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We present a model of the analog geometry in a magnetohydrodynamic (MHD) flow. For the MHD flow
with magnetic pressure-dominated and gas pressure-dominated conditions, we obtain the magnetoacoustic
metric for the fast MHD mode. For the slow MHD mode, on the other hand, the wave is governed by the
advective-type equation without an isotropic dispersion term. Thus, the “distance” perpendicular to the
wave propagation is not defined, and the magnetoacoustic metric cannot be introduced. To investigate
the properties of the magnetoacoustic geometry for the fast mode, we prepare a two-dimensional
axisymmetric inflow and examine the behavior of magnetoacoustic rays which is a counterpart of the MHD
waves in the eikonal limit. We find that the magnetoacoustic geometry is classified into three types
depending on two parameters characterizing the background flow: analog spacetimes of rotating black
holes, ultra spinning stars with ergoregions, and spinning stars without ergoregions. We address the effects
of the magnetic pressure on the effective geometries.
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I. INTRODUCTION

Black holes predicted by Einstein’s general relativity are
characterized by the event horizon from which even light
rays cannot escape. A rotating black hole has the ergo-
region where light rays cannot propagate to the counter-
rotating direction. When we consider the wave scattering,
rotating black holes can amplify waves, and this phenome-
non is called superradiance [1–3]. From the analysis of the
wave scattering, it turns out that superradiance with some
boundary conditions can evoke instabilities of waves. For
example, considering the scattering of massive fields in the
Kerr spacetime or massless fields in the Kerr-AdS space-
time, the wave is confined around the black hole due to a
wall of effective potential for waves, and the superradiant
scattering occurs repeatedly. Then the amplitude of the
wave finally grows exponentially in time. This kind of
instability is called the superradiant instability [4]. Even if
there is no potential wall for confinement, the wave also
suffers from the instability if there exists a reflective inner
boundary such as the surface of stars (ergoregion instability)
[5–11].
To examine the properties of superradiance associated

with rotating black holes, we can use analog models of
black holes. Analogs based on fluid models are called
acoustic black holes. If a flow of the fluid has a sonic
surface, the acoustic wave cannot pass through the sonic

surface from the downstream to the upstream. Namely, the
sonic surface behaves as the black hole horizon for the
acoustic wave (acoustic horizon). In such a situation,
the perturbation of the velocity potential of the fluid obeys
the Klein-Gordon equation in a “curved” spacetime of
which geometry is defined by the acoustic metric [12]. That
is why this kind of analog model is called an acoustic black
hole (see also Ref. [13]). Although the motivation of the
original work by Unruh [12] was to investigate the
Hawking radiation from an acoustic black hole in labo-
ratories, some papers later examined the feature of super-
radiance for the acoustic wave (acoustic superradiance) as
well. To realize the rotating acoustic black hole in labo-
ratories, several experimental setups or models have been
proposed [14–25]. The draining bathtub model [14] is one
example of such flows, and its acoustic metric has a
structure similar to a rotating black hole. In this model,
the flow is two dimensional, and the acoustic horizon is a
closed circle where the radial velocity of the background
flow exceeds the sound velocity in the fluid. The analog
structure of the ergoregion also exists.
There are several works that consider the acoustic black

holes in astrophysical situations. The original idea of the
acoustic geometry in relativistic fluids was proposed by
Moncrief [26] to examine the stability of the accretion flow
onto a Schwarzschild black hole. In Moncrief’s analysis, the
acoustic wave in the accretion flow was shown to satisfy the
Klein-Gordon-type wave equation. Some papers also apply
the idea of the acoustic black holes to astrophysical phenom-
ena [27–34]. In particular, Abraham et al. [28] study the
axially symmetric accretion flow onto a Kerr black hole and
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discuss a situation similar to the draining bathtub model
with acoustic superradiance. When we apply the concept
of acoustic black holes to some astrophysical problems,
we should consider the effects of the magnetic field. In fact,
due to the angular-momentum transportation caused by the
magnetic viscosity, matter in the accretion disk can fall
efficiently onto the central compact object [35–38]. Hence,
when we discuss acoustic black holes in magnetized fluids
such as in accretion disks, we need to take into account the
magnetic field and generalize the acoustic black hole to the
magnetohydrodynamic (MHD) case.
In this paper, we discuss the acoustic geometry in a

MHD flow (magnetoacoustic geometry). As the eikonal
equation of the MHD waves is the fourth-order differential
equation for the phase of the velocity perturbation, it is not
possible to define the quadratic magnetoacoustic metrics,
and the MHD wave equation cannot be written in the form
of the Klein-Gordon equation in curved spacetimes. To
circumvent this problem, we focus on the magnetic
pressure-dominated and the gas pressure-dominated cases
of magnetized fluids. In such restricted cases, it is possible
to expand the eikonal equation to define the quadratic
magnetoacoustic metric. As a model of background flows,
we prepare a stationary and axisymmetric two-dimensional
ideal MHD inflow with a sink at the center. In our model,
the magnetoacoustic property is characterized by two
parameters relating to the sound velocity in the fluid and
the angular velocity of the magnetic field line at the radial
Alfvén point where the radial velocity of the fluid coincides
with the radial component of the Alfvén velocity. Using
these parameters, the magnetoacoustic geometry is classi-
fied into three types according to the values of these two
parameters.
This paper is organized as follows. In Sec. II, we review

oneof the draining bathtub-typemodels and the superradiant
scattering of the acoustic waves. In Sec. III, we first define
the magnetoacoustic metric by considering the magnetic
pressure-dominated case and the gas pressure-dominated
case. Then we introduce the stationary and axisymmetric
background MHD flow. In Sec. IV, we present possible
magnetoacoustic geometries for ourMHD flow. SectionVis
devoted to a summary of our paper. We use units c ¼ G ¼
ℏ ¼ 1 throughout this paper.

II. ACOUSTIC BLACK HOLE FOR
PERFECT FLUID

A. Draining bathtub model

We review an analog rotating black hole with two-
dimensional flows, which is essentially the same as the
draining bathtub model [14]. We consider an irrotational
perfect fluid in a flat spacetime. The basic equations are

∂ρ
∂t þ∇ · ðρvÞ ¼ 0; ð1Þ

∂v
∂t þ ðv · ∇Þvþ∇p

ρ
þ Fex ¼ 0; ð2Þ

v ¼ ∇Φ; ð3Þ

where the fluid velocity v is represented by the velocity
potentialΦ andFex is an external force to control the flow.We
assume the pressure p and the density ρ of the fluid obey the
polytropic equation of state p ∝ ρΓ. We consider an axisym-
metric stationary inflow and introduce the polar coordinates
ðR;ϕÞ. Then the velocity and the external force are

v ¼ vRðRÞeR̂ þ vϕðRÞeϕ̂; Fex ¼ FexðRÞeR̂; ð4Þ

where eR̂ and eϕ̂ are the orthonormal basis vectors. As the
flow is two dimensional, it does not have a z component
(vz ¼ 0, Fz

ex ¼ 0). From the continuity Eq. (1), we have

RρvR ¼ const; ð5Þ

and from the azimuthal component of Eq. (2),

Rvϕ ¼ const≡ L; ð6Þ

where L is the angular momentum of the flow. The radial
component of Eq. (2) is

vR
dvR

dR
−
vϕ

R
þ 1

ρ

dp
dρ

þ Fex ¼ 0: ð7Þ

This equation yields the relation between vR andFex because
the pressure is related to the density asp ∝ ρΓ and the density
is described by vR and R through the relation (5). For a given
radial velocity profile vRðRÞ, this relation defines an appro-
priate form of FexðRÞ. We choose the radial velocity as1

vR ∝ R−1=2: ð8Þ

The sound velocity is

cs ≡
ffiffiffiffiffiffi
∂p
∂ρ

s
∝ Γ1=2R−ðΓ−1Þ=4: ð9Þ

To define an acoustic black hole, the background flow has
to be a transonic inflow, and the downstream of the sonic
point needs to be supersonic. Since the sonic point R ¼ Rs is
given by

1In some papers on the draining bathtub model, for example
[14], the radial velocity is chosen as vR ∝ R−1 to make ρ ¼ const.
The reason why we choose the nonstandard radial velocity is that
we will compare it with our MHD model discussed in Sec. III,
which has the radial velocity ∝ R−1=2.
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cs ¼ jvRj; ð10Þ

we consider the polytropic index within the interval
0 < Γ < 3 for the radial velocity (8). By normalizing all
quantities at the sonic pointRs,weobtain v andcs as functions
of R as

vR ¼ −csðRsÞ
�
R
Rs

�
−1=2

;

vϕ ¼ L
R
;

cs ¼ csðRsÞ
�
R
Rs

�
−ðΓ−1Þ=4

: ð11Þ

Figure 1 shows the structure of this flow.
Now, we add small perturbations δv, δΦ, δρ to the

background flow. We assume that the perturbations are
independent of the z coordinate. Combining the first-order
perturbed equations of (1)–(3), the perturbation of the
velocity potential δΦ satisfies the following wave equation:

∂
∂t
�
c−2s ρ

�∂δΦ
∂t þv ·∇δΦ

��
þ∇ ·

��
c−2s ρ

�∂δΦ
∂t þv ·∇δΦ

��

×v−ρ∇δΦ
�
¼0;

∂δΦ
∂z ¼0: ð12Þ

Equation (12) can be written as

∂
∂xμ

�
fμν

∂δΦ
∂xν

�
¼ 0; μ; ν ¼ 0; 1; 2; ð13Þ

with the matrix fμν defined by

fμνðt;xÞ¼ ρ

c2s

�
−1 −vi

−vi c2sδij−vivj

�
; i;j¼ 1;2: ð14Þ

We introduce a matrix sμν as

ffiffiffiffiffi
jsj

p
sμν ¼ fμν; s ¼ det sμν: ð15Þ

The matrix sμν and its inverse are given by

sμνðt; xÞ ¼ 1

ρcs

�
−1 −vj

−vi c2sδij − vivj

�
;

sμνðt; xÞ ¼
ρ

cs

�
−ðc2s − v2Þ −vj

−vi δij

�
: ð16Þ

Then, Eq. (12) becomes

1ffiffiffiffiffijsjp ∂
∂xμ

� ffiffiffiffiffi
jsj

p
sμν

∂δΦ
∂xν

�
¼ □sδΦ ¼ 0; ð17Þ

where the d’Alembertian □s is defined with the metric sμν.
Equation (17) is the Klein-Gordon equation for a scalar
field δΦ in the curved spacetime with the “acoustic metric”
sμν. This metric represents the effective geometry for the
acoustic waves. For transonic background flows, it can be
shown that the geometry represented by sμν has a similar
structure to black hole spacetimes. The acoustic interval
(acoustic line element) is defined as

ds2 ≡ sμνdxμdxν ¼
ρ

cs
½−ðc2s − v2Þdt2 − 2v · dxdtþ dx2�;

dx ¼ ðdx; dyÞ: ð18Þ

In the polar coordinates ðR;ϕÞ, the acoustic interval (18)
becomes

ds2 ¼ ρ

cs
f−½c2s − ððvRÞ2 þ ðvϕÞ2Þ�dt2 − 2vRdtdR

− 2vϕRdtdϕþ dR2 þ R2dϕ2g: ð19Þ

To examine the characteristics of this geometry, we rewrite
the metric (19) by applying the following coordinate
transformation:

dt → dtþ vR

c2s − ðvRÞ2 dR;

dϕ → dϕþ vRvϕ

c2s − ðvRÞ2
dR
R

: ð20Þ

Then we can write the acoustic interval in the following
form:

−4 −2 0 2 4

−4

−2

0

2

4

FIG. 1. Draining bathtub flow in the xy plane with Γ ¼ 4=3,
csðRsÞ ¼ 1; L ¼ 1.2Rs, where Rs is the radius of the acoustic
horizon defined by Eq. (10). The solid curves are streamlines of the
flow. The grey region represents the inside of the acoustic horizon,
and the dotted circle is the ergosurface for the acoustic waves.
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ds2 ¼ ρ

cs

�
−½c2s − ððvRÞ2 þ ðvϕÞ2Þ�dt2 − 2vϕRdϕdt

þ dR2

1 − ðvR=csÞ2
þ R2dϕ2

�
; ð21Þ

where we used ðt; R;ϕÞ as the new coordinates after the
coordinate transformation (20). From the similarity
between the acoustic metric (21) and the metric of rotating
black holes, we can introduce the acoustic horizon and
ergosurface. The RR component and the tt component of
the acoustic metric provide the following conditions:

jvRj ¼ cs ðacoustic horizonÞ; ð22Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvRÞ2 þ ðvϕÞ2

q
¼ cs ðacoustic ergosurfaceÞ: ð23Þ

The acoustic horizon is a circle where the radial velocity
vR coincides with the sound velocity and the acoustic
wave cannot propagate outward from the inside of the
acoustic horizon. The acoustic ergoregion is defined byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvRÞ2 þ ðvϕÞ2

p
≥ cs, and the wave propagation against

the flow is not possible. For the background flow (8), the
radius of the acoustic horizon RH is Rs (the sonic point, see
Fig. 1). The radius of the ergosurface RE is determined as
the solution of the following equation:�

R
Rs

�ð5−ΓÞ=2
−
�
R
Rs

�
−
�

L
csðRsÞRs

�
2

¼ 0: ð24Þ

B. Acoustic superradiance in the draining bathtub flow

We consider the solution of the Klein-Gordon Eq. (17)
with the draining bathtub flow (11). The wave function δΦ
can be separated as

δΦ ¼ ψðRÞ
Rð7−ΓÞ=16 e

ið−ωtþmϕÞ;

m ¼ �0;�1;�2;…; ð25Þ

where ω > 0 is the frequency of the acoustic wave andm is
the azimuthal quantum number. The radial part of this
function satisfies the following differential equation:

−
d2ψ
dR2

tort
þ VeffðR;ω; m;ΓÞψ ¼ 0; ð26Þ

where the tortoise coordinate Rtort is introduced by
∂=∂Rtort ¼ gðRÞ · ∂=∂R, gðRÞ ¼ 1 − ðvR=csÞ2 and the
effective potential VeffðR;ω; m;ΓÞ is given by

VeffðR;ω; m;ΓÞ ¼ −
1

c2s

�
ω −

mvϕ

R

�
2

− gðRÞ
�ð7 − ΓÞð9þ ΓÞ

4096

gðRÞ
R2

−
7 − Γ
16R

dgðRÞ
dR

−
m2

R2

�
: ð27Þ

Since g ¼ 0 at the acoustic horizon R ¼ RH and vϕ

approaches zero at a point Rf far from the acoustic horizon,
the asymptotic forms of the effective potential Veff are

Veff ≈

(
− 1

c2s
ðω − mvϕ

R Þ2 for R → RH

− ω2

c2s
for R → Rf :

ð28Þ

Therefore, the WKB solutions of Eq. (26) are

ψ ¼
8<
:

exp
	
−i

R
Rtort 1

cs

	
ω − mvϕ

R



dRtort



for R ∼ RH

Cin exp
	
−i

R
Rtort ω

cs
dRtort



þ Cout exp

	
i
R
Rtort ω

cs
dRtort



for R ∼ Rf :

ð29Þ

We take a purely ingoing solution near the acoustic
horizon. From the conservation of the Wronskian W ¼
ψ�ðdψ=dRtortÞ − ψðdψ�=dRtortÞ at R ¼ RH and R ¼ Rf , we
obtain the relation between the reflection and the trans-
mission rates of the acoustic wave:

����Cout

Cin

����2 þ csðRHÞ
csðRfÞ

·
ω −mΩH

ω

���� 1

Cin

����2 ¼ 1; ð30Þ

where ΩH ≡ vϕðRHÞ=RH is the angular velocity of the
background flow at the acoustic horizon. From the relation
(30), we see that the reflection rate jCout=Cinj2 can exceed

unity when the frequency ω satisfies the superradiant
condition

0 < ω < mΩH ¼ m
vϕðRHÞ
RH

¼ mL
ðRHÞ2

with mL > 0:

ð31Þ

Now we consider the short wavelength limit of the wave
(the eikonal limit). Although the amplification factor of
scattered waves cannot be determined by the analysis with
the eikonal limit, we can discuss the condition of super-
radiance. In the leading order of the eikonal approximation,
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the phase function S of the wave function δΦ ∝ eiS satisfies
the eikonal equation

sμν
∂S
∂xμ

∂S
∂xν ¼ 0: ð32Þ

We introduce the acoustic rays as integral curves of the
vector field defined by

kμ ≡ dxμ

dλ
¼ sμν

∂S
∂xν ; ð33Þ

where λ is an affine parameter. The acoustic rays propagate
in the direction perpendicular to the acoustic wave front.
For the axisymmetric stationary flow, the phase function S
can be separated as S ¼ −ωtþmϕþ SRðRÞ, and Eq. (32)
with the metric (21) yields

sttω2 − 2stϕωmþ sϕϕm2 þ sRR
�
dSR
dR

�
2

¼ 0: ð34Þ

Then using the relation (33), we obtain the equation for the
radial component of the acoustic rays,�

dR
dλ

�
2

¼ −sRRðsttω2 − 2stϕωmþ sϕϕm2Þ

¼ 1

c2s
ðω − VþÞðω − V−Þ ≥ 0; ð35Þ

where V� are effective potentials for the acoustic rays
defined by

V� ≡m
−stϕ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðstϕÞ2 − sttsϕϕ

q
sϕϕ

¼ m
vϕ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2s − ðvRÞ2

p
R

:

ð36Þ

From Eq. (35), the interval of R determined by V−ðRÞ ≤
ω ≤ VþðRÞ is forbidden for the propagation of the acoustic
rays (Fig. 2). At R ¼ RH, Vþ ¼ V− ¼ mΩH.

The interpretation of superradiance in terms of acoustic
rays is as follows: Owing to the wave effect (i.e., tunnel-
ing), the incident rays with frequency (energy) satisfying
the superradiant condition (31) can appear in the negative
energy state region by penetrating the potential barrier. The
transmitted rays finally fall into the acoustic horizon. In the
course of this process, the rays reflected by the potential
wall are amplified.

III. MAGNETOACOUSTIC GEOMETRY

Now, we investigate the effective geometry defined
for the MHD waves in the eikonal limit. To define
the magnetoacoustic metric, we consider the magnetic
pressure-dominated and the gas pressure-dominated cases.
Then, to investigate the structure of the magnetoacoustic
geometry, we prepare an axisymmetric stationary solution
of MHD inflow.

A. Eikonal equation and magnetoacoustic metric

The basic equations for the ideal MHD are

∂ρ
∂t þ∇ · ðρvÞ ¼ 0; ð37Þ

∇ · B ¼ 0; ð38Þ

∂B
∂t ¼ ∇ × ðv × BÞ; ð39Þ

∂v
∂t þ ðv · ∇Þvþ∇p

ρ
þ 1

4πρ
B × ð∇ × BÞ þ FMHD

ex ¼ 0;

ð40Þ

where B is the magnetic field and FMHD
ex is an external force

to control the MHD flow. The barotropic equation of state
p ¼ pðρÞ is also assumed. We decompose all quantities to
the stationary background part and the perturbed part.
Assuming that the wavelength of perturbations is small
compared to the scale of spatial variation of the background
quantities, the equations of the first-order perturbations are
written as follows:

Dδρ

Dt
þ ρ∇ · δv ¼ 0; ð41Þ

∇ · δB ¼ 0; ð42Þ

DδB
Dt

¼ ∇ × ðδv × BÞ; ð43Þ

Dδv
Dt

þ c2s
ρ
∇δρþ 1

4πρ
B × ð∇ × δBÞ ¼ 0; ð44Þ

FIG. 2. The effectivepotentialsV�with theparametersΓ ¼ 4=3,
csðRsÞ ¼ 1, L ¼ 1.2Rs and m ¼ 20. The location of the acoustic
horizon isRH. The region between the acoustic horizonRH and the
acoustic ergosurface RE corresponds to the acoustic ergoregion.
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where v, B, ρ are background quantities and the Lagrange
derivative is introduced by D=Dt ¼ ∂=∂tþ v · ∇. Then,
applyingD=Dt to Eq. (44) and using Eqs. (41) and (43), we
obtain the wave equation for δv,

D2δv
Dt2

− c2s∇ð∇ · δvÞ þ VA ×∇ × ð∇ × ðδv × VAÞÞ ¼ 0;

ð45Þ

where VA ¼ B=
ffiffiffiffiffiffiffiffi
4πρ

p
is the Alfvén velocity, which rep-

resents the propagating velocity of the transverse MHD
wave mode along the magnetic field lines.
Hereafter, we consider two-dimensional flows in

the xy plane and assume that all the vectors have no z
components. By applying the Helmholtz theorem, the
velocity perturbation can be described by using two scalar
functions Φ, Ψ as

δv ¼
� ∂xΦ
∂yΦ

�
þ
� ∂yΨ
−∂xΨ

�
¼

� ∂x ∂y

∂y −∂x

��Φ
Ψ

�
: ð46Þ

Substituting this into Eq. (45), we obtain

D2

Dt2

�Φ
Ψ

�
¼

��
c2s∇2 0

0 0

�
þ
�

L̂2
1 L̂1L̂2

L̂1L̂2 L̂2
2

���Φ
Ψ

�
;

ð47Þ

where L̂1 and L̂2 are the following derivative operators:

L̂1 ¼ ðVAÞy∂x − ðVAÞx∂y;

L̂2 ¼ ðVAÞx∂x þ ðVAÞy∂y; ð48Þ

and they are approximately commutable with each other
since the spatial derivatives of the background quantities
are assumed to be small. We define the magnetoacoustic
metric as the components of the eikonal equation for the
MHD waves. We substitute the following form of the wave
function into Eq. (47):

Φ ¼ jΦjeiS; Ψ ¼ jΨjeiS; ð49Þ

where S is the phase of the wave functions. Up to the
leading order of the eikonal approximation, we obtain

�∂S
∂t þ v · ∇S

�
2
� jΦj
jΨj

�

¼
��

c2s j∇Sj2 0

0 0

�
þ
� ðL̂1SÞ2 ðL̂1SÞðL̂2SÞ
ðL̂1SÞðL̂2SÞ ðL̂2SÞ2

��

×

� jΦj
jΨj

�
: ð50Þ

For Eq. (50) to have nontrivial solutions, we obtain the
following eikonal equation2:

�∂S
∂t þ v · ∇S

�
4

− ðc2s þ V2
AÞj∇Sj2

�∂S
∂t þ v ·∇S

�
2

þ ðc2s j∇Sj2ÞðVA · ∇SÞ2 ¼ 0; ð51Þ

where we used relations ðL̂1SÞ2 þ ðL̂2SÞ2 ¼ V2
Aj∇Sj2 and

L̂2S ¼ VA ·∇S. We rewrite the eikonal equation as

�∂S
∂t þ v · ∇S

�
2

¼ V2
Mj∇Sj2
2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

�
csVA

V2
M

�
2
�
b ·∇S
j∇Sj

�
2

s �
; ð52Þ

where VM ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2s þ V2

A

p
, and b≡ VA=VA represents the

direction of background magnetic field lines. The plus and
minus signs correspond to the fast and the slow magneto-
acoustic wave modes, respectively. Note that there is no
transverse Alfvén mode in our analysis, as we are consid-
ering two-dimensional flows. Since the eikonal Eq. (52)
does not have the quadratic form with respect to the
derivative term of the phase S, it is not possible to introduce
the quadratic (Riemannian) acoustic metric. In order to
circumvent this problem, we introduce a parameter

η≡
�
csVA

V2
M

�
2

: ð53Þ

If we regard η as a small parameter, it is possible to expand
the square root term in Eq. (52) as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

�
b ·∇S
j∇Sj

�
2

s
¼ 1 − 2η

�
b ·∇S
j∇Sj

�
2

þOðη2Þ: ð54Þ

The condition η ≪ 1 can be satisfied for ðcs=VAÞ2 ≪ 1 or
ðVA=csÞ2 ≪ 1 because the value of the parameter is

2As Eq. (51) is the quartic form for ∂S=∂xμ, it can be written as

Mμνλσ ∂S
∂xμ

∂S
∂xν

∂S
∂xλ

∂S
∂xσ ¼ 0;

where Mμνλσ is the coefficient of the eikonal equation. If we
define a function Fðx; yÞ as Fðx; yÞ ¼ ðMμνλσyμyνyλyσÞ1=4 with
yμ ¼ ∂μS, we see that this function satisfies the condition
Fðx; αyÞ ¼ αFðx; yÞ. This kind of function defines a distance
ds ¼ Fðx; dxÞ of the Finsler geometry [39], which is a gener-
alization of the Riemannian geometry. Since the null condition
ds ¼ 0 corresponds to the eikonal Eq. (51), the motion of MHD
waves may provide an effective Finsler geometry.
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η≈
�ðcs=VAÞ2≪ 1 ðmagnetic pressure-dominated caseÞ
ðVA=csÞ2≪ 1 ðgas pressure-dominated caseÞ:

ð55Þ

Then Eq. (52) becomes

�∂S
∂t þ v ·∇S

�
2

≈
�
V2
Mðj∇Sj2−ηðb ·∇SÞ2Þ ðfast modeÞ

ηV2
Mðb ·∇SÞ2 ðslow modeÞ:

ð56Þ

Note that in both the magnetic pressure-dominated and gas
pressure-dominated cases, the fast wave mode propagates
almost isotropically like sound waves. This is because the
right-hand side of the eikonal equation for the fast mode
consists of the isotropic term V2

Mj∇Sj2 and the small
correction term ηV2

Mðb ·∇SÞ2, which represents anisotropic
effects due to the magnetic field. By assigning the coef-
ficients of these equations to the components of matrices
Mμν

fast and Mμν
slow, Eqs. (56) can be written as

Mμν
fast

∂S
∂xμ

∂S
∂xν ¼ 0 ðfast modeÞ; ð57Þ

Mμν
slow

∂S
∂xμ

∂S
∂xν ¼ 0 ðslow modeÞ; ð58Þ

where Mμν
fast and Mμν

slow are

Mμν
fast ¼

�
−1 −vi

−vi V2
Mδ

ij − ðvivj þ ηV2
Mb

ibjÞ

�
;

Mμν
slow ¼

�
−1 −vi

−vi −ðvivj − ηV2
Mb

ibjÞ

�
;

i; j ¼ 1; 2: ð59Þ

The matrix Mμν
fast has an inverse, and we obtain the

magnetoacoustic line element ds2fast ¼ ðMfastÞμνdxμdxν as

ds2fast ∝ −½ðV2
M − v2Þ − ηðb · vÞ2�dt2

− 2½vi þ ηbiðb · vÞ�dtdxi
þ ðδij þ ηbibjÞdxidxj: ð60Þ

We write this metric in the polar coordinates ðR;ϕÞ and
apply the following coordinate transformation:

dt → dtþ vR

V2
M − ηV2

MðbRÞ2 − ðvRÞ2 dR;

dϕ → dϕþ vRvϕ þ ηbRbϕV2
M

V2
M − ηV2

MðbRÞ2 − ðvRÞ2
dR
R

: ð61Þ

Then the magnetoacoustic metric (60) can be written as

ds2fast ∝ −½ðV2
M − v2Þ − ηðb · vÞ2�dt2

− 2½vϕ þ ηbϕðb · vÞ�Rdtdϕ

þ dR2

1 − ηðbRÞ2 − ðvR=VMÞ2
þ ½1þ ηðbϕÞ2�R2dϕ2; ð62Þ

where t and ϕ are new coordinates after the coordinate
transformation (61). As in the case of the acoustic black
holes for perfect fluids, the effective horizon and ergosur-
face for MHD waves (magnetoacoustic horizon and ergo-
surface) are defined as points where the following
conditions hold:

ðvRÞ2 ¼ V2
M − ηV2

MðbRÞ2 ðmagnetoacoustic horizonÞ;
ð63Þ

v2 ¼ V2
M − ηðb · vÞ2 ðmagnetoacoustic ergosurfaceÞ:

ð64Þ

Note that these conditions can be obtained without the
coordinate transformation (61), as well by following the
definition of the black hole horizon and the ergosurface in
general relativity. Namely, we can derive the horizon
condition (63) by searching the surface where a killing
vector ξ≡ ξðtÞ þ ðvϕ=RÞξðϕÞ becomes null. The condition
for ergosurface (64) is given by ξ2ðtÞ ¼ 0. According to the

eikonal Eqs. (56), the fast mode propagating in the radial
direction (∇S ∝ eR) has the propagating velocity
V2
M − ηV2

MðbRÞ2. Hence, the magnetoacoustic horizon
defined by relation (63) is the one-way boundary for the
fast mode propagation. While inside of the magnetoacous-
tic ergoregion defined by v2 ≥ V2

M − ηðb · vÞ2, the fast
mode cannot propagate in the counter direction of the
background flow velocity v.
For the slow mode, on the other hand, it is not possible to

introduce the magnetoacoustic metric because the matrix
Mμν

slow does not have an inverse due to the lack of the
isotropic term ∝ j∇Sj2 ¼ ð∂xSÞ2 þ ð∂ySÞ2, and the inner
product between vectors cannot be defined. We can rewrite
the eikonal Eq. (58) for the slow mode as

∂S
∂t þ v� · ∇S ¼ 0; ð65Þ

where v� ≡ v� ðcsVA=VMÞb. Since the eikonal Eq. (65) is
the advective type, we see that the propagation is restricted
along v�, and plus and minus signs correspond to outgoing
and ingoing waves, respectively. Although the magneto-
acoustic line element is not defined, it can be possible to
discuss the motion of rays of the slow mode.
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B. Background MHD flow and magnetoacoustic
black holes

As the background MHD flow, we consider a stationary
and axisymmetric inflow. We assume that the equation of
state is polytropic p ∝ ρΓ with 0 ≤ Γ ≤ 4.3 To obtain the
background MHD flow, we basically follow Weber and
Davis [40] who derived the stationary and axisymmetric
solution of the ideal MHD flow. The difference between our
treatment and theirs is that we assume a profile of the radial
fluid velocity vRðRÞ by introducing an appropriate external
force. The basic equations for the background flow are

∇ · ðρvÞ ¼ 0; ð66Þ

∇ · B ¼ 0; ð67Þ

∇ × ðv × BÞ ¼ 0; ð68Þ

ðv ·∇Þvþ∇p
ρ

þ 1

4πρ
B × ð∇ × BÞ þ FMHD

ex ¼ 0: ð69Þ

Since the flow is axisymmetric, the components of v and B
depend only on R as

v ¼ vRðRÞeR̂ þ vϕðRÞeϕ̂;
B ¼ BRðRÞeR̂ þ BϕðRÞeϕ̂: ð70Þ

Equations (66) and (67) are solved as

ρvRR ¼ const < 0; RBR ¼ const > 0: ð71Þ
The azimuthal component of the induction Eq. (68) yields

d
dR

½vϕBR − vRBϕ� ¼ 0; ð72Þ
and we obtain the following relation:

vRBϕ − vϕBR ¼ const≡ −ΩFRBR; ð73Þ
where we used Eq. (71) to define the conserved quantityΩF,
which is the angular velocity of the magnetic field line. In
addition to this quantity, the conservation of the angular
momentum of the fluid L is also derived from the azimuthal
component of Eq. (69) as

Rvϕ −
BR

4πρvR
RBϕ ¼ const≡ L: ð74Þ

From Eqs. (73) and (74), the azimuthal component of the
fluid velocity vϕ is obtained as a function of the radial
components vR and BR:

vϕ ¼ ΩFR
M2

ALR
−2Ω−1

F − 1

M2
A − 1

; ð75Þ

where we introduced the radial Alfvénic Mach number
M2

AðRÞ≡ 4πρðvRÞ2=ðBRÞ2 ¼ ðvR=VR
AÞ2. To construct the

solution, we require that the background inflow is the trans-
magnetosonic flow. Such a flow should pass through the
radial Alfvén point R ¼ R� where M2

A ¼ 1 and the denom-
inator inEq. (75) becomes zero.Hence, the numerator should
go to zero simultaneously to keep the azimuthal component
vϕ finite. Therefore, the relation between the conserved
quantities L and ΩF is obtained as

L ¼ ΩFR2�: ð76Þ

Taking this condition into account, vϕ can be reduced to

vϕ ¼ ΩFR�
vR�

vR − ðR=R�ÞvR�
M2

A − 1
; ð77Þ

where vR� ¼ vRðR�Þ. In the same way, the azimuthal
component of the magnetic field is obtained from
Eqs. (73) and (75) with the relation (76),

Bϕ ¼ −
BRΩF

vR�R�

R2 − R�2

M2
A − 1

: ð78Þ

To obtain the background quantities as functions of R,
we first consider the radial components vR and BR. From
Eq. (67), the radial component of the magnetic field is

BR ¼ BR�
R�
R

; ð79Þ

whereBR� ≡BRðR�Þ> 0. The radial component of Eq. (69) is

vR
dvR

dR
−
vϕ

R
þ 1

ρ

dp
dR

þ 1

4πρ

Bϕ

R
d
dR

ðRBϕÞ þ FMHD
ex ¼ 0:

ð80Þ

This equation determines vRðRÞ because vϕ and Bϕ are
already expressed by vR from (77) and (78), and the pressure
p ¼ pðρÞ can be written with vR through the polytropic
equation of state and the conservation law (71). We can
assume an arbitrary profile of vR by choosing FMHD

ex ðRÞ to
satisfy Eq. (80).We choose the draining bathtub-type inflow,
which behaves as4

3In the MHD case, we can consider Γ ¼ 0 (cs ¼ 0), and the
magnetoacoustic geometries belong to the class on the α ¼ 0 axis
in Fig. 5. The upper bound Γ ≤ 4 is determined by the condition
η ≪ 1. According to Eq. (89), for Γ > 4, the condition η ≪ 1 is
not satisfied for small R in the background flow.

4Writing the radial velocity as vR ∝ ðR=R�Þ−σ , we see that the
same classification of the magnetoacoustic geometry is obtained
for 0 < σ < 1. In this paper, we choose σ ¼ 1=2 to make
calculations simpler.
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vR ¼ vR�

�
R
R�

�
−1=2

; ð81Þ

where vR� ≡ vRðR�Þ < 0 is the radial fluid velocity at the
radial Alfvén point. This profile is different from the standard
bathtubmodel vR ∝ 1=R. The reasonwhywe do not take the
standard one is that for vR ∝ 1=R, the radial Alfvénic. Mach
number MA becomes constant and the radial Alfvén point
does not exist. Substituting vR [Eq. (81)] into Eqs. (77) and
(78), we obtain the azimuthal components vϕ and Bϕ,

vϕ ¼ −βvR�
��

R
R�

�
1=2

þ
�
R
R�

�
−1=2

þ 1

�
; ð82Þ

Bϕ ¼ −βBR�

�
1þ

�
R
R�

�
1=2

��
1þ

�
R
R�

�
−1
�
; ð83Þ

where we introduced a parameter

β≡ΩFR�=vR� : ð84Þ

This constant represents the ratio of the angular velocity
of the magnetic field lines to the radial component of the
fluid velocity vR at the radial Alfvén point R�. The density
profile ρðRÞ is also obtained from Eq. (71). Although the
obtained flow has a singularity at R ¼ 0 and the magnetic
field is not divergence free there, we evaluate the proper-
ties of the MHD waves in the region, except for this
singularity. Using the quantities of the background flow,
we obtain the sound velocity cs and Alfvén velocity VA as
functions of R=R�:

c2s ¼ α2ðvR� Þ2
�
R
R�

�
−ðΓ−1Þ=2

; ð85Þ

V2
A ¼ ðvR� Þ2

��
R
R�

�
−3=2

þ β2
�
R
R�

�
1=2

�
1þ

�
R
R�

�
1=2

�
2

×

�
1þ

�
R
R�

�
−1
�
2
�
; ð86Þ

where we introduced another parameter,

α≡ −cs�=vR� > 0; ð87Þ

which is the ratio of the sound velocity to the radial
component of the flow velocity vR at the radial Alfvén
point R�. The structure of the MHD flow obtained here is
shown in Fig. 3. Note that our MHD flow is not reduced to
the draining bathtub model Eq. (11) for any values of
ðα; βÞ. This is because the condition (76) is imposed via
the relation between L and ΩF in this magnetized fluid
system. Hence, our two-dimensional MHD flow is not just
the generalization of the draining bathtub model for the
perfect fluids.

In order to apply this background flow to the magneto-
acoustic metric (62), the following condition must be
satisfied:

ηðRÞ ¼
�
csVA

V2
M

�
2

≪ 1 for all R: ð88Þ

Since η ¼ ðcsVA=V2
MÞ2 ≪ 1 holds for both the ðVA=csÞ2 ≪

1 and ðcs=VAÞ2 ≪ 1 cases, we need to check this condition
for our backgroundMHD flow. From (85) and (86), the ratios
ðcs=VAÞ2 at R → 0 and R → ∞ are

�
cs
VA

�
2

⟶
R→0 α2

1þ β2

�
R
R�

�ð4−ΓÞ=2
;

�
cs
VA

�
2

⟶
R→∞ α2

β2

�
R
R�

�
−ðΓþ2Þ=2

: ð89Þ

For the polytropic index 0 ≤ Γ ≤ 4, these values approach
zero, and only the magnetic pressure-dominated case
ðcs=VAÞ2 ≪ 1 can be realized in our model (see Fig. 4).
As the criterion for the condition (88), we use the maximum

FIG. 3. Background MHD inflow with Γ ¼ 4=3 and β ¼ 0.08.
The solid arrows (blue) are the stream lines of velocity v, and the
dotted arrows (red) represent the magnetic field lines of B. The
shapes of stream lines and magnetic field lines depend only on
values of the parameter β.

FIG. 4. R dependence of ðcs=VAÞ2 for Γ ¼ 4=3 and ðα; βÞ ¼
ð0.1; 0.04Þ. Note that ðcs=VAÞ2 becomes maximum at R ¼ Rc.
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value ηc ≡ ðcs=VAÞ2jR¼Rc
where Rc is a maximum point

of ðcs=VAÞ2.

IV. CLASSIFICATION OF THE
MAGNETOACOUSTIC GEOMETRY

Now, we discuss the magnetoacoustic geometry intro-
duced in the previous section. As a probe of the geometry,
we investigate the motion of the magnetoacoustic rays.

A. Fast mode

With the eikonal equation of the MHD waves, Eq. (57),
we introduce the magnetoacoustic rays as the integral curve
of the vector kμ defined by

kμ ≡ dxμ

dλ
¼ Mμν

fast
∂S
∂xν ; ðMfastÞμνkμkν ¼ 0: ð90Þ

In the magnetic pressure-dominated case, the magneto-
acoustic metric (57) becomes

ds2fast ∝ −½ðV2
M − v2Þ − ηðb · vÞ2�dt2

− 2½vϕ þ ηbϕðb · vÞ�Rdtdϕ

þ dR2

1 − ηðbRÞ2 − ðvR=VMÞ2
þ ½1þ ηðbϕÞ2�R2dϕ2 ð91Þ

with η ≈ ðcs=VAÞ2 ≪ 1. As the geometry defined by the
metric (91) is stationary and axisymmetic, there exist two
Killing vectors ξðtÞ and ξðϕÞ, and the conserved quantities
associated with them are

ω≡ −kμξ
μ
ðtÞ; m≡ kμξ

μ
ðϕÞ: ð92Þ

The phase of the eikonal equation is separated as
S ¼ −ωtþmϕþ SRðRÞ. We can obtain the equation for
the radial motion of the magnetoacoustic rays in the same
way discussed in Sec. II for the acoustic rays. Then the
eikonal Eq. (90) provides the following radial equation for
magnetoacoustic rays:�

dR
dλ

�
2

¼ 1

V2
A
½1 − ηðbRÞ2�ðω − VþÞðω − V−Þ; ð93Þ

V�¼m
−ðMfastÞtϕ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMfastÞ2tϕ−ðMfastÞϕϕðMfastÞtt

q
ðMfastÞϕϕ

¼m
R
vϕþηbϕðb·vÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
M−ðvRÞ2−η½ðvRÞ2−ðbϕÞ2V2

M�
p

1þηðbϕÞ2 :

ð94Þ

The magnetoacoustic rays are allowed to move in the R
region determined by ω ≤ V−ðRÞ or VþðRÞ ≤ ω. The zero
point of the square-root term in the effective potentials V�
provides the condition for the magnetoacoustic horizon
(63) as

0 ¼ V2
M − ðvRÞ2 − η½ðvRÞ2 − ðbϕÞ2V2

M�
≈ V2

M − ðvRÞ2 − ηðbRÞ2V2
M; ð95Þ

where we used the relation V2
M ¼ ðvRÞ2 in the first-order

term of η. Likewise, the condition for the magnetoacoustic
ergosurface (64) is reproduced from the condition V− ¼ 0

by using the relation V2
M ¼ v2 in the first-order term of η.

As the components of the magnetoacoustic metric ðMfastÞμν
depend on α and β through the background flow v and B,
the properties of the effective potentials V� are determined
by the parameter sets ðα; βÞ. We classify the magneto-
acoustic geometry by examining the existence of the
magnetoacoustic horizon and ergoregion using conditions
(63) and (64). Let us define the following functions of R:

HðR; α; βÞ≡ V2
M − ηðbRÞ2V2

M − ðvRÞ2;
EðR; α; βÞ≡ V2

M − ηðb · vÞ2 − v2: ð96Þ

If these functions have intersections with the R axis, the
magnetoacoustic geometry has the magnetoacoustic hori-
zon and ergoregion. The functions (96) have one minimum
at Rh ¼ Rhðα; βÞ and Re ¼ Reðα; βÞ, which satisfy
dH=dRjRh

¼ 0 and dE=dRjRe
¼ 0. Conditions for func-

tions (96) to touch the R axis are given by

HðRhðα; βÞ; α; βÞ ¼ 0; EðReðα; βÞ; α; βÞ ¼ 0: ð97Þ

These relations (97) determine boundaries between differ-
ent types of geometries in the αβ plane. We show the results
for Γ ¼ 4=3 in Fig. 5 because we obtain the same
classification of the magnetoacoustic geometry for all Γ
within 0 ≤ Γ ≤ 4. Figure 5 shows the classification of
possible shapes of the effective potentials. For the validity
of the approximation adopted in our analysis, we focus only
on the region ηc ≤ 0.1 in the left panel, and we find that
the magnetoacoustic geometries are classified into three
types—(a), (b), and (c)—depending on the existence of the
magnetoacoustic horizon and the magnetoacoustic ergo-
region. From the shape of the effective potentials V�, we
see R ¼ 0 is surrounded by the potential wall with infinite
height, and the incident rays cannot reach the origin. This
behavior of the effective potential is caused by the magnetic
pressure; for small R, the V2

M term in the effective potential
(94) becomes dominant and

V� ≈�m
R
VM ≈�m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

q jvR� j
R�

�
R
R�

�
−7=4

: ð98Þ
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This explains the wall of the effective potential in the
vicinity of R ¼ 0. Although we only consider β ≥ 0 in
Fig. 5, it is possible to treat the β < 0 region by changing
the sign of the azimuthal quantum number m. Now, we
discuss geometrical properties of each type.
For type (a), both the magnetoacoustic horizon and the

ergoregion exist. Thus, the magnetoacoustic geometries are
analogs of rotating black holes. In this case, by checking
the value of the potentials at the magnetoacoustic horizon,
we obtain the following superradiant condition:

ω < −m
Mfast

tϕ

Mfast
ϕϕ

����
RH

≈m
vϕ

R

�
1þ η

�
vR

vϕ

�
bRbϕ

�����
R¼RH

¼ −
mΩF

RH

��
RH

R�

�
1=2

þ
�
RH

R�

�
−1=2

þ 1

�

×

�
1þ η

�
vR

vϕ

�
bRbϕ

�����
R¼RH

with mΩF < 0: ð99Þ
From the tϕ component of the magnetoacoustic metric
(91), the signs of vϕ and bϕ determine the direction of the
black hole’s spin. As the signs of vϕ and bϕ are the same

and the sign of ΩF is the opposite, for negative ΩF (β > 0),
the magnetoacoustic black hole rotates counterclockwise
as shown in Fig. 3. Therefore, the additional condition
mΩF < 0 means that the incident magnetoacoustic rays
should fall along prograde orbits m > 0 for superradiance.
For the flow belonging to type (b), the magnetoacoustic

horizon disappears, and the potential wall becomes the
inner boundary of the magnetoacoustic ergoregion. Hence,
the flows are analogs of the ultra-spinning compact stars
which evoke the ergoregion instability [5–9]. The analog
ergoregion instability for the magnetoacoustic rays is
possible, as rays are confined in the magnetoacoustic
ergoregion where rays have negative energies (the grey
region between two vertical dotted lines in the right panels
of Fig. 5). Finally, the magnetoacoustic rays can propagate
to outside of the magnetoacoustic ergoregion with positive
energies via wave tunneling. For type (c), superradiance
does not occur because there is no magnetoacoustic
ergoregion.

B. Slow mode

As discussed in Sec. III, it is not possible to introduce the
magnetoacoustic metric for the slow mode. However, we

FIG. 5. The classification of the magnetoacoustic geometry for the fast mode with Γ ¼ 4=3 and m ¼ 20. In the left panel, the solid
lines are HðRhðα; βÞ; α; βÞ ¼ 0 (lower line) and EðReðα; βÞ; α; βÞ ¼ 0 (upper line). The dashed lines are contours ηcðα; βÞ ¼ 0.1, 0.3,
0.5, 0.7, 0.9. There are three types—(a), (b), and (c)—of the effective potentials V� classified by values of the parameters ðα; βÞ.
The right panels are typical effective potentials for (a): ðα; βÞ ¼ ð0.1; 0.085Þ; (b): ðα; βÞ ¼ ð0.1; 0.089Þ; and (c): ðα; βÞ ¼ ð0.1; 0.14Þ.
The grey regions in the right panels represent the magnetoacoustic ergoregions for the fast mode.
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can discuss the motion of the magnetoacoustic rays from
the eikonal Eq. (58). The directions of the propagation are
given by the characteristics v� ¼ v� ðcsVA=VMÞb≈
v� csb. For the ingoing wave, vR− ¼ vR − csbR < 0

because vR < 0 and bR > 0 and the ingoing wave prop-
agates towards R ¼ 0. On the other hand, for the outgoing
wave, vRþ is given by

vRþ ¼ vR þ csbR

¼ jvR� j
�
R
R�

�
−1=2

×

�
−1þ αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ β2ð1þ ffiffiffiffiffiffiffiffiffiffiffi
R=R�

p Þ2ð1þ R=R�Þ2
q

×

�
R
R�

�ð3−ΓÞ=4�
: ð100Þ

For the polytropic index within 0 ≤ Γ ≤ 3, the limiting
behavior of vRþ is

lim
R→0

vRþ ¼ −∞; lim
R→∞

vRþ ¼ −0; ð101Þ

and we have checked that vRþ < 0 for all R under the
condition ηc < 0.1. However, for 3 < Γ ≤ 4, the sign of vRþ
becomes positive in the vicinity of the origin of the flow
R ¼ 0, and hence there exists a point where vRþ ¼ 0. Thus,
the “outgoing”waves propagate towards this point from the
outer region and wind around a circle because the azimu-
thal component vϕþ is not zero even at this point. Anyway,
we do not have horizonlike structure associated with the
slow mode.

V. CONCLUDING REMARKS

We have discussed the magnetoacoustic geometry
defined for the MHD waves in an axisymmetric stationary
inflow. We found that for the magnetic pressure-dominated

and the gas pressure-dominated cases, the magnetoacoustic
metric can be introduced only for the fast mode. For the
slow mode, it is not possible to introduce effective
geometries because its propagation is restricted along lines
determined by the background fluid flow and the magnetic
field. As the background MHD flow, we considered the
axisymmetric stationary inflow characterized by two
parameters α and β specified at the radial Alfvén point.
Then, the property of the magnetoacoustic geometry for
this background flow can be classified into three types
corresponding to rotating black holes, ultraspinning com-
pact objects, and rotating stars.
In order to have a complete understanding of the

magnetoacoustic geometry without the assumption adopted
in this paper, we need to introduce the magnetoacoustic
metric for the general MHD wave equation. Moreover, in
our MHD inflow model, there is no Alfvén wave mode
since we have restricted our analysis to two-dimensional
flows. However, the Alfvén wave mode should be impor-
tant when we consider three-dimensional MHD flows. In
particular, in the high-energy astrophysical phenomena
(e.g., active galactic nuclei, gamma-ray bursts), we expect
that the study of the wave propagation in three-dimensional
MHD flows is essential to understand the energy trans-
portation, the formation, and evolution of some astrophysi-
cal systems. Therefore, analysis of the magnetoacoustic
geometries including the Alfvén mode in astrophysical
situations would provide us with important and interesting
topics. We leave these problems to our future works.
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