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Within the framework of quantum reduced loop gravity, we quantize the Hamiltonian for a gauge vector
field. The regularization can be performed using tools analogous to the ones adopted in full loop quantum
gravity, while the matrix elements of the resulting operator between basis states are analytic coefficients.
This analysis is the first step toward deriving the full quantum gravity corrections to the vector field
semiclassical dynamics.
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I. INTRODUCTION

Quantum reduced loop gravity (QRLG) focuses on the
quantization of gravitational systems that are described by
metrics with a spatial part and dreibein gauge fixed to a
diagonal form. It was first introduced in Refs. [1,2] and
then developed in Refs. [3–10] (see Ref. [11] for a review).
Hitherto, the theory has been successfully implemented for
the Bianchi I model. QRLG is derived from loop quantum
gravity (LQG) [12–14] by imposing weakly gauge-fixing
conditions to the states of the kinematical Hilbert space.
Therefore, it stands as an implementation of the LQG
cosmological sector. It differs from loop quantum cosmol-
ogy (LQC) [15–17], in which the quantization of the
gravitational system is performed in the minisuperspace,
i.e. once symmetry reduction of the phase space has taken
place at a classical level.
In the literature, several approaches have been developed

so far to relate LQC to LQG or in general to extract the
cosmological sector of LQG. We can in particular quote
the embedding of quantum configuration spaces of LQC into
the full theory [18–21]—related to the possibility of the
commutativity between quantization and reduction. Besides,
it is worth mentioning the use of spin foam techniques [22],
the use of condensates in the group field theory approach
[23,24] and the gauge unfixing procedure [25]. The latter one
is closely related to the implementation ofDirac brackets and
developed to work in a classically gauge-fixed setting
suitable to quantize the reduced phase space. QRLG fits
in these attempts to reproduce in the semiclassical limit the
effective Hamiltonian of LQC [6] with μ0 regularization,
while the effective dynamics with improved dynamics [7]

can be inferred via a statistical average over an ensemble of
classically equivalent states [26].
QRLG provides a novel derivation of earlier LQC results,

in particular for what concerns the realization of the
bouncing scenario. This picture still needs to be completed
though with the introduction of a matter field. Since QRLG
introduces a graph structure underlying the continuous
Universe description at the classical level and is the origin
of the discretization at the quantum level, matter fields must
be quantized via the tools of the loop quantization [27,28],
i.e. in the full theory. Hence, QRLG provides an arena in
which the implications of loop quantization for matter fields
can be tested. The first of these analyses devoted to the study
of matter in LQG traces back to Ref. [10], where the QRLG
framework was extended in order to include a scalar field.
We focus on the implementation of gaugevector fields in this
framework. The interest for such a case is not only academic,
given the potential role of vector fields in early cosmology
[29–35], which could open a new window on quantum
gravity phenomenology. Furthermore, the inclusion of
gauge fields in LQG might also open new pathways toward
a unified formalism for all forces, with peculiar phenom-
enological consequences—see e.g. preliminary investiga-
tions in Refs. [36,37].
We first introduce vector fields in QRLG and define the

operator corresponding to its contribution to the scalar
constraint. We then quantize the field by adapting the
LQG procedure given in Refs. [27,28] (and recently
reviewed in Ref. [38]) to the reduced model, similarly to
the scalar field case discussed in Ref. [10]. Basic quantum
variables for the matter field are gauge group holonomies
and fluxes, just like in lattice gauge theories [39], the lattice
being provided here by the cubic graph at which gravita-
tional holonomies are based. The scalar constraint is
quantized via a regularization of the classical expression,
which provides a constraint for the gravitational contribu-
tions written entirely in terms of the holonomies and the
fluxes of proper QRLG. Such a formulation is technically
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achievable, and all the relevant computations can be per-
formed analytically, thanks to the expressions of the matrix
elements of the volume operator. The outcome of our
analysis is the computation of the matrix elements (between
the basis elements of QRLG) of the scalar constraint part that
involves vector fields and its expectation value on semi-
classical states, which is the starting point for future
applications.
In Sec. II, we introduce QRLG and define the kinemati-

cal Hilbert space. We focus our attention on states based on
graphs having six-valent nodes [9], which allow us to
construct a cubulation of the whole spatial manifold. In
Sec. III, the classical and quantum formulation for a vector
field is given. On a classical level, we write the contribu-
tions of the vector field to the scalar, vector, and Gauss
constraints. The regularization of the field contribution to
the scalar constraint is performed in Sec. IV. We just adapt
to our case the regularization performed in Ref. [28]; i.e. we
replace the triangulation with the cubulation of the spatial
manifold and SU(2) group elements of LQG with the
corresponding U(1) group elements in QRLG. Once the
geometric variables have been cast in terms of fluxes and
holonomies and the phase space coordinates of the vector
field in terms of gauge group holonomies and fluxes, the
quantization is straightforwardly performed in Sec. V. The
resulting operator is discussed in the large-j limit. We find
that when proper semiclassical states are constructed for the
vector field, the expectation value of the vector field
contribution to the scalar constraint reproduces the corre-
spondent classical expression. This result provides a first
check on the consistency of the adopted framework.
Throughout this paper, we pick the conventions on

metric signature ð−;þ;þ;þÞ, on the gravitational coupling
constant κ ¼ 16πG, and on the speed of light c ¼ 1. The
metric tensor is defined as gμν ¼ eαμe

β
νηαβ, where eαμ are

vierbein fields and ηαβ is the flat metric. Dreibeins are
denoted as eia, where lowercase latin indices a; b; :: ¼ 1, 2,
3 label the coordinate on each Cauchy hypersurface
constructed by Arnowitt-Deser-Misner (ADM) decompo-
sition [40], while i; j; :: ¼ 1, 2, 3 are su(2) internal indices,
where su(2) denotes the algebra of SU(2).

II. QUANTUM REDUCED LOOP GRAVITY

The canonical variables of LQG are holonomies of
Ashtekar-Barbero connections [41], smeared along
some curve γ, hγ ≔ P exp ði Rγ Aj

aðγðsÞÞτj _γaðsÞÞ, and
fluxes of densitized triads across some surface S, EðSÞ ≔R
S njϵabcE

a
jdx

b ∧ dxc.
The kinematical Hilbert space of the theory is defined as

the direct sum of the space of cylindrical functions of con-
nections ΨΓ;fðAÞ≔hAjΓ;fi≔fðhl1ðAÞ;hl2ðAÞ;…;hlLðAÞÞ
along each graph Γ, with a continuous function
f∶SUð2ÞL → C. It can be represented by the formula

HðgrÞ
kin ≔ ⨁

Γ
HðgrÞ

Γ ¼ L2ðA; dμALÞ; ð1Þ

whereA denotes the space of (generalized) connections and
dμAL is the Ashtekar-Lewandowski measure [42]. The last
equality has to be intended as a projective limit where one
includes all the possible graphs on a bigger one and one
imposes cylindrical consistency.
The basis states, called spin network states, are given by

the expression

ΨΓ;jl;ivðhÞ ¼ hhjfΓ; jl; ivgi ¼
Y
v∈Γ

iv ·
Y
l

DjlðhlÞ; ð2Þ

where the triple fΓ; jl; ivg is a graph Γ, spin j of the
holonomy along each link l, and an intertwiner iv imple-
menting SU(2) invariance at each node v. The product

Q
l

extends over all the links l emanating from the node v, and
DjlðhlÞ are the Wigner matrices, while the · denotes
contraction of the SU(2) indices.
QRLG selects a finite amount of degrees of freedom in

LQG, and it can be applied to all gravitational models with
diagonal metric tensor and triads; hence, one can define the
line element as

dl2 ¼ a21dx
2 þ a22dy

2 þ a23dz
2; ð3Þ

where the three scale factors are functions of time and of all
spatial coordinates. The graph Γ now contains the set of
links li, each being placed along a fiducial direction 1, 2, or
3. In the theory with the diagonal metric tensor, the
canonical pair corresponding to Ashtekar variables reads

Ei
a ¼ piδia; Ai

a ¼ ciδia ð4Þ
(indices are not summed in this expression), where jpij ¼
a1a2a3

ai
and the reduced connections ci are proportional to the

time derivatives of scale factors. This implies an SU(2)
gauge-fixing condition in the internal space, which is
realized by the projection of SU(2) group elements, which
are based at links li, onto U(1) group representations. The
U(1) group elements are obtained by stabilizing the SU(2)
group along the internal directions u⃗l ¼ u⃗i, with

u⃗1 ¼ ð1; 0; 0Þ u⃗2 ¼ ð0; 1; 0Þ u⃗3 ¼ ð0; 0; 1Þ: ð5Þ
The kinematical Hilbert space for QRLG reads

RHðgrÞ
kin ≔ ⨁

Γ

RHðgrÞ
Γ ; ð6Þ

with Γ being a cuboidal graph. The basis states in the

reduced Hilbert space RHðgrÞ
Γ are obtained by projecting

SU(2) Wigner matrices on ordinary SU(2) coherent states
jjl; u⃗li, labeled by the direction ul that depends on the
orientation of links l. As a result, we get the ordinary
Wigner matrices, with the maximal or minimal value of
spinml ¼ �jl (the sign depends on the positive or negative
orientation of link l) in the base that diagonalizes J⃗ · u⃗l:
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lDjl
mlmlðhlÞ ¼ hjl; u⃗ljDjlðhlÞjjl; u⃗li; hl ∈ SUð2Þ: ð7Þ

It is worth mentioning that the projection onto the maximal
or minimal spin value is a consequence of the operational
equations implementing diagonalization of the metric
tensor at the quantum level [3]. Then, the basic states,
called reduced spin network states, are defined by the
following expression,

RΨΓ;ml;ivðhÞ ¼ hhjfΓ; ml; ivgi
¼
Y
v∈Γ

hjl; ivjml; u⃗li ·
Y
l

lDjl
mlmlðhlÞ; ð8Þ

where hjl; ivjml; u⃗li are reduced intertwiners of the U(1)
group. The reduced spin network states are not orthogonal
with respect to the intertwiners iv, since the scalar product
reads

hΓ; ml; ivjΓ0; m0
l; i

0
vi

¼ δΓ;Γ0
Y
v∈Γ

Y
l∈Γ

δml;m0
l
hml; u⃗ljjl; ivihjl; i0vjml; u⃗li: ð9Þ

It is convenient to normalize those states; in this way, the
reduced intertwiners being just phases1 drop out from the
kinematical reduced Hilbert space

jΓ; ml; iviN ¼ jΓ;mliR; ð10Þ
where N stands for normalized. In this way, the Hilbert

space RHðgrÞ
Γ ¼⊗li∈Γ Hli with Hli being the Uð1Þi Hilbert

space associated to each link li in direction i. The reduced
intertwiners will then just appear when we project the
SU(2) operators.
The graphical way of constructing the elements of RHðgrÞ

Γ
out of those of the full theory is to replace SU(2) basis
elements with the following objects:

ð11Þ

Finally, the canonical reduced variables are Rhli and
REðSÞ,

which are constructed by smearing along links of reduced,
cuboidal graph Γ and across surfaces S perpendicular to these
links, respectively. Since on the quantum level we use only
reduced variables, we neglect the left uppercase symbol R in
the next sections. The scalar constraint operator, neglecting
the scalar curvature term, is obtained from that of LQG by

considering only the Euclidean part and replacing LQG
operators with reduced ones. Its action on three-valent and
six-valent nodes has been analyzed inRefs. [3,9], respectively.
It is worth noting that the nodes of the cubiodal graph Γ

are always six-valent and the graphical representation of a
subsystem containing one node with attached links is given
by the figure

ð12Þ

1Given that jj; uzi ¼ jj; ji and jj;−uzi ¼ jj;−ji, coherent states jj;�ux;yi correspond to a SU(2) rotation applied to jj; ji, multiplied
times a phase. Contracting the states with intertwiners, we then obtain a product of phases.
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where the node vx;y;z is placed at ðx; y; zÞ and the symbol

jðiÞxþn;y;z ¼ �1=2;�1;�3=2;… denotes the spin number
attached to a link along the i axis, which starts at the node
fxþ n; y; zg and ends at the node fxþ nþ 1; y; zg. Note
that the node is six-valent and links in the x direction are
perpendicular to the plane of the picture, and for clarity they
are not being displayed. From now on, we assume the right-
handed orientation of links; i.e. the linkwith the spin number

jðiÞxþn−1;y;z is ingoing to the nodefxþ n; y; zg, while jðiÞxþn;y;z is
outgoing from the same node. It is worth mentioning that a
result of an action of operator on jΓ; jliR ≔ hljΓ; jliR
depends only on the value of the spin jl; hence, we omit
other elements in the notation of the state.
In what follows, we will need the expression of the

powers of the volume operator V̂, which acts diagonally [3]
on the reduced (and normalized) states (12),

V̂nðvx;y;zÞjΓ; jliR ¼ ð8πγl2PÞ
3
2
n

 
jð1Þx−1;y;z þ jð1Þx;y;z

2

jð2Þx;y−1;z þ jð2Þx;y;z

2

jð3Þx;y;z−1 þ jð3Þx;y;z

2

!n
2

jΓ; jliR ¼ Vn
vx;y;z jΓ; jliR; ð13Þ

with γ being the Immirzi parameter and Vv ≔
ðð8πγl2PÞ3Σð1Þ

v Σð2Þ
v Σð3Þ

v Þ12 being the eigenvalue of the volume

operator V̂. The quantity ΣðiÞ
v ≔ 1

2
ðjðiÞv þ jðiÞv−e⃗iÞ denotes the

averaged value of spins attached to the collinear pair of
links (ingoing and outgoing) emanated from the node v,
where e⃗i is the unit vector along the direction i, such that

jðiÞv−e⃗i represents the spin number of the link along lp (with p
being oriented along the fiducial direction i) ending in v.
Notice that the eigenvalues of the geometrical operators

differ from the ones obtained in LQG. This can be easily
understood if we consider the eigenvalues of the area
operator Âðvy;zÞ in QRLG and in full LQG, in the

fundamental representation (i.e. taking jðyÞv ¼ jðyÞv−e⃗y
¼

jðzÞv ¼ jðzÞv−e⃗z
¼ 1=2). In QRLG, we have that

Âðvy;zÞjΓ; jliR ¼ 4πγl2PjΓ; jliR;
while acting with the area operator on a state jΓ; jl; ivi in
LQG or in LQC, we obtain

Âðvy;zÞjΓ; jl; ivi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð8πγl2PÞ2τiτi

q
jΓ; jl; ivi

¼ 4
ffiffiffi
3

p
πγl2PjΓ; jl; ivi:

This difference is a consequence of the stabilization of the
suð2Þ generators in the definition of the basis states and
arises fromadifferent choice (with respect to the one inLQC)
of the value that corresponds to the classical momentum in
the construction of the semiclassical states [6].

III. LOOP FRAMEWORK FOR QUANTUM
VECTOR FIELD

The action of the gauge field AI
μ minimally coupled to

gravity reads (we use the notation of Ref. [28])

SðAÞ ¼ −
1

4Q2

Z
M
d4x

ffiffiffiffiffiffi
−g

p
gμνgρσFI

μρFI
νσ; ð14Þ

where Q2 is the coupling constant of dimension 1=ℏ, g is
the determinant of four-dimensional metric tensor, and FI

μρ

denotes the field strength

FI
μν ¼ ∂μAI

ν − ∂νAI
μ þ CI

JKA
J
μAK

ν ; ð15Þ

CI
JK being structure constants of the gauge group.
The Legendre transform gives the following

Hamiltonian,

HðAÞ ¼
Z
Σt

d3x

�
−AI

tDaEa
I þ NaFI

abE
b
I

þ N
Q2

2
ffiffiffi
q

p qabðEa
I E

b
I þ Ba

I B
b
I Þ
�

¼
Z
Σt

d3xðAI
tG

ðAÞ
I þ NaVðAÞ

a þ NHðAÞ
sc Þ; ð16Þ

where N is the lapse function and Na is the shift vector,

while VðAÞ
a and HðAÞ

sc contribute to the vector and scalar
constraints densities of a gravitational field, respectively.

GðAÞ
I is the Yang-Mills field Gauss constraint density that

generates gauge transformations in phase space. At the
quantum level, it is imposed by projection of cylindrical
functions of connections AI

a onto gauge invariant ones. As a
consequence, gauge intertwiners enter the definition of

states. Ea
I ¼

ffiffi
q

p
Q2 e

μ
0q

abFJ
μbδIJ is the conjugate momentum to

the vector field AI
a, and Ba

I ¼ 1
2Q2 ϵabcFJ

bcδIJ is its magnetic

field, where ϵabc ≔ ffiffiffi
q

p
~ϵabc and ~ϵabc is the flat Levi-

Cività tensor. We also introduced qab denoting a three-
dimensional metric on the spatial Cauchy hypersurface Σt,
while qab and q are the inverse and the determinant of the
metric qab, respectively.
The vector field contribution to the total vector constraint

reads VðAÞ
a ≔ FI

abE
b
I . It generates diffeomorphism trans-

formations. The diffeomorphism invariance is imposed at
the quantum level in the space dual to the kinematical
space, and the invariant space is then obtained by duality.
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The contribution to the smeared scalar constraint,

HðAÞ
sc ½N�, encodes all information about the dynamics of

the vector field in the gauge and diffeomorphisms invariant
phase space and reads

HðAÞ
sc ½N� ≔

Z
Σt

d3xN
Q2

2
ffiffiffi
q

p qabðEa
I E

b
I þ Ba

I B
b
I Þ

≔ HðAÞ
E ½N� þHðAÞ

B ½N�; ð17Þ

where we split it into two parts, the electric and magnetic
ones, i.e.

HðAÞ
E ½N� ¼ Q2

2

Z
Σt

d3x
Nffiffiffi
q

p qabEa
I E

b
I ð18Þ

HðAÞ
B ½N� ¼ Q2

2

Z
Σt

d3x
Nffiffiffi
q

p qabBa
I B

b
I : ð19Þ

The phase space coordinates are given by holonomies of
the gauge group along reduced graphs Γ, which we denote
as follows,

hΓ ≔ P exp

�Z
Γ
AI
aτIðΓðsÞÞ _ΓaðsÞ

�
; ð20Þ

where P denotes path ordering and τI are the generators of
the gauge group and fluxes of the electric vector field
around surfaces S, i.e.

EIðSlpÞ ≔ ϵpqr

Z
S⊥lpðvÞ

dlqdlrEp
I ðvÞ; ð21Þ

where we defined S as the surface spanned by two lattice
links lq and lr, dual to lp (in the expression above, only the
indices q and r are summed). In what follows, we will only
consider positive oriented links l, which provides positive
oriented surfaces S with respect to the fiducial directions.
In order to regularize the expression (17) of the scalar

constraint for the vector field (see Sec. IV), we need to
express the electric and magnetic vector fields in terms of
holonomies and fluxes. This can be done in the limit of
finer and finer cubulation of the spatial manifold as follows.
The electric field can be written in terms of fluxes using the
following relation,

EIðSlpÞ ≈ ε2Ea
I ðvÞδpa ; ð22Þ

ε being the length of the links spanning Sl
p
. As

soon as the magnetic field Ba
I is concerned, one

introduces the gauge holonomy hq↺rðΔðvÞÞ ¼
h−1lr ðΔðvÞÞh−1lq ðΔðvÞÞhlrðΔðvÞÞhlqðΔðvÞÞ along a rectangu-
lar loop based at v having links along the directions q and r.
In the limit of infinitesimal loops, the links of which have
length ε, the holonomy hq↺r can be expanded as follows,

hq↺r ¼ 1þ 1

2
ε2Fqr þOðε4Þ; ð23Þ

where the curvature has been contracted with the gauge
group generator, Fqr ¼ FI

qrτI. In what follows, the follow-
ing identity will be used,

1

Q2
ϵpqrtrðτIhq↺rðΔðvÞÞÞ ¼

ε2

2Q2
ϵpqrtrðτIFqrðvÞÞ

þOðε4Þ ≈ ε2Ba
I ðvÞδpa ; ð24Þ

where τI are the Yang-Mills generators in the fundamental
representation, for which

trðτIτJÞ ¼ δIJ: ð25Þ

It is worth noting that discretizing over the cuboidal lattice
(12), the continuous expression for the magnetic field Ba

I ,
one gets the sum of fields (24) attached to the outgoing and
ingoing links lp emanated from the node v, which can be
reexpressed as the four gauge holonomies along loops dual
to a given fiducial direction i ¼ p and based at the node v.
We quantize the system of the gravitational field and the

vector field applying the method described in Ref. [28] for
LQG to the case of QRLG. Therefore, the total Hilbert
space is the direct product

HðtotÞ
kin ¼ RHðgrÞ

kin ⊗ HðAÞ
kin ; ð26Þ

where theHilbert space for gravity RHðgrÞ
kin has been described

in the previous section. The Hilbert spaceHðAÞ
kin for the gauge

field is defined in terms of cylindrical functions of holon-
omies of the gauge connections, the only difference with
Ref. [27] being that only reduced graphs are considered.

Precisely, the Hilbert space HðAÞ
kin is constructed out of

cylindrical functions of the gauge connections Ai
a along

the cuboidal graph Γ. The only difference with respect to the
kinematical Hilbert space of full LQG (1) is an extension of
the SU(2) symmetry to a considered symmetry of the gauge
group and a restriction on the graph to be cuboidal. Notice
that the reduction procedure is not applied to the gauge
group. Objects jΓ;ml; nl; iviR ¼ jΓ;mliR ⊗ jΓ; nl; ivi,
where jΓ; nl; ivi are invariant spin network states for the
gauge field based at the graph Γ and they are labeled by
the quantum numbers nl of the irreducible representation of
the gaugegroup at each link l and the corresponding invariant
intertwiners iv at nodes v.
The basic matter operators acting on jΓ; nl; ivi are the

quantum gauge holonomies ĥ, which act by multiplication
in the same way as their gravitational equivalents, creating
the holonomy of the composition of two paths, and the
quantum electric fluxes that act as the left/right invariant
vector fields.
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The states in the total Hilbert space HðtotÞ
kin can be described in the following graphical way,

ð27Þ

where jðiÞp;q;r and n
ðiÞ
p;q;r are the spin numbers at the associated

links lðiÞp;q;r and iv are the intertwiners at nodes. Again, note
that the node is six-valent and links in the x direction are
perpendicular to the plane of the picture, and for clarity they
are not being displayed.

IV. REGULARIZATION OF SCALAR
CONSTRAINT

The quantization of the vector field part of the scalar
constraint requires a regularization of the both terms in the
formula (17). This procedure is done still in the classical
phase space, by rewriting (17) in terms of holonomies and
fluxes for both the gravitational part and the terms
involving the vector field.
The gravitational part of the Hamiltonian constraint is

regularized by the method developed in LQG [43], which
has been restricted to cuboidal graphs [3,9]. Matter coupled

to a dynamical spacetime is regularized introducing matter
holonomies coupled to the dynamical lattice (composed of
nodes and links). Alternatively, one can introduce a dual
picture [44], where matter fields are coupled to the
dynamics of granulated space (being volumes and areas
of chunks of space).
In order to regularize HðAÞ

E and HðAÞ
B , we follow the

procedure given in Ref. [28] for LQG in the presence of a
vector field, making one restriction. From all the possible
graphs, we choose only the cuboidal one.
At first, smearing electric vector fields and applying

Thiemann’s trick [43], one has

eiaðxÞ ¼
4

nγκðVðRÞÞn−1 fA
i
aðxÞ; ðVðRÞÞng; ð28Þ

such that one can write the following expression for the
electric part of the Hamiltonian,

HðAÞ
E ½N� ¼ Q2

2
lim
ε→0

Z
d3xNðxÞ e

i
aðxÞEa

I ðxÞ
V

1
2ðx; εÞ

Z
d3y

eibðyÞEb
I ðyÞ

V
1
2ðy; εÞ χεðx; yÞ

¼ 25Q2

ðγκÞ2 limε→0

Z
d3xNðxÞfAi

aðxÞ;V1
2ðx; εÞgEa

I ðxÞ
Z

d3yfAi
bðyÞ;V

1
2ðy; εÞgEb

I ðyÞχεðx; yÞ; ð29Þ
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where it has been used the definition of the characteristic
function χεðx; yÞ of the box BεðxÞ centered in x with
coordinate volume ε3, precisely

VðBεðxÞÞ ≔ Vðx; εÞ ¼ ε3
ffiffiffi
q

p ðxÞ þOðε4Þ; ð30Þ

which allows us to smear a function at the point v, around
the infinitesimal neighborhood, such that

fðxÞ ¼
Z

d3yδ3ðx − yÞfðyÞ ¼ lim
ε→0

1

ε3

Z
d3yχεðx; yÞfðyÞ:

ð31Þ

For a next step, we discretize the scalar constraint
analogously to the case in which one uses a

triangularization of the spatial manifold [43] for the
gravitational field in presence of matter [28]. The idea that
we follow is to replace the integration over the spatial
hypersurface

R
Σ with the sum over the ordered tetrahedra

being the triples of links fl; l0; l00g emanating from all nodes
v of the graph Γ. In the case of a cubulation, each node v is
always surrounded by eight such triples, and it is worth
nothing that for each tetrahedron, the remaining seven
coincide with the seven “virtual” tetrahedra, which are the
objects that appear in the procedure of triangulation of any
cuboidal or noncuboidal lattice.
In other words, discretized integration over each tetra-

hedron,
R
Δl;l0 ;l00

, becomes the sum over the eight possibilities
for choosing a triple of perpendicular links fl; l0; l00g among
each tetrahedron of the triangulation ΔðvÞ around the
node v.

Using the triangulation method, one gets the result

HðAÞ
E ½N� ¼ 25Q2

ð16πGγÞ2 limε→0
ε6
X

v∈VðΓÞ

X
v0∈VðΓÞ

X
ΔðvÞ

X
Δ0ðv0Þ

NðvÞfAi
aðvÞ;V1

2ðv; εÞgδalðvÞEc
I ðvÞδlðvÞc

× fAi
bðv0Þ;V

1
2ðv0; εÞgδblðv0ÞEd

I ðv0Þδlðv
0Þ

d δv;v0

≈ −
23Q2

ð8γπGÞ2 limε→0

X
v;v0

X
ΔðvÞ;Δ0ðv0Þ

NðvÞtrðτih−1lp ðΔðvÞÞfV
1
2ðΔðvÞÞ; hlpðΔðvÞÞgÞEIðSlpðvÞÞ

× trðτih−1ls ðΔ0ðv0ÞÞfV1
2ðΔ0ðv0ÞÞ; hlsðΔ0ðv0ÞÞgÞEIðSlsðv0ÞÞδv;v0 ; ð32Þ

where hlðΔÞ are the SU(2) holonomies in the fundamental
representation [43], τj ¼ − i

2
σj are the algebra generators

with σj being Pauli matrices, and tr denotes the trace over
SU(2) algebra. The summations

P
v∈VðΓÞ and

P
ΔðvÞ extend

over all the nodes of the cubulation and over all the
tetrahedra around each node, respectively, while the symbol
δal means that a is restricted to assume the value corre-
sponding to the fiducial direction of the link l; i.e. for
l ¼ lp, one has a ¼ p. An additional factor 1=22 has been
added to account for the fact that each electric field has
been smeared along both the positive and the negative
oriented surfaces based at nodes, which are dual to the
ingoing and outgoing links along the fiducial directions

emanating from the nodes themselves. In the last line, the
following expansion,

trðτih−1la fVnðRÞ; hlagÞ

¼ −trðτiεfAa;VnðRÞg þOðε2ÞÞ ≈ i
2
εfAi

a;VnðRÞg;
ð33Þ

has been applied, and vector fields have been replaced by
fluxes (21).
The magnetic part of the Hamiltonian (19) is regularized

by the same method and reads

HðAÞ
B ½N� ¼ 25Q2

ðγκÞ2 limε→0

Z
d3xNðxÞfAi

aðxÞ;V1
2ðx; εÞgBa

I ðx; εÞVðx; εÞ
Z

d3yfAi
bðyÞ;V

1
2ðy; εÞgBb

I ðy; εÞVðy; εÞχεðx; yÞ: ð34Þ

By using the same discretization adopted for the electric term (32), one gets
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HðAÞ
B ½N� ¼ 25Q2

ð16πGγÞ2 limε→0
ε6
X

v∈VðΓÞ

X
v0∈VðΓÞ

X
ΔðvÞ

X
Δ0ðv0Þ

NðvÞfAi
aðvÞ;V1

2ðv; εÞgδalðvÞBc
I ðv; εÞVðv; εÞδlðvÞc

× fAi
bðv0Þ;V

1
2ðv0; εÞgδblðv0ÞBd

I ðv0; εÞVðv0; εÞδlðv
0Þ

d δv;v0

≈ −
25

Q2ð8γπGÞ2 limε→0

X
v;v0

X
ΔðvÞ;Δ0ðv0Þ

ϵpqrϵstuNðvÞ

× trðτih−1lp ðΔðvÞÞfV
1
2ðΔðvÞÞ; hlpðΔðvÞÞgÞtrðτIhq↺rðΔðvÞÞÞ

× trðτih−1ls ðΔ0ðv0ÞÞfV1
2ðΔ0ðv0ÞÞ; hlsðΔ0ðv0ÞÞgÞtrðτIhq↺rðΔ0ðv0ÞÞÞδv;v0 ; ð35Þ

where magnetic fields have been replaced by traces over
generators and gauge holonomies (24) of the Yang-Mills
gauge group.

V. QUANTIZATION OF THE SCALAR
CONSTRAINT

The canonical procedure of quantization of the field
contribution to the scalar constraint, after the cubulation of
the spatial manifold (which becomes the graph Γ at which
the state is based; links and nodes of the cubulations turn to
links and nodes of Γ),2 is nothing but a change of
holonomies, volumes, and matter variables into quantum

operators that act on states (27) belonging to HðtotÞ
kin :

ĤðAÞjΓ; jl; nl; iviR ¼ ðĤðAÞ
E þ ĤðAÞ

B ÞjΓ; jl; nl; iviR: ð36Þ

The Poisson brackets in (32) and (35) are replaced by
commutators times 1

iℏ that appear only as elements of the
following term:

trðτiĥ−1lpðΔÞ½V̂nðΔÞ; ĥlpðΔÞ�Þ ¼ trðτiĥ−1lpðΔÞV̂nðΔÞĥlpðΔÞÞ: ð37Þ

The quantum operator corresponding to the electric part
(32) acts as follows,

ĤðAÞ
E jΓ; jl; nl; iviR ¼ 23Q2

ð8γπl2PÞ2
lim
ε→0

X
v

X
ΔðvÞ;Δ0ðvÞ

NðvÞtrðτiĥ−1lp ðΔðvÞÞV̂
1
2ðΔðvÞÞĥlpðΔðvÞÞÞÊIðSlpðvÞÞ

× trðτiĥ−1ls ðΔ0ðvÞÞV̂1
2ðΔ0ðvÞÞĥlsðΔ0ðvÞÞÞÊIðSlsðvÞÞjΓ; jl; nl; iviR; ð38Þ

where we applied the Kronecker delta (v ¼ v0) and we
introduced the symbol lP ¼ ffiffiffiffiffiffiffi

ℏG
p

to denote Planck length.
Note that the sum over triangulations ΔðvÞ;Δ0ðvÞ does not
depend on the choice of internal directions of gravitational
SU(2) group (i-indices) and vector field gauge group
(I-indices); therefore, it extends only over possible selec-
tions of tetrahedra which contain the link lpðΔðvÞÞ and
lsðΔ0ðvÞÞ for every choice of direction p and s,
respectively.
It is worth noting that in the limit ε → 0, the expression

(38) gives a finite outcome; hence, the dependency on the
regulator ε can be simply removed. As a result, one obtains
a sum of subsystems, called basic cells3 extending over all

nodes of the graph Γ. Each basic cell, labeled by the
position of the central node, is a sum of elements acting on
a it and the surrounding six nearest neighbor nodes, placed
at the end points of links. This cellular structure allows us to
restrict calculations to a basic cell and to give the final result
as the sum over all cells.
One can calculate the action of the operator (38) from the

following expression [see Appendix (A)],

trðτiĥ−1lp V̂nðvÞĥlpÞjΓ; jl; nl; iviR
¼ 1

2
ð8πγl2PÞ32nΔðpÞ;n

2
v δi;pðΣðjÞ

v ΣðkÞ
v Þn2jΓ; jl; nl; iviR; ð39Þ

where j, k denotes the two orthogonal directions to i and4

2Notice that the graph Γ is self-dual; hence, once the
cubulation is achieved, one still works on the same graph.

3The example, with the central node vx;y;z, is given by the
illustration of state (27).

4We are assuming all spin numbers jðiÞ are bigger than 1=2;
otherwise, we get different expressions of ΔðpÞ

v δi;p for ingoing
and outgoing links lp.
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ΔðpÞ;n
v δi;p ¼ 1

2n

��
jðiÞv þ jðiÞv−e⃗i −

1

2

�
n
−
�
jðiÞv þ jðiÞv−e⃗i þ

1

2
Þn
�
δi;p: ð40Þ

Hence, the operator (38) reads

ĤðAÞ
E jΓ; jl; nl; iviR ¼ 2Q2

ð8γπl2PÞ12
X
v

NðvÞδp;s
X
TðvÞ

X
½lp;lq;lr�∈TðvÞ

�
ΣðpÞ
v ΣðqÞ

v ΣðrÞ
v

�1
4
ΔðpÞ;1

4
v

ðΣðpÞ
v Þ14

ÊIðSlpðvÞÞ

×
X
T 0ðvÞ

X
½ls;lt;lu�∈T 0ðvÞ

�
ΣðsÞ
v ΣðtÞ

v ΣðuÞ
v

�1
4
ΔðsÞ;1

4
v

ðΣðsÞ
v Þ14

ÊIðSlsðvÞÞjΓ; jl; nl; iviR: ð41Þ

The summation
P

½lp;lq;lr� extends over the six permutations of links in a given triple of edges, while the summationsP
TðvÞ go over the eight possible choices of triples with mutual orthogonal links. Note that the expression ðΣðpÞ

v ΣðqÞ
v ΣðrÞ

v Þ14 is
invariant under the choice of triple of links; hence, one can put it in front of the sum as ðΣð1Þ

v Σð2Þ
v Σð3Þ

v Þ14. Each term of the
summations above depends just on the internal direction p, such that the summation over the six permutations becomes the
summation over the three fiducial directions times 2,

P
½lp�∈TðvÞ → 2

P
3
i¼1, and it gives the same result for each of the eight

choices of triples of links; hence,
P

TðvÞ → 8.
Finally, we end up with

ĤðAÞ
E jΓ; jl; nl; iviR ¼ 25Q2ð8γπl2PÞ

X
v

NðvÞΣ
ð1Þ
v Σð2Þ

v Σð3Þ
v

Vv

X3
i¼1

 
ΔðiÞ;1

4
v

ðΣðiÞ
v Þ14

!
2

½ÊIðSliðvÞÞ�2jΓ; jl; nl; iviR: ð42Þ

Similarly, the quantization of the magnetic part of the scalar constraint (35) results with the expression

ĤðAÞ
B jΓ; jl; nl; iviR ¼ 25

Q2ð8γπl2PÞ2
lim
ε→0

X
v

X
ΔðvÞ;Δ0ðvÞ

ϵpqrϵstuNðvÞ

× trðτiĥ−1lp ðΔðvÞÞ½V̂
1
2ðΔðvÞÞ; ĥlpðΔðvÞÞ�ÞtrðτIĥq↺rðΔðvÞÞÞ

× trðτiĥ−1ls ðΔ0ðvÞÞ½V̂1
2ðΔ0ðvÞÞ; ĥlsðΔ0ðvÞÞ�ÞtrðτIĥt↺uðΔ0ðvÞÞÞjΓ; jl; nl; iviR

¼ 23

Q2ð8γπl2PÞ12
X
v

NðvÞδp;s

×
X
TðvÞ

X
½lp;lq;lr�∈TðvÞ

ϵpqr
�
ΣðpÞ
v ðΣðqÞ

v ΣðrÞ
v

�1
4
ΔðpÞ;1

4
v

ðΣðpÞ
v Þ14

trðτIĥq↺rðTðvÞÞÞ

×
X
T 0ðvÞ

X
½ls;lt;lu�∈T 0ðvÞ

ϵstu
�
ΣðsÞ
v ΣðtÞ

v ΣðuÞ
v

�1
4
ΔðsÞ;1

4
v

ðΣðsÞ
v Þ14

trðτIĥt↺uðT 0ðvÞÞÞjΓ; jl; nl; iviR; ð43Þ

where we introduced the gauge holonomy operator oper-
ator, ĥq↺rðΔðvÞÞ, that is the quantum equivalent of the
holonomy hq↺rðΔðvÞÞ (24).
The action of the operator (43) is derived as for the

electric part of the scalar constraint operator (41).
The only nontrivial difference comes from the term
ϵpqrϵptutrðτIĥq↺rðTÞÞtrðτIĥt↺uðT 0ÞÞ, which depends on
the considered links for each fiducial direction p → i.
This operator at a given node is the summation over all
the links emanating from the node of some terms which

provide the insertion of the holonomies along twoof the dual
loops to the considered link. Since there are two possibilities
for choosing an orientation of the link lp along a given

direction i and the term ΔðpÞ;1
4

v =ðΣðpÞ
v Þ14 is symmetric under

change of an orientation, one can simplify the summationP
TðvÞ
P

½lp;lq;lr�∈TðvÞ into 2
P

flj;lkg⊥i

P
3
i¼1, where the sum-

mation
P

flj;lkg⊥i extends over all orthogonal links to the

fiducial direction i. Therefore, we end up with the action of
the operator (43) expressed by the following formula,
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ĤðAÞ
B jΓ; jl; nl; iviR ¼ 25

Q2
ð8γπl2PÞ

X
v

NðvÞΣ
ð1Þ
v Σð2Þ

v Σð3Þ
v

Vv

X3
i¼1

�
ΔðiÞ;1

4
v

ðΣðiÞ
v Þ14

�
2

×
X

flj;lkg⊥i

X
fll;lmg⊥i

ϵijkϵilmtrðτIĥlj↺lkðvÞÞtrðτIĥll↺lmðvÞÞjΓ; jl; nl; iviR; ð44Þ

where ĥlj↺lk denotes the holonomy along the square con-

structed from lj and lk.
Notice that the isotropic limit of the theory is correctly

satisfied, since all the orthogonal operators in HðtotÞ
kin

commute. A phenomenological application of this model,
considering the leading terms and the next-to-leading order
corrections to the Friedmann-Lemaître-Robertson-Walker
(FLRW) geometry, is in preparation. It is worth mentioning
a FLRW geometry, obtained by the introduction of
Maxwell fields as cosmological matter sources, was already
considered within the framework on LQC in Ref. [49],
where the authors fixed an isotropic and homogenous
gauge for the three Abelian U(1) matter fields.

A. Large j limit

We now show how to perform the large-j limit of the
formulas (42) and (44), and we outline how the expectation
value of the quantum Hamiltonian coincides with the
classical expression (17) at the leading order, as soon as
a suitable semiclassical limit is performed. To calculate this
limit, one can use the definition of the characteristic
function (31) to smear discrete expressions and consider
the following expansion for j ≫ 1

2
,5

ΔðpÞ;n
v ¼ −

n
2
ðΣðpÞ

v Þn−1 þOðjn−3Þ ≈ −
n
2

�
piðvÞε2
8πγl2P

�
n−1

;

ð45Þ
where pðiÞðuÞ denote gravitational momenta at the point u,
which are related to spin numbers by the following relation:

piðvÞε2 ¼ 8πγl2PΣ
ðiÞ
v : ð46Þ

This formula is a correspondence principle between the
classical momentum and the eigenvalue of the operator. It
shows how simultaneous limits ε → 0 and j → ∞ repro-
duce a classical value of the reduced momentum smeared
along a link of length lP (dual to the surface of area l2P). For
smaller j, this relation is valid only at the quantum level of
discrete geometry at scale ε≃ jlPj.
It is worth noting that at the leading order, the expansion

(45) gives terms of order ð8γπl2P
ε2pi Þ2, and similar terms, namely

of ε−4 order, come form the smeared magnetic operators
(23). Any other artifacts of discretization [e.g. the ones
from the formulas (30) or (33)] would give negligible
contributions, providing additional positive ε powers
in the numerator. Then, the expectation value RhĤðAÞiR ≔
RhΓ; jl; nl; ivjĤðAÞjΓ; jl;nl; iviR reads

RhĤðAÞiR ≈
Q2

2
lim
ε→0

X
v

1

ε3

Z
d3uχεðv; uÞ

NðvÞ
ε3

ffiffiffiffiffiffiffiffiffi
qðvÞp X3

i¼1

ε2p1ðvÞp2ðvÞp3ðvÞ
ðpiðvÞÞ2

×

��
½ÊIðSliðvÞÞ�2i þ

1

Q4
qðvÞ

X
flj;lkg⊥i

X
fll;lmg⊥i

ϵijkϵilmhtrðτIĥlj↺lkðvÞÞtrðτIĥll↺lmðvÞÞ
��

: ð47Þ

Let us assume to construct a proper semiclassical state for the gauge field variables,6 such that expectation values and
eigenvalues become classical quantities. Hence, we get

h½ÊIðSliðvÞÞ�2i ⇝ ½EIðSiðvÞÞ�2X
flj;lkg⊥i

X
fll;lmg⊥i

ϵijkϵilmhtrðτIĥlj↺lkðvÞÞtrðτIĥll↺lmðvÞÞi ⇝
ε2

2
trðτIFjkðvÞÞ

ε2

2
trðτIFlmðvÞÞ: ð48Þ

Note that the right-hand sides of the expressions (48) contribute to the smeared classical objects inside the box centered at v.

5It is worth mentioning that one can remove the positive spin numbers restriction. Therefore, assuming jjj > 1=2 in (40), one gets the
same expression (45) for jjj ≫ 1

2
.

6One can construct such states using the complexifier method introduced by Thiemann and Winkler in Refs. [45–48]. It is worth
mentioning that this method has been already used to construct semiclassical states of a gravitational reduced Hamiltonian constraint
operator [6].
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Then, in the limit ε → 0, we have v ¼ u and
P

v

R
d3uχεðv; uÞ ¼

R
d3u, so we find

RhĤðAÞiR ⇝ hðAÞ ≈
Q2

2

Z
d3u

NðuÞffiffiffiffiffiffiffiffiffi
qðuÞp X3

i¼1

qiiðuÞ
�
ðEi

IðuÞÞ2 þ ϵijk
ffiffiffiffiffiffiffiffiffi
qðuÞp
2Q2

FI
jkðuÞϵilm

ffiffiffiffiffiffiffiffiffi
qðuÞp
2Q2

FI
lmðuÞ

�
; ð49Þ

where q11 ¼ p2p3

p1 , q22 ¼ p3p1

p2 , and q33 ¼ p1p2

p3 are metric

components, while q ¼ jp1p2p3j is the determinant, and
each holonomy acts as a left or right invariant vector field.
Notice that the discrete eigenvalues has been replaced by
the continuous variables. The formula (49) precisely
coincides with the classical expression (17) with the metric
in the diagonal gauge.

VI. CONCLUSIONS

We extended the formulation of QRLG in order to
include a gauge vector field. We settled down all the
necessary tools in order to have a well-defined quantum
theory, which essentially reduces to a lattice gauge theory
on a cubic lattice. The adherence to the loop quantization
program implied a peculiar expression for the matter part of
the scalar constraint operator, which has been defined and
analyzed, showing how it provides the right semiclassical
limit as soon as proper semiclassical states for the gauge
field are provided and a large-j limit is taken for the
gravitational degrees of freedom.
Next-to-the-leading order terms in the large-j expansion

can be easily computed starting from the achievements of
the present work, and they provide the first kind of quantum
gravity corrections computed for a vector field in LQG.
This will be done in future developments.
However, there are other kinds of quantum gravity

corrections, coming directly from the fact that the quan-
tization of vector fields that has been implemented is not
equivalent to the Fock quantization. The determination of
these corrections would give us a comprehensive descrip-
tion of quantum vector fields on a quantum spacetime.
The present analysis provides the expression of the

quantum operator associated with the matter part of the
scalar constraint, which generates the dynamics of the vector
field on a quantum spacetime. The investigation of such
dynamics is affected by the same kind of problems which
plague the formulation of lattice gauge theory, namely the
lack of explicit solutions, except in some quite trivial cases.
In this respect, the combination of the present results

with the definition of a dynamical vacuum out of the Fock
vacuum, given in Ref. [50], is a promising perspective in
view of the application of the present framework to
physically relevant cases.
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APPENDIX: TRACE OF THE MATTER
COUPLING TERM

Below, we refine the derivation provided in Ref. [10] of
the action of trðτiĥ−1lp V̂nðvÞĥlpÞ, so as to recover (39). Let us
perform the calculation for an outgoing link lp and p ¼ 3,

trðτiĥ−1l3 V̂nðvÞĥl3Þ ¼ −
X
abd

ðτiÞabðĥ−1l3 ÞbdVnðĥl3Þda; ðA1Þ

where a, b, and d are indices in the fundamental repre-
sentation; let us choose the basis in which τ3 is diagonal
and the holonomies read ðĥl3Þda ¼ eiaθδda.
Since the volume acts after the insertion of the holonomy

ĥl3 , the application of the aforementioned operator to a state
provides the coefficient ½Σð1ÞΣð2ÞðΣð3Þ þ a=2Þ�n=2. Thus, we
find

¼ −ðΣð1ÞΣð2ÞÞn2
X1=2

abd¼−1=2
ðτiÞabðĥ−1l3 Þbd

�
Σð3Þ þ a

2

�n
2ðĥl3Þda

¼ −ðΣð1ÞΣð2ÞÞn2
X1=2

abd¼−1=2
ðτiÞabe−idθδbd

�
Σð3Þ þ a

2

�n
2

eiaθδda:

ðA2Þ

Hence, using the δ’s, it turns out that a ¼ d ¼ b, such that
the two exponentials disappear and

¼ −ðΣð1ÞΣð2ÞÞn2
X
a

ðτiÞaa
�
Σð3Þ þ a

2

�n
2

: ðA3Þ

Since the only generator with nonvanishing diagonal
components is τ3, the expression above recasts

¼ −ðΣð1ÞΣð2ÞÞn2δi;3
X
a

a

�
Σð3Þ þ a

2

�n
2

¼ 1

2
ðΣð1ÞΣð2ÞÞn2δi;3

	�
Σð3Þ −

1

4

�n
2

−
�
Σð3Þ þ 1

4

�n
2



; ðA4Þ
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This expression justifies formula (19), assuming outgoing
link in the p ¼ 3 direction. For p ¼ 1, 2, hlp is diagonal
modulo some discrete rotations, which can be moved to τi.
Therefore, the same result is obtained by rotating the SU(2)

generator τi, and the only nonvanishing contributions are
for i ¼ 1, 2. For the ingoing link, the only difference is
that ðĥl3Þda ¼ e−iaθδda, and the rest of the analysis is
similar.
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