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Astrophysical compact binary systems consisting of neutron stars and black holes are an important class
of gravitational wave (GW) sources for advanced LIGO detectors. Accurate theoretical waveform models
from the inspiral, merger, and ringdown phases of such systems are used to filter detector data under the
template-based matched-filtering paradigm. An efficient grid over the parameter space at a fixed minimal
match has a direct impact on the overall time taken by these searches. We present a new hybrid geometric-
random template placement algorithm for signals described by parameters of two masses and one spin
magnitude. Such template banks could potentially be used in GW searches from binary neutron stars
and neutron star–black hole systems. The template placement is robust and is able to automatically
accommodate curvature and boundary effects with no fine-tuning. We also compare these banks against
vanilla stochastic template banks and show that while both are equally efficient in the fitting-factor sense,
the bank sizes are ∼25% larger in the stochastic method. Further, we show that the generation of the
proposed hybrid banks can be sped up by nearly an order of magnitude over the stochastic bank. Generic
issues related to optimal implementation are discussed in detail. These improvements are expected to
directly reduce the computational cost of gravitational wave searches.
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I. INTRODUCTION

The direct detection of gravitational waves (GWs) was
vigorously pursued by the LIGO Scientific Collaboration
(LSC), consisting of several hundred scientists, which
culminated with the discovery of the first gravitational
wave event GW150914 [1] in the twin advanced LIGO
(advLIGO) [2] detectors. This event was determined to
have been caused by the inspiral and merger of a spinning
binary black hole system of component masses ð36; 29ÞM⊙
located nearly 1.3 billion light years away from Earth. It
was also the first observational evidence for the existence
of stellar mass black holes. Subsequently, advLIGO detec-
tors also detected a second event, GW151226 [3], from
the inspiral and merger of lighter compact objects. These
detections mark the transition to the era of gravitational
wave astronomy.
Several other kilometer-scale detectors are being

upgraded or are under construction at present around the
globe—these include the French-Italian advanced Virgo
detector [4] and the Japanese cryogenic KAGRA detector
[5,6]. In India, the proposal for the advanced LIGO-India
detector [7,8] has been approved and is expected to be built
over the next few years. The network of these advanced
detectors is expected to improve their overall science
potential and herald a new wave in astronomy with the
potential to observe the very early Universe and

complement information gathered by electromagnetic
observations.
Binary black holes and neutron stars are considered one

of the most promising sources for the advanced terrestrial
detectors. Precise theoretical model waveforms for GWs
emitted from the inspiral, merger, and ringdown phases
of such compact binary coalescences (CBCs) are now
available. These models are parametrized by the system’s
intrinsic properties, such as the component masses, spin,
etc., and extrinsic properties, such as sky location, distance
to the source, time at coalescence, etc. Accurate theoretical
models allow the use of matched-filtering techniques to
search for weak GW signals buried in detector noise. As the
signal parameters are not known a priori, one filters the
data using a set of expected signals spanning the deemed
parameter space. Each one of these expected signal
corresponds to a single point in the parameter space, and
are collectively known as the template bank. Coverage of
the full range of search parameters using a finite grid of
discrete points leads to an inevitable loss in the signal-to-
noise ratio (SNR) which can be controlled by fixing the
minimal match of the bank. The latter is often decided by
striking a balance between desired detection efficiency and
the computational cost of carrying out the search.
Advanced detectors are reaching unprecedented sensi-

tivities at low frequencies. Over the last few years, the
development of theoretical spinning waveform models has
also reached a mature stage. The combined effect of these
factors is that one now needs to search over a significantly
larger volume compared to initial LIGO era, in a parameter
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space spanning three or more dimensions; this poses new
challenges for data analysis, which include devising effi-
cient grid-placement strategies. The practical issue of
optimal template placement in matched-filter searches is
an important open optimization problem [9,10].
There are at least two approaches to solving the problem

of efficient template placement: (a) via deterministically
placedpoints through the tessellations of a geometrical lattice
[11,12] or (b) via stochastically placed points by choosing
themat random [13] over the parameter space. The geometric
method requires the metric over the signal manifold and has
been used extensively for CBC searches over 2D mass
parameters by arranging thegrid points in a hexagonal lattice.
A variant of the geometrical placement method for aligned
spin CBC systems has been explored [14] for the TaylorF2
[15,16] signal model. The lack of availability of metrics and
the intricate fine-tuning required to avoid uncovered regions
arising from variations in curvature across the parameter
space also make it difficult to generalize the geometric
placement methods to higher dimensions.
The stochastic template bank is constructed from random

proposals drawn from a uniform distribution over the
deemed parameter space that are accepted as a new
template point only if the new proposal is far from (in
the minimal-match sense) existing templates in the bank.
Such banks are easy to implement, robust, and can work
even without explicit knowledge of the metric on the signal
manifold by using brute-force match calculations. This
approach has been demonstrated to be more space efficient
than a square lattice in 2D but less efficient than a
hexagonal lattice. Such banks can be calculated for higher
dimensions as well [17].
An earlier attempt to combine the geometric and sto-

chastic methods [18] by seeding a stochastic bank with a
prefabricated geometric bank has been demonstrated to
improve the efficiency marginally.
We present a new hybrid algorithm for template place-

ment in 3D parameter space (including two mass compo-
nents and one reduced-spin magnitude) for gravitational
wave searches from compact binary coalescence by com-
bining the efficiency of optimal geometrical placement
and the robustness and ease of the stochastic placement
algorithm. This geometric-random bank placement method
uses a local truncated octahedral lattice to place the
templates and requires the metric over the signal manifold.
The paper is organized as follows. In Sec. II we reca-

pitulate the fundamentals of the template-based matched-
filtering technique used for gravitationalwave searches from
CBC and review the definition of the metric on the signal
manifold with the aim of setting the notation used in the
paper and defining key terms. Numerous papers on template
placement strategies have been written over the last few
years and many new ideas have emerged [13,14,17,18]: we
provide a concise review of these efforts for the benefit of the
reader. In particular, we elucidate the stochastic algorithm
by casting it in two different ways that are algorithmically

equivalent. This sets the stage for Sec. III, wherewe present a
new hybrid geometric-random template placement algo-
rithm and give a detailed explanation of the issues concern-
ing its optimal implementation. We argue that, by
construction, this new method cannot be less space efficient
than the vanilla stochastic placement method. We also
construct an explicit template bank for neutron star–black
hole searches using this new algorithm and compare it
against a vanilla stochastic template bank, noting the
improvement in overall bank size as well as the time taken
to generate the bank. The TaylorF2RedSpin signal model
[19] was used for this purpose. The template banks pre-
sented in this work have been calculated using the
aLIGOZeroDetHighPower [20] noise sensitivity curve for
advLIGO. The set of parameters used to generate the model
template banks are listed in Table I.
In Sec. IV, the template banks generated by the hybrid

method are tested and validated against the vanilla stochastic
bank. We present the fitting factor results using 50 000
signal injections using TaylorF2RedSpin and TaylorF2
aligned-spin waveformmodels using software implemented
in the LALAPPS package of the LIGO Algorithm Library
(LAL) [21] and show that the two banks are nearly identical
in efficiency.We also compare the hybrid bank against aA�

3-
lattice-seeded vanilla stochastic bank and show that the
former is more efficient.
Finally, in Sec. V we summarize the main results and

make some comments related to several key issues related
to the new method, indicating a possible way for extending
it to higher dimensions.

II. METRIC ON THE SIGNAL MANIFOLD

In this section we shall quickly summarize the basics
of the template-based matched-filtering technique used in
GW searches from CBC. A basic assumption in matched-
filtering-based searches is that the astrophysical GW signal
buried in the detector noise is faithfully represented by the
signal model used in the search over the range of search
parameters.
The signal manifold λ is the set of all possible GW

signals hðλ⃗Þ≡ hðt; λ⃗Þ characterized by the parameter vector
λ⃗. It is customary to represent the corresponding frequency
domain signal as ~hðλ⃗Þ≡ ~hðf; λ⃗Þ. The detector output sðtÞ
consists of detector noise nðtÞ and a possible gravitational
wave signal of unknown parameters. The additive noise
throws the signal out from this manifold to the space of
all possible functions. In order to find the point in signal
manifold closest to the detector output sðtÞ, the latter is
projected over the signal manifold by calculating the
maximum likelihood over λ⃗, which serves as the detection
statistic. For additive Gaussian noise, the likelihood Λ is
given by [22]

Λðλ⃗Þ ¼ exp

�
hsjhðλ⃗Þi − 1

2
hhðλ⃗Þjhðλ⃗Þi

�
: ð1Þ
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The inner product hsjhi is the complex cross-correlation
[23] between the detector output sðtÞ and the gravitational
wave signal hðλ⃗Þ weighed inversely by the noise power
spectral density of the detector [24],

hsjhðλ⃗ÞiΔt ¼ 4Re
Z

fhigh

flow

~s�ðfÞ ~hðf; λ⃗Þ
SnðfÞ

e−2πifΔtdf; ð2Þ

where SnðfÞ is the one-sided noise-power spectral density
defined by h ~nðfÞj ~n�ðf0Þi ¼ 1

2
SnðjfjÞδðf − f0Þ, the asterisk

denotes the complex conjugation operator, the frequency
range flow ≤ f ≤ fhigh marks the effective bandwidth of
the detector, and Δt is the time delay between these two
signals. The SNR ρ after filtering sðtÞ is defined as

ρðΔt; λ⃗Þ ¼ hsjhðλ⃗ÞiΔtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hhðλ⃗Þjhðλ⃗ÞiΔt¼0

q : ð3Þ

Without any loss of generality, we assume that all template
waveforms are normalized such that hhðλ⃗Þjhðλ⃗ÞiΔt¼0 ¼ 1.
From Eq. (1) it is clear that this allows us to use the log-
likelihood function (or, equivalently, the SNR) maximized
over the parameters as the detection statistic.
The log-likelihood function can be maximized over all

time lags (Δt) by using fast Fourier transform (FFT)–based
convolution as shown in Eq. (2). It can be maximized
over other extrinsic parameters analytically [23]. On the
other hand, as one cannot maximize the log-likelihood
function over intrinsic parameters analytically, a brute-
force approach is needed. In this case, a discrete grid of
points is placed to cover the intrinsic parameter space. One
evaluates the log-likelihood surface at each of these points
and the maximum is suitably determined.
The template bank consisting of these discrete set of

points on λ is constructed using a control parameter Mmin,
commonly known in GW literature as minimal match. This
parameter is chosen such that the minimum overlap of an
arbitrary vector in the signal manifold (within the deemed
parameter space) and at least one template in the bank never
drops below this value. The art of template placement lies
in maximizing the intertemplate separation without violat-
ing this constraint, with the aim of achieving the smallest
bank size. In this way, we can map the template placement
to the sphere-covering problem [25,26] with spherical cells
of radius equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Mmin

p
. One wants the smallest

number of overlapping templates (i.e., metric spheres) to
fully cover the space (i.e., leave no holes). The equation of
such a spherical cell, centered at λ⃗ ∈ λ, is given by

hhðλ⃗Þjhðλ⃗þ Δλ⃗Þi ¼ Mmin: ð4Þ
From the normalization of waveforms, it is clear that
Mmin ≤ 1. For high values of this parameter, the lhs can
be Taylor-series expanded up to leading order in the small
parameter Δλ⃗,

1 − gμνΔλμΔλν ¼ Mmin; ð5Þ

where Δλμ are the components of the vector Δλ⃗ and

gμν ¼ −
1

2

∂2hhðλ⃗Þjhðλ⃗þ Δλ⃗Þi
∂Δλμ∂Δλν

����
Δλ⃗¼0

ð6Þ

is the metric over the signal manifold, which is essentially
the Fischer information matrix projected on the intrinsic
parameter space and calculated using standard covariance
matrix method [16,27,28]. The match between two nearby
points in the parameter space can be calculated easily
using the metric. Equation (5) can be rearranged as
gμνΔλμΔλν ¼ ð1 −MminÞ, and identified to be the equation
of an ellipsoid in 3D centered at a point λ⃗. For higher
dimensions it represents a hyperellipsoid. We shall refer to
this as the minimal-match ellipsoid elsewhere in the paper.
In GW searches from CBC sources, template banks are
usually constructed at Mmin ∼ 0.97 [24]. This corresponds
to a loss in detection rate of ∼9% assuming uniform
distribution of such sources.

A. State of the art in template placement

As mentioned earlier, the geometric and stochastic
template placement algorithms are two broad classes of
methods used in searches for gravitational wave signals
from compact binary coalescences.
Previous searches for GW signals from nonspinning

compact binaries in initial LIGO and Virgo [29–31] data
have used the metric-based geometrical hexagonal template
placement in two dimensions [11,12,23,27,28]. Templates
are placed in chirp-time coordinates fτ0; τ3g instead of
component masses fm1; m2g, since the templates are
almost uniformly spaced in the former. This process starts
by initializing a template point and then finding neighbor-
ing points in a A�

2 hexagonal lattice, where the center of the
hexagons represent the position of individual templates.
Hexagonal tiling offers themost efficient space filling in two
dimensions, which optimizes the number of template points
and in turn reduces the total computational cost of the search.
To construct this geometric bank, one requires the semi-
analytic metric on the signal manifold to be assumed to be
slowly varying over the parameter space. The curvature
effects leads to some loss of efficiency in this strategy. This
geometric placement was initially demonstrated [11] for
the inspiral-only waveforms accurate up to second post-
Newtonian (2 PN) order in the stationary phase approxi-
mation (SPA). At present, the metric for 3.5 PN SPA
waveforms [32] is available, which allows template place-
ment for such waveforms as well.
Geometric template placement in higher-dimensional

intrinsic parameter space (e.g., component masses and
spins) has several problems. First, the metric may not be
available for such signal manifolds and second, unlike the
hexagonal packing in 2D, optimal geometrical placement in
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higher dimensions with curvature is not well known. It is
further complicated by curvature and boundary effects.
To mitigate the curvature issues, which lead to rapidly
changing metric components over the parameter space,
new coordinates are being explored in which the metric is
slowly varying [17], but these do not solve the problem
completely. Recent studies [14,33] have explored geomet-
rical placement in higher dimensions for aligned-spin binary
neutron star (BNS) and neutron star–black hole (NSBH)
systems for some specificwaveform families. In thismethod,
one constructs a metric on the parameterized coordinates,
taken to be the coefficients of the 3.5 PNTaylorF2 expansion
of the orbital phase [34] instead of the usual chirp-time
coordinates. Since the metric is globally flat in these new
coordinates, one can globally transform it into a Euclidean
coordinate system. Finally, a principal coordinate analysis
facilitates the projection to an effective lower-dimensional
parameter space, which can be covered by a grid placed in a
hexagonal lattice. For NSBH [33] systems, the parameter
space is covered by stacking several two-dimensional hex-
agonal lattices along the direction of the minor axis. This
method is available in the PYCBC software package [35–38].
An alternative approach for template placement is the so-

called stochasticmethod [13]where one startswith an empty
template bank (or a set of seed points) to which random
points, drawn from a uniform distribution over the deemed
parameter space, are appended in an iterative fashion. At
every iterative step, a new random point is proposed to be
included in the template bank: this proposal is rejected if it
happens to lie too close to the points that are already in the
existing list, otherwise it is accepted. For each accepted
proposal, the rejection rate is determined and the process
terminates when this rate exceeds a certain threshold
averaged over the last few acceptances. We shall call this
the bottom-up approach in building the list of templates by
considering randomproposals one by one, retaining only the
valid ones. This has been encoded in the LAL software suite
via the program LALAPPS_CBC_SBANK.
The stochastic-bank-placement algorithm can also be

cast in a top-down fashion. In this alternate implementa-
tion, one starts with an empty template list T and a list of
very large number of proposals U distributed uniformly
over the deemed parameter space. One picks a random
point r ∈ U and appends it to T , following which all points
from U that lie within the minimal-match distance from r
are removed. The process continues in an iterative manner
until all points from U are exhausted. We call this the top-
down approach as the template bank is microfabricated out
of a large block of random proposals by paring it down to
the desired shape and order.
Both these methods are algorithmically equivalent; how-

ever, the top-down approach is more useful in projecting a
geometric structure over the stochastic template bank lead-
ing to the hybrid geometric-random placement algorithm
described in this paper. In Table II we demonstrate that the

top-down approach is also faster by a factor of ≳2 over the
traditional bottom-up approach, as one is able to eliminate
many proposals for a single accepted proposal using
efficient computational data structures such as binary search
trees (BSTs) [39]. The number of templates generated by
both these methods is nearly identical.
The stochastic method is relatively easier to implement

and does not require the metric over the signal manifold
per se. The distance between the proposed point and the
elements of the current template bank can be directly
calculated by evaluating the match inner product Eq. (2).
This brute-force approach for match calculation allows it to
be extended easily to higher-dimensional parameter spaces
and overcome irregular boundary effects. The disadvan-
tages of the stochastic method include the requirement of
high computational time, as several million proposals have
to be processed to guarantee adequate coverage, and the
fact that it generates substantially more templates than the
geometric bank. The computational time can be reduced if
we use the metric (if available) for match calculation.
However, the intrinsic stochastic nature of the algorithm
leads to the inefficiency in grid placement.
Another instance of template placement developed for

aligned spin binary black hole (BBH) searches has explored
a combination of geometric and stochastic approaches
[18,40]. In this method, at first one generates an aligned-
spin geometric hexagonal lattice template bank up to some
valid range of parameters, which is then used as a “seed”
bank for the stochastic placement, thereby accelerating the
placement. This method generates ∼5.5% fewer template
points than the stochastic method and has been used as part
of the uber template bank used in CBC searches in the data
from the first observational run of aLIGO [41].

III. A NEW GEOMETRIC RANDOM ALGORITHM
FOR TEMPLATE PLACEMENT

In this section we present the metric-based hybrid geo-
metric-random template placement algorithm in three
dimensions using a truncated octahedral lattice. Such lattices
are the Dirichlet-Voronoi polytope of a body-centered cubic
A�
3 lattice [42]. The latter provide optimal coverage for

conformally flat spaces where the metric coefficients are
constant [26]. It is interesting to note that this is in line with
Kelvin’s conjecture [43], according to which truncated-
octahedron-based space filling is optimal in flat 3D space.
A truncated octahedron (TO) is a 14-sided space-filling
polyhedron and has the highest volumetric quotient
[Eq. (B1)], which makes it suitable for the lattice structure.
Other geometric properties are tabulated in Appendix B.
Such a template bank would be applicable for gravita-

tional wave searches from the compact binaries described
adequately by their component masses and a single
“reduced-spin” parameter χr using the TaylorF2RedSpin
signal model. This signal model is constructed using a post-
Newtonian template family of gravitational waveforms
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from inspiraling compact binaries with nonprecessing
spins. Here, the spin effects are captured by the parameter
χr, defined as a mass-weighted, linear combination of
individual dimensionless spin magnitudes. The details of
the signal model are in Appendix A.
In order to construct the three-dimensional geometric

random template bank, we require the metric on the
parameter space. The metric gij for the TaylorF2RedSpin
approximant varies rapidly in fm; η; χrg coordinate system,
wherem denotes the total mass and η denotes the symmetric
mass ratio. In order to enhance the efficiency of the
algorithm, one places the templates in dimensionless
chirp-time coordinates fθ0; θ3; θ3sg, in which the metric
components are slowly varying over the parameters. These
new coordinates are defined as

θ0 ¼
5

2
1
3

�
1

16πf0mη3=5

�5
3

θ3 ¼
�
16π5

25

θ20
η3

�1
5

θ3s ¼
48π

113χrθ3
: ð7Þ

However, it is to be noted that the curvature effects do
not vanish completely, due to the above coordinate trans-
formations. As such, Kelvin’s conjecture does not hold
directly in this nonflat space. In the following sections, we
show that the truncated octahedral design can still be used
for spaces with slowly varying curvature. This is achieved
by merging the stochastic bank placement algorithm with a
local A�

3 lattice.
The method outlined in Algorithm 1 proceeds by

initializing three lists as follows:
(i) U: a list of uniformly distributed random points

sprayed over the deemed parameter space;
(ii) T : an empty list for template points;
(iii) K: an empty temporary list.

Algorithm 1 Geometric-Random Template Placement

1: generate U
2: K ¼ ½�
3: T ¼ ½�
4: while ðUÞ do
5: K ← random point p ∈ U
6: while K do
7: T ← append K½0�
8: find all possible TO neighbors of K½0�
9: K ← append valid TO neighbors
10: delete K½0�
11: end while
12: delete all minimal-match neighbors of T from U
13: end while

At first K is initialized or seeded with a random point
chosen from U which is immediately appended to the list
of templates T as its first element. The possible 14 TO

neighbors of this initial point are then calculated and
appended to K, followed by the removal of the first
element. Only those TO neighbors which fall within the
parameter space and are farther than Mmin from existing
points in T and K can be appended. This completes one
iteration of the inner loop of the algorithm. We continue
these steps until K becomes empty. The latter happens
when no new valid TO neighbors are appended in succes-
sive iterations of the inner loop of the algorithm, which
ultimately exhausts all the points in K. At this stage,
all points from U that are within the minimal-match
distance from the elements in T are deleted, following
which K is reseeded with a new random point from U.
Termination of template placement algorithm occurs when
U is exhausted.
The advantage of casting the stochastic template place-

ment algorithm (see Sec. II A) in a top-down fashion is clear
when we consider the extreme case where no TO lattice
neighbors can be found for any proposal point in U. In this
case, it is clear from Algorithm 1 that the geometric-random
algorithm naturally falls back to the vanilla stochastic
placement algorithm. This brings in the robustness of the
latter to the proposed new algorithm. This contingency
arises for a small fraction (∼5%–10%) of points in U, due to
boundary edge effects and small uncovered patches arising
from curvature effects. By construction the geometric-
random placement method presented here is more efficient
than vanilla stochastic algorithm.
Also note that the TO, whose neighbors are added toK in

lines 8–9 of Algorithm 1, refers to the one inscribed inside
the minimal-match ellipsoid given in Eq. (5) above. The
gradual change in curvature (changing metric components)
leads to changing orientation and size of these ellipsoids,
which affects the size and orientation of the inscribed
truncated octahedron. This, in turn, affects the coordinates
of its 14 neighbors. In this way the placement algorithm
automatically responds to the curvature effects. This is
equivalent to assuming flat local patches of the signal
manifold, which can be optimally covered by A�

3 lattice.

A. Implementation

We now highlight some salient features for efficient
implementation of the algorithm.

1. Initializing U with uniform random points

In order to generate a random list of points over the
parameter space, at first we calculate the minimum and
maximum possible values of dimensionless chirp times θ0,
θ3, and θ3s for the range of parameters over which the bank
is to be placed. A set of random points are generated in
fm1 −m2g space along the boundaries, marking the con-
straints for component masses, chirp masses, and mass
ratios. Afterwards, a coordinate transformation is taken to
the dimensionless chirp-time coordinate system fθ0 − θ3g,
which allows the calculation of the extremities in these
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coordinates. The extreme values of θ3s are evaluated using
jχrj ≤ 1 in Eq. (7). Once these extremities are known,
uniform random points are proposed within these values,
out of which only those which lie within the specified mass
and spin ranges are retained.
The final bank size depends strongly on the initial

density of points in U up to a critical value, beyond which
it does not change very much. Empirically, we find this
number to be about ∼1=10 of the total volume calculated in
the dimensionless coordinates. The latter depends on the
metric and varies across the parameter space, due to which
we estimate an average cell volume by sampling different
points across this space. The total number of cells needed to
cover the space is given by the ratio of the total volume
divided by the average volume of a cell. A Monte Carlo
integration method can be used to estimate the total
volume.

2. Deletion of points within the minimal-match ellipsoid

We discuss an efficient way to delete points from U that
lie within minimal-match distance from the template bank
points. For a fixed minimal-match value, Eq. (5) represents
the surface of an ellipsoid with semiaxis length

Ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Mmin

ei

s
; ð8Þ

where the eis are eigenvalues of the metric gij evaluated at
the ellipsoid center. The orientation of the ellipsoid is
defined by matrix R composed of eigenvectors of the
metric gij, where Rij is jth component of the ith eigen-
vector. To visualize the deletion process, let us consider a
cell centered around a template. The points in U lying
inside the cell can be determined by calculating the match
between this template with the all other points in U, but
such a brute-force approach will not be computationally
efficient. We need to find a smaller set of points against
which we can identify these neighbors more efficiently. To
this end, we can first use a BST [39,44,45] data structure to
identify a smaller list of points from U that lie within a
sphere of radius equal to the largest semiaxis of the cell.
From this smaller list of points, we then proceed to delete
the ones that satisfy gijΔλiΔλj ≤ 1 −Mmin.
This can be further refined by binning the template points

in θ0 such that each bin contains about∼1000 templates. For
each such subset, the removal of points from U proceeds by
identifying those points that lie in the same bin (within some
acceptable margin in θ0) and then applying the above
strategy to eliminate the points. This refinement is made
possible due to the fact that match values decrease mono-
tonically with the difference in parameters and are most
sensitive to changes in θ0. Additional binning in the other
two coordinates may possibly further improve the computa-
tional efficiency of removing the points from U.

3. Global coordinate transformation

In dimensionless chirp-time coordinates, most of
the ellipsoidal cells have a ratio of semiaxes around
1000∶10∶1. This implies that the number of points inside
this flat and elongated ellipsoid is a small fraction of the
total number of points contained in the sphere with radius
equal to the semimajor axis. This undermines the efficiency
of deleting the points using the technique outlined in
Sec. III A 2. We use a conformal coordinate transformation
in such away that one of the cells transforms to a unit sphere.
Note that, due to curvature effects, the same transformation
when applied to other cells does not guarantee them to
change to unit spheres, but mitigates the problem of a highly
asymmetric semiaxis ratio to a large extent. We use the
eigenvalues and eigenvectors of the metric at a fiducial point
to transform the coordinates (θk → ξk) as

ξi ¼
X3
j;k¼1

SijRT
jkθk; ð9Þ

where Sij ¼ ffiffiffiffi
ei

p
δij is a diagonal scaling matrix and the

rotational matrixRij is constructed from the ith component
of the jth eigenvector of the metric calculated at the fiducial
point. This is carried out by first binning the templates in θ0.
The transformation in Eq. (9) is carried out using the metric
of the center point in each bin.
The metric at all other points transforms as

ḡij ¼
X3

p;q;r;t¼1

S−1
ipR

T
pqgqrRrtS−1

tj : ð10Þ

It is trivial to check that the metric at the fiducial points
transforms to a 3 × 3 identity matrix.
This global coordinate transformation Eq. (9) causes

other nearby cells to become almost spherical with semi-
axes in the ratio ∼1∶1∶1. In Fig. 1 we show the effect of
global coordinate transformation on nearby cells. This is
doubly advantageous: not only does the ball-point query
volume for the BST searches decrease (leading to fewer
points to deal with); the points that lie within the inscribed
minimal-match ellipsoid now occupy a large fraction of its
volume, leading to increased efficiency in the removal of
points.

4. Locally placed truncated octahedral lattice

The template placement problem in 3D can be mapped to
the tiling problem such that a minimum number of similar
cells is used without leaving any region uncovered. As
such, a truncated octahedral lattice becomes a natural
choice for this problem.
As stated earlier, the TO shares 14 faceswith its neighbors

in the lattice. Assuming a TO inscribed in a sphere of radius
R, the coordinates of its 14 lattice neighborsNp

k are available
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in Table IV. Here k ¼ ð1; 2; 3Þ is an index on the coordinates
of the pth neighbor. When mapped to the template place-
ment problem, we need to consider TOs inscribed within
theminimal-match ellipsoids. In this case, the coordinates of
the lattice neighbors N̄p

i can be calculated using the rotation
and scaling matrices,

N̄p
i ¼

X3
j;k¼1

RT
ijSjkN

p
k : ð11Þ

Figure 2 shows the 14 neighbors of a TO inscribed in a
elliptical cell.
Because of boundary effects, all 14 TO neighbors of a

point need not necessarily be part of the template bank. The
following conditions must be checked for:

(i) The point is inside the deemed parameter space and
also satisfies η ≤ 1=4. The latter corresponds to the
condition that θks can be inverted to yield physical
masses.

(ii) The point is not within the minimal-match distance
of existing points in T and K.

Check (b) above ensures that we do not double count the
neighbors.
As shown in Algorithm 1, we start from a random point

in the parameter space (by seeding K) and tessellate with a
local TO lattice. Because of curvature and boundary effects,
it is not guaranteed that these tessellations cover the entire
parameter space. This is marked by the exhaustion of K as
the placement proceeds. At this stage, we need to reseed K
and continue the process iteratively until all points in U
have been used up.

5. Choice of the initial point and variations in bank size

The template placement algorithm starts from a ran-
domly chosen point in the parameter space by seeding K,
which is copied over as the first element of the template
bank list T .
One can start from any point in parameter space: in the

present work we have started from a “midpoint” corre-
sponding to component masses m1;2 ¼ ðmmax

1;2 þmmin
1;2 Þ=2

with individual spins χ1;2 ¼ ðχmax
1;2 þ χmin

1;2 Þ=2. We have
checked that starting from other points (e.g., the extremities
of the parameter space) also work quite well. This initial
choice results in a minor fluctuation of the template bank
size, and it is recommended that we start from a point well
inside the deemed parameter space where the local varia-
tions in curvature are less. This ensures maximum tiling
before we need to reseed K.
We demonstrate these fluctuations in template bank size

by constructing several template banks for compact binary
systems whose bank parameters are given in set II of
Table I, starting from different locations in the deemed
parameter space. The random seed used to initialize U was
kept the same to eliminate bias. The five different starting
points were taken to be the center and extremities of the
parameter space, respectively, and as expected different
choices of the initial seed point resulted in a slightly
different number of templates in the final bank. We
generated an average of 111 257 templates with ∼3%
fluctuation, which is quite insignificant.

IV. TEST OF THE ALGORITHM

In this section we construct a template bank using our
algorithm and demonstrate its validity for CBC searches.We

FIG. 1. An example of global transformation Eq. (9) to speed up the point elimination part using a BST algorithm. Here we construct
the global transformer using the metric of an ellipse, which is inscribed in the blue dashed circle, as shown in the left panel. After the
transformation the same cell becomes a unit sphere and nearby cells also become more spherical.

FIG. 2. Lattice neighbors of a truncated octahedron inscribed in
a elliptical cell. Here only nine neighbors are visible and the
remaining five are on the opposite side.
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also compare its performance against a bank generated using
the vanilla stochasticmethod available in the LSCAlgorithm
Library suite (LALSuite) [21]. We need a metric over the
dimensionless chirp coordinates; at present, two suchmodels
are available for use, namely, the TaylorF2RedSpin and
IMRPhenomBsignalmodels [46].Our demonstrationmakes
use of the TaylorF2RedSpin model.

A. Construction of the template banks for
a reduced-spin binary system

We generate a template bank using the TaylorF2RedSpin
metric in ðθ0; θ3; θ3sÞ parameter space for an aligned-spin
compact binary system. The range of parameters is chosen
such that the mass of the first object lies between 1M⊙ and
20M⊙, with dimensionless spin magnitude in the range
�0.98. The mass of the second object is taken between
1M⊙ and 3M⊙, with dimensionless spin magnitude in the
range �0.4. The NSBH boundary mass condition is

satisfied; i.e., any object with mass ≤ 3M⊙ is considered
to be a neutron star with a corresponding limit on spin
magnitude. This template bank can be used for BNS and
NSBH searches.
We construct several template banks by varying the

number of uniformly sprayed random points over the
parameter space U. We consider sizes of U varying between
1 × 107 and 8 × 107 points. In all the cases, the placement
proceeds from a point corresponding to individual
masses m1;2 ¼ ð21

2
; 4
2
ÞM⊙ and individual spin magnitudes

χ1 ¼ χ2 ¼ 0.0. The full specification of input arguments
for template generation are given in set I of Table I.
The corresponding final template bank sizes are listed

in Table II. In Fig. 3 we show the two-dimensional
projections of such a bank along the θ̂3s, θ̂3, and θ̂0
directions, respectively. The hat (^) over the symbols
denotes the unit normal vector along the specified direction.
For comparison, we also generated a template bank using

TABLE I. Parameters used to generate the geometric-random and vanilla stochastic banks. The results for different sizes of U are
summarized in Fig. 4. In set I, the parameter space is chosen by satisfying the NSBH boundary mass; i.e., components with individual
mass ≤ 3M⊙ are identified as NS with dimensionless spin magnitude in the range �0.4.

Bank parameter Set I Set II

Waveform model TaylorF2RedSpin TaylorF2RedSpin
Noise model aLIGOZeroDetHighPower aLIGOZeroDetHighPower
Lower cutoff frequency, flow 20 Hz 30 Hz
Higher cutoff frequency, fhigh 2048 Hz 1024 Hz
Mass of first object, m1 ½1; 20�M⊙ ½3; 15�M⊙
Mass of second object, m2 ½1; 3�M⊙ ½1; 3�M⊙
Spin of first object, χ1 ½−0.98; 0.98� ½−0.6; 0.6�
Spin of second object, χ2 ½−0.4; 0.4� ½−0.05; 0.05�
Size of U ½1 − 8� × 107 1 × 107

Minimal match, Mmin 0.97 0.97

TABLE II. Summary of various template banks mentioned in this paper. The semianalytic metric gij for the TaylorF2RedSpin signal
model was used in all cases. The vanilla stochastic algorithm can also work by directly calculating matches (instead of using gij), but in
this head-to-head comparison, we have used the semianalytic metric, which speeds up the vanilla stochastic template placement
significantly. The usage of the metric is compulsory for geometric-random placement.

Bank parameters Placement algorithm Size of U Bank size
Execution
time (min) Comments

Set I of Table I Hybrid construction
Geometric random

1 × 107 694 422 375 25% more templates
×ð8–10Þ faster2 × 107 749 705 482

3 × 107 777 113 616
4 × 107 798 269 885
5 × 107 812 570 990
6 × 107 824 541 1191
8 × 107 843 177 1712

Vanilla stochastic (LALAPPS_CBC_SBANK) � � � 939 787 3666

Set II of Table I Hybrid construction
Geometric random

1 × 107 107 547 69 25% more templates
×11 faster

Vanilla stochastic (LALAPPS_CBC_SBANK) � � � 134 563 762
A�
3-seeded stochastic � � � 128 185 � � �

Vanilla stochastic (TOP_DOWN) � � � 134 426 320 ×2.3 faster
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the vanilla stochastic method for the same parameters listed
in set I of Table I. The vanilla stochastic bank placement
was terminated at a point when there were 1000 rejected
proposals for each accepted proposal averaged over the last
10 acceptances. This stochastic bank was found to contain
939 787 templates, which is ∼25% larger than the geo-
metric-random bank. The computational run time was also
recorded; we observed that the geometric-random method
took 482 minutes while the vanilla stochastic method took
3666 minutes to execute on a single, unloaded processor,
which is ∼8 times faster.

B. Validation of the template banks

We investigate the performance of both the geo-
metric-random and the vanilla stochastic template banks
against a set of signal injections from the reduced-spin

TaylorF2RedSpin signal model. In this section we sum-
marize the results of this comparison and demonstrate that
the two banks are nearly identical in performance.
Following Apostolatos [47], the “fitting factor” FF ðhaÞ

is defined as a measure of the maximum match over the
template bank T for a putative injected signal ha,

FF ðhaÞ ¼ max
h∈T

hhajhi: ð12Þ

The parameters of the injected signal (chosen from
within the deemed parameter space over which the bank
is placed) is chosen at random and may not coincide with
that of a template point. The mismatch ½1 − FF ðhaÞ�
indicates the fractional loss of optimal SNR. Because
differences between true waveforms and waveform models
will always reduce the fitting factor, banks are usually
tested to achieve fitting factors slightly larger than the

FIG. 3. Area-normalized histograms of the template density in various planes. The template bank was constructed using hybrid
geometric random algorithm presented in this paper. Each bin of the histogram was normalized by the square root of the determinant of
the metric

ffiffiffiffiffiffiffiffijgijj
p

to ensure equal area. The metric was calculated at the bin center. The boundary effects are clearly seen. We can also see
that bank is highly elongated along θ̂0 direction as compared to both θ̂3 and θ̂3s directions.
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minimal match used in their construction. The minimal
match at which the template banks are constructed (0.97 in
this case) is somewhat arbitrary, and is arrived by carefully
balancing the computational cost of the search against the
desired detection efficiency.
For the banks generated per the parameters in set I

of Table I, we injected 50 000 signals from reduced-spin
TaylorF2RedSpin waveform model and calculated the
fitting factor using Eq. (12). The LALAPPS_CBC_SBANK_
SIM program as implemented in LALAPPS package of the

LALSuite [21] was used for this calculation. The range of
mass and spin parameters of the injected signalswere chosen
to be the same as that of the bank and were drawn from a
uniform distribution in this range. Other extrinsic parameter
were drawn from (i) a uniform random distribution over all
possible sky locations, (ii) a fixed inclination angle corre-
sponding to edge-on orientation of the plane of the binary,
and (iii) a fixed luminosity distance of 1 Mpc. For the banks
(corresponding to different initial sizes of U), we found that
∼92%–94% signals were recovered with fitting factor

FIG. 4. Panel (a) shows a comparison of the geometric-random bank and the vanilla stochastic bank constructed over identical
parameter ranges is made by plotting fitting factors for 50 000 TaylorF2RedSpin signals. The horizontal line depicts the percentage of
such injections for which the fitting factor is above the bank minimal match in the case of vanilla stochastic bank. The solid dots
correspond to the percentage for geometric-random banks constructed with different sizes of U as tabulated in Table II. The bottom
horizontal axis measures the computational speed-up of the hybrid geomtric-random placement while the one on top shows the
corresponding efficiency in bank size. Panels (b) and (c) show the cumulative distribution of the hybrid bank fitting factors for different
initial sizes of U. They have been split into two panels for clarity.
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≥ 0.97 for both the geometric-randombank aswell as for the
stochastic bank. The results are shown in Fig. 4. The
fluctuation at higher significant digits was ignored due to
the limited sample size of injections. These results are
graphically depicted in Fig. 4 and demonstrate the equiv-
alence of the two banks alongwith the computational speed-
up and corresponding efficiency of template placement
using the new method.
Although the injection signal model is identical to the one

used to construct the template banks, we still find that the
fitting factors fall below the minimal match of the bank for a
small fraction of the injections. This alludes to the fact that
both template banks have holes in certain regions of the
deemed parameter spacewhere neighboring templates do not
provide adequate coverage. This arises fromcurvature effects.
The fitting factor depends on the parameters of the

injected signals, e.g., masses, spin components, sky posi-
tion, and inclination angle of the binary’s plane to the line
of sight, etc. For nonprecessing signals including only the
dominant radiation mode, the fitting factor depends only on
the intrinsic parameters. To understand the systematics, it is
convenient to represent it as a function of two parameters
while averaging out over the remaining ones.
In Figs. 5(a)–(b), we show the histogram of “minimum”

fitting factors [33] (for a geometric stochastic template bank)
over various combinations of intrinsic parameters of the
compact binary system, where both the signals and template
waveforms are generated from the TaylorF2RedSpin wave-
form model. The bank performs well to match the injected
signals throughout the parameter space for NSBH and BNS
systems, except for those regions where both the total mass
and reduced spins are high.

In order to carry out a high-precision test comparing the
efficiency of the hybrid bank with that of the vanilla
stochastic bank, we need a large number of injections to
calculate the fitting factors up to high significant figures. To
this end, we construct both the template banks using the
TaylorF2RedSpin metric and parameters given in set II
of Table I. The geometric random bank was constructed by
initializing U with 1 × 107 uniform random points in
dimensionless chirp-time coordinates, whereas the stochas-
tic bank code was set to terminate when the rejection rate
reached a value 0.9996 averaged over the last 10 accep-
tances. The geometric random bank was found to contain
107 547 templates whereas the stochastic bank contained
(25% more) 134 563 template points. In this case, the
geometric stochastic bank took ≳11 times less time than
the vanilla stochastic bank on a single unloaded processor.
We quantify the performance of these two template banks

by computing fitting factors for two different injection
families of aligned spin waveforms, TaylorF2RedSpin
and TaylorF2. In both cases, 50 000 injections were made
where the intrinsic parameters of the injected waveforms
were chosen from set II of Table I and other parameters
chosen as earlier. For the case of the geometric-random
template bank created using local TO lattice, we found
0.354% of signals were recovered below a fitting factor of
0.97 for TaylorF2RedSpin injections, and 2.892%of signals
are recovered below this level for TaylorF2 injections. In
the latter case, the injection model is different from the
one used to construct the template bank; hence, it is expected
that the coverage for TaylorF2 will be less. The correspond-
ing numbers for the vanilla-stochastic bank are found
to be 0.514% (TaylorF2RedSpin injections) and 2.408%

FIG. 5. (a) The minimum fitting factor for the hybrid template bank for a set of injected aligned-spin NSBH and BNS signals as a
function of component masses. (b) The minimum fitting factor as a function of the reduced-spin parameter and the total mass. Both the
signal and template waveforms are modeled using the TaylorF2RedSpin approximant. We see a region showing poor coverage
corresponding to high total masses and high reduced-spin values. This is seen for the stochastic bank as well. One possible reason could
be that the TaylorF2RedSpin metric could be doing worse for systems with high masses and high reduced spin.
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(TaylorF2 injections) respectively. From these numbers it is
evident that the geometric-stochastic bank is equally effi-
cient as the vanilla-stochastic bank. These results are
summarized in Fig. 6.
As mentioned earlier, the A�

3 lattice provides optimal
coverage for conformally flat spaces in 3D. One may be
tempted therefore to use such a lattice as a seed for
stochastic template placement. We have investigated this
approach and compared it with the geometric-random and
vanilla stochastic algorithms. At first, the deemed param-
eter space (corresponding to parameters in set II of Table I)
was covered by a A�

3 lattice using the metric at a putative
point to determine the dimensions of the unit cell. Using a
point in this volume for which the unit cell had the smallest
dimension, we placed 31 732 A�

3 lattice points to entirely
cover the deemed parameter space. Using these as seed
points for stochastic placement, the final bank size was
found to have 128 185 templates. This is marginally (∼5%)
smaller than the vanilla stochastic bank, which has 134 563
templates as reported above. The geometric-random bank
outperforms this A�

3-seeded stochastic bank by a good
margin of more than 16%.
As remarked earlier, the vanilla stochastic algorithm can

be cast in two different ways. The traditional bottom-up
approach has been implementation in the LSC Algorithm
Library and has been used in this work for comparison with

the geometric-random bank. In order to compare it head to
head with the top-down approach, we implemented it in
software and ran it for the exact same parameters as given
in set II of Table I. As expected, the top-down implemen-
tation gives nearly identical bank sizes (0.1% difference
in size) but takes less than half the time as the bottom-up
LAL implementation. The computational speed comes
from the fact that in this implementation one can reject
many proposals that lie within the minimal-match ellipsoid
centered around a single accepted proposal. Efficient
computational data structures like binary search trees are
readily available for such queries.
A summary of the various templates banks referred to in

the above discussion is available in Table II.

V. DISCUSSION AND OUTLOOK

Templated matched filtering is the mainstay of gravita-
tional wave detection pipelines. With unprecedented
improvement in low-frequency sensitivity of advanced detec-
tors, and the availability of theoretical spinning waveform
models, it has become imperative to conduct these searches
over increasingly larger volumes in higher-dimensional
parameter spaces. For such cases, the stochastic algorithm
is used for template placement as it is easily scalable to higher
dimensions.However, it is computationally expensive and, by
design, not the most space efficient.
This paper introduces a new template placement algo-

rithm in 3D with an attempt to combine the space efficiency
of A�

3 lattice with the robustness of a stochastic placement
algorithm. Such a template bank can be used in gravita-
tional wave searches from binary neutron stars and neutron
star–black hole compact binary systems, where the wave-
form is described by two mass parameters and a mass-
weighted spin magnitude parameter providing coverage for
aligned-spin systems.
The truncated octahedron (a Dirichlet-Voronoi polytope

of the A�
3 lattice) inscribed within the minimal-match

ellipsoid is used as a unit cell for the geometric placement.
Such lattices are known to provide optimal coverage for
conformally flat 3D spaces.While the signal manifold is not
globally flat, one can assume local flat patches and use such
cells to cover them optimally. The interface to the stochastic
placement algorithm is made by spraying random points
over the parameter space, which are removed if foundwithin
the minimal-match ellipsoid of any template. We discuss
how this merger of methods is able to handle the issues
arising out of varying curvature and irregular boundaries.
The nuances of its optimal implementation are discussed in
detail. In Table II, we show by a direct comparison with a
stochastic algorithm that the new method generates signifi-
cantly fewer templates and is computationally more effi-
cient.We nowmake a couple of comments related to the new
template placement algorithm presented in this paper.
One of the key issues with the geometric template

placement algorithms (e.g., geometric hexagonal placement

FIG. 6. Fitting factors computed for various sets of aligned-spin
signal families against geometric-random (GR) and vanilla sto-
chastic template (ST) banks (see set II of Table I for parameters).
The performance of the geometric-random bank when both
template and injected signals are generated from the
TaylorF2RedSpin (TF2RS) approximant (black solid line) and
when both are generated from the TaylorF2 (TF2) approximant
(black dashed line) are shown. The performance of the vanilla
stochastic bank when both the template and injected signals are
generated from the TaylorF2RedSpin approximant (black dashed-
dot line) and when both are generated from the TaylorF2
approximant (black dot line) are also shown. In this case, the
vanilla stochastic bank has 25%more templates than the geometric
random bank and can be placed about ≳11 times faster in time.
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[11]) is related to the amount of fine-tuning needed in the
method to account for curvature effects. For example, in 2D
the hexagonal cells used to place templates need to be
whittled or pared to a slightly smaller size so that no holes are
left due to the changes in relative orientation of neighboring
hexagonal cells. This reduces the overall efficiency of
placement, leading to an increase in template bank sizes.
More importantly, one loses the ability tomake generic codes
that are usable for different waveformmodels. In this regard,
the geometric-random algorithm proposed here is robust
against such fine-tuning by design. The template placement
proceeds by first spraying a large number of random points
over the parameter space which are later removed if found
within the minimal-match ellipsoid of the templates in the
bank. Suppose a small portion of the deemed space is left
uncovered due to curvature effects; this would lead to some
residual points that are not removed fromU. As evident from
Algorithm 1, these points are revisited in subsequent iter-
ations where a random point (out of the residuals) is added to
the template bank, leading to complete coverage.
We would like to point out that the template banks

shown in this paper make use of the TaylorF2RedSpin
waveform family, which model only the inspiral part of
the evolution of the compact objects. They are not ideal
for BBH searches directly, where a significant part of
the SNR is expected to be contributed from the merger
and ringdown phases. However the method developed in
this paper is quite general and can be used for placing
templates for inspiral-merger-ringdown (IMR) waveform
families as well. If analytical metrics for IMR approx-
imants (IMRPhenomD [48,49], SEOBNRv2 [50,51],
etc.) were available, the proposed method would be
an elegant and efficient solution for covering the entire
combined BNSþ NSBHþ BBH space. This will
thereby mesh well with modern LIGO searches, which
are carried out over a large range of parameters with
combined BNSþ NSBHþ BBH banks using a mix of
inspiral-only and IMR templates.
The assumption that the metric on the signal manifold is

slowly varying and is locally flat is crucial for space
efficiency. One can imagine a hypothetical case where this
assumption does not hold true (e.g., where metric coef-
ficients are random at every point), in which case the
geometric-random algorithm will effectively fall back to
the top-down version of the vanilla stochastic template

placement by design. In other words, the number of
templates in the bank from the new method will not exceed
the stochastic template bank in the limiting case. We have
also shown in a direct comparison that the top-down
stochastic bank implementation is computationally more
efficient and should be used where the metric is available.
Incorporating an intelligent way of spraying the random
proposals (instead of drawing them from a uniform dis-
tribution) over the parameter space may lead to further
optimization of this method.
On the other hand, if the metric was perfectly flat (and

given in coordinates where it was constant), the hybrid
construction would fall back on a perfect A�

3 lattice. Finally,
the geometric-random placement method presented here for
3D is generically scalable to signal manifolds in higher
dimensions by using the appropriate A�

nðn > 3Þ lattices.
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APPENDIX A: THE TaylorF2RedSpin SIGNAL
MODEL FOR GRAVITATIONAL WAVES

FROM INSPIRALING COMPACT
BINARY COALESCENCE

The TaylorF2 reduced-spin waveform model in fre-
quency domain is given by [19]

~hðfÞ ¼ Af−7=6 exp

�
−i
�
ΨðfÞ − π

4

	�
; ðA1Þ

where the amplitude A depends on the component masses,
distance to the source, sky position, and orientation of the
binary’s plane. ΨðfÞ is the instantaneous phase, which can
be explicitly written as

ΨðfÞ ¼ 2πft0 þ ϕ0 þ
3
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where t0 is the time of arrival of the signal at the detector
marking the epoch at which the instantaneous frequency
takes a fiducial value, ϕ0 is the corresponding phase, vf ≡
ðπmfÞ1=3 is the instantaneous velocity,m ¼ m1 þm2 is the
total mass, η ¼ m1m2=ðm1 þm2Þ2 is the symmetric mass
ratio of the binary, and γE is the Euler gamma constant.
The spin effects are encoded through β, σ0, and γ0 which

appear at 1.5 PN, 2 PN, and 2.5 PN phase terms,
respectively, and are given by

β ¼ 113χr
12

σ0 ¼
�
−
12769ð4η − 81Þ
16ð76η − 113Þ2

�
χ2r

γ0 ¼
�
565ð1713η2 þ 135856η − 146597Þ

2268ð76η − 13Þ
�
χr; ðA3Þ

where the reduced-spin parameter χr is defined as the
weighted sumof individual spins χ1 and χ2 of the component
masses as

χr¼
1

2

�
1−

76

113η

�
ðχ1þχ2Þþ

1

2

m1−m2

m1þm2

ðχ1−χ2Þ: ðA4Þ

The individual spins of the components χ1;2 are the
projections of their spin vectors S1;2 along the Newtonian
orbital angular momentum vector LN and defined as

χ1;2 ¼
S1;2 · L̂N

2m2
1;2

: ðA5Þ

APPENDIX B: SPACE-FILLING TRUNCATED
OCTAHEDRON

A polyhedron is a three-dimensional solid that has a
finite number of polygon faces. One can fill a 3D space
completely without any overlap or gap through the tessel-
lations of space-filling polyhedra. Examples of such space-
filling polyhedron include cubes, hexagonal prisms, etc.
Solution to such space-filling problems find many practical
applications like optimal placement of a network of
communication towers [52]. The template placement prob-
lem addressed in this paper can also be mapped to an
optimal space-filling problem in curved space. The geo-
metric properties of optimal space-filling polyhedra can be
understood from the volumetric quotient ðQvÞ defined as

Qv ¼
V

4
3
πR3

; ðB1Þ

where V is the volume of polyhedron, R is maximum
distance from its center to any vertex, and S is the surface
area of the polyhedron. Note that ðQvÞ is the inverse of the
thickness, a common measure for the efficiency of a given

covering. The polyhedra with the highest Qv is expected to
provide the optimum coverage.
The TO is a 14-faced Archimedean solid, with eight

hexagonal faces, six square faces, and 24 vertices. It is
generated by joining two regular pyramids upside down
and cutting a pyramid from all six vertices in such a way
that the length of all the sides generated are equal. Thus, a
truncated octahedron of side a can be created by removing
six pyramids of side a from an octahedron of side 3a.
Figure 7 shows the TO obtained from two pyramids. The
geometric properties of a TO and pyramid are given in
Table III.

FIG. 7. Truncated octahedron created by truncating six pyra-
mids from the six vertices of two square-base pyramids.

TABLE III. Geometrical properties of a truncated octahedron
and pyramid where the truncated octahedron is constructed using
two truncated pyramids.

Name Value

Side length of pyramid ðPQÞ 3a
Side length of TO ðBNÞ a
Height of pyramid ðOPÞ 3ffiffi

2
p a

Height of TO along square face ðOSÞ ffiffi
3
2

q
a

Height of TO along hexagonal face ðOHÞ ffiffiffi
2

p
a

Height of TO along vertices ðONÞ ffiffi
5
2

q
a

Volume of TO (V) 8
ffiffiffi
2

p
a3

Surface area of TO (S) ð6þ 12
ffiffiffi
3

p Þa2
Volumetric quotient of TO ðQvÞ ≈0.683292042
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Suppose a three-dimensional volume is covered by the
tessellations of TO cells. Each face of such a cell can be
shared by another neighboring TO cell. There are two kind of
neighboring cells: ones that share the square faces, which we
shall call S neighbors, and the others that share the hexagonal
faces, which we shall refer to as H neighbors. Each TO has a
maximum of six S neighbors and eight H neighbors. The
distance between S neighbors is twice the height of the TO
along the square face, and that for H neighbors is twice of
height of the TO along the hexagonal face. When a TO is
inscribed in a sphere of radius R such that the z axis goes
through the center of one of the square faces, then the sides of

the squares and hexagons a is given by a ¼
ffiffi
2
5

q
R, the

distance from the center to each of the S neighbors is equal

to
ffiffiffiffi
12
5

q
R, and the distance to the H neighbors is 4ffiffi

5
p R. The

coordinates of all the 14 neighbors are listed in Table IV.
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