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Deviation and precession effects of a bunch of spinning particles in the field of a weak gravitational
plane wave are studied according to the Mathisson-Papapetrou-Dixon (MPD) model. Before the passage of
the wave the particles are at rest with an associated spin vector aligned along a given direction with constant
magnitude. The interaction with the gravitational wave causes the particles to keep moving on the 2-plane
orthogonal to the direction of propagation of the wave, with the transverse spin vector undergoing
oscillations around the initial orientation. The transport equations for both the deviation vector and spin
vector between two neighboring world lines of such a congruence are then solved by a suitable extension of
the MPD model off the spinning particle’s world line. In order to obtain measurable physical quantities a
“laboratory” is set up by constructing a Fermi coordinate system attached to a reference world line. The
exact transformation between TT coordinates and Fermi coordinates is derived too.
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I. INTRODUCTION

In general relativity the relative acceleration between two
neighboring world lines of test particles moving along
geodesic orbits in a given background spacetime is
described by the geodesic deviation equation. The rate
of variation of the deviation vector connecting the two
world lines is proportional to the Riemann tensor. If the
particles are endowed with structure (spin, quadrupole
moment, etc.), their world lines are no longer geodesics,
but rather accelerated due to the coupling between the spin
and higher multipole moments with the curvature of the
background. This coupling will enter the associated
generalized world line deviation equation as well.
In this paper we consider a bunch of spinning test

particles, which are described in terms of the 4-momentum
vector and spin tensor according to the Mathisson-
Papapetrou-Dixon (MPD) model [1–3]. The collection of
particles forms a congruence of curves, each labeled by the
position in space of any base point. Imagine that one would
like to compare the momentum and spin of two different
world lines of the congruence. This operation necessitates
some transport law of quantities defined on a world line
onto the other. Differently, if one is only interested in
understanding the deviation of one world line with respect
to the other, namely the relative position of the two, such
transport laws are not needed and (only) the generalization
of the geodesic deviation equation to accelerated families of

curves is enough. While the latter problem is well studied
in the literature (especially in the case of a family of
geodesics) the former is not so popular, even in familiar
spacetimes of physical interest.
The aim of the present paper is to study such a problem

in the case in which the background spacetime is that of a
weak gravitational plane wave (GPW) and the congruence
of accelerated world lines is that of spinning test particles.
The motion of particles with spin in a GPW spacetime has
been investigated in Refs. [4,5], and was later generalized
to the case of small extended bodies also endowed with
quadrupolar structure in Ref. [6]. Studying relative motion
between two such particles requires an extension of the
MPD model off the particle world line, because both the
4-momentum and spin vector are defined only along it.
Such an extension leading to a generalized world line
deviation equation has been developed in Refs. [7,8].
However, the transport equation for the spin vector was
not discussed at all there, which is instead the main focus of
the present analysis.
Here we consider a bunch of spinning particles which are

at rest before the passage of the wave with an associated
spin vector aligned along a given direction with constant
magnitude. We first investigate the response of such a
system to the interaction with the wave, determining the
motion of the single particle of the congruence as well as
the evolution of the spin vector components. We then solve
the deviation equation between two neighboring world
lines and the transport equation of the spin vector giving the
precession effect between two nearby spacetime points.
Finally, in order to get a physically meaningful interpre-
tation of the measurement of relative motion we construct a
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Fermi coordinate system about a reference spinning par-
ticle’s world line, which acts as a “laboratory reference
system.” We take advantage of the high symmetrical
character of the background spacetime as well as of the
weak-field approximation to derive the exact transforma-
tion between TT coordinates and Fermi coordinates, gen-
eralizing previous works for geodesic world lines [9–11].
Indeed, this can be achieved in closed form only for a few
spacetimes around very special world lines [12,13], while
most applications use a series expansion approximation
from the very beginning [14–19].
The physical problem underlying this study concerns

eventually new effects related to the interaction between
gravitational waves and spinning test particles which have
been poorly (or even not at all) investigated up to now, and
may lead to measurable effects in the near future. In fact,
deviation and precession effects are the goal of a novel type
of gravitational wave detectors, based on magnetized
samples placed at some given distance within a common
superconducting shield [20,21]. We will show that meas-
uring the different orientations of the spin vectors of two
such neighboring samples due to the passage of the wave
may allow us to estimate the product between the amplitude
and the frequency of the gravitational wave.
The paper is organized as follows. In Sec. II we introduce

the MPD model for spinning particles and the generalized
deviation equation for accelerated world lines in a curved
background. These concepts are then applied in Sec. III to
the case of a weak gravitational wave spacetime, associated
with a monochromatic gravitational wave traveling along a
fixed spatial direction. We discuss the motion as well as the
spin deviation effects in such a case, completing the section
with some indication of possible measurements of the
deviation effects. In Appendix A we briefly recall the
geodesics of this metric and in Appendix B we give the new
result concerning the exact map between spacetime and
Fermi coordinates adapted to the world line of a spinning
body. Notation and conventions follow Ref. [23]. The
metric signature is chosen as −þþþ; greek indices run
from 0 to 3, whereas latin ones run from 1 to 3.

II. SPINNING PARTICLES AND WORLD
LINE DEVIATION

Let us consider a family of spinning test particles in a
given gravitational field (to be specified later). The particles
form a congruence of accelerated world lines, whose
evolution follows the MPD equations of motion

Dpα

dτU
¼ −

1

2
Rα

βγδUβSγδ ≡ Fα
ðspinÞ;

DSαβ

dτU
¼ p½αUβ�;

Sαβpβ ¼ 0: ð1Þ

As is standard,U denotes the unit timelike vector tangent to
the particle’s world line CU, p (a timelike vector, not
unitary) is the generalized momentum and Sμν is the spin
tensor. Both p and S have support on the world line CU
parametrized by the proper time τU, i.e., with parametric
equations xα ¼ xαðτUÞ so that Uα ¼ dxα=dτU.

1

For convenience, let us introduce the unit timelike vector
ū associated with p, i.e.,

p ¼ mū; p · p ¼ −m2; ð2Þ

which is generally distinct from U (but having support only
along it) and related to it by a boost, i.e.,

ū ¼ γðū; UÞ½U þ νðū; UÞ�: ð3Þ

Here m is an “effective mass” of the spinning particle,
which is in general different from the “bare mass” of a
nonspinning particle and not a conserved quantity along the
path, due to the evolution of the spin. The relative velocity
νðū; UÞ, following Ref. [24], is given by

νðū; UÞβ ¼ PðUÞβμSαμFαðspinÞ
m2 þ SαμFαðspinÞUμ

; ð4Þ

where PðUÞ ¼ gþU ⊗ U projects orthogonally to U.
It is also useful to introduce the spin vector

Sα ¼ 1

2
ηðūÞαβγSβγ; ð5Þ

where ηðūÞαβγ ¼ ūσησαβγ is obtained from the 1-volume
4-form ησαβγ . The vector S is orthogonal to ū by definition
and its magnitude

s2 ¼ SαSα ¼
1

2
SαβSαβ ð6Þ

is a constant of motion, as can be easily checked by
differentiating both sides along U and using Eq. (1).
Further constants of motion are associated with Killing
vectors of the background spacetime. More precisely, if ξ is
a Killing vector, then

Jξ ¼ ξαpα þ 1

2
Sαβ∇βξα ð7Þ

is a constant of the motion.

1If the particles have additional structure besides spin, e.g.,
quadrupolar or octupolar structure, Eq. (1) is modified by
corresponding additional terms. It is therefore quite natural to
study these equations only at the linear order in spin. When
working within this approximation we will explicitly specify it.
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A. World line deviation equation

We are interested here in studying deviation effects
among the particles of the congruence. Let xα ¼
xαðτU; σÞ denote the family of associated world lines, with
each curve labeled by σ and parametrized by a proper time
parameter τU. As a consequence, the unit timelike tangent
vector to the lines of the congruence is Uα

ðσÞ ¼ ∂xα=∂τU,
whereas the deviation vector is Yα

ðτUÞ ¼ ∂xα=∂σ. The

deviation vector Y is Lie-transported along U

£UY ¼ ∇UY −∇YU ¼ 0: ð8Þ

In addition, Y is not necessarily orthogonal to U and not
unitary; therefore, in the local rest space of U (hereafter
LRSU) the “effective” deviation vector or the position
vector of nearby particles is its spatial projection

Y⊥ ≡ PðUÞY: ð9Þ

From Eq. (8) it follows that

∇UY ¼ ∇YU; ð10Þ

so that (covariantly) differentiating this relation again
along U (as well as adding and subtracting terms properly),
leads to

∇U∇UY ¼ ∇U∇YU −∇Y∇UU þ∇Y∇UU

¼ ½∇U;∇Y �U þ∇YaðUÞ
¼ RðU; YÞU þ∇YaðUÞ
¼ −KðUÞ∟Y; ð11Þ

where we have used the Lie transport condition (8) in the
Riemann tensor definition and we have introduced a “strain
tensor” [25]

KαβðUÞ ¼ −RαγβδUγUδ −∇βaðUÞα; ð12Þ

built up with the tidal-electric Riemann tensor field, i.e.,

EðUÞαβ ¼ RαγβδUγUδ; ð13Þ

and the covariant derivative of the acceleration spatial
vector field aðUÞ ¼ ∇UU of the congruence U. In the
special case whenU is geodesic we recognize the evolution
equation for Y as the geodesic deviation equation (11),
whose 3þ 1 version was discussed in Refs. [25,26]. The
above considerations are general enough, in the sense that
they hold for any family of world lines U. Moreover, the
geodesic deviation equation and its generalization to any
accelerated family of world lines, Eq. (11), allow us to
define the deviation vector Y [and hence its spatial
projection PðUÞY] only along U. In different words, given

a reference world line within the congruence U, the vector
Y is defined as an applied vector to any point along it. Note
that Lie-transporting alongU an initially spatial vector with
respect to U does not lead in general to a transported vector
which is still orthogonal to U.
If one is interested in propagating the main tensors

(momentum and spin) off the reference world line of the
congruence U the deviation vector plays an essential role.
Indeed, one should consider the set of all spatial geodesics
CŶ with unit tangent vector Ŷ ¼ Y⊥=jjY⊥jj emanating from
a generic point xαðτðrefÞÞ of the reference world line where

Ŷ ¼ ŶðτðrefÞÞ (which is a function of the proper time along
the reference curve and defined only along it) and solve the
parallel transport equations along these curves. Their
parametric equations xα ¼ yαðσ; τðrefÞÞ in terms of the affine
arc length parameter σ are the solutions of the following
equations:

d2yα

dσ2
þ ΓðyμðσÞÞαβγ

dyβ

dσ
dyβ

dσ
¼ 0; ð14Þ

with initial conditions

yαjσ¼0 ¼ xαðτðrefÞÞ;
dyβ

dσ

����
σ¼0

¼ ŶβðτðrefÞÞ: ð15Þ

Once the curve (the family of curves) CŶ with tangent
vector ŶðτðrefÞ; σÞ≡ dyβ=dσ is explicitly obtained, the
solution of the parallel transport equations along it,

∇ŶT
αβ… ¼ 0; ð16Þ

leads to the corresponding extended quantities off the
reference world line, i.e., Tαβ…ðσ; τðrefÞÞ. Subsequently,
for fixed values of σ, one can evolve these tensors along
U, i.e., along any other curve of the congruence U, and
compare with the corresponding quantities already
existing there.
The Riemann tensor identities for the commuting vector

fields U and Y, i.e.,

½∇U;∇Y �Cμ ¼ Rμ
ναβCνUαYβ; ð17Þ

imply

0 ¼ ∇Y∇UTαβ… þ Rα
μγδTμβ…UγYδ

þ Rβ
μγδTαμ…UγYδ þ � � � ; ð18Þ

which give in turn compatibility conditions for the corre-
sponding extended fields.
In this paper, we will assume that the particles of the

congruence U are spinning test particles, while the general
formulas derived above may involve any kind of
acceleration.
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III. DEVIATION EFFECTS IN THE FIELD
OF A WEAK GRAVITATIONAL WAVE

Let us consider as a background spacetime that of a
single gravitational wave traveling along the x axis, with
line element

ds2 ¼ −dt2 þ dx2 þ ð1 − hþÞdy2 þ ð1þ hþÞdz2
− 2h×dydz; ð19Þ

with hþ;× depending on t − x only. In terms of the null
coordinates

u ¼ t − x; v ¼ tþ x; ð20Þ

such that

∂u ¼
1

2
ð∂t − ∂xÞ; ∂v ¼

1

2
ð∂t þ ∂xÞ; ð21Þ

the metric becomes

ds2 ¼ −dudvþ ð1 − hþÞdy2 þ ð1þ hþÞdz2 − 2h×dydz

¼ −dudvþ gABdxAdxB; ð22Þ

where xA, A ¼ 2, 3 denote the coordinates on the wave
front. The analysis of any kind of motion in this spacetime
is simplified because of the existence of the three Killing
vectors ∂x, ∂y, ∂v.
Hereafter we will consider a monochromatic wave with

hþðuÞ ¼ Aþ sinωu; h×ðuÞ ¼ A× cosωu; ð23Þ

and limit our analysis to the linear order in hþ, h×. Linear
polarization corresponds to either Aþ ¼ 0 or A× ¼ 0,
whereas circular polarization is assured by the condition
Aþ ¼ �A×. In general, one uses the “polarization
angle” ψ ¼ tan−1ðA×=AþÞ.
Let us fix a family of fiducial observers at rest with

respect to the ðt; x; y; zÞ coordinate grid, with four-velocity

n ¼ ∂t: ð24Þ

An adapted triad to n is given by

ex̂ ¼ ∂x

eŷ ¼
�
1þ 1

2
hþ

�
∂y þ

1

2
h×∂z

eẑ ¼
1

2
h×∂y þ

�
1 −

1

2
hþ

�
∂z: ð25Þ

This triad deals “symmetrically” with eŷ and eẑ and has a
special geometrical meaning, since each leg of the triad
undergoes a Fermi-Walker transport along n, namely

PðnÞ∇neâ ¼ 0; ð26Þ

with PðnÞ ¼ gþ n ⊗ n projecting orthogonally to n.
Moreover, the dependence on the coordinates of these
frame vectors is only through t − x, implying a trivial Lie
transport along any direction on the wave front.
It is customary to define the two polarization tensors

eþ ¼ ∂y ⊗ ∂y − ∂z ⊗ ∂z;

e× ¼ ∂y ⊗ ∂z þ ∂z ⊗ ∂y; ð27Þ

with the associated notation

eþ∟X ¼ Xþ; e×∟X ¼ X×; ð28Þ

where the symbol ∟ denotes right contraction between a
tensor and a vector. In components, for example,
½eþ∟X�i ¼ ðXþÞi ¼ ðeþÞijXj, that is

ðXþÞi ¼ δ2i X2 − δ3i X3; ð29Þ

or

Xþ ¼ X2∂y − X3∂z;

X× ¼ X3∂y þ X2∂z: ð30Þ

A. Spinning particle motion

The motion of an extended body in the spacetime
of a weak gravitational wave (19) has been studied in
Refs. [4–6]. In the case of a spinning test particle and
working at linear order in spin large simplifications arise.
For instance, in this case p ¼ mU, with m constant along
U. We recall below the main results corresponding to the
case of a spinning particle initially (before the passage of
the wave) at rest at the origin of the coordinates, with
constant spin components. The solution for the orbit
Uα ¼ dxα=dτU is the following:

tðτUÞ ¼ τU;

xðτUÞ ¼ 0;

yðτUÞ ¼
1

2
A×S02½cosðωτUÞ − 1�

−
1

2
AþS03½sinðωτUÞ − ωτU�;

zðτUÞ ¼ −
1

2
A×S03½cosðωτUÞ − 1�

−
1

2
AþS02½sinðωτUÞ − ωτU�; ð31Þ

where S0i (i ¼ 1, 2, 3) are the values of the coordinate
components of the particle’s spin at τU ¼ 0. In compact
form
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xAðτUÞ ¼
1

2
A×½cosðωτUÞ − 1�ðS0þÞA

−
1

2
Aþ½sinðωτUÞ − ωτU�ðS0×ÞA: ð32Þ

Similarly

U ¼ ∂t −
1

2
ωA×S0þ sinðωτUÞ

−
1

2
ωAþS0×ðcosðωτUÞ − 1Þ; ð33Þ

where we have chosen the location of the particle to be the
origin at τU ¼ 0.
The coordinate components of the spin vector are

given by

StðτUÞ ¼ 0;

SxðτUÞ ¼ S01;

SyðτUÞ ¼ S02 þ
1

2
S02Aþ sinðωτUÞ

þ 1

2
A×S03½cosðωτUÞ − 1�;

SzðτUÞ ¼ S03 −
1

2
S03Aþ sinðωτUÞ

þ 1

2
A×S02½cosðωτUÞ − 1�; ð34Þ

so that

S¼ S0þ1

2
AþS0þ sinðωτUÞþ

1

2
A×S0×ðcosðωτUÞ−1Þ: ð35Þ

B. Deviation effects

From these results, a straightforward computation gives
the acceleration of U (i.e., the spin force per unit mass)

aðUÞ ¼ −
1

2
ω2½ð−S03Aþ sinðωτUÞ þ S02A× cosðωτUÞÞ∂y

−ðS02Aþ sinðωτUÞ þ S03A× cosðωτUÞÞ∂z�

¼ −
1

2
ω2½−Aþ sinðωτUÞS0× þ A× cosðωτUÞS0þ� ð36Þ

as well as the associated derivative

∇YaðUÞ ¼ 1

2
ω3Y0u½ðS03Aþ cosðωτUÞ

þS02A× sinðωτUÞÞ∂y

−ð−S02Aþ cosðωτUÞ þ S03A× sinðωτUÞÞ∂z�

¼ 1

2
ω3Y0u½Aþ cosðωτUÞS0× þ A× sinðωτUÞS0þ�;

ð37Þ

where Y0u ¼ Y0t − Y0x, and the only nonvanishing com-
ponents of the (symmetric and trace-free) electric part of the
Riemann tensor are

EðUÞxx ¼ −
1

2
ω2Aþ sinðωτUÞ ¼ −

1

2
ω2hþ ¼ −EðUÞyy;

EðUÞxy ¼ −
1

2
ω2A× cosðωτUÞ ¼ −

1

2
ω2h×: ð38Þ

In tensorial form

EðUÞ ¼ −
1

2
ω2

X
p¼þ;×

hpep; ð39Þ

where here and below hp is meant to be evaluated along
the orbit.
Finally, the solution for the deviation vector is given by

Y ¼ Y0−
1

2
ωYu0½S0×AþðcosðωτUÞ− 1ÞþS0þA× sinðωτUÞ�;

ð40Þ

where Y0 ¼ Yα0∂α is the constant solution corresponding
to the geodesic case and initial conditions have been chosen
so that YðτU ¼ 0Þ ¼ Y0. When expressed with respect to
the frame (25) it reads

Y ¼ YðgeoÞ þ Ys; ð41Þ

with (see, e.g., Ref. [23])

YðgeoÞ ¼ Yα0eα̂

−
1

2
½A×Yz0 cosðωτUÞ þ AþYy0 sinðωτUÞ�eŷ

−
1

2
½A×Yy0 cosðωτUÞ − AþYz0 sinðωτUÞ�eẑ; ð42Þ

whereas the spinning part is given by

Ys ¼ −
1

2
ωY0u½AþS03ðcosðωτUÞ − 1Þ þ A×S02 sinðωτUÞ�eŷ

−
1

2
ωY0u½AþS02ðcosðωτUÞ − 1Þ − A×S03 sinðωτUÞ�eẑ:

ð43Þ

Similarly

Ŷ ¼ ŶðgeoÞ þ Ŷs; ð44Þ

where

ŶðgeoÞ ¼
1

W

�
1þ Z

2W2

�
Ya0∂a; ð45Þ
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with W2 ¼ δabYa0Yb0 and

Z ¼ 2Yy0Yz0A× cosðωτUÞ
þ ½ðYy0Þ2 − ðYz0Þ2�Aþ sinðωτUÞ; ð46Þ

and

Ŷs¼−
ω

2W
ðT ·Y0Þ

×

�
∂tþ

ðYx0Þ2
W2

�
∂x−

Yx0

ðYy0Þ2þðYz0Þ2ðY
y0∂yþYz0∂zÞ

��

−
ω

2W
ðK ·Y0Þ Yx0

ðYy0Þ2þðYz0Þ2ðY
z0∂y−Yy0∂zÞ; ð47Þ

with the two vectors T and K given by

T ¼ AþS0×½cosðωτUÞ − 1� þ A×S0þ sinðωτUÞ;
K ¼ AþS0þ½cosðωτUÞ − 1� − A×S0× sinðωτUÞ: ð48Þ

Let us consider now the spatial geodesics emanating
from a generic point on the world lineU. These are given in
Appendix A (for μ2 ¼ −1 and λ ¼ σ) and the values of the
constants there correspond to

α ¼ Y0y

W
; β ¼ Y0z

W
; E ¼ −

Y0x

W
: ð49Þ

The transport equations (16) can then be solved and
the solution for the transported spin vector is given by

SαðτU; σÞ ¼ SαðτUÞ þ ~SαðτU; σÞ, with SαðτUÞ given by
Eq. (34) and

~S1ðτU; σÞ ¼ ðβS02 þ αS03ÞC þ ðαS02 − βS03ÞS;
~S2ðτU; σÞ ¼ ð−βS01 þ ES03ÞC þ ð−αS01 þ ES02ÞS;
~S3ðτU; σÞ ¼ ð−αS01 þ ES02ÞC þ ðβS01 − ES03ÞS; ð50Þ

with ~S0ðτU; σÞ ¼ ~S1ðτU; σÞ, where

C ¼ A×

2E
½cosðωðσEþ τUÞÞ − cosðωτUÞ�;

S ¼ Aþ
2E

½sinðωðσEþ τUÞÞ − sinðωτUÞ�; ð51Þ

with α, β and E given by Eq. (49). Their behavior as
functions of σ is shown in Fig. 1(a) for a fixed value of the
proper time parameter τU. Figure 2(b) shows, instead, their
behavior as functions of τU for a given displacement σ.

C. Measuring the spin deviation

A physical measurement in a gravitational field by a
given observer necessitates a continuous locally inertial
system along the world line of the observer to get a correct
interpretation. This can be realized by setting up a Fermi
coordinate system in the neighborhood of the observer’s
world line. The transformation between the background
coordinates ðt; x; y; zÞ and Fermi coordinates ðT; X; Y; ZÞ is
explicitly derived in Appendix B. Here we simply use
the results to rewrite the deviation components of the

(a) (b)

FIG. 1. The behavior of the spatial components ~SiðτU; σÞ of the transported spin vector as functions of σ is shown in panel (a) for a
fixed value τU ¼ π=2 of the proper time parameter along the world line of the spinning particle. Panel (b) shows instead their behavior as
functions of τU for a given displacement σ ¼ 1. The choice of parameters is as follows: S01 ¼ s0 sin θs cosϕs, S02 ¼ s0 sin θs sinϕs,
S03 ¼ s0 cos θs, with s0 ¼ 1, θs ¼ π=4 ¼ ϕs, Ya0 ¼ 0.1, ω ¼ 1, and A× ¼ Aþ tanψ , with Aþ ¼ 1, ψ ¼ π=6, as an example.
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transported spin vector in a form which is suitable for a
measurement process. We find ~ST ¼ ~SX and

~SX ¼ −
1

2X
fðS02Y − S03ZÞAþ½sinðωðT − XÞÞ − sinðωTÞ�

þ ðS02Z þ S03YÞA×½cosðωðT − XÞÞ − cosðωTÞ�g;
~SY ¼ 1

2X
fðS01Y þ S02XÞAþ½sinðωðT − XÞÞ − sinðωTÞ�

þ ðS01Z þ S03XÞA×½cosðωðT − XÞÞ − cosðωTÞ�g;
~SZ ¼ −

1

2X
fðS01Z þ S03XÞAþ½sinðωðT − XÞÞ

− sinðωTÞ� − ðS01Y þ S02XÞA×½cosðωðT − XÞÞ
− cosðωTÞ�g; ð52Þ

which imply

~SXXþ ~SYYþ ~SZZ¼ S01
2X

f2YZA×½cosðωðT−XÞÞ−cosðωTÞ�
þðY2−Z2ÞAþ½sinðωðT−XÞÞ
−sinðωTÞ�g: ð53Þ

Let us prepare our device in such a way that the test body
is spinning around the Z axis before the passage of the wave
with constant spin, i.e., S01 ¼ 0 ¼ S02 and S03 ≡ s0. The
interaction with the gravitational wave causes the spin
vector to acquire nonvanishing spatial components all
varying with time and displacements along the three spatial
directions as from Eq. (52), which simplifies as

~SX ¼ s0
2X

fZAþ½sinðωðT − XÞÞ − sinðωTÞ�
− YA×½cosðωðT − XÞÞ − cosðωTÞ�g;

~SY ¼ s0
2
A×½cosðωðT − XÞÞ − cosðωTÞ�;

~SZ ¼ −
s0
2
Aþ½sinðωðT − XÞÞ − sinðωTÞ�: ð54Þ

It is easy to check that the following (exact) properties are
satisfied by the spin components:

~SXX þ ~SYY þ ~SZZ ¼ 0;

ð ~SYÞ2
A2
×

þ ð ~SZÞ2
A2þ

¼ s20sin
2

�
ωX
2

�
; ð55Þ

in which the dependence on T has disappeared. A nice
geometrical interpretation of Eq. (55) can be given either in
the spin space, i.e., at fixed X, Y, Z or in the configuration
space, i.e., at fixed ~SX; ~SY; ~SZ. In fact, in the spin space, the
transverse components of the spin “belong” to an ellipse
which intersects a plane. Using the component ~SX as a
parameter, the explicit solution for ~SY; ~SZ corresponds
actually to a circle, recalling the mechanical properties
of the ellipsoid of inertia of a rigid body. Vice versa, in the
configuration space X, Y, Z, with the spin components
taken as fixed, the above equation implies a fixed value for
the X and straight line in the Y-Z plane, leading to an
unexpected simple geometrical characterization of an
otherwise complicated situation.
Sufficiently close to the reference spinning particle’s

world line it is enough to take the expansion of the above

(a) (b)

FIG. 2. The parametric curve ~S3ðτU; σÞ versus ~S2ðτU; σÞ is shown for different values of (a) τU and (b) σ for the same parameter values
as in Fig. 1.
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expressions up to the first order in the spatial Fermi
coordinates, which gives

~SX ¼ −
1

2
ωs0½YA× sinðωTÞ þ ZAþ cosðωTÞ� þOð2Þ;

~SY ¼ 1

2
ωs0XA× sinðωTÞ þOð2Þ;

~SZ ¼ 1

2
ωs0XAþ cosðωTÞ þOð2Þ: ð56Þ

If we consider a second spinning particle located at
coordinates ðX; 0; 0Þ with the same spin vector as the
particle at the origin, the second and third equations in
Eq. (56) describe a torque-induced relative precession, as
the directions of the two spins define a generalized cone in
space. Let us focus on the component of the spin vector on
the wave front, with magnitude

~S⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~SYÞ2 þ ð ~SZÞ2

q
: ð57Þ

It is worth noticing that for a circularly polarized GPW ~S⊥
is the amplitude of the relative precession cone induced by
a GPWon the two spinning particles. It turns out that to the
first order in the distance [omitting the Oð2Þ notation too]2

and taking Aþ ¼ �A× ¼ h

~S⊥ðXÞ ¼ 1

2
s0hωX: ð58Þ

In Earth-based laboratories separated by a distance X ¼ L
we have

~S⊥ðLÞ ¼ 1

2
s0hωL; ð59Þ

where Oð2Þ expansion requires ωL=c≲ 1 (here the speed
of light c is made explicit). Therefore, measuring ~S⊥ðLÞ at
different distances L leads to direct information about the
gravitational wave concerning the product of the amplitude
and frequency.
The present result is interesting especially because it is

under current consideration as a novel experimental scheme
enabling the investigation of spin couplings [20], based
on synchronous measurements of optical magnetometer
signals from several devices operating in magnetically
shielded environments placed at distant locations [21,22].
The primary interest is to probe couplings between spins
and “exotic” fields beyond the Standard Model, e.g., axion-
like fields, by analyzing the correlation between signals
from multiple, geographically separated magnetometers.
However, we argue that the same scheme can be equally

applied to the kind of interaction under investigation here,
with the gravitational wave signal inducing a torque on
atomic spins. In this way, the apparatus should be able to
detect the magnetic-like part of a gravitational wave by
comparing two distant samples of elementary spins, differ-
ently (and complementary) to the LIGO/VIRGO interfer-
ometers which succeeded in measuring the electric-like part
of a gravitational wave using free-falling masses. Our
present study provides the underlying theoretical frame-
work for the prediction of observed signals by this new
kind of detectors.
For instance, for the gravitational wave event GW150914

recently observed by LIGO [27], with maximum amplitude
h ∼ 10−21 at a frequency ω ¼ 150 Hz, we find ~S⊥=s0 ∼
2.5 × 10−21, if the detector consists of two magnetometers
separated by a distance of L ¼ 104 km [20].

IV. CONCLUDING REMARKS

The observation of the gravitational wave signals
GW150914 [27] and GW151226 [28] by LIGO, besides
opening new horizons in gravitational wave astronomy and
astrophysics, provides important tests of the general theory
of relativity in the strong-field regime. However, up to now,
the two LIGO interferometers have observed only the
electric-like part of the waves, measuring the induced
displacements of their free-falling mirrors. The observation
of the magnetic-like part of a gravitational wave, i.e., the
measurement of the induced effects on mass current or
spinning particles is still missing. We have shown that by
using spinning test particles one can identify observable
effects associated with the variation of the polarization.
We have considered a bunch of spinning test particles

initially at rest before the passage of the wave (plane,
monochromatic, and transverse in the present analysis, for
simplicity), with an associated spin vector aligned along a
given direction with constant magnitude. The interaction
with the gravitational wave causes the particles to keep
moving on the 2-plane orthogonal to the direction of
propagation of the wave. The transverse components of
the spin vector undergo oscillations around their initial
orientation, whereas the component parallel to the direction
of the wave propagation does not change. By solving the
transport equations for both the deviation vector and spin
vector between two neighboring world lines of such a
congruence we have shown that the relative precession of
two spins (which are assumed to be along the transverse
direction of a Fermi frame, which is our “laboratory”
system and separated by a distance L along the direction of
propagation of the GPW) is given by 1

2
hωL. Even if the

corresponding amplitudes of the GPW detected by LIGO
seem not very promising, it is true that the technology to
measure spin precessions on a network of optical magne-
tometers already exists [20] and will be refined in the
next years.

2Clearly, extending the present calculation to higher orders in
the distance is a trivial task, and does not require special
consideration.
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As a final remark, we observe that ~S⊥ðLÞ could also be
measured by comparing the magnetizations due to electron
spins in two ferromagnetic samples, separated by a distance
L, and magnetized by parallel external magnetic fields.
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APPENDIX A: GEODESICS

The geodesic of the metric (19) is given by [29,30]

UðgeoÞ ¼
1

2E
½ðμ2 þ f þ E2Þ∂t þ ðμ2 þ f − E2Þ∂x� þ ½αð1þ hþÞ þ βh×�∂y þ ½βð1 − hþÞ þ αh×�∂z; ðA1Þ

where α, β and E are conserved Killing quantities, μ2 ¼ 1; 0;−1 correspond to timelike, null and spacelike geodesics
respectively, and

f ¼ α2ð1þ hþÞ þ β2ð1 − hþÞ þ 2αβh×: ðA2Þ

The corresponding parametric equations of the geodesic orbits are then easily obtained:

tðλÞ ¼ t0 þ Eλþ xðλÞ − x0;

xðλÞ ¼ x0 þ ðμ2 þ α2 þ β2 − E2Þ λ

2E

−
1

ωE2

�
1

2
ðα2 − β2ÞAþ½cosωðEλþ t0 − x0Þ − cosωðt0 − x0Þ� − αβA×½sinωðEλþ t0 − x0Þ − sinωðt0 − x0Þ�

�
;

yðλÞ ¼ y0 þ αλ −
1

ωE
fαAþ½cosωðEλþ t0 − x0Þ − cosωðt0 − x0Þ� − βA×½sinωðEλþ t0 − x0Þ − sinωðt0 − x0Þ�g;

zðλÞ ¼ z0 þ βλþ 1

ωE
fβAþ½cosωðEλþ t0 − x0Þ − cosωðt0 − x0Þ� þ αA×½sinωðEλþ t0 − x0Þ − sinωðt0 − x0Þ�g; ðA3Þ

where λ is an affine parameter and xα0 ¼ xαðλ ¼ 0Þ.

APPENDIX B: FERMI COORDINATES

Let us construct a Fermi coordinate system
ðT; X; Y; ZÞ ¼ ðT; X1; X2; X3Þ in a neighborhood of the
(accelerated) world lineU of the spinning particle. They are
defined by

T ¼ τU; Xi ¼ σðξ · FiÞjQ; ðB1Þ

where ξ ¼ dxμðσÞ
dσ ∂μ is the unit vector tangent to the unique

spacelike geodesic segment of proper length σ connecting a
generic point Q on the particle’s world line with a generic

spacetime point P near Q and satisfying the condition
ðξ ·UÞjQ ¼ 0, and fFig is a Fermi-Walker spatial triad
given by

F1 ¼ ex̂; F2 ¼ νŷ∂t þ eŷ; F3 ¼ νẑ∂t þ eẑ: ðB2Þ

The velocity components can be identified directly from
Eq. (33), by rewriting U ¼ ∂t þ νŷeŷ þ νẑeẑ.
By using the solution (A3) for the spatial geodesics, the

spatial Fermi coordinates around the point Q turn out to be
given by

X ¼ σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2ð0Þ − β2ð0Þ

q
�
1 − αð0Þαð1Þ − βð0Þβð1Þ −

1

2
ðα2ð0Þ − β2ð0ÞÞAþ sinðωτUÞ − αð0Þβð0ÞA× cosðωτUÞ

�
;

Y ¼ σ

�
αð0Þ þ αð1Þ þ

1

2
αð0ÞAþ sinðωτUÞ þ

1

2
βð0ÞA× cosðωτUÞ

�
;

Z ¼ σ

�
βð0Þ þ βð1Þ þ

1

2
αð0ÞA× cosðωτUÞ −

1

2
βð0ÞAþ sinðωτUÞ

�
; ðB3Þ
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to first order in the gravitational wave amplitudes, where we have used the orthogonality condition between ξ and U atQ to
express the constant of motion E ¼ Eð0Þ þ Eð1Þ in terms of α ¼ αð0Þ þ αð1Þ and β ¼ βð0Þ þ βð1Þ. The arc length parameter σ
as well as the constants α and β must then be expressed in terms of the background coordinates ðt; x; y; zÞ.
We are interested here in the inverse transformation. Therefore, solving Eq. (B3) for σ, α and β yields

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2 þ Z2

p
;

σα ¼ Y −
1

2
ZA× cosðωTÞ −

1

2
YAþ sinðωTÞ;

σβ ¼ Z −
1

2
YA× cosðωTÞ þ

1

2
ZAþ sinðωTÞ; ðB4Þ

with in addition

σE ¼ −X −
1

2
ωAþðS02Z þ S03YÞ½cosðωTÞ − 1� þ 1

2
ωA×ðS02Y − S03ZÞ sinðωTÞ; ðB5Þ

which, once inserted into Eq. (A3) with xα0 ¼ xαðτUÞ, finally gives the exact coordinate transformations

t ¼ T −
1

2
Aþ

�
Y2 − Z2

X

�
cosðωðT − XÞÞ − cosðωTÞ

ωX
− sinðωTÞ

�
þ ωðS02Z þ S03YÞ½cosðωTÞ − 1�

�

þ A×

�
YZ
X

�
sinðωðT − XÞÞ − sinðωTÞ

ωX
þ cosðωTÞ

�
−
1

2
ωðS02Y − S03ZÞ sinðωTÞ

�
;

x ¼ X −
1

2
Aþ

Y2 − Z2

X

�
cosðωðT − XÞÞ − cosðωTÞ

ωX
− sinðωTÞ

�

þ A×
YZ
X

�
sinðωðT − XÞÞ − sinðωTÞ

ωX
þ cosðωTÞ

�
;

y ¼ Y þ Aþ

�
Y

�
cosðωðT − XÞÞ − cosðωTÞ

ωX
−
1

2
sinðωTÞ

�
−
1

2
S03½sinðωTÞ − ωT�

�

− A×

�
Z

�
sinðωðT − XÞÞ − sinðωTÞ

ωX
þ 1

2
cosðωTÞ

�
−
1

2
S02½cosðωTÞ − 1�

�
;

z ¼ Z − Aþ

�
Z

�
cosðωðT − XÞÞ − cosðωTÞ

ωX
−
1

2
sinðωTÞ

�
þ 1

2
S02½sinðωTÞ − ωT�

�

− A×

�
Y

�
sinðωðT − XÞÞ − sinðωTÞ

ωX
þ 1

2
cosðωTÞ

�
þ 1

2
S03½cosðωTÞ − 1�

�
: ðB6Þ

This transformation contains the new (spinning) terms additively, in the sense that it is formally of the type

xα ¼ Xα þ fαðgeoÞðXμÞ þ fαðspinÞðXμÞ: ðB7Þ

The spacetime metric in Fermi coordinates is then simply evaluated by

gABðXÞ ¼
∂xα
∂XA

∂xβ
∂XB gαβðxðXÞÞ: ðB8Þ

Up to the second order in the spatial Fermi coordinates its nonvanishing components are
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gTT ¼ −1 −
�
S02Z þ S03Y −

1

2
ðY2 − Z2Þ

�
ω2Aþ sinðωTÞ þ ½S02Y − S03Z þ YZ�ω2A× cosðωTÞ þOð3Þ;

gTX ¼ −
1

3
ω2½ðY2 − Z2ÞAþ sinðωTÞ þ 2YZA× cosðωTÞ� þOð3Þ;

gTY ¼ 1

3
ω2X½YAþ sinðωTÞ þ ZA× cosðωTÞ� þOð3Þ;

gTZ ¼ 1

3
ω2X½−ZAþ sinðωTÞ þ YA× cosðωTÞ� þOð3Þ;

gXX ¼ 1þ 1

6
ω2½ðY2 − Z2ÞAþ sinðωTÞ þ 2YZA× cosðωTÞ� þOð3Þ;

gXY ¼ −
1

2
gTY þOð3Þ; gXZ ¼ −

1

2
gTZ þOð3Þ;

gYY ¼ 1þ 1

6
ω2X2Aþ sinðωTÞ þOð3Þ; gYZ ¼ 1

6
ω2X2A× cosðωTÞ þOð3Þ;

gZZ ¼ 1 −
1

6
ω2X2Aþ sinðωTÞ þOð3Þ; ðB9Þ

in agreement with the series-expanded metric components in Fermi coordinates. Of course here we also have the exact
(nonexpanded) form of the metric, having identified the exact coordinate transformation from one coordinate system to
the other.
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