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Quantum reduced loop gravity: Extension to gauge vector field
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Within the framework of quantum reduced loop gravity, we quantize the Hamiltonian for a gauge vector
field. The regularization can be performed using tools analogous to the ones adopted in full loop quantum
gravity, while the matrix elements of the resulting operator between basis states are analytic coefficients.
This analysis is the first step toward deriving the full quantum gravity corrections to the vector field

semiclassical dynamics.
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I. INTRODUCTION

Quantum reduced loop gravity (QRLG) focuses on the
quantization of gravitational systems that are described by
metrics with a spatial part and dreibein gauge fixed to a
diagonal form. It was first introduced in Refs. [1,2] and
then developed in Refs. [3—10] (see Ref. [11] for a review).
Hitherto, the theory has been successfully implemented for
the Bianchi I model. QRLG is derived from loop quantum
gravity (LQG) [12-14] by imposing weakly gauge-fixing
conditions to the states of the kinematical Hilbert space.
Therefore, it stands as an implementation of the LQG
cosmological sector. It differs from loop quantum cosmol-
ogy (LQC) [15-17], in which the quantization of the
gravitational system is performed in the minisuperspace,
i.e. once symmetry reduction of the phase space has taken
place at a classical level.

In the literature, several approaches have been developed
so far to relate LQC to LQG or in general to extract the
cosmological sector of LQG. We can in particular quote
the embedding of quantum configuration spaces of LQC into
the full theory [18-21]—related to the possibility of the
commutativity between quantization and reduction. Besides,
it is worth mentioning the use of spin foam techniques [22],
the use of condensates in the group field theory approach
[23,24] and the gauge unfixing procedure [25]. The latter one
is closely related to the implementation of Dirac brackets and
developed to work in a classically gauge-fixed setting
suitable to quantize the reduced phase space. QRLG fits
in these attempts to reproduce in the semiclassical limit the
effective Hamiltonian of LQC [6] with p, regularization,
while the effective dynamics with improved dynamics [7]
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can be inferred via a statistical average over an ensemble of
classically equivalent states [26].

QRLG provides a novel derivation of earlier LQC results,
in particular for what concerns the realization of the
bouncing scenario. This picture still needs to be completed
though with the introduction of a matter field. Since QRLG
introduces a graph structure underlying the continuous
Universe description at the classical level and is the origin
of the discretization at the quantum level, matter fields must
be quantized via the tools of the loop quantization [27,28],
i.e. in the full theory. Hence, QRLG provides an arena in
which the implications of loop quantization for matter fields
can be tested. The first of these analyses devoted to the study
of matter in LQG traces back to Ref. [10], where the QRLG
framework was extended in order to include a scalar field.
We focus on the implementation of gauge vector fields in this
framework. The interest for such a case is not only academic,
given the potential role of vector fields in early cosmology
[29-35], which could open a new window on quantum
gravity phenomenology. Furthermore, the inclusion of
gauge fields in LQG might also open new pathways toward
a unified formalism for all forces, with peculiar phenom-
enological consequences—see e.g. preliminary investiga-
tions in Refs. [36,37].

We first introduce vector fields in QRLG and define the
operator corresponding to its contribution to the scalar
constraint. We then quantize the field by adapting the
LQG procedure given in Refs. [27,28] (and recently
reviewed in Ref. [38]) to the reduced model, similarly to
the scalar field case discussed in Ref. [10]. Basic quantum
variables for the matter field are gauge group holonomies
and fluxes, just like in lattice gauge theories [39], the lattice
being provided here by the cubic graph at which gravita-
tional holonomies are based. The scalar constraint is
quantized via a regularization of the classical expression,
which provides a constraint for the gravitational contribu-
tions written entirely in terms of the holonomies and the
fluxes of proper QRLG. Such a formulation is technically
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achievable, and all the relevant computations can be per-
formed analytically, thanks to the expressions of the matrix
elements of the volume operator. The outcome of our
analysis is the computation of the matrix elements (between
the basis elements of QRLG) of the scalar constraint part that
involves vector fields and its expectation value on semi-
classical states, which is the starting point for future
applications.

In Sec. II, we introduce QRLG and define the kinemati-
cal Hilbert space. We focus our attention on states based on
graphs having six-valent nodes [9], which allow us to
construct a cubulation of the whole spatial manifold. In
Sec. III, the classical and quantum formulation for a vector
field is given. On a classical level, we write the contribu-
tions of the vector field to the scalar, vector, and Gauss
constraints. The regularization of the field contribution to
the scalar constraint is performed in Sec. IV. We just adapt
to our case the regularization performed in Ref. [28]; i.e. we
replace the triangulation with the cubulation of the spatial
manifold and SU(2) group elements of LQG with the
corresponding U(1) group elements in QRLG. Once the
geometric variables have been cast in terms of fluxes and
holonomies and the phase space coordinates of the vector
field in terms of gauge group holonomies and fluxes, the
quantization is straightforwardly performed in Sec. V. The
resulting operator is discussed in the large-j limit. We find
that when proper semiclassical states are constructed for the
vector field, the expectation value of the vector field
contribution to the scalar constraint reproduces the corre-
spondent classical expression. This result provides a first
check on the consistency of the adopted framework.

Throughout this paper, we pick the conventions on
metric signature (—, +, 4, +), on the gravitational coupling
constant x = 162G, and on the speed of light ¢ = 1. The

metric tensor is defined as g,, = e,‘jefnaﬁ, where e}

vierbein fields and 7,4 is the flat metric. Dreibeins are
denoted as ei, where lowercase latin indices a, b, .. = 1, 2,
3 label the coordinate on each Cauchy hypersurface
constructed by Arnowitt-Deser-Misner (ADM) decompo-
sition [40], while i, j,.. = 1, 2, 3 are su(2) internal indices,
where su(2) denotes the algebra of SU(2).

are

II. QUANTUM REDUCED LOOP GRAVITY

The canonical variables of LQG are holonomies of
Ashtekar-Barbero  connections [41], smeared along
some curve y, h,:=Pexp( fA’ ($))e/74(s)), and
fluxes of densitized triads across some surface S, E(S) :=
fsnjeabcEde A dx€.

The kinematical Hilbert space of the theory is defined as
the direct sum of the space of cylindrical functions of con-
nections Wr (A)=(A[L.,f):=f(hp(A).hp(A),....h(A))
along each graph I, with a continuous function
f:SU(2)F — C. It can be represented by the formula
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kln = @H LZ(A’ dﬂAL)v (1)

where A denotes the space of (generalized) connections and
duy; is the Ashtekar-Lewandowski measure [42]. The last
equality has to be intended as a projective limit where one
includes all the possible graphs on a bigger one and one
imposes cylindrical consistency.

The basis states, called spin network states, are given by

the expression
Wr,, (h) = (hHTjri}) = [ Jiw - HDJI . @)
vel’

where the triple {I, j,,i,} is a graph T, spin j of the
holonomy along each link /, and an intertwiner i, imple-
menting SU(2) invariance at each node v. The product [,
extends over all the links / emanating from the node », and
D/i(h;) are the Wigner matrices, while the - denotes
contraction of the SU(2) indices.

QRLG selects a finite amount of degrees of freedom in
LQG, and it can be applied to all gravitational models with
diagonal metric tensor and triads; hence, one can define the
line element as

dl? = aldx* + a3dy* + a3dz>, (3)

where the three scale factors are functions of time and of all
spatial coordinates. The graph I" now contains the set of
links [, each being placed along a fiducial direction 1, 2, or
3. In the theory with the diagonal metric tensor, the
canonical pair corresponding to Ashtekar variables reads

E, =p's,.  Ap=cid, (4)

(indices are not summed in this expression), where |p’| =
4924 and the reduced connections c; are proportional to the
1

time derivatives of scale factors. This implies an SU(2)
gauge-fixing condition in the internal space, which is
realized by the projection of SU(2) group elements, which
are based at links //, onto U(1) group representations. The
U(1) group elements are obtained by stabilizing the SU(2)
group along the internal directions i; = i;, with

= (1,0,0) i, =(0,1,0) iy =(0,0,1). (5)

The kinematical Hilbert space for QRLG reads
km @RH g” (6)

with I" being a cuboidal graph. The basis states in the

reduced Hilbert space RH 9 are obtained by projecting
SU(2) Wigner matrices on 0rd1nary SU(2) coherent states
|j;, u;), labeled by the direction u; that depends on the
orientation of links /. As a result, we get the ordinary
Wigner matrices, with the maximal or minimal value of
spin m; = %, (the sign depends on the positive or negative

orientation of link /) in the base that diagonalizes J- i
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"D, (h) = (| DI () |y ity), by € SU2).  (7)

It is worth mentioning that the projection onto the maximal
or minimal spin value is a consequence of the operational
equations implementing diagonalization of the metric
tensor at the quantum level [3]. Then, the basic states,

called reduced spin network states, are defined by the
following expression,

RlPl",m,,ir(h) = (W{T,my, i,})
= H<jlv ivlml’ LTZ) : HID{'ll/mi(hl)’ (8)

vell i

where (jj, i,|m;, i;) are reduced intertwiners of the U(1)
group. The reduced spin network states are not orthogonal
with respect to the intertwiners i,, since the scalar product

reads
|

m .-@-u—m’ I — (Gmlm” @) (m” @ D7 (hy)|m” @) (m” i@, m')

Finally, the canonical reduced variables are R, and RE(S),
which are constructed by smearing along links of reduced,
cuboidal graph I" and across surfaces S perpendicular to these
links, respectively. Since on the quantum level we use only
reduced variables, we neglect the left uppercase symbol ¥ in
the next sections. The scalar constraint operator, neglecting
the scalar curvature term, is obtained from that of LQG by
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<F7 my, iv|rla m;, l/1J>

= 51",1"’1_[ H5m,,m; (my, iy iy i) a8 |my ). (9)

vel lel’

It is convenient to normalize those states; in this way, the
reduced intertwiners being just phases' drop out from the
kinematical reduced Hilbert space

rvml7iv>N = l—‘;’nl>R’ (10)

where , stands for normalized. In this way, the Hilbert
space RH") =Qj,er H;, with H; being the U(1); Hilbert
space associated to each link /; in direction i. The reduced
intertwiners will then just appear when we project the
SU(2) operators.

The graphical way of constructing the elements of K"
out of those of the full theory is to replace SU(2) basis
elements with the following objects:

(11)

considering only the Euclidean part and replacing LQG
operators with reduced ones. Its action on three-valent and
six-valent nodes has been analyzed in Refs. [3,9], respectively.

It is worth noting that the nodes of the cubiodal graph I
are always six-valent and the graphical representation of a
subsystem containing one node with attached links is given
by the figure

i
x dirgction h(f’gz()
—x direction @)
® jm,y,z
+(2) 2 (2 . .
o e Sl e
(hi|T; i) o= ¥ O ' (12)
(3
Ji,g,z—l
i)..Q
(3
ji,g)/,z—l
'Given that |j, u,) = |j. j) and |j, —u,) = |j, —j), coherent states |, +u, ) correspond to a SU(2) rotation applied to |/, j), multiplied

times a phase. Contracting the states with intertwiners, we then obtain a product of phases.
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where the node v, is placed at (x,y, z) and the symbol

j)(fln,y.z = 41/2,41,43/2,... denotes the spin number
attached to a link along the i axis, which starts at the node
{x+n,y,z} and ends at the node {x + n + 1,y, z}. Note
that the node is six-valent and links in the x direction are
perpendicular to the plane of the picture, and for clarity they
are not being displayed. From now on, we assume the right-
handed orientation of links; i.e. the link with the spin number

PHYSICAL REVIEW D 95, 104048 (2017)
jilln_l’y,z isingoing to thenode {x + n, y, z}, while j)@rn’yl
outgoing from the same node. It is worth mentioning that a
result of an action of operator on | ) g = Iy|U;ji)r
depends only on the value of the spin j;; hence, we omit
other elements in the notation of the state.

In what follows, we will need the expression of the
powers of the volume operator V, which acts diagonally [3]
on the reduced (and normalized) states (12),

is

(1) () .(2) (2) .03) 3) \ 3
. } 3y [ Jx=tyz T Ixve eyt T Jxyedyy—1 T Jxyz . .
V(00 )T e = <8nyl%>3"< B R E— Fojidp = Vi, e (13)
|
with y being the Immirzi parameter and V,:=  Where O is the coupling constant of dimension 1 /h, gis

(87713 =P =))E being the eigenvalue of the volume

(,f) = %( j(vi) + j(v’za) denotes the
averaged value of spins attached to the collinear pair of
links (ingoing and outgoing) emanated from the node v,
where ¢; is the unit vector along the direction i, such that

ji’z(, represents the spin number of the link along [” (with p

operator V. The quantity X

being oriented along the fiducial direction i) ending in v.

Notice that the eigenvalues of the geometrical operators
differ from the ones obtained in LQG. This can be easily
understood if we consider the eigenvalues of the area
operator A(vw) in QRLG and in full LQG, in the

fundamental representation (i.e. taking jgy ) = jiy_)g.

j9 = j(z)a = 1/2). In QRLG, we have that

v—

A(”y,z)|r§j1>R = 4”71%’|F;jl>R’

while acting with the area operator on a state |I', j;, i,) in
LQG or in LQC, we obtain

e ad WD

F’jl7iv>'

A(v, I i) =
= 43yl

This difference is a consequence of the stabilization of the
3u(2) generators in the definition of the basis states and
arises from a different choice (with respect to the one in LQC)
of the value that corresponds to the classical momentum in
the construction of the semiclassical states [6].

III. LOOP FRAMEWORK FOR QUANTUM
VECTOR FIELD

The action of the gauge field A}, minimally coupled to
gravity reads (we use the notation of Ref. [28])

1
S(é) = ——2/ d4X\/;_§9”DngE;[¢pEll/aa (14)
40° Jmu

the determinant of four-dimensional metric tensor, and F' /Iw
denotes the field strength

E/qu = aﬂAII/ - 6DA/{, + C&KA/{A{f’ (15)

C’ being structure constants of the gauge group.

The Legendre transform gives the following
Hamiltonian,

HW = / d3x<—A£Qu§7+N“EQbE?
P

Q2

N

2\/q

_ / Bx(AlGY + NV + NHE),  (16)
z

qap(ESE) + E?ﬂ’))

where N is the lapse function and N¢ is the shift vector,

while Vflé) and Hﬁ’é) contribute to the vector and scalar
constraints densities of a gravitational field, respectively.

Q@ is the Yang-Mills field Gauss constraint density that
generates gauge transformations in phase space. At the
quantum level, it is imposed by projection of cylindrical
functions of connections A/, onto gauge invariant ones. As a

consequence, gauge intertwiners enter the definition of

states. £ = ‘é—? e’éq”hﬂ Ifbé, 7 1s the conjugate momentum to

the vector field A%, and BY = 2#(27

field, where €¢:=/ge"* and &"¢ is the flat Levi-
Civita tensor. We also introduced ¢,, denoting a three-
dimensional metric on the spatial Cauchy hypersurface %,
while g% and g are the inverse and the determinant of the
metric ¢, respectively.

The vector field contribution to the total vector constraint
reads V& = F!,E’. Tt generates diffeomorphism trans-
formations. The diffeomorphism invariance is imposed at
the quantum level in the space dual to the kinematical
space, and the invariant space is then obtained by duality.

€ FJ & is its magnetic
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The contribution to the smeared scalar constraint,

HE [N], encodes all information about the dynamics of
the vector field in the gauge and diffeomorphisms invariant
phase space and reads

2
(A) _/3 Q a b anpb
HZ'[N) = | d&’xN——q,,(ESE? + B¢B
c[} : 2\/216”’(11 11)

= HY [N + Hy [N, (17)

where we split it into two parts, the electric and magnetic
ones, 1.€.

2
N

H%)[N]:Q—/ dPx—q ., ESEY (18)
2 )5, Va
2

@) O [ N, e

H N| == dx_(’IaQE . 19

R S

The phase space coordinates are given by holonomies of
the gauge group along reduced graphs I', which we denote
as follows,

w=Pex [AOIG). @)

where P denotes path ordering and z; are the generators of
the gauge group and fluxes of the electric vector field
around surfaces S, i.e.

B(S) = [ amarEi ). )

where we defined S as the surface spanned by two lattice
links /4 and [", dual to I” (in the expression above, only the
indices g and r are summed). In what follows, we will only
consider positive oriented links /, which provides positive
oriented surfaces S with respect to the fiducial directions.

In order to regularize the expression (17) of the scalar
constraint for the vector field (see Sec. IV), we need to
express the electric and magnetic vector fields in terms of
holonomies and fluxes. This can be done in the limit of
finer and finer cubulation of the spatial manifold as follows.
The electric field can be written in terms of fluxes using the
following relation,

E/(S") ~ 2 E5(0)35. (22)

e being the length of the links spanning S”. As
soon as the magnetic field B is concerned, one
introduces  the gauge holonomy A, (A(v)) =
7 (A(0))B5 (A (0)) i (A(v)) s (A(v) along a rectangu-
lar loop based at v having links along the directions ¢ and r.
In the limit of infinitesimal loops, the links of which have
length ¢, the holonomy £y, can be expanded as follows,

PHYSICAL REVIEW D 95, 104048 (2017)

1
hf]@r =1+ E‘ngQr + 0(84)’ (23)

where the curvature has been contracted with the gauge
group generator, F,. = F f;rTI- In what follows, the follow-
ing identity will be used,

1 2
o <" @y, (Aw))) = 5 55 (g Ey (1)

+ O(e") ~ e?B4(v)8h,  (24)

where z; are the Yang-Mills generators in the fundamental
representation, for which

tr(z;z;) = oy (25)

It is worth noting that discretizing over the cuboidal lattice
(12), the continuous expression for the magnetic field BY,
one gets the sum of fields (24) attached to the outgoing and
ingoing links [ emanated from the node », which can be
reexpressed as the four gauge holonomies along loops dual
to a given fiducial direction i = p and based at the node v.

We quantize the system of the gravitational field and the
vector field applying the method described in Ref. [28] for
LQG to the case of QRLG. Therefore, the total Hilbert
space is the direct product

HEY = FHY) @ MG, (26)

where the Hilbert space for gravity ¥ H]((?Q has been described

in the previous section. The Hilbert space Hl(fn) for the gauge
field is defined in terms of cylindrical functions of holon-
omies of the gauge connections, the only difference with
Ref. [27] being that only reduced graphs are considered.

Precisely, the Hilbert space Hl(fn) is constructed out of
cylindrical functions of the gauge connections Al along
the cuboidal graph I". The only difference with respect to the
kinematical Hilbert space of full LQG (1) is an extension of
the SU(2) symmetry to a considered symmetry of the gauge
group and a restriction on the graph to be cuboidal. Notice
that the reduction procedure is not applied to the gauge
group.  Objects  [Tymysny iy)g = [Timp)g & [Tsny,d,),
where |[';n,i,) are invariant spin network states for the
gauge field based at the graph I" and they are labeled by
the quantum numbers n; of the irreducible representation of
the gauge group at each link / and the corresponding invariant
intertwiners 7, at nodes v.

The basic matter operators acting on |I;n;,i,) are the
quantum gauge holonomies &, which act by multiplication
in the same way as their gravitational equivalents, creating
the holonomy of the composition of two paths, and the
quantum electric fluxes that act as the left/right invariant
vector fields.

104048-5
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The states in the total Hilbert space Hl(:i(:) can be described in the following graphical way,

x direction

(O]

—x direction

+(3)

Jz,y,z

H2-QQ 1.

®
-(3
:(2) (2) (2) Ji’;’z n“?,
- 2T,Y, 2, 2
jxy 1,z hu_y 1,z r,y 12 ]5,?@)/72 h(mzz Jg?l)h |
t \J { ; O |
U5 1)g @ ([T ny,4,) = O O 7 27
(0 T 1) = A -
Ry y—1,2 hr,y-Lz Ny y—1,2 Nay,z . Nay,z
71,0
3 n. . ._
-]ig);z 1 —oy,2-1

where jf,,',)q,, and nﬁ,’,l,,r are the spin numbers at the associated
links lﬁ,’?q,, and i, are the intertwiners at nodes. Again, note
that the node is six-valent and links in the x direction are
perpendicular to the plane of the picture, and for clarity they
are not being displayed.

IV. REGULARIZATION OF SCALAR
CONSTRAINT

The quantization of the vector field part of the scalar
constraint requires a regularization of the both terms in the
formula (17). This procedure is done still in the classical
phase space, by rewriting (17) in terms of holonomies and
fluxes for both the gravitational part and the terms
involving the vector field.

The gravitational part of the Hamiltonian constraint is
regularized by the method developed in LQG [43], which
has been restricted to cuboidal graphs [3,9]. Matter coupled

HA(E)[N] = Q—llm d®xN(x) da(f)E?(x)/
- Vi(x, ¢)
= 2o —=lim
(k)P e=0

3 O3

x,y, z-1 o, y,z-1

3
]a(:;z 1

- (3)
Dy,z—1

to a dynamical spacetime is regularized introducing matter
holonomies coupled to the dynamical lattice (composed of
nodes and links). Alternatively, one can introduce a dual
picture [44], where matter fields are coupled to the
dynamics of granulated space (being volumes and areas
of chunks of space).

In order to regularlze Hf @ and H](_,;é), we follow the
procedure given in Ref. [28] for LQG in the presence of a
vector field, making one restriction. From all the possible
graphs, we choose only the cuboidal one.

At first, smearing electric vector fields and applying
Thiemann’s trick [43], one has

L {A). (V(R))'}.

i (V(R))~ (28)

el (x) =

such that one can write the following expression for the
electric part of the Hamiltonian,

(29)

104048-6
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where it has been used the definition of the characteristic
function y,.(x,y) of the box B,(x) centered in x with
coordinate volume &3, precisely

V(B.(x)) = V(x.e) = £y/q(x) + O(e*).  (30)

which allows us to smear a function at the point », around
the infinitesimal neighborhood, such that

Pyye(x,y)f(y).

(31)

08

) = / 38 (x =) f(y) = lim

For a next step, we discretize the scalar constraint
analogously to the case in which one uses a

Using the triangulation method, one gets the result

(4)
HY'[N
e N = (16sz

veV() vev(l

x {AL(v)), V(0. 8)}5;7(0,@;1(@')5, 5

23 Q2
8}/7ZG

oy 3

v,0 Av

x tr(z' byt (A

where /(5 are the SU(2) holonomies in the fundamental
representation [43], 7/ = —J ¢/ are the algebra generators
with ¢/ being Pauli matrices, and tr denotes the trace over
SU(2) algebra. The summations » _,cy(r) and 5, extend
over all the nodes of the cubulation and over all the
tetrahedra around each node, respectively, while the symbol
0f means that a is restricted to assume the value corre-
sponding to the fiducial direction of the link /; i.e. for
[ =17, one has a = p. An additional factor 1/22 has been
added to account for the fact that each electric field has
been smeared along both the positive and the negative
oriented surfaces based at nodes, which are dual to the
ingoing and outgoing links along the fiducial directions

25 QZ
(yk)z =0

(V)AVA(A (V). hye (A

PHYSICAL REVIEW D 95, 104048 (2017)

triangularization of the spatial manifold [43] for the
gravitational field in presence of matter [28]. The idea that
we follow is to replace the integration over the spatial
hypersurface [; with the sum over the ordered tetrahedra
being the triples of links {/, /', I”} emanating from all nodes
v of the graph I'. In the case of a cubulation, each node v is
always surrounded by eight such triples, and it is worth
nothing that for each tetrahedron, the remaining seven
coincide with the seven “virtual” tetrahedra, which are the
objects that appear in the procedure of triangulation of any
cuboidal or noncuboidal lattice.

In other words, discretized integration over each tetra-
hedron, [, A, , becomes the sum over the eight possibilities
for choosmg a triple of perpendicular links {/, 7', I’} among
each tetrahedron of the triangulation A(v) around the
node v.

s—»O me® Z Z Z Z N {Al (1} Vz(y g>}5d Ec( )

o)tr(ehy (A(0)){V2(A(0)). e (A(0) DE(S" ()
() DE(S" (v'))8,01 (32)

emanating from the nodes themselves. In the last line, the
following expansion,

tr(t'h {V"(R), hy})

= —t(e'efA,, V(R)} + O(e2)) 4 (AL VI(R)},

(33)

has been applied, and vector fields have been replaced by
fluxes (21).

The magnetic part of the Hamiltonian (19) is regularized
by the same method and reads

T lim [ d®xN(x){A}(x). V2(x. )} Bf (x.€) V(x. €) / EY{AL() V(v )} B (v, )V(y. )re(x.y).  (34)

By using the same discretization adopted for the electric term (32), one gets
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52
@ 20 6
H;'[N] = 7 me Z Z
(16xGy)? e~0 veV(I) veV(I) A(v) A'(v
x {AL (1), V(v £)} 8,

25

— > lim
Q (8]/7TG) &0 v’ A(v),A (V)
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N(0){AL(v). Vi(v, €)}5%, BS (v.)V(v. £)5,"

Z €pqr€stuN(,U)

x (e hp! (A(0){VI(A(0)). s (A(0)) D)t (g, (A(0)))

x tr(z'hyt (A

'(v)){V:(A

where magnetic fields have been replaced by traces over
generators and gauge holonomies (24) of the Yang-Mills

gauge group.

V. QUANTIZATION OF THE SCALAR
CONSTRAINT

The canonical procedure of quantization of the field
contribution to the scalar constraint, after the cubulation of
the spatial manifold (which becomes the graph I" at which
the state is based; links and nodes of the cubulations turn to
links and nodes of I),% is nothing but a change of

holonomies, volumes, and matter variables into quantum

operators that act on states (27) belonging to Hkt:: :

A (A) 1o, . 2507
AP i) = = Byl li%z

A(v).4(v)

xte( it (A (0)) V(A (0)) s (A (0)) Ei (S (0))IT5 i3 11,1, g,

where we applied the Kronecker delta (v = ') and we

introduced the symbol [, = v/2G to denote Planck length.
Note that the sum over triangulations A(v), A’(v) does not
depend on the choice of internal directions of gravitational
SU(2) group (i-indices) and vector field gauge group
(I-indices); therefore, it extends only over possible selec-
tions of tetrahedra which contain the link [?(A(v)) and
IS(A’(v)) for every choice of direction p and s,
respectively.

It is worth noting that in the limit ¢ — 0, the expression
(38) gives a finite outcome; hence, the dependency on the
regulator ¢ can be simply removed. As a result, one obtains
a sum of subsystems, called basic cells® extending over all

*Notice that the graph I' is self-dual; hence, once the
cubulation is achieved, one still works on the same graph.

The example, with the central node v, ,,, is given by the
illustration of state (27). ’

"(0)), s (A (0)) P (g5, (A'(01))) 81,0

A g i >R_(HE +HB 0 jimyi i) (36)

The Poisson brackets in (32) and (35) are replaced by
commutators times # that appear only as elements of the
following term:

(e i [V (8). n ) = (e i) V(A (37)

The quantum operator corresponding to the electric part
(32) acts as follows,

N(@)u(ehis' (A()) V(A (0)) i (A(0)) Er(S" ()

(38)

nodes of the graph I'. Each basic cell, labeled by the
position of the central node, is a sum of elements acting on
a it and the surrounding six nearest neighbor nodes, placed
at the end points of links. This cellular structure allows us to
restrict calculations to a basic cell and to give the final result
as the sum over all cells.

One can calculate the action of the operator (38) from the
following expression [see Appendix (A)],

.1}>R
(Sﬂylz)znA PHgie (250

tr (Tiiz,—,ﬂvn( Vi) |Ts jismy, i

> ] 'ﬂlvi1z>R7 (39)

where j, k denotes the two orthogonal directions to i and”

*We are assuming all spin numbers ;) are bigger than 1/2;

(

otherwise, we get different expressions of A,” )51 for ingoing

and outgoing links /7.
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o 1 () (i I\ ()i 1 ~
AP = () =) = () 5 ) e (40)
2 ) i 2
Hence, the operator (38) reads

1 o ) > slg\E AT o
Hy |F;jl;ﬂlv£.11>R = T N(”)‘Sp,s (Zv Zy Zvr )4 - ,El(Sp<”))

(8ymlp): 5 T(v) [17.19."]€T (v) (=)

‘ NS
y 25:”25925,”)4 LB (ST (0))Ts i s iy ) g (41)
7

T'(0) 1.0 I"]eT" (v)

(=)

The summation » ; ;o ) extends over the six permutations of links in a given triple of edges, while the summations

ZT(E) go over the eight possible choices of triples with mutual

invariant under the choice of triple of links; hence, one can put it in front of the sum as (221)2(3)2

orthogonal links. Note that the expression (sz’ >2§f1>2§,’>)% is
(3)

v

)i. Each term of the

summations above depends just on the internal direction p, such that the summation over the six permutations becomes the

summation over the three fiducial directions times 2, > yrjer(y)
choices of triples of links; hence, » 7., — 8.
Finally, we end up with

— 2373 |, and it gives the same result for each of the eight

) sVEPE® I AP\ L
H |5 jisng, iy)g = 25Q2(87’”l%)ZN(U) Vv z (2(0)1 [E(S" () PITs jis sy g (42)
v v i—1 v’ )
Similarly, the quantization of the magnetic part of the scalar constraint (35) results with the expression
5
FrA) . . . _ 2 : r stu
Hg U jin, iy g = ——5lim €PN (v)
B 1> 2] R Q2(8y”l%)2 0 T A
x tr(hi (A() [VI(A(0)), hup (A(0))) (21 hgr (A(0)))
A Al ~ ~ . .
x (' hp (A (0)) [V2 (A (0)). e (A (o))t (2 (A (0)) T3 s ) v
23
=— = NN,
Q2(8wrl%)%zv: (%
L AP .
x erar (2 (05 ) 2 (e (T(0)))
, =Py
T(v) [IP.19,1"€T (v) ( v
1 A(S>i ~
x e (22 ) (g (T (0)IT i, 1), (43)
T(0) [0 T (v) (Zo7)

where we introduced the gauge holonomy operator oper-
ator, ﬁqO,(A(v)), that is the quantum equivalent of the
holonomy £, (A(v)) (24).

The action of the operator (43) is derived as for the
electric part of the scalar constraint operator (41).
The only nontrivial difference comes from the term
Pt el tr(z,hy s, (T))tr (2l 5, (T")), which depends on
the considered links for each fiducial direction p — i.
This operator at a given node is the summation over all
the links emanating from the node of some terms which

104048

provide the insertion of the holonomies along two of the dual
loops to the considered link. Since there are two possibilities
for choosing an orientation of the link /7 along a given

1
direction i and the term Aip X / (Zsjp ))% is symmetric under
change of an orientation, one can simplify the summation
; 3
D T(w) 2o e rler(v) IO 23 g iy 1y D iy, Where the sum-
mation >y sy, extends over all orthogonal links to the

fiducial direction i. Therefore, we end up with the action of
the operator (43) expressed by the following formula,
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(1) () 3 'i 2
~(A) 1 . 23 poAS 2,
BT i) = o () SN () Z( )
v i=1
x YD ekl £1ﬁ1.fozk(U))tr(ﬂﬁl’olm(”))|F§jléﬁz9iu)Rv (44)

(U Li {0ty Li

where ﬁ,,o,k denotes the holonomy along the square con-

structed from Z/ and I*.

Notice that the isotropic limit of the theory is correctl
satisfied, since all the orthogonal operators in Hktl?f
commute. A phenomenological application of this model,
considering the leading terms and the next-to-leading order
corrections to the Friedmann-Lemaitre-Robertson-Walker
(FLRW) geometry, is in preparation. It is worth mentioning
a FLRW geometry, obtained by the introduction of
Maxwell fields as cosmological matter sources, was already
considered within the framework on LQC in Ref. [49],
where the authors fixed an isotropic and homogenous
gauge for the three Abelian U(1) matter fields.

A. Large j limit

We now show how to perform the large-j limit of the
formulas (42) and (44), and we outline how the expectation
value of the quantum Hamiltonian coincides with the
classical expression (17) at the leading order, as soon as
a suitable semiclassical limit is performed. To calculate this
limit, one can use the definition of the characteristic
function (31) to smear discrete expressions and consider
the following expansion for j > %,5

(45)

where p(! (u) denote gravitational momenta at the point u,
which are related to spin numbers by the following relation:

pi(v)e? = 8ayBEl. 46
P

This formula is a correspondence principle between the
classical momentum and the eigenvalue of the operator. It
shows how simultaneous limits ¢ — 0 and j — oo repro-
duce a classical value of the reduced momentum smeared
along a link of length I (dual to the surface of area [3). For
smaller j, this relation is valid only at the quantum level of
discrete geometry at scale € = |Ip|.

Iti is worth noting that at thle leading order, the expansion
2 £)2, and similar terms, namely
of ¢ order, come form the smeared magnetic operators
(23). Any other artifacts of discretization [e.g. the ones
from the formulas (30) or (33)] would give negligible
contributions, providing additional positive & powers

in the numerator. Then, the expectation value j(H@), :=

r(s iy, i I/|H |F Jring.i,)g reads

oy QL (o0 ep'(v)p*(v) p*(v)
ol zLoZ s [ A \fz IO

(" )P + Gt

Let us assume to construct a proper semiclassical state for the gauge field variables,’

eigenvalues become classical quantities. Hence, we get

(£
Z Z clikgilm <tr(IIﬁ[f(§l" (U))tl‘(ﬂﬁ,lglm (U))>

(V.Y Li {0 1y Li

Z Z elikgilm tI' T[hpoﬂ\( ))U(Ilﬁﬂozm(v))>>' (47)

(V.Y Li {1 1my Li

such that expectation values and

(8" ()P [E(S' )P
» S (@ ER(0) 5 (@i (0). (48)

Note that the right-hand sides of the expressions (48) contribute to the smeared classical objects inside the box centered at v.

’It is worth mentioning that one can remove the positive spin numbers restriction. Therefore, assuming |j| > 1/2 in (40), one gets the

same expression (45) for || > %

®0One can construct such states using the complexifier method introduced by Thiemann and Winkler in Refs. [45-48]. It is worth
mentioning that this method has been already used to construct semiclassical states of a gravitational reduced Hamiltonian constraint

operator [6].
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Then, in the limit ¢ - 0, we have v = u and ), [ duy.(v.u) = [ d’u, so we find

RA(@RMh(A)zQi PRLIOR i
(A 2/ \/q(u);q()(

2.3 301 1,2 .
where ¢, = ”'T’f, G = "pg , and gy3 = ”pé’ are metric

components, while g = |p!p?p3| is the determinant, and
each holonomy acts as a left or right invariant vector field.
Notice that the discrete eigenvalues has been replaced by
the continuous variables. The formula (49) precisely
coincides with the classical expression (17) with the metric
in the diagonal gauge.

VI. CONCLUSIONS

We extended the formulation of QRLG in order to
include a gauge vector field. We settled down all the
necessary tools in order to have a well-defined quantum
theory, which essentially reduces to a lattice gauge theory
on a cubic lattice. The adherence to the loop quantization
program implied a peculiar expression for the matter part of
the scalar constraint operator, which has been defined and
analyzed, showing how it provides the right semiclassical
limit as soon as proper semiclassical states for the gauge
field are provided and a large-;j limit is taken for the
gravitational degrees of freedom.

Next-to-the-leading order terms in the large-j expansion
can be easily computed starting from the achievements of
the present work, and they provide the first kind of quantum
gravity corrections computed for a vector field in LQG.
This will be done in future developments.

However, there are other kinds of quantum gravity
corrections, coming directly from the fact that the quan-
tization of vector fields that has been implemented is not
equivalent to the Fock quantization. The determination of
these corrections would give us a comprehensive descrip-
tion of quantum vector fields on a quantum spacetime.

The present analysis provides the expression of the
quantum operator associated with the matter part of the
scalar constraint, which generates the dynamics of the vector
field on a quantum spacetime. The investigation of such
dynamics is affected by the same kind of problems which
plague the formulation of lattice gauge theory, namely the
lack of explicit solutions, except in some quite trivial cases.

In this respect, the combination of the present results
with the definition of a dynamical vacuum out of the Fock
vacuum, given in Ref. [50], is a promising perspective in
view of the application of the present framework to
physically relevant cases.
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APPENDIX: TRACE OF THE MATTER
COUPLING TERM

Below, we refipe tlAle derjvation provided in Ref. [10] of
the action of tr(z'2;' V" (v) hir ), s0 as to recover (39). Let us
perform the calculation for an outgoing link /7 and p = 3,

tf(Tii’ﬁlvn(U);lﬁ) = _Z(Ti)ab(ilﬁl )bdvn(ill3)da’ (A1)

abd

where a, b, and d are indices in the fundamental repre-
sentation; let us choose the basis in which 73 is diagonal

and the holonomies read (/) , = ¢'%5,,.
Since the volume acts after the insertion of the holonomy

h 5, the application of the aforementioned operator to a state
provides the coefficient [X(VE(?) (Z®) 4+ a/2)]*/2. Thus, we
find

(A2)

Hence, using the §’s, it turns out that @ = d = b, such that
the two exponentials disappear and

(A3)

Since the only generator with nonvanishing diagonal
components is 73, the expression above recasts

n

— _(x()3(2))i5i3 s3) L4’
( )2 za:a + >

1 . 1\ 1\
— ! mozenss [<z(3> _ Z)Z _ (2(3) N Z) } (A%
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This expression justifies formula (19), assuming outgoing
link in the p = 3 direction. For p =1, 2, hj» is diagonal
modulo some discrete rotations, which can be moved to 7.
Therefore, the same result is obtained by rotating the SU(2)

PHYSICAL REVIEW D 95, 104048 (2017)

generator 7;, and the only nonvanishing contributions are
for i =1, 2. For the ingoing link, the only difference is
that (hp),, = e7*8,,, and the rest of the analysis is
similar.
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