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The cuscuton was introduced in the context of cosmology as a field with infinite speed of propagation. It
has been claimed to resemble Hořava gravity in a certain limit, and it is a good candidate for an ether theory
in which a time-dependent cosmological constant appears naturally. The analysis of its properties is usually
performed in the Lagrangian framework, which makes issues like the counting of its dynamical degrees of
freedom less clear-cut. Here we perform a Hamiltonian analysis of the theory. We show that the
homogeneous limit with local degrees of freedom has singular behavior in the Hamiltonian framework. In
other frames, it has an extra scalar degree of freedom. The homogeneous field has regular behavior only if
defined a priori as a spatially constant field in a constant mean curvature foliation and contributing with a
single global degree of freedom. Lastly, we find conditions on the cuscuton potential for the resulting lapse
function to be nonzero throughout evolution.
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I. INTRODUCTION

One of the main observational issues facing cosmology
and gravitational theories are the phases of accelerated
expansion of the Universe: the many forms of the cosmo-
logical constant problem, dark energy, inflation. Moreover,
given the failure of particle physics to account for the
observed value of the vacuum energy, a quantum gravity
theory is expected to at least give some insight on a solution
to this problem. There have been several attempts at
tackling one form or another of dark energy properties,
mostly concentrating on two approaches: modifying gen-
eral relativity or considering an additional field that would
be responsible for these large-scale differences while
retaining the well observed short-distance predictions of
general relativity.
There is a considerable overlap between these approaches,

as many modified gravity theories admit a description in the
so-called “Einstein frame,” in which they are formulated as
general relativity coupled to a scalar field. In fact, an
economic and elegant way for scalar-tensor theories of
gravity to take advantage of this fact when interpreting
modifications of gravity is to adopt the effective description
of a time-dependent cosmological constant and to provide
constraints on this variability [1]. When formulating this
system, the most general scalar-tensor theory of gravity that
generates only second-order equations of motion is the
Horndeski theory [2], also referred to in the literature as
the generalized Galileons [3]. There are candidates to
generalizing this theory to include higher-order spatial
derivatives, known as beyond-Horndeski theories [4].
A simple yet noteworthy subset of Horndeski theories is

the extreme form of k-essence known as the cuscuton [5]. It

is defined as the limit of k-essence in which the sound
speed, as defined by derivatives of the Lagrangian with
respect to the kinetic term of the scalar field, becomes
infinite [6]. Interestingly, in flat or cosmological back-
grounds, as well as in some other special cases [7], the
equations of motion of the cuscuton are degenerate,
effectively becoming only a source term in the
Hamiltonian constraint of general relativity. Its behavior
is akin to a time-dependent cosmological constant, without
any propagating excitations. This degenerate behavior in
the homogeneous limit has prompted the characterization
of the cuscuton as a field that adds no additional degrees of
freedom to a gravitational system, and, because the
homogeneity condition selects a preferred foliation, the
cuscuton has since been identified with similarly degener-
ate limits of modified gravity theories with broken Lorentz
invariance, such as Hořava-Lifshitz gravity [5]. Cor-
respondence with Einstein-æther theory is still a subject
of debate [8].
The cuscuton is in fact not the unique subclass of

Horndeski that possesses such a degenerate behavior. It
was recently shown that a more general subclass of fields,
known as kinetic gravity braiding [9], also produces
degenerate equations of motion under certain limits, and
a class of exact solutions of general relativity has been
found with this field as source [10].
All these developments motivate one to ask: does the

cuscuton in fact possess no propagating degrees of free-
dom? If this is generically true, a theory of cosmological
perturbations need not worry about infinite propagation
speeds, since no excitations would travel in general.
Conversely, if there are in fact cases in which the cuscuton
does propagate degrees of freedom, one needs to be aware
of whether these cases pose a problem for causality and an
incompatibility with Lorentz invariance in general.
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The purpose of this work is to address this question. To
do that in a rigorous setting, we formulate the cuscuton
system coupled to general relativity formally using the
Hamiltonian formalism and infer its dynamics by using the
algebra of constraints to count the degrees of freedom.
The paper is organized as follows: in Sec. II we state the

generic inhomogeneous cuscuton system coupled to gen-
eral relativity in the Hamiltonian language. Section III
discusses the symplectic geometry of this system and the
constraint algebra which leads to the counting of degrees of
freedom. The homogeneous limit and its pathologies are
explored in Sec. IV. We present our conclusions and
a brief discussion of the results in Sec. V. Throughout this
work, latin indices run from 1 to 3, an overhead dot
represent time derivatives, and we use a mostly plus
Lorentzian signature.

II. HAMILTONIAN CUSCUTON DYNAMICS

The cuscuton Lagrangian [5] is a particular case of k-
essence [11], in its turn defined as the subset of the
Horndeski [2] action with only L2 ≠ 0. Its scalar sector
is given in the language of generalized Galileons [4] by

L2 ¼
Z

d3x
ffiffiffiffiffiffi
−g

p ½μ2
ffiffiffiffiffiffiffiffiffi
j2Xj

p
− VðϕÞ�; ð1Þ

with g the determinant of the spacetime metric, and with μ a
coupling constant. The kinetic term X is defined in terms of
the first derivatives of ϕ as

X ¼ 1

2

�
1

N2
ð _ϕ − ξi∇iϕÞ2 − γij∇iϕ∇jϕ

�
; ð2Þ

where we have performed the Arnowitt-Deser-Misner
(ADM) decomposition of the spacetime metric in terms
of the lapse N, shift ξi and spatial metric γij, so thatffiffiffiffiffiffi−gp ¼ N

ffiffiffi
γ

p
. From here on, we use the metric γ to raise

and lower indices as per the ADM notation [12]. Also note
that the modulus in Eq. (1), while ensuring that the
Lagrangian is always real, also defines two branches
depending on the sign of the kinetic term X. Since the
main interest of the cuscuton is its cosmological applica-
tions, the interesting region should be the one in which the
homogeneous field constitutes a spacelike surface.
Therefore, for the remainder of this work, we consider
only the branch X > 0.1

The canonical momentum associated with ϕ is

πϕ ≡ δL2

δ _ϕ

¼
ffiffiffi
γ

p
N

μ2ffiffiffiffiffiffi
2X

p ð _ϕ − ξi∇iϕÞ; ð3Þ

and, in general, this definition does not introduce any
primary constraints. The expression (3) may be solved for
_ϕ, giving

_ϕ ¼ ξi∇iϕ� Nπϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∇iϕ∇iϕ

π2ϕ − γμ4

s
: ð4Þ

One should notice, however, that the solution with the
minus sign above is spurious. If one inserts the negative
branch of Eq. (4) into Eq. (3), one obtains πϕ ¼ −πϕ.
Therefore, the only reasonable solution is the one with the
plus sign. Expressing the kinetic term X in terms of πϕ as

X ¼ 1

2
∇iϕ∇iϕ

�
γμ4

π2ϕ − γμ4

�
; ð5Þ

the Legendre transform will yield the following cuscuton
Hamiltonian:

Hϕ¼
Z

d3xπϕ _ϕ−L2

¼
Z

d3x
h
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∇iϕ∇iϕðπ2ϕ− γμ4Þ

q
þN

ffiffiffi
γ

p
Vþξiπϕ∇iϕ

i
:

ð6Þ

For ease of comparison with the corresponding terms
that come from the gravitational sector when computing the
Hamiltonian and momentum constraints, the Hamiltonian
(6) may be cast as a sum of a super-Hamiltonian Hϕ and a
supermomentum Hi

ϕ, that is,

Hϕ ¼
Z

d3xðNHϕ þ ξiHi
ϕÞ; ð7Þ

where

Hϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∇iϕ∇iϕðπ2ϕ − γμ4Þ

q
þ ffiffiffi

γ
p

V; ð8Þ

Hi
ϕ ¼ πϕ∇iϕ: ð9Þ

Ignoring surface terms (by assuming that the spatial
manifold is compact without boundary), the equations of
motion of this field then read2

_πϕ ≡ fπϕ; Hg ¼ −
δHϕ

δϕ

¼ ∇i

0
@N∇iϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2ϕ − γμ4

∇aϕ∇aϕ

s
þ ξiπϕ

!
− N

ffiffiffi
γ

p dV
dϕ

; ð10Þ

1See Appendix B for comments on the negative branch. 2See Appendix C for the derivation of the full variation.
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_ϕ≡ fϕ; Hg ¼ δHϕ

δπϕ

¼ ξi∇iϕþ Nπϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∇iϕ∇iϕ

π2ϕ − γμ4

s
: ð11Þ

The gravitational sector of the Hamiltonian in the ADM
decomposition [12] reads

Hg¼
Z

d3x

�
N

�
1ffiffiffi
γ

p
�
πabπab−

1

2
π2
�
−

ffiffiffi
γ

p
R
�
þ2ξa∇bπ

ab

�

¼
Z

d3xðNHgþξaHa
gÞ; ð12Þ

where R is the 3-Ricci scalar and we have defined

Hg ≡ 1ffiffiffi
γ

p
�
πabπab −

1

2
π2
�
−

ffiffiffi
γ

p
R; ð13Þ

Ha
g ≡ −2∇bπ

ab; ð14Þ

so the full Hamiltonian of the cuscuton field minimally
coupled to the gravitational field reads

H ¼ Hg þHϕ

¼
Z

d3x½NðHg þHϕÞ þ ξaðHa
g þHa

ϕÞ�: ð15Þ

Clearly, the Hamiltonian has cyclic variables, imposing
πN ¼ 0 ¼ πξ. With the full action in mind, we may now
consider the Hamiltonian and momentum constraints.
Computing the Poisson brackets of the Hamiltonian (15)
with the lapse and shift momenta, we find

fH; πNg ¼ 1ffiffiffi
γ

p
�
πabπab −

1

2
π2
�
−

ffiffiffi
γ

p
R

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∇iϕ∇iϕðπ2ϕ − γμ4Þ

q
þ ffiffiffi

γ
p

V

¼ 0; ð16Þ

fH; πaξg ¼ 2∇bπ
ab þ πϕ∇aϕ ¼ 0; ð17Þ

and the Poisson brackets of the full Hamiltonian (15) with
the fields yield the equations of motion [12]. Together with
Eqs. (10) and (11), the remaining equations of motion are

_γij ≡ fγij; Hg

¼ 2
Nffiffiffi
γ

p
�
πij −

1

2
πγij

�
þ 2∇ðiξjÞ; ð18Þ

_πij ≡ fπij; Hg

¼ −N
ffiffiffi
γ

p �
Rij −

1

2
γijR

�
þ Nffiffiffi

γ
p
�
γij

2

�
πcdπcd −

1

2
π2
�

− 2

�
πicπjc −

1

2
ππij

��
þ ffiffiffi

γ
p ð∇i∇jN − γij∇c∇cNÞ

þ∇cðπijξcÞ − 2πcði∇cξ
jÞ þ N

2

�
∇iϕ∇jϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2ϕ − γμ4

∇aϕ∇aϕ

s

þ γij
�
γμ4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∇aϕ∇aϕ

π2ϕ − γμ4

s
− V

ffiffiffi
γ

p ��
: ð19Þ

Now, the constraints (16) and (17) might have first and
second class components. A nontrivial second class part
might imply that refoliation invariance be partly gauge fixed.
In that case, the theory would come equipped with a “prefer-
red frame.” In order to ascertain whether this is the case, we
now analyze the symplectic geometry of the full theory.

III. SYMPLECTIC GEOMETRY
OF THE CUSCUTON

Before we start, it is useful at this point to the set the
notation for a smearing of a phase-space densityS over space:

SðNÞ≡
Z

d3xNðxÞS½g; π; xÞ: ð20Þ

The Poisson bracket between arbitrary smearings of the
Hamiltonian constraint of general relativity (13) with itself
defines the following algebra:

AgðN1; N2Þ≡ fHgðN1Þ;HgðN2Þg
¼ Ha

gðN1∇aN2 − N2∇aN1Þ; ð21Þ
which corresponds to the lapse component of the algebra of
deformations of general relativity in the ADM formulation.
In order to determine whether the Hamiltonian constraint of
the cuscuton field coupled to gravity in fact spoils refolia-
tion invariance by selecting a preferred foliation or restrict-
ing the choice of foliations with respect to general relativity,
we must determine the algebra defined by the Hamiltonian
constraint of the full theory and compare it with Eq. (21).
For that purpose, we calculate the Poisson bracket

between arbitrary smearings of the Hamiltonian constraint
of the full theory (16), that is,

AðN1; N2Þ≡ fðHϕ þHgÞðN1Þ; ðHϕ þHgÞðN2Þg: ð22Þ

Using definition (20), and dropping the dependence of A
on the smearings, we get the following property,

A ¼ Ag þ fHϕðN1Þ;HϕðN2Þg
þ fHgðN1Þ;HϕðN2Þg − fHgðN2Þ;HϕðN1Þg: ð23Þ
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The off-diagonal terms vanish, that is,

fHgðN1Þ;HϕðN2Þg − fHgðN2Þ;HϕðN1Þg ¼ 0: ð24Þ

This happens because there are only derivatives of the
configuration variables, and Hg has no πϕ dependence, and
Hϕ has no metric momenta; this implies no integration by
parts needs to be done to remove derivatives from delta
functions in these brackets, and thus the lapses appear
without derivatives. Antisymmetry then implies the vanish-
ing of Eq. (24).
We now compute the final term. Remembering that VðϕÞ

contains no derivatives of the metric, already excluding
terms that are linear in N, and using the results from
Eq. (C2), we obtain

fHϕðN1Þ;HϕðN2Þg ¼ πϕ∇aϕðN1∇aN2 − N2∇aN1Þ
¼ Ha

ϕðN1∇aN2 − N2∇aN1Þ; ð25Þ

which is of course, the same algebra that the gravitational
scalar constraints obey in Eq. (21). The deformation
algebra of the full Hamiltonian then is

A ¼ ðHa
ϕ þHa

gÞðN1∇aN2 − N2∇aN1Þ: ð26Þ

Thus, we obtain a consistent first class system of
constraints. The number of physical degrees of freedom
can be obtained from the usual counting: the dimension of
the phase space Ω in a field theory in N-dimensional space
subject to M first class constraints and S second class
constraints is given by [13]

dimðΩÞ ¼ 1

2
ðN − 2M − SÞ: ð27Þ

In this case, the constraints are the same as in ADM, but we
have an extra scalar field, thus we obtain a 3-dimensional
space of physical degrees of freedom per space point.

IV. THE HOMOGENEOUS LIMIT

The modulus in the square root in the cuscuton
Lagrangian (1) ensures that the Hamiltonian (6) remains
real even if X < 0. However, the positive branch presents a
problem on the surface πϕ ¼ μ2

ffiffiffi
γ

p
, as can be seen from the

fact that Eq. (11) becomes divergent there. This can be
solved if the numerator vanishes at the same rate; however,
it can be seen from the momentum equation of motion (10)
that a homogeneous solution with∇iϕ ¼ 0may also pose a
problem, in the form of the ill-defined limit inside the
divergence. Since most applications of the cuscuton involve
its cosmological evolution and perturbations around a
homogeneous background, in the general theory one needs
to check what happens if and when the Hamiltonian flow
takes the system across these surfaces. As a first step, let us
analyze the behavior of the dynamical system when we
impose homogeneity as a constraint.

A. Weakly imposing homogeneity

Consider the following constraint, which represents a
homogeneous cuscuton field on shell:

Φh ≡∇iϕ ≈ 0: ð28Þ
Since this constraint is a pure divergence, any smearing ζi

of Eq. (28) must obey ∇iζ
i ≠ 0 as other components of the

smeared constraint automatically vanish.
If one considers imposing the constraint (28) onto the

Hamiltonian (6), the equation of motion (10) becomes
undetermined. In order to contain this potential loss of
predictability, one may define the unit vector

fi ≡ ∇iϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi∇aϕ∇aϕ
p ; ð29Þ

in which case Eq. (10) may be cast in the form

_πϕ ¼ ∇i

	
Nfi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2ϕ − γμ4

q
þ ξiπϕ



− N

ffiffiffi
γ

p dV
dϕ

: ð30Þ

By setting ∇iϕ ¼ 0, and assuming that fi remains regular
in this limit, the equations of motion (30) and (11) reduce to

_πϕ ¼ ∇i

	
Nfi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2ϕ − γμ4

q
þ ξiπϕ



− N

ffiffiffi
γ

p dV
dϕ

; ð31Þ

_ϕ ¼ 0: ð32Þ

Notice that the right-hand side of the equation of motion
for ϕ vanishes, effectively decoupling the field from its
momentum.
Assuming there are no boundaries, we can easily check

that the constraint (28) is propagated:

fΦhðζiÞ; HðNÞg

¼
Z

d3x
ffiffiffi
γ

p �
ðζi∇iϕÞ

1

2
γab _γab − ð∇iζ

iÞ _ϕ
�
≈ 0; ð33Þ

so the system remains on the constraint surface over the
course of evolution. However, there is no equation of
motion for ϕ, and Eq. (30) has no predictive power due to
the presence of the undetermined vector fi.
A possible way around this difficulty is to consider the

effect of applying the homogeneity condition in the defi-
nition of the canonical momentum in order to define an
alternative constraint thatmight be dynamically equivalent to
homogeneity, but without the singularities introduced by the
constraint (28). If we consider Eq. (3), introducing Eq. (28)
into it results in the following constraint:

Φh0 ¼ πϕ − μ2
ffiffiffi
γ

p
≈ 0: ð34Þ

Clearly, it commutes with itself, but it is second class with
respect to (28):
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fΦh0 ðxÞ;ΦhðζiÞg ¼ −∇iζ
iðxÞ ≠ 0: ð35Þ

Thus the two constraints are second class. We
conclude therefore that weakly imposing homogeneity either
leads to divergences or to a second class set of constraints.

B. Strongly imposing homogeneity

Imposing second class constraints requires a projection
onto the constraint surface. This is equivalent to using
variables where ϕ is a spatial constant, and πϕ as well.3

Alternatively, we will impose the constraint ∇iϕ ¼ 0
strongly, explicitly on the Lagrangian (1) and show that this
also results in the same system. Denoting in this particular
case the constrained field by φðtÞ and its associated momen-
tum by πφ, we may cast the Lagrangian (1) as

L2 ¼
Z

d3xN
ffiffiffi
γ

p �
μ2

_φ

N
− VðφÞ

�
: ð36Þ

Due to the spatial constancy of φ, this can be rewritten as

L2 ¼ μ2 _φ

Z
d3x

ffiffiffi
γ

p
− VðφÞ

Z
d3x

ffiffiffi
γ

p
N; ð37Þ

so the associated momentum reads

πφ ¼ μ2
Z

d3x
ffiffiffi
γ

p
: ð38Þ

This definition introduces the following primary constraint:

Φφ ≡ πφ − μ2
Z

d3x
ffiffiffi
γ

p
≈ 0: ð39Þ

Note that now both φ and its associated momentum πφ are
spatial constants, and from the linearity of L2 in _φ, its
Hamiltonian is just the potential term.Absorbing the primary
constraint into the ones we had previously found, the total
Hamiltonian now reads

H ¼ Hφ þHg þ kΦφ

¼ k

�
πφ − μ2

Z
d3x

ffiffiffi
γ

p �

þ
Z

d3x½NðHg þ V
ffiffiffi
γ

p Þ þ ξaHa
g�: ð40Þ

However, the constraints composing the Hamiltonian are not
first class. Indeed, we find the following expression for the
algebra between the k and N generators:

fΦφ; ðHφ þHgÞðxÞg ≈
dV
dφ

ffiffiffi
γ

p ðxÞ − μ2

2
πðxÞ: ð41Þ

For this to propagate, we need the right-hand side to vanish,
which provides us with a condition that the trace of the
momentum be independent of the spatial coordinates. This is
known in the literature as the constantmean curvature (CMC)
condition, which we denote as

ΦCMC ¼ π −
2
ffiffiffi
γ

p
μ2

dV
dφ

≈ 0: ð42Þ

Now we must insert this further constraint into the
system, to see how it behaves. Propagating Eq. (42), we
cast its evolution as

fΦCMC; Hg≡ _ΦCMC

¼
�
πij −

ffiffiffi
γ

p
μ2

dV
dφ

γij
�
_γij þ γij _π

ij −
2
ffiffiffi
γ

p
μ2

d2V
dφ2

_φ:

ð43Þ

Denoting the trace-free part of the momentum as σij, that is,

σij ≡ πij −
1

3
πγij; ð44Þ

and substituting the constraints into Eq. (43), we find

�
12

γ
σabσab þ 6V þ

�
2

μ2
dV
dφ

�
2

− 12∇2

�
N

þ k

�
2

μ2
d2V
dφ2

−
3

2
μ2
�
≈ 0: ð45Þ

This is a lapse-fixing equation, which togetherwith the CMC
constraint (42) determines a gauge fixing for the system.
Since with our definition the spectrum of the Laplacian is

strictly negative, if

12σabσab þ 6V þ
�
2

μ2
dV
dφ

�
2

> 0; ð46Þ

the operator

Δ≡
�
12σabσab þ 6V þ

�
2

μ2
dV
dφ

�
2

− 12∇2

�
ð47Þ

is invertible. In that case, as long as ð 2
μ2

d2V
dφ2 − 3

2
μ2Þ ≠ 0, we

have a unique lapse for each choice of k, which we will call
N0. Nonetheless, if the left-hand side of Eq. (46) is
negative, Δ can have a phase-space-dependent finite-
dimensional kernel (since Δ is elliptic and we are in a
compact manifold). In that case, there would be a finite-
dimensional degeneracy of N0.
The constrained homogeneous cuscuton second class

Hamiltonian system can be written as

3Note, however, that in the previous system πϕ is a density,
which is point dependent. We would have to redefine the
variables so that πφ → πφ=

ffiffiffi
g

p
is the new momentum, and is a

spatial constant.
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H ¼ k1Φφ þ k2ΦCMC þ VðφÞ
Z

d3xN
ffiffiffi
γ

p

þ
Z

d3x½NHg þ ξaHa
g�: ð48Þ

This yields the foliation-fixed dynamics, which we will
describe in the next section.

C. Second class system dynamics

Since this is a second class system, to find the equations of
motion in the constraint surface we have two options: either
(i) we use a Dirac bracket with the inverse of the (highly
nonlocal) operatorΔ from Eq. (47), or (ii) we find conjugate
variables that can solve for the two second class constraints,
Hg þHφ and ΦCMC. Setting these variables strongly to the
value of their solution, the Dirac bracket coincides with the
standard Poisson one in the remaining variables. In general,
these solutions will also be highly nonlocal.
A convenient choice is to use the spatial conformal factor

of the metric and the trace of the momentum. We take the
trace of the momentum to be conformally invariant, so the
transformations read

γij ¼ e4ωγ̄ij; ð49Þ
πij ¼ e−4ωπ̄ij

¼ e−4ωσ̄ij þ 1

3
e−4ωπγ̄ij: ð50Þ

The best way to understand this decomposition without
introducing densities into the configuration variables is to
use a reference metric and a reference density, ηij,

ffiffiffi
η

p
, such

that e12ω ¼ γ=η, so that γ̄ ¼ η.
Inserting this decomposition and substituting the CMC

constraint (42) into the Hamiltonian constraint, we find a
Lichnerowicz-York-type equation for this system [14,15]:

8e2ω∇̄2ω − eωR̄þ e−7ωσ̄abσ̄ab

− e5ω
�
1

3μ2

�
dV
dφ

�
2

þ V

�
¼ 0: ð51Þ

According to the Lichnerowicz-York method, this will have
unique solutions as long as 6V þ ð 2

μ2
dV
dφÞ2 > 0, which is also

a sufficient condition for the positivity of Eq. (46). This is
an interesting substitution of the standard condition for the
unique solutions of the LY equation, which deserves to be
further explored.
Under (44), the smeared momentum constraint reads

Z
d3xπijLξγij →

Z
d3x
�
σijLξγij þ

1

3
πγijLξγij

�

¼
Z

d3xðσijLξγij þ π∇kξkÞ

¼̂
Z

d3xðσijLξγijÞ; ð52Þ

where the last term in the middle equation vanishes for
when πffiffi

g
p is a spatial constant, as ∇kξk ¼ γijLξγij is a pure

divergence. Under the conformal transformations induced
by Eqs. (49) and (50), we now getZ

d3xðσijLξγijÞ →
Z

d3xðσ̄ijLξγ̄ijÞ; ð53Þ

since the extra term containing the derivative of ω is
multiplied by γ̄ijσij and thus vanishes. This decouples
the momentum and scalar constraints.
Finally, the complete system of equations of motion then

reads

_φ ¼ k; ð54Þ

_πφ ¼ −
dV
dφ

Z
d3xN0e6ω; ð55Þ

_ω − Lξω ¼ 1

6

�
∇̄aξ

a −
N0

μ2
dV
dφ

�
; ð56Þ

_̄γij − Lξγ̄ij ¼ 2N0e−6ωσ̄ij −
2

3
∇̄aξ

aγ̄ij; ð57Þ

_̄σij − Lσ̄ij ¼ −
1

3
∇̄aξ

aσ̄ij þ 2N0e−2ωγ̄abσ̄iaσ̄jb

þ e−2ω
�
∇̄i∇̄jN0 − 4∇̄ðiω∇̄jÞN0

−
1

3
ð∇̄2N0 − 4∇̄aω∇̄aN0Þγ̄ij

− N0

�
R̄ij −

1

3
R̄γ̄ij − 2∇̄i∇̄jωþ 4∇̄iω∇̄jω

þ 2

3
ð∇̄2ω − 2∇̄aω∇̄aωÞγ̄ij

��
: ð58Þ

Note that no source term appears in the evolution
equation for σ̄ij. This can also be interpreted as a conse-
quence of the energy-momentum tensor associated with the
cuscuton being that of a perfect fluid (like any k-essence),
and therefore possessing only terms that are proportional to
the metric.

V. CONCLUSIONS

In this work we have formulated the cuscuton field, an
extreme form of k-essence, in the Hamiltonian formalism, in
order to count the degrees of freedompropagated by the field.
Bycomputing the algebra of constraints in the full system,we
have found no evidence that a general field requires a
preferred foliation. However, the field equations become
singular in the homogeneous limit, so a transition to or from a
homogeneous regime implies the loss of predictivity of the
equations of motion. We have also shown that even if
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homogeneity is imposed weakly as a constraint on the
system, the system becomes second class. Away to resolve
this difficulty is to impose strong homogeneity of the
cuscuton field. Requiring that the dynamics be described
with no dependence of the field with respect to spatial
variables, this theory selects a foliation. Indeed, we then
show that the resulting theory is constrained to a CMC
foliation whose propagation is ensured by a lapse-fixing
equation,which effectively fixes the gauge for this theory and
ensures that it is well defined. In this gauge, there are in fact
no dynamical evolution equations for the cuscuton, and the
time derivative of the field appears as a Lagrange multiplier
which parametrizes the patch of lapse functions that solve the
CMC equation. No local excitations of the field can be
activated, and therefore no worries about superluminal
propagation need ensue.
An important consequence that our analysis shows is the

fact that, because the homogeneous limit is fundamentally
discontinuous from the generic cuscuton action, the two
limits must be treated as different dynamical systems.
This means that the gauge freedom one usually has when

treating a regular scalar field to choose a homogeneous
foliation is not at all guaranteed here, since a gauge
freedom is an equivalence on field space. In the 3þ 1
setting, it was shown by Kuchař [16] that, for standard
source terms that are regular functions in phase space, the
algebra of constraints should follow the ADM algebra.
Indeed, this means that for matter fields with regular,
everywhere timelike gradients, one should be able to
explore this gauge freedom to go to the frame in which
the foliation is defined by the regular values of the field, and
in which one can therefore assume ∇iφ ¼ 0. However,
these gauge symmetries need not be present everywhere in
field space, if the source is not regular. In particular, the
problem is that the cuscuton source has a square root and is
in fact not regular, so we need to explicitly look at the gauge
properties in field space separately at the different regu-
larity domains. Indeed, we find that, away from the surfaces
∇iφ ¼ 0 and πφ ¼ μ, the standard refoliation symmetry is
maintained, which means that the field has an extra local
scalar degree of freedom in this part of phase space (with
respect to pure gravity).
In other words, one should not be a priori able to exploit

gauge freedom to go to the pre-image of the branching
point in field space, since the theory does not necessarily
have the same properties there. The standard assumption
that gauge symmetry may be exploited to select an arbitrary
foliation (e.g., one in which ∇iφ ¼ 0) is couched on
regularity of the sources in phase space—in which case,
as mentioned above, one can indeed show that refoliation
symmetry extends seamlessly to general relativity (GR)
with sources [16]. In fact, we find that the theory is only
consistent in a subset of the space in the pre-image of the
branching point. Namely, only where it has no dynamical
local degrees of freedom and defines the CMC surface.

Moreover, if one performs perturbation analysis around a
homogeneous cuscuton background, one must carry out the
analysis within the limits of a CMC foliation, and without
allowing for local perturbations on the cuscuton field itself.
By allowing the cuscuton to depart from homogeneity, it
effectively becomes an entirely different system with
nothing of the constraint structure that appears in the
homogeneous case. In this latter case, it acquires an extra
locally propagating scalar degree of freedom.
Still regarding the inhomogeneous case, the presence of

two singular surfaces in phase space which are not limit
surfaces—and which may in principle be reached in finite
time by the Hamiltonian flow of a generic initial condition
—may in fact render the inhomogeneous cuscuton a
nonphysical model, in the sense that any generic initial
condition surface may lead to an ill-defined system.
However, a full analysis of the dynamical evolution of
the inhomogeneous cuscuton is beyond the scope of this
work, and will be the subject of future study.
The homogeneous cuscuton and the structure it generates

has an interesting consequence. The CMC condition (42)
establishes a connection between the trace of the gravita-
tional momentum and the cuscuton potential. This means
that each choice of solution for the potential corresponds to
a different function of the momentum to appear in the
Hamiltonian [17]. Gravitational theories which propose a
dependency on the trace of the gravitational momentum
include time-asymmetric modifications of general relativity
[18] and the linking theory connecting shape dynamics and
general relativity [14,19]. If these theories can be shown to
display the same constraint structure as the cuscuton for a
suitable choice of potentials, this in turn means that each
cuscuton potential corresponds to an Einstein-frame
description of a modified gravity theory with some
dependence on the trace of the gravitational momentum.4

The ubiquity of CMC foliations in many different
attempts to implement in GR a “time function”—i.e., a
clock synchronization which is integrable and character-
ized by the constant value of some scalar field—raises
questions: could it be related to the role that such foliations
play in allowing a duality with spatially conformally
invariant theories [18–20]? Or it could be related to the
fact that, up to second order in gravitational momenta, there
are no first class extensions of the ADM scalar constraint
[21], and π ¼ constant is the only spatially covariant, first
class constraint, which is purely second class with respect
to Hg [given in Eq. (13)] over the entire ADM phase space
[18]. Of course, these two reasons are not mutually
exclusive, and have in fact been argued to be related [18].
Lastly, we comment on the substitution of York time by

the appearance of the term 6V þ ð 2
μ2

dV
dφÞ2. In the context of

4In the case of shape dynamics, this will only be a correspon-
dence over a given patch of the conformal phase space which can
be covered by the ADM gauge section.
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cosmology, York time is the Hubble parameter H up to a
negative constant,5

τ ¼ −ð4πGÞ−1H ¼ −2M2
PlH; ð59Þ

where G is the gravitational constant and MPl the reduced
Planck mass. The monotonicity of τ, a requirement for it to
function as a time parameter, is guaranteed if the equation of
state parameter w obeys w ≥ −1, with equality only in the
limiting case when the kinetic contribution vanishes exactly,
a scenario corresponding to a first approximation to slow-roll
inflation. Here, we could potentially adjust the potential
VðφÞ to probe different domains, making it more flexible
than York time. These questions remain for further study.
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APPENDIX A: A QUICK PRIMER
ON SYMPLECTIC GEOMETRY

In the Hamiltonian formalism, the symplectic flow of
constraints generates motion in phase space. Because the
Poisson bracket acts as a derivative,

ff; ghg ¼ gff; hg þ ff; ggh; ðA1Þ

we can see the linear operator ff; ·g as a kind of vector field
in phase space. Thus, the symplectic flow of a given
phase-space function f is defined as vf ≡ ff; ·g. It will
act on other functions as a directional derivative vf½h� and
measure howmuch h changes in the direction of vf. That is,
it measures how other phase-space functions change under
“evolution” through the action of the corresponding phase-
space function f. The phase-space function f implicitly
defines a surface through the regular value theorem,
provided certain regularity assumptions are satisfied. In
the presence of a metric, one would usually say that the
differential one-form df is “perpendicular” to the surface
f−1ð0Þ, because its dual vector field df♯ is defined as
X½f� ¼ dfðXÞ ≕ gðdf♯; XÞ, i.e., g−1df ¼ ðdfÞ♯, which
obviously vanishes for any vector field tangent to
f−1ð0Þ. In the case of symplectic geometry, one does
not define the analogous operation through the use of a

metric but a symplectic two-form, usually denoted by ω.
Explicitly,

ωðvf; ·Þ ≔ df; ðA2Þ
and furthermore

ωðvf; vhÞ ¼ ff; hg: ðA3Þ

Now, just as a vector field can be tangential to a given
manifold, so can symplectic flows. Suppose then that a
surface N in phase space is given by the intersection of
regular manifolds defined by the inverse values of the
functions χI , i.e.,N ≔ fðq; pÞjχIðq; pÞ ¼ 0 ∀ Ig. ThenN
will be said to be first class if for all phase-space functions
f such that f vanishes on N , i.e., dfðXÞ ¼ 0 for all
X ∈ TN , then vf½χI�ðp; qÞ ¼ 0 for all I and ðp; qÞ ∈ N .
The statement is equivalent to the much simpler statement
that ff; χIg ¼ aJχJ, since this will indeed be zero when-
ever we are on the surface. The geometric translation is
indeed very simple: N is first class if all symplectic flows
vf of functions f that vanish on the surfaceN are tangent to
the surface.
By contrast, we can define a second class manifold (or

set of regular functions χI) if all symplectic flows (of
functions that vanish on the surface) take us out of the
surface (i.e., are not tangent to it).
Gauge fixings are further constraints imposed to be

second class with the symmetry generator one would like to
fix. Its flow is transverse to the gauge orbits, and it does not
change the physical degree of freedom count (a theory with
one set of n first class constraints has the same number of
degrees of freedom than a theory with 2n second class
constraints). On the other hand, imposition of a further first
class constraint will change the degree of freedom count-
ing, consisting in an actual dynamical reduction.

APPENDIX B: EQUATIONS OF MOTION
IN THE X < 0 REGION

It can immediately be seen from the definition of X in
Eq. (2) that the region X < 0 does not intersect with the
homogeneous region. However, it is a simple exercise to
demonstrate that this region of the cuscuton is well
behaved, at least in the sense of the constraint algebra.
Let us consider X < 0 in the Lagrangian (1). The

conjugate momentum in this case reads

πϕ ¼ −
ffiffiffi
γ

p
N

μ2ffiffiffiffiffiffiffiffiffi
−2X

p ð _ϕ − ξi∇iϕÞ; ðB1Þ

so when we cast _ϕ and X in terms of the momentum we find

_ϕ ¼ ξi∇iϕ − Nπϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∇iϕ∇iϕ

π2ϕ þ γμ4

s
; ðB2Þ5For a more thorough study of cosmology in York time, see

Ref. [22].
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X ¼ −
1

2
∇iϕ∇iϕ

�
γμ4

π2ϕ þ γμ4

�
: ðB3Þ

The Hamiltonian is then given by

Hϕ ¼
Z

d3x
h
N

ffiffiffi
γ

p
V − N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∇iϕ∇iϕðπ2ϕ þ γμ4Þ

q
þξiπϕ∇iϕ

i
;

ðB4Þ

and the equations of motion read

_πϕ ¼ −∇i

 
N∇iϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2ϕ þ γμ4

∇aϕ∇aϕ

s
− ξiπϕ

!
− N

ffiffiffi
γ

p dV
dϕ

; ðB5Þ

_ϕ ¼ ξi∇iϕ − Nπϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∇iϕ∇iϕ

π2ϕ þ γμ4

s
: ðB6Þ

Including the gravitational field, the full Hamiltonian
constraint reads

fH; πNg ¼ 1ffiffiffi
γ

p
�
πabπab −

1

2
π2
�
−

ffiffiffi
γ

p
R

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∇iϕ∇iϕðπ2ϕ þ γμ4Þ

q
þ ffiffiffi

γ
p

V

¼ 0; ðB7Þ

while the momentum constraint remains unaltered. From
these results, it becomes clear that the negative region obeys
the same deformation algebra (25) as the positive region.

APPENDIX C: FULL VARIATION OF THE
CUSCUTON HAMILTONIAN

In this Appendix we present all components of the
variation of the cuscuton Hamiltonian. The components of
the variation of the supermomentum term Hi

ϕ with respect
to the field variables are

Z
d3xδðξiHϕ

i Þ ¼
Z

d3x½πϕ∇iϕδξ
i þ ξiδðπϕ∇iϕÞ�

¼
Z

d3x½πϕ∇iϕδξ
i þ ξi∇iϕδπϕ þ πϕξ

i∇iðδϕÞ�

¼
Z

d3x½πϕ∇iϕδξ
i þ ξi∇iϕδπϕ −∇iðξiπϕÞδϕþ∇iðπϕξiδϕÞ�

¼
Z

d3x½πϕ∇iϕδξ
i þ ξi∇iϕδπϕ −∇iðξiπϕÞδϕ� þ

I
d2siπϕξiδϕ: ðC1Þ

Likewise, the variation of the super-Hamiltonian term Hϕ reads

Z
d3xδðNHϕÞ¼

Z
d3x

�
HϕδNþNδ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∇jϕ∇jϕðπ2ϕ−γμ4Þ

q
þ ffiffiffi

γ
p

V

��

¼
Z

d3x

�
HϕδNþN

�
δHϕ

δϕ
δϕþ δHϕ

δð∇ϕÞδð∇ϕÞþδHϕ

δπϕ
δπϕþ

�
δHϕ

δγij
−
δHϕ

δγ
γγij

�
δγij
��

¼
Z

d3x

�
HϕδNþN

ffiffiffi
γ

p dV
dϕ

δϕþN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2ϕ−γμ4

∇jϕ∇jϕ

s
∇iϕ∇iðδϕÞþNπϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∇jϕ∇jϕ

π2ϕ−γμ4

s
δπþN

�
δHϕ

δγij
−
δHϕ

δγ
γγij

�
δγij
�

¼
Z

d3x

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∇aϕ∇aϕðπ2ϕ−γμ4Þ

q
þ ffiffiffi

γ
p

V

�
δNþ

�
N

ffiffiffi
γ

p dV
dϕ

−∇i

�
N∇iϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2ϕ−γμ4

∇aϕ∇aϕ

s ��
δϕþNπϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∇aϕ∇aϕ

π2ϕ−γμ4

s
δπ

þN
2

�
∇iϕ∇jϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2ϕ−γμ4

∇aϕ∇aϕ

s
þγij

�
γμ4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∇aϕ∇aϕ

π2ϕ−γμ4

s
−V

ffiffiffi
γ

p ��
δγij
�
þ
I

d2siN∇iϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2ϕ−γμ4

∇aϕ∇aϕ

s
δϕ: ðC2Þ
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