes

a' = — Chu*u’ + kut, (101)
where @# =2 and
G}, =1, -1, (102
1 ad
=59 (2hs(5) — pys) (103)

is the difference between the Christoffel symbols in the full
metric g, and in the background g,,. With 7 as a parameter,
k becomes

d /1= v
dr 1 hﬂl’u u

Kk="Y— (104)

V1= hyuu?

So far, Eq. (101) is exact. I now expand C;, and k in

powers of h,,, yielding

1
a* =— ) (g7 = h®) Ry (py) = hpy:s)uu?

1 1
~5 hﬂy;(;u“uﬂu}’u‘s ) hﬂbhﬂ},;gu”‘uﬂu”u‘su/‘u”

— hgu®a’u’ + O(h3). (105)
This equation is complicated by the fact that the accel-
eration appears on both sides in a nontrivial way. To
disentangle the acceleration from the perturbation, I assume
that @”, too, has an expansion in powers of &,

a' =df, +d ..+ Oh?),

qua

(106)

u

where ay is linear in h,, and ag,, is quadratic in it.

qua

Substituting this expansion into Eq. (105), one finds

1
aﬁn = — EPaé(Zhé(ﬂ;}’) — I/lﬂ},;(g)l/lﬂl/ly, (107)

1
“ﬁuad - EPWhéﬂ (2hs(p) — hﬂr;é)”ﬂ”y' (108)

Summing these yields the compact form
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1
at = _EP(lﬂ(gﬁ” - h(sﬂ)(ZI’l(s(ﬁ;y) - h/;y;(;)u/}uy

+O(h%). (109)

Comparing Eq. (109) to Eq. (100), we see that, up to
terms cubic in h,‘f,,, the second-order self-forced motion is,
as promised, identical to geodesic motion in the effective

metric g,, + hy,.

VI. MOTION IN ALTERNATIVE GAUGES

The equation of motion (100) is specific to the Lorenz
gauge, but in practice we may wish to work in other gauges.
In this section, I first describe how it applies in gauges
smoothly related to Lorenz. I then show, more promisingly,
how it applies in a highly regular gauge with a different
singularity structure than Lorenz.

A. Motion in gauges smoothly related to Lorenz

In Ref. [6], I described how to transform between
smoothly related gauges, given a specification, in the initial
gauge, of a singular-regular split for which the motion is
geodesic in g, + h}fy. I only briefly reiterate that prescrip-
tion here.

Consider a transformation away from Lorenz generated
by arbitrary smooth vectors & and &. At first order we
have h}w - h}w + L¢ g,- Since the transformation is
smooth, we can naturally assign its effect to the regular
field, such that in the new gauge we have

ARV = hRl + e g, (110)

WY = ). (1)
(Here primes denote perturbations in the new gauge, not
perturbations in the rest gauge as they did in previous
sections.) At second order we have 2, — h%, + Ah2,, with
Ah?, given by Eq. (84). This transformation includes a

singular term L, hﬁ,} but we can again assign the smooth

remainder to the regular field:

, 1
hf}g = ﬁfzgﬂy + Eﬁé gﬂv + ,Ca h’l}yl, (112)

W2 = h32 + L; hSl. (113)

With these transformation laws, the effective metric g, +
ehy) + €?hy? transforms as any ordinary smooth metric
would, thus ensuring that it remains a vacuum metric in the
new gauge. We also see that we can freely choose the gauge
of the regular field, while the form of the singular field is
dictated by (a) its form in the Lorenz gauge and (b) the
gauge of hR!" (through /52"s dependence on &). Because

uv

& is associated with i}, we can think of A5, like A3}, as
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being invariant under smooth transformations, while the
“singular times regular” pieces of the metric, A5% and hiy,
are altered by L¢ hS).

Here I consider a generic smooth transformation, not a
worldline-preserving one, meaning it alters the worldline as
well. Specifically, the coordinate description of the world-
line changes as any coordinates do®:

H — 7H — 6};’14 — €2 (fg — %§T8D§T> =+ 0(63). (114)

Now note that under a coordinate transformation, a
geodesic of a given metric remains a geodesic of that
metric, given that the metric transforms as an ordinary
tensor under that transformation. Since the regular fields
have been defined to transform as ordinary metric pertur-
bations, it follows that the transformed worldline is a
geodesic of the transformed effective metric. Hence, the
equation of motion (100) applies in all gauges smoothly
related to Lorenz, with the regular field defined to trans-
form according to Egs. (110) and (112).

B. Motion in a highly regular gauge

n the bulk of the paper, I have treated the Lorenz gauge
as the “practical gauge,” defining a regular field within it
and transforming from the rest gauge to it. The preceding
section extended the results to other gauges, but only those
that share the same singularity structure as the Lorenz
gauge (specifically, the same /;5). In this Sec. I will show
that there are more advantageous practical gauges, and I
will derive the equation of motion in them.

To see why superior choices of gauge exist, recall that, as
described in the Introduction, the most singular ~m"/r"
terms in the outer perturbations /y;, correspond to terms in

the inner background metric gz'ij. For a spherical object, g,‘jEJ
in the buffer region is simply the Schwarzschild metric.
Generically, it will contain all powers of m/r. But in light-
cone coordinates, such as are used in Eq. (61), the
Schwarzschild metric is linear in m/r. This has dramatic

e . . . obj
consequences: if we simply take the inner expansion g,,’ +
S €"H yw from Egs. (61)—(64) and reexpand it in the buffer
region, we obtain an outer expansion in a gauge that has
eliminated the most singular pieces of the metric. I now

®Because of this, the transformation laws (112) and (113), as
written, will introduce a mass dipole moment into hﬁf/, via the
term L h3). However, in the self-consistent approximation, the
metric perturbations are functionals of the worldline, and
Egs. (112) and (113) as written leave the metric in the new
gauge as functionals of the worldline in the old gauge. To make
them functionals of the new worldline, the perturbations 4J;, [z] on
the right-hand sides of the transformation laws should be
expanded around /j,,[7'], shifting the worldline on which the
singular field diverges and leading to additional terms in
Egs. (112) and (113). The additional term in Eq. (113) eliminates
the dipole moment. I refer the reader to Sec. IV B of Ref. [40] for
a detailed discussion.
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show how to transform to a class of practical gauges that
preserve this property. This has potentially significant
benefits, described in Sec. VII below.

1. Outer expansion in the light-cone rest gauge

Before proceeding to transform to the practical gauge, I
first present the explicit form of the outer expansion in the
original light-cone gauge. I begin with the inner metric of
Egs. (61)-(64), reexpand for small e at fixed r, and then apply
the transformation (65) from advanced coordinates to Fermi-
Walker coordinates. Unlike in Sec. III C, I do not combine
this with the transformation (69). The result is a new, light-
cone rest-gauge metric ’g,, + ehl, + ¢>h2,, similar in form
to (but less singular than) the one given in Eq. (78). Atthe first
few orders in r, the perturbations read

2m 11

hl :——I—?mré'ijﬁif—i-(?(rzlnr), (115a)
r

/ 22 -4 . .
h}a - _na + mr(E Ea,-n’ + gBCdeadiﬁcl + Zgijﬁal/)
r

+O(r*Inr), (115b)
’ 2m 22 8 A
hl, = — b + mr(E Eup — BB(Gdeb)cdnC
32 i 8 . . 1 o
* ig([l Mb)e 58 dec(a Np)ai + iaabncd(‘: d
1
+§50dﬁabcd> + 0(72 In r), (115(:)
and
/ i, 11 y 44 .,
hiy = ~Am*EnY + = mrd€ Al — m® {? g
ocl ~ 8 .
- &€ ln(2m/r)na. + §gct/ndj
+O(r*1nr), (116a)

/ 4 .
hlza = _B (68acﬁc + SBCdeadiﬁcl + lsgcdﬁacd)
22 .4 ) i,
+ mr(lségmnl + §5BL'd€adii’\lcl + 255ijflal*l>

acd™

+ mzr(?éac[ln(Zm/r) —2Jac

32
_Z¢£ ~cd
21
8 Be, 3 l10g(2 A, — B Bedie, i
+§ €qai[310g(2m/r) — 4]i, ~9 €ac’ Nyjj
4. .
+§€“’[12 In(2m/r) = 19]f0g — 25Cd’fzacd,->

+O(r*Inr), (116b)
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, 2
hib =

— _i (28B(ad€b)cdﬁ" + 485<aci’\lb)c - 25"d5ahﬁcd

. 22
- 7OBCd€c(alﬁb)di + 35£Cdﬁabcd) + mr(E 551117

8 d ~C 32 oz 8 cd i
- E(SB(a €b)cdn + aég(a nb)c - 568 €c(u nb)di
1. . L coedn
+ a‘sab”caﬁg‘d +3 55°d”abcd)
8 . 16
+ mzr{EEab[IZIH(Zm/r) - 31] - igabcﬁc
16 . 4 e
- EBW eb)ch In(2m/r) — 4n
16 . 32 .
+ 75<ac[3 1n(2m/r) - 4]ﬁb)c + @Bc(a’eb)d,»ﬁ“i
20

A 16 . C in
- Eg(aCdnb)cd - 38 d[3 In(2m/r) — 4]€c(a Np)ai

4 ..
+e3 £ (8,6 In(2m/r) = 29]71y
R 16 _ . ..
+ 14[3 ln(2m/r) - 4]nabcd) + ?Bcdlec(a]nb)dij
4 .
- Engl(éabﬁcdi + 9ﬁabcdi)} + O(rZ In r)‘ (1 160)

Unlike the second-order field in the Lorenz gauge (and
indeed, in all gauges previously considered in the liter-
ature), which diverges as 1/ r? at r = 0, the second-order
field in the light-cone gauge is actually finite at r = 0.

2. Singular and regular fields

We can naturally divide the perturbations in the light-
cone gauge into singular and regular pieces, though this
division will ultimately differ from the one in the Lorenz
gauge. At order 72, h}l; contains the tidal moments 6£,;, and
6B, [this order is omitted for brevity in Eq. (115), but it
looks schematically the same as in Eq. (79)]; at order 73, it
would contain octupolar moments 6 ;. and 6B8,,,.; and so
on. In accordance with the fact that these terms take an
identical form in 1}, as in the external background °g,,,, and
the idea that the effective metric ° G h}}; is perceived as
the external metric in the neighborhood of the object, we
can define h%!" to comprise everything in A, involving
these moments. Explicitly, it is then given by

WYY = —r28E,;77 + O(r%), (117a)
! 2 .
Rl = —grzeadi586dﬁcl +O(r?), (117b)
, 1
hRl = —§r2(550b —65E (,Tip)e + 36E48 1 0y)
+OP). (117¢)
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The singular field /;
explicit factor of m. Through order r, it is the whole of &
given by Eq. (115).

Similarly, at second order, second-order moments 6°E,,,,
8B, etc. appear, along with terms quadratic in the first-
order moments 6&,;,, 68,,, etc. I define the second-order
regular field to comprise all such terms. This guarantees
that it is a vacuum metric, satisfying the vacuum EFE

! . .

" then consists of all terms with an
1/
pws

SR, [MRV] + 6R, [MR?] + 3R, [ARV] = O(¢’)  (118)
to all orders in r. And since the tidal terms begin at order 72,
we have

W2 = O(r?). (119)
Everything else in 42, should go into /232 . In analogy with
the A3R terms in the Lorenz gauge, this should include the
“singular times regular” terms such as mdé€,;, and méB,y,,
which appear at order r in Eq. (116); if these were included
in the regular field, then it would cease to satisfy Eq. (118).
Hence, through order r, 52 is the whole of /2,, given
by Eq. (116).

3. Transformation to a smoothly related practical gauge

At this stage, although we have a natural split into
singular and regular fields, the metric in this rest gauge is
not fit for practical use. It constrains the form of the regular
field, forcing the regular field and its first derivative to
vanish on the worldline and its second derivatives to take a
particular form. It is not obvious how one would impose
such a gauge condition in a global numerical scheme.
Furthermore, the metric in this gauge is not uniform in
time: as described in Sec. IV B 4, the tidal moments 6&
and 0B, grow large with time.

In order to transform to a practical gauge without losing
the advantages of the light-cone gauge, I transform the
gauge of the regular field while, insofar as is possible,
leaving the gauge of the singular field intact. This can be
done as described in Sec. VIA. However, as when I
transformed to the Lorenz gauge, here I wish to ensure
that the transformation does not alter the worldline. So I
begin with smooth vectors & and & that satisfy the
worldline-preserving condition (13) but are otherwise
arbitrary. For smooth vectors, the condition (13) reduces to

&l, =o. (120)

Given that, as in Sec. III, the metric °g,, + eh!, + ¢2h2,
includes an expansion of the acceleration, a transformation
will bring it to a metric ° G T eh},Z + ezhﬁi, that is likewise
expanded. The transformation laws are then (85) and (86).
Splitting them into laws for the singular and regular fields,
as in Egs. (110)—(113), we have
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hs' = g+ Le g (121)

' = h) (122)
1 )

h;l}uZT - ‘szog;w + Eﬁéog;w + [’él h;]}ul ’ (123)

' =hs2 + LehS). (124)

If h,lfy" are the “exact” regular fields in the new practical

gauge, with no expansion of the acceleration, then the
daggered fields are
AT = OnRl +0g,,. (125)
" = Ohig + 2 g (126)
Similarly,
M’ = OhS), (127)
et = OS2 + 0. (128)

Note that I group the background terms "g,, with the

regular fields h}}ﬁ""; this again corresponds to the idea that
the background plus regular field together form the
“external metric.”

I now adopt Gralla’s approach from Ref. [26]. The key
realization in his approach is that we do not need to
explicitly impose any given gauge condition in the target
gauge. Instead, we can take the regular fields h}f,j’ as given,
to be determined in any desired gauge by a puncture
scheme, and express &, (and the “singular times regular”
piece of A57) in terms of them. As in the derivation in the
Lorenz gauge, the worldline-preserving condition &;|, = 0
will suffice to determine an equation of motion; here my
approach differs from Gralla’s, corresponding to my self-
consistent (i.e., unexpanded) treatment of the worldline.

On the worldline, given that &|, = 0, that 'g,, = O(r),
and that AR = O(r?), Eq. (121) reads

d 1 10 R1

Eét |y :E hi 7 (129)
Auéitlyl, = °hi! . (130)
08|, = lohRl 131

(aéb)|}’ - 5 ably- ( )

These, together with & |y = 0, determine all components of
&, and 9,,&,, on the worldline, with the exception of 0[u§11)].
That remaining piece can be obtained from the formula

OV OV4El +ORp 08 = 61,05 ARR], (132)
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where ARR! = hg " — hRY

> Ol yaplh] = %(Zhr(a;ﬁ) = hapy)
is the standard correction to the Christoffel symbol (with its
first index down), and all covariant derivatives and the
Riemann tensor are compatible with 0g,w. (Note that on y,
ORﬁya(s = Rp,qs-) Equation (132) can be derived by writing
20V,°V &) = OR,5,°E}, using Eq. (121) to replace V&)
with AhR} — OV &L and then adding the resulting equation
to its cyclic permutations affy — yaf and affy — pya.
On y, the tab component of Eq. (132) reads
Ll = 8[ah§]lj +10,n%}". Substituting Eqgs. (125) and
(131), we obtain a formula for the remaining piece of 8a§},,

d

Ef[la,b]h/ =- 8[a0hllf]'l|y. (133)

The tta component of Eq. (132) will be discussed below.
Using these results for £}, we can now write the L, hﬁ,}/

term in the second-order singular field (124) in terms of the

regular field. Equation (115) with Egs. (129)-(131) and

(133) together yield

, 2m 1 .
£§I htStl = —T <0h§1 + 20/151””) + (9(1’0), (1343.)
L hsl/ 2m Oth 10 R1 07R1 i 07,R1,, ij
&EMa = _T ta +§ htt ng, — hai n' + hij ng
O, (134b)
, 2m (3 ;
o5y = =22 (3008 0y = 20 )
+ 0. (134¢)

Note that this introduces a divergent, 1/r term into the
singular field, making it less regular than in the original
light-cone gauge. However, it remains less singular than the
Lorenz gauge, and since the Lorenz gauge itself is often
considered “regular” in comparison to highly singular
gauges like the radiation gauge [60], the title “highly
regular” remains apt. I will discuss practical implications
of this in Sec. VIL.

Terms higher order in r in £; 5! can be obtained from
higher derivatives of .f}l, which can be found by expanding
Eq. (132) in powers of r. Alternatively, if we impose the
Lorenz-gauge condition on Ay, we can simply set m = 0
in the gauge vector (D1) and straightforwardly com-
pute L¢ hi).

This still leaves 4. dependent on the regular field in
the old gauge, through the 6€,;, and 6B, terms in Eq. (116).
We can express the moments in terms of the regular field
in the new gauge by writing them as 5, = SR, [AR"]],
and 5B, = $€P7(,0R ) g [ARV]],- (121),
6R(1/375 [Eé] Og] = ﬁgl ORaﬂy(;, and Ra/;y(;[lg} |]/ = 0, we arrive at

Using Eq.
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55ab = 5Rtatb [Oth} - (‘CEIR)mtb’ (135)

1
0By, = iepq(u{éRb)tpq[oth] = (LeR)pypgts  (136)

where all quantities are evaluated on y. These are given more
explicitly by Egs. (93) and (94) with £, and B, set to zero;
since Eqgs. (93) and (94) differ from Eqgs. (135) and (136) by
those é‘ah and Ba;, terms, this tells us that beginning at order
r2, the regular fields in the Lorenz gauge and highly regular
gauge differ by more than a gauge transformation. To avoid
this disagreement, we could make the redefinitions 6&,, —

o€ — %méab and 6B,, — 6B, — %ml?ab (with a corre-
sponding change to the singular field).

We now have a practical formulation with a convenient
split into singular and regular fields. Through order r, the
singular field is given by

hS) = hl, +O(r), (137)

W2 = h2, + L hS) + O(r?), (138)
with Egs. (115), (116), (134), (135), and (136). Here I have
cavalierly discarded the { notation, with the understanding
that in these singular fields, acceleration terms have been
implicitly moved from A4S} into /7. In analogy with the
notation in the Lorenz gauge, we can write

S2 _ 7SS 4 1SR
hay = hyp + by,

(139)

where /155 comprises all terms in /2, explicitly proportional

2 SR _ ,SR' S1/
to m*, and hyy = hyp + Le hyy

terms in hf,; proportional to mé&,,, moéB,,, méE .,

m&Byye, etc. These fields behave as A5 ~m?r”
and AR ~ mhy} /r.

With the singular fields defined, the regular fields can be
written implicitly, as the difference

with 45X comprising all

B = g, = 2. (140)
This regular field, like the one defined in the Lorenz gauge,
is a “physical” field, causal on the worldline and satisfying
the vacuum EFE. Its causality on the worldline follows
from the same argument given for the Lorenz-gauge field in
Ref. [6]. It satisfying the vacuum equation follows immedi-
ately from it being a gauge transformation of the regular
field defined in Sec. VIB 2.

In the above, I have made no mention of finding the
second-order gauge vector 5,2,. We can express 5,24 in terms of
AR} and A2 in a similar way as we did for £}, but doing so
is not necessary: with the regular field defined implicitly
through Eq. (140), all we require explicitly is an expression
for the singular field, and for that, f}l suffices. However, one
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may need to consider 5,% if one needs to refine the form of
hzf That might be necessary if, for example, higher-order
terms in Eq. (134) are found to grow large with time. Such
growth is highly possible, given that Eqs. (129) and (133)
dictate that & will generically grow large on long time
scales. Indeed, Gralla’s singular field in Ref. [26] appears to
contain numerous terms that grow with time, stemming
from the growth of his gauge vector (in addition to, and
distinct from, the growth associated with his use of an
expanded worldline). If growing terms arise in the highly
regular gauge, they will have to be eliminated with a
second-order gauge refinement.

4. Equation of motion

All that remains to be determined in the new practical
gauge is the equation of motion governing y.

Atfirst order, the equation can be obtained from Eq. (132).
Given the worldline-preserving condition £} |, =0, ony the
tta component of Eq. (132) reads simply 0=
0,ARR! —10,ARR' Noting that AR} = AR} — 2f}x95. 5!+
O(r?), we find that this is the standard formula for the first-
order self-force:

1
fl= E8ah$,1 - 0,h}!. (141)
At second order, the analog of Eq. (132) is
OVGOVﬂg}% + ORﬂyaﬁég — 5F}/aﬂ [k], (142)

where k,; = hs/? - h}}/%/ — 3 L2 905 — L, hf}/}/. Given the

worldline-preserving condition £2| =0, on y the tta

\y
component reads 0 = 0,k,, —10,k,. Noting that h%? =
O(r?) and evaluating the Lie derivatives, we find the simple
formula 0= 9,hty — 10,k +10,°hR1KR!.  Since
Byt =ORR2 + AR — 2f1x818, + O(r?), we  recover
Eq. (99) for the second-order self-force:

1 1
2= 300K — 0. HE2 + 30, 1! — 0,

— S OSHION. (143)

Therefore, the expanded geodesic Eq. (100) holds true in
the highly regular gauge, with the regular field given by
Eqgs. (137)—(140). Since the gauge of the regular field is
unspecified, this formulation in fact applies to a class of
smoothly related highly regular gauges.

Before concluding, I make two remarks. First, we could
have established in advance, without performing any
calculations, that Eq. (100) would hold true, as it follows
from the same argument given in Sec. VI A: the motion is
trivially geodesic in °g,, + hY, because u* = &/ and the
Christoffel symbols of this metric vanish on y; and the
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geodesic equation is preserved under the transformation
laws (121) and (123). The second remark relates to Gralla’s
results. Although I utilized key aspects of his methods in
this section, I seem to have arrived at a different conclusion.
He uses an expanded form of the worldline, zj + ez} +
€275 + O(€*) in coordinate form, and begins in a rest gauge
centered on the background geodesic yo = {zj}, such that
Zl =75 =0. In that context, when transforming to a
practical gauge, & and & are allowed to take arbitrary
values on o, introducing deviation vectors 7} = —¢&j|, and
?h = (=& +5&0,&)|,, that point toward the accelerated
worldline in the new gauge.7 He then finds evolution
equations for z{ and z; that are not equivalent to the
geodesic equation in his effective metric, seemingly
contrary to my results. However, this outward discrepancy
stems from his definition of his singular and regular
fields. Instead of Eqgs. (123) and (124), he effectively
makes the choice 17 = hi? + L, g +3L3 g, and h5Z =
h$2 + Lg hl,. (Since the rest gauge is centered on a
background geodesic, there is no need for daggers or
left-superscripts here.) By including the term £ A%l in
the singular field instead of the regular field, he arrives at an
effective metric g, + h}fb that is not a vacuum metric and in
which the motion is not geodesic.

VII. SUMMARY AND DISCUSSION

The primary result of this paper is the second-order
equation of motion (100) for a small, compact, approx-
imately spherical and nonspinning object, whether a black
hole, a neutron star, or something more exotic. It is
equivalent to the geodesic equation in the effective metric
G + h}f,, defined in Sec. II. This metric satisfies “physical”
properties: it is a vacuum solution, and if the full metric
satisfies retarded boundary conditions, then the effective
metric and its derivatives on the worldline depend only on
the causal past. Therefore, Eq. (100) represents a gener-
alized equivalence principle of the sort described in the
Introduction.

Equation (100) also has more pragmatic consequences.
As discussed in Refs. [25,27,46], the equation of motion
can be combined with the field equations in a puncture
scheme. Suppose we truncate the local expansion of the
singular fields (27) and (34) at a some order in r and then
attenuate them in some appropriate way away from the
worldline. This defines puncture fields 4-”, which locally

>
agree with A3, and residual fields 2™ := hl}, — h]", which

pw >
locally agree with Ay If the truncation of A3 is of
sufficiently high order in r, then we can replace h}},f with

AR in the equation of motion without introducing any

7Compare to Eq. (114). These formulas differ from Gralla’s
due to our differing conventions.
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error. We can also rewrite the field Egs. (19) and (20) as
equations for the first- and second-order residual fields®:

E/u/[th] = E;w[hrpl}’ (144)

E, [h*?] = 28°R,,[h'] — E, [n"?]. (145)
The coupled system of Eqgs. (100), (144), and (145), with
the punctures moving on the worldline determined by
(100), provides a way of finding the physical fields hj, =
hRm 4+ hl globally and the effective fields and their
derivatives Oy, 1|, = Ouya,Pix'l,
(up to a maximum p corresponding to the power of r at
which the singular field was truncated). By construction,
the metric g,, + €h, + €*h3, obtained in this way is
guaranteed to agree locally, near y, with the physical metric
outside a compact object. Practical, covariant forms of the
singular fields A3 are available in Ref. [46] for use in such
a scheme.

on the worldline

A. Self-force computations in a highly regular gauge

The above results were previously derived in the Lorenz
gauge [25] and smoothly related gauges [40]. In the present
paper, I derived a promising extension to a class of highly
regular gauges, in which the singular field is given by
Egs. (137) and (138), and the gauge of the regular field is
freely specified. We can formulate a puncture scheme in
these gauges by truncating and attenuating the singular
fields, as described above, and then, rather than imposing a
gauge condition on the exact regular field, imposing it on
the residual field. There are some subtleties in imposing
gauge conditions in the self-consistent context [6], but there
should be no obstacle to imposing the Lorenz-gauge
condition, for example, on the total residual field
Zne”hﬁ”. We can then write the field equations as

E, [h®'] == 6R,, [n""], (146)

E, [h*?] = 28°R,,[h'] — 6R,, [h"?], (147)
coupled, as above, to the equation of motion (100).
Directly specifying the gauge of the residual field in this
way, while leaving the puncture in any convenient gauge,
was previously advocated by Gralla [26]. Along the same
lines, we could use the Lorenz-gauge puncture to compute
a residual field that satisfies a gauge condition more
convenient for black-hole perturbation theory, such as
the radiation-gauge condition that has been critical for
self-force computations in a Kerr background [12].

8Typically a point-particle stress-energy tensor would be
included on the right-hand side of Eq. (144), but here I follow
Ref. [26] by defining the right-hand sides of these equations
pointwise off y. They can then be defined on y by continuity.
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However, the highly regular puncture in Egs. (137) and
(138) should provide significant advantages over the
puncture in the Lorenz gauge (or in any gauge with a
generic, 1/r? divergence in A2,, including Gralla’s).

The most obvious benefit of this gauge is simply that
with its weaker divergences, the numerical cancellations
between the two source terms in Eq. (147) will be less
delicate. But it has many other merits. To see this, consider
the source &°R,,[h'] = &R, [h5'] 4+ 5*R,,[hS', WR'] +
&R, [} B3] + 8°R,, [hR'] in Eq. (147). With a first-
order singular field given by Eq. (137), the source
8°R,,[hS'] diverges as 1/r*. We can see this from the fact
that 8°R,,[hS'] is the source for the hy term in A2,
described below Eq. (139): since /s ~ 7% we have
8°R,,[h3'] = —6R,,[h5S] ~1/r%. In a generic gauge,
8°R,,[h3'] is far more singular, behaving as 1/r%, and
worse, it is not well defined as a distribution.” But 1 /r?is
integrable, meaning 6°R,,, [1%'] in the highly regular gauge
is a well-defined distribution. Also, although the “singular
times regular” source &°R,,[hS',hR'] + &*R,, [hR!, hS!]
diverges as 1/r3, it too is a well-defined distribution
because it is a linear operator acting on the integrable
function hﬁ,} (This is true in a generic gauge, not only the
highly regular gauge.) Therefore, in the highly regular
gauge we can write down a distributional equation for the
second-order field h,%,,. The equation will likely contain a §
function source in addition to §’R,,,[h']; the correct source
should be found by analyzing SR, [h%?] as a distribution, in
the same manner that the point-particle stress-energy tensor
is obtained from R, [hS'] [8]. Once the correct source is
found, we can develop numerical schemes to solve for hfw
directly, rather than via the puncture scheme (147). In that
case, the regular field could be extracted after the fact, by
subtracting /37 from k7, using, for example, mode-sum
regularization [7,11]. Having a distributionally well-
defined equation for h,%,, would also allow us to straight-
forwardly write down solutions in terms of Green’s
functions. From them, we will be able to define quasilocal
singular and regular fields analogous to the Detweiler-
Whiting definitions at first order (while ensuring, of course,
that these definitions reduce to the purely local ones used
here). These Green’s function representations would pro-
vide yet another way of computing both the full field hfw
and the regular field [61]. Working in the highly regular
gauge should also reduce a computational difficulty that
arises in generic gauges. If one uses a spherical-harmonic
decomposition to solve the field equations, then computing
any given mode of 6°R,, [h'] near the worldline becomes

’Though once /55 is known in a given gauge, we might be able
to define 6°R,, [1%'] distributionally as —SR,, [A55], which, as a
linear operator acting on an integrable function, is well defined as
a distribution.
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laborious [62]. The diminished singularity in the highly
regular gauge should ameliorate the problem.

Considerable effort will be required to bring the highly
regular gauge to the same state of development as the
Lorenz gauge. Since a puncture scheme capable of com-
puting the self-force requires a puncture through order r
(such that first derivatives of h}fuz can be computed), a first
concrete step would be to calculate the singular field (138)
to order r. This would require continuing the expansion of
Eq. (134) to that order. As discussed in Sec. VIB 3,
additional gauge refinements may also be necessary if
secularly growing terms arise in the puncture. Once that
step is complete, the puncture can be written in covariant
form using the methods of Ref. [46] and then expanded in
harmonic modes for use in a mode decomposition of the
field Eqgs. (147) [63].

B. Rest gauges and effective metrics

Regardless of which of the two classes of gauges one
uses, the underlying method of derivation is the same. It
begins with the construction of a local metric in a gauge in
which (a) the object is centered on some worldline y, and
(b) the regular field and its first derivatives vanish on that
worldline. If the object is nonspinning and spherical, then
in this gauge it appears to be manifestly at rest on y,
perturbed only by tidal fields. The existence of this gauge
implies that for the nonspinning, spherical object, the
worldline is a geodesic in some effective metric, and the
heart of the derivation then becomes a matter of trans-
forming to a more practical gauge and determining which
piece of the full metric, in the practical gauge, constitutes
that effective metric.

As alluded to in the Introduction, this method is closely
related to many others, both at first and second order. In
particular, the basic form of the rest-gauge metric recurs
throughout the literature on equations of motion. It was
used in derivations of the first-order self-forced equation
of motion [20,35,64,65]. At second order, it has appeared
as Gralla’s “P gauge” [26], Rosenthal’s “Fermi gauge”
[22], and the gauge that Detweiler uses in his Eq. (21) to
define his singular field [24]. Even before any derivations
of the gravitational self-force, a rest-gauge metric was
used by Thorne and Hartle [34] in their derivation of
equations of motion for compact objects immersed in
some external gravitational field. Indeed, the self-force
problem of “determining which piece of the full metric
constitutes the effective metric” could be phrased as
“finding the ‘external’ metric in which Thorne and
Hartle’s equations of motion are valid,” a point discussed
at length in Ref. [6] (and in a different way by
Detweiler [20,65]).

However, any description of finding “the” effective
metric is only heuristic. In fact, there is no one unique
effective metric. Various choices of g, + iy, would lead to
the same generalized equivalence principle and could be
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used in an equally practical puncture scheme. An illus-
tration of this is provided by my derivations in the Lorenz
gauge and in the highly regular gauge: I utilized two
different regular fields, which differ at order 72, but which
possess all the same essential “physical” properties. We
might think that one cannot choose an alternative regular
field at order r° and r, since the self-force involves those
orders. But the equation of motion (100) only involves
specific components of h}}v and its derivatives on the
worldline, and one could easily move portions of h}}v into

h;y, thereby defining new singular and regular fields, while
leaving Eq. (100) intact. Hence, there is always a potential
danger of ascribing too much physical meaning (or too
specific an interpretation) to any one choice of effective

metric.
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APPENDIX A: STF DECOMPOSITIONS

This appendix reproduces standard formulas from
Ref. [44].
Any Cartesian tensor 75(t, r, 6, ¢) can be expanded as

> T )

>0

TS(t.r,0.¢) = (A1)

with coefficients given by

224+ 1)1
750 (1, ) = 2+ DM / TS(t.r.0.p)abdQ.  (A2)
4n)
where x!! = x(x =2)--- 1.

For s = 1 and 2, the coefficients can be put in irreducible
form using

Telb) = ot eielie POl j 4 et (A3)
where
TH =T, (Ada)
Ty =757 7" (Adb)
o 20—1_
O =21 (Adc)
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and
. (42
Tapiry = 6apKr + TE;J;:L)
A (41 (0
+ STE,STF . (€? i, Tyt 1, + 80, T5)

+ 64, € i, T;_Ll_)z + 64i, i, T(L__22> ) (AS)
where
A (+2
TS =T, (A6a)
NN 4 g b
TL+1 - £+ STFL—H(T (pisygL— 161”1 )7 (A6 )
o 6220 —1)
T, =————--STF A6
L =+ 1)(2¢+3) LT 1): (A6c)
o _26=1)2f-1)
T = oo+ ) ST Tond s ™)
(A6d)
) 20-3_
I »= 20+ 1 T(ﬂ<>JkL—2 (Abe)
KL =3T3 (A6f)

APPENDIX B: DECOMPOSITION OF THE
REGULAR FIELD

1. STF decomposition

In Sec. II, I decompose the regular field into irreducible
STF pieces Specifically, according to Eq. (50), the func-

tions —; hR” L) = h/(u/L) have the following irreducible
decomposmons

hy? = A00), (Bla)

n? = &, (B1b)

W0 =6, K00 + B0 (Blc)

hyt = A" (B2a)

hSZ}]) = éi’;’l) + ebmﬁ;n»l) + 5aiB(n’1)’ (B2b)
h(abl - 5abK<n g + Hf,bl) +€; C( I('; D

+ 5i<aﬁ§,’;'l)’ (B2c¢)
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and
n2 ~(n2
hgzij) = Az('j >v (B3a)
(n2) _ A(n2) (n.2) B2
htaij - Cazj + e (Dj>b + 6, ( B (B3b)
hﬁlblj) _5abK( ? +I_Il(/zbl/ +ST ( 25)
+0iaF T + 61106, G
+ 5i(a5b>j ( ’ )) (B3C)

We can invert these relationships using Egs. (A4) and (A6)
to express the STF tensors in terms of h,‘}l,l

AT = pR1, (B4a)
e = pRI (B4b)
AYO =R, (Bdc)
KO =3 5%}31, (B4d)
and
AN = pRI (BSa)
n(1,1) 1 Rla
B Lt (B5b)
(1,1
Coyl =Rl (B5¢)
. 1
D,(ll']) _ 2 bchfblc’ (BSd)
F(l’ ) éé‘bcth (BSC)
a 5 (ab),c
ﬁfzbc> hl(izlb )’ (BSf)
1Y = 2kedey . (B5g)
1
Kgll d) 6 thh,a’ (BSh)

where %) and 0,hY} are evaluated on y. I forgo writing t};e

similar but lengthier relationships for the pieces of h;m 7
At second order, the decompositions (B1)-(B3) can be
inverted to express the STF tensors in terms of h}ff in
precise analogy with Eqgs. (B4)—(B5).
As mentioned in Sec. II, the regular field used here
differs from the regular field l_qu” Y defined in Ref. [27]; the
two are not simply the trace reversals of one another. This
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difference can be determined by taking the trace reversal of
2 2.p

uvs /wL . and

decomposing the result into coefficients A

picking out the particular coefficients hfw P)

the regular field. After further decomposing those coef-
ficients into irreducible pieces, one finds

that determine

n 59 1- 1-
AR = —Emzaaa“ + EhZRa“ + Ehlzm, (B6a)
2,0
CE: ) _ hl;tm (B6b)
;20 _ S o 7R
Hab = —§m gab + h2<ab)’ (B6C)
A 31 I- 1
K<2’0) = —gmzaaa“ - thRaa + Ethta (B6d)
and
A (2.1 1- 317
Az<1 ) = Ehlébba + Zhgtt.a - 45 T Eaba
—@m%l apa® + a,h¥, +2a,h" (B7a)
90 = ¢ @b TR
N 1- 2 - 2
BOY = — By —Sa By 4 gmiata, (B7b)
~(2,1 T 1 ¢ 68 4
CEzb '= —h5 ) Eng"b + Eng(adewcd“
- 1 .
- 2a<ah2R’b> + Emza@tah)v (B7C)
N 1- 47 =
Da2yl> - _EhZRtb’Ceabc + EmZBabab + €abcabh1§tc
1
+ gmzeabcabdc, (B7d)
con 3 67
FE{ b= 5 hgbu b~ 5 hgbb a 90 on™ gaba (B7e)
2.1 1 7
e L) (B7f)
A2 4 . 2 ..
I((lbl) = __mZBab += 3 th( d b)cd
319
—_ Eng( deb)cdac, (B7g)
A 21 1 1- 437
kY = _thRbba +§h§”a 135" 2Egpa”
89 =
+—mPa,aya® + a,hX". (B7h)

18

The fact that the two regular fields are not simple trace
reversals of one another is manifested by the explicit
presence of m in these relationships.
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2. Acceleration terms

Equation (46) involves the terms in the first-order regular
field that are linear in the acceleration. If we assume that the
full metric satisfies retarded boundary conditions, then
these acceleration terms can be obtained from the analytical
form of the retarded field [5],

h}w :4m/GMer,/u u dt (BS)
14

where G,/ is the retarded Green’s function, and primed
indices refer to the point y(¢'). By expanding this integral
near the worldline using standard methods reviewed in
Ref. [5], one can read off the various STF tensors appearing
in the regular field.

The results, taken from Ref. [47] (and reproduced in

Ref. [5]), are'’

AT = piait, (BY9a)
CMY = na - dma,, (BOb)
N 1 .
K010 = 30N (B9c)
HY = h (B9d)
and

A (L1) tail tail % .

Ay = nA 4 2ptalg 3 Ml (B10a)
1,1 il §i 1l i
B = 3h;;1]5/ - 3hta (B10b)
LY = hil +2mEyy + hilay).  (B10c)
D(L ) _ 1 bc htall ta.ll B10d
a 2€a (Rje + Biyac), ( )
ol = iy (B10c)
U =2 g (B10f)
5 (ia)j>
100 = 257, (e, ) (B10g)
ab T 3 ab\“b " " ai)j)» g
1 2

kM = = 3Rl + S ma, (B10h)

0Table T in Ref. [47] and Table 11 1(11 are missing a
factor of 4 from the ma, term in Cj The factor appears
correctly in Eq. (E.9) of the former reference and (23.10) of the
latter.
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Here I have defined the tail integrals

. r
h;,a,}l(t) = 4m/ G”Wr,/u” w’ dr, (B11)
t_ et ! !
Rl (1) = 4m/_ V,G ey udt, (B12)

which are tensors on the worldline. r~ = ¢ — 0" indicates
that the integral covers the past history 7 <t but
excludes ¢ = t.

The terms linear in a; in Eq. (BY) constitute the term

15{” in Eq. (46), and those in Eq. (B10) constitute the
(1)

1
term “h,,; .

APPENDIX C: RADIAL FUNCTIONS
IN TIDALLY PERTURBED
BLACK HOLE METRIC

In this appendix, I list the functions e; and by
appearing in Egs. (63) and (64). With ¢ :=2m/r and
f=1-¢

e, = f? (Cla)
1 3,
:f[1+15(5—121nc)—1c (9—4In¢)
7., 3
+Z€3+14’ (Clb)
, 1
ey =f <1 —§C>, (Clc)
€4 :f’ (Cld)
es:f{l+é§(13—121nC)—§CZ—%§3—%§4 . (Cle)
2
e =f<1 —§C>, (C1f)
e :1—152 (Clg)
7 2 ’ g
es :1+§C(4—31n§)—gé’z—éé‘3(7—3lnéj)
3.4
+§C, (C1h)
1, :
f+EC (C1i)

104056-29



ADAM POUND PHYSICAL REVIEW D 95, 104056 (2017)

and 1 9 1 1
by =1+-8(5-6In¢)—-¢* -2 (2-3In¢) + &%,
by = f (C2a) 5 5 5 5
e (C2e)
bs=f{1+lC(7—12lnC)—§C2—lc3—1¢4 . (C2b) . [P Cof
6 27 27 6 9 =Ff-17%" (C2f)
be = f (1 - %C ) (C2c) APPENDIX D: GAUGE TRANSFORMATION

The transformation from the rest gauge to the Lorenz
by =1 3 2, (C24) gauge,.descn'bed in Sec. IV, is given by the following
2 expansion for small r:

1o N P L1, a0 2 .
gt] - 5/ d[A(l'O) + I‘C((ll )I’l — }"2 [—EatA(l’o) +§ (Easz(zlb ) _gmgab - gab th(l’()) - Cfllbl)>l’l b:|
309 o ape (Laa) 2 ALD | 2 210 1 £(10)\ ~ijk 4
—r 1—8m€bcn - gc,.jk —gB,»j dtD, —|—§Ck Eij—i—gB"jeqpinp e+ O(r*), (Dla)
1 . W ap o L a(10) 4 I ~any 5 a8 v LA g
5;:r<§K(lo)nu+eah /dth >nh—|—5H( Jpd ) — 2 EKS, )—EFS, )+§m5adnd_ZHidz> d
L 1) [PIRIA I s, 1 woai L A (1.0) A
‘*‘gFEz )nad_EKEJ )’lad—i%b IEd ) bd_gmgdinad +§B d€abc dtA" O pb )
1 ~ 1 ~ 7
—7'3 _Bbdc(lO)beacd__6<adec)bdc(10)b —gbdGacd/dl‘Dél D ﬁc+ mB €acallp +_m(€ahc
10 15 30
_l<gcd/dtbél’])_43cdég 0)>€ it 5b[ ido)ﬁbcd %(gcd/dtDll + Bed¢(1.0) >€ iy i
9 C al C a 9 ac 1
1"(12)Abd bed 1 dp(1,0)b 1 bej(1.2)di 1 d,. bi bed . i 2(1.0) ) 5
— g Heu?! o ( GmB e,y 5 BACN eyl 4 2 TP — S ede drb! BC o [ dtAUO) )y,
1 1

1 A n 5 . | A 1 a N
— _mgbcdﬁabcd + <§gch(l.0) _ _A(1,2)bc _ EF(l,z)bc _ ﬁghc /th(l,O) + ggbcA(l,0)>ﬁabc _ §gbcH§71d,0)ﬁacd

24 3
1 2(1,0) 1 8 . 1 c (L0 (1,0) 2(1.0) 1 ca LD
+ EA ’ 5ab—%56ab +Bm5ab—%g( H) + 6abK + gab dtA‘“ —Eé‘ab 8tDL-
1 1. . 1 N N
—2—082H£}b°>> <§a,c‘blc‘” —Ea%H,ﬁto)>ﬁabc + <%5be( 82K”’> } +O(), (D1b)

and

R . 1 . 1 .
C10bg ¢ / D(Cl‘l)dt) ad —gmatA“’O) —EmatK“’O)] + O Inr), (D2a)
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2mh, 1 I 8 O a1
53 . mrna _|_§ A(l O)ﬁa J’_EmK(l’O)ﬁa _ mezll;O)ﬁb —Bmzrln rgainl _ r{gmAE, 5C )C(l 0) A
I P . 3
+5mHilb‘i)ﬁ’”+( . CHSL?)/DEJ ”dz+eabcA§f”>A S (mAL ) omR ()il + ZmE

Here, AE}Z’I) is an unknown function of time that would
be fixed by the fa component of the order-e?r matching
condition. For the sake of visual clarity, I have omitted
superscript 0’s and {’s. To accord with the notation of
Sec. IIC, in the above expressions all uppercase latin

tensors with n =1 (e.g., Al ) should have a left-super-
script 0, and all those with n = 2 (e.g., A?

superscript .

0)) should have a

APPENDIX E: SUPERTRANSLATIONS

An interesting consequence of the calculation in Sec. IV
is that I only have to impose the worldline-preserving
condition (13). This is a restriction on ordinary translations

— T%(1). Yet “supertranslations” of the form x4 —
x* — lI’b( )n » also generate mass dlpole moments, given

x4 — x4

by —gm‘P" (as compared to —mT?). We may have
surmised that first-order supertranslations, like ordinary
translations, would only be ruled out once we impose the
condition M* = (. But in fact, they are found to be zero
simply from the transformation Eq. (85). In the same
way, second-order supertranslations are ruled out by
Eq. (86) alone.

Consider the first-order case for simplicity. A nonzero
supertranslation would be required in one particular sce-
nario: if the rest gauge were parity regular in the sense of
Gralla [39], and the target gauge were parity irregular,
or vice versa. For example, this would be the case
if hl, =224+ O in the rest gauge and hl, =

28 gy +Capitt! +d g s 1E .
b TEAP A 4 O(r9), for some cup; and dypi, in

the target gauge. But even in that situation, the first-order
metric would dictate the supertranslation. No worldline-
preserving condition would need to be imposed to con-
strain it.

(D2b)

On the other hand, if one were to transform away from
the rest gauge with no specified target gauge in mind, then
the supertranslation would be arbitrary. Consider starting
from the field (79) and performing a transformation
generated by & = WA, plus an arbitrary smooth vector.
In the new gauge, the field’s leading behavior is
(2m +8¥;n')5,, + 2 (onp) — 4V Ry

1
hab_ r

+ O(r°), (E1)
with the 77 and ta components unchanged at this order. If
we continue to define A%, according to Eq. (28) in this new
gauge, then a short calculatlon shows that Eq. (91) is
unchanged except for the addition of a term —%Sm‘l"' to
the right-hand side. If we also impose the condition M’ = 0

in this new gauge, then instead of Y(al'o) = 0, we have the

relation Y,(II'O) = —%‘i‘a. Rearranging the new version of
Eq. (91) to solve for f{ yields

A

Y —Ze i (E2)

1 2
lez = Eauh?tl + athz g

me

a self-force that depends on the supertranslation in addition
to the regular field. Since ¥, forms a part of the singular
field in this gauge, there is a sense in which the self-force
depends on both the singular and regular fields. One might
still be able to preserve the generalized equivalence
principle, but to do so, one would have to adopt a less
natural definition of h}},} in this gauge [by adding appro-
priate terms to 9,hR!

S
from hy,,

include some of the smooth term rh

,» for example, and subtracting them

meaning that in the expansion (26), 3} would
(1.1

i n’].
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