
Unscreening scalarons with a black hole

Andrei V. Frolov,* José T. Gálvez Ghersi,† and Alex Zucca‡

Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby,
British Columbia V5A 1S6, Canada

(Received 12 April 2017; published 30 May 2017)

It is typically believed that the additional degrees of freedom in any modification of gravity are
completely suppressed by the large energy densities coexisting with an astrophysical black hole. In this
paper, we find that this might not always be the case. This belief holds for black holes formed via
gravitational collapse in very dense environments, whereas the black holes with sufficiently low accretion
rates that have low matter densities inside innermost stable circular orbit will generally unscreen
chameleons. We develop a novel technique to study the dynamics of accretion of a scalar field onto a
Schwarzschild-like black hole which is accurate on both short and long time scales. In particular, we study
the behavior of the extra scalar degree of freedom in the Starobinsky and Hu-Sawicki fðRÞ theories, for the
symmetron model, and for the Ratra-Peebles model. Aside from calculating nontrivial static field profiles
outside the black hole, we provide the tools to study the (in)stability and evolution towards the equilibrium
solution for any generic well behaved set of parameters and initial conditions. Our code is made publicly
available for further research and modifications to study other models.
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I. INTRODUCTION

Einstein’s theory of general relativity (GR) is one of the
greatest achievements of modern science, due to its ability
to describe many of the gravitational phenomena with
impressive level of detail. Nevertheless, there are many
motivations to look for alternative theories: the observation
of cosmic acceleration, the unknown nature of dark matter
and dark energy and the lack of an ultraviolet completion of
general relativity related with the unavoidable presence of
spacetime singularities in this theory. Any successful
modification of Einstein’s theory should solve some of
these conundrums, while remaining consistent with the
local tests of general relativity and do no harm to the
standard behavior of matter as discussed in Refs. [1,2].
For example, fðRÞ gravity was postulated in Ref. [3] as

an attempt to produce a renormalizable theory of quantum
gravity. It introduces a ghost-free functional of curvature,
analogous to the notion of free energy in thermodynamics.
Since its first incarnation, however, different forms of fðRÞ
have been used to solve issues at cosmological scales (see
Refs. [4–6]). Notwithstanding, either considering a func-
tional source of gravitational interaction different from the
Ricci scalar, or simply adding extra gauge degrees of
freedom in the gravitational sector has consequences at all
energy scales. Gravity is not only defined by the metric,
but also by other fields. The force exerted by any extra
degree of freedom typically contradicts the stringent local
constraints compatible with general relativity. Screening

mechanisms such as theories in Refs. [7–9] are designed to
circumvent this issue by diluting the sources of this force.
In the case of an astrophysical black hole, one naively

expects that every extra force will be screened by large
environmental energy densities. In the particular case of a
force sourced by a scalar, screening is expected to be a
consequence of the no-hair theorem, as stated in Ref. [10],
applicable in the case of a source with positive energy
density. Nonetheless, as noticed in Ref. [11], the presence
of a nontrivial distribution of accreting matter and the way
this is coupled to the scalar field allows scalar hair outside
the event horizon.
In this paper, we simulate the accretion of the additional

scalar degree of freedom in the fðRÞ models presented in
Refs. [5,6], the symmetron model in Ref. [12] and the
Ratra-Peebles chameleon in Ref. [13] in a dense environ-
ment. We assume that in such a region we can form a stable
Schwarzschild black hole via gravitational collapse. This
spherically symmetric black hole interacts with the
screened extra real scalar field in a nontrivial matter
distribution and accretes around the event horizon. The
accreting matter density profile proposed here is a slight
generalization to the suggested in Ref. [11]. Even when the
accretion in astrophysical black holes takes place in
rotating spacetime solutions, it is interesting to explore
the test case of a spherically symmetric system.
The purpose of this study is to visualize the process of

accretion of the scalar field for various choices of model
parameters, and discuss the time scales involved in the
convergence to a nontrivial static profile. We designed a
compact and efficient spectral code, flexible to modifica-
tion and capable of producing time-dependent solutions of
a scalar field in a Schwarzschild-like background. It is
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available for further application to other models at https://
github.com/andrei‑v‑frolov/accretion.
The layout of this paper is as follows. In Sec. II, we

define the matter environment and the spacetime geometry
in which the extra scalars propagate. In Sec. III, we review
the equations of motion and particular features of the scalar
degrees of freedom in the chosen fðRÞ models and study
how these fields accrete. In Sec. IV, we modify these
models by adding terms proportional to R2 and show the
dynamical resolution of the curvature singularities in the
Hu-Sawicki and the Starobinsky model. We extend our
treatment for the symmetron model and the Ratra-Peebles
chameleon in Secs. V and VI, respectively. Finally, we
present summary of our results and conclusions in Sec. VII.
Numerical implementation is discussed in detail in
Appendix A.

II. MATTER DISTRIBUTION FOR SPHERICALLY
SYMMETRIC BLACK HOLES

Although astrophysical black holes are rotating
systems, spherically symmetric solutions remain interesting
when exploring some of the dynamical subtleties of the
extra scalars in modified gravity. From Refs. [14,15], we
learn that the fate of a collapsing spherically symmetric
system in standard scalar-tensor theories is to become a
Schwarzschild black hole.
It is then sensible to ask whether the Schwarzschild

solution remains a valid description of spacetime even in
the presence of accreting matter. To answer this question,
we briefly review the dynamics of a steady flow of matter to
estimate the accretion rate of the black hole. We calculate
the luminosity assuming the power lost by a generic inflow
of particles traveling from infinity to the innermost stable
circular orbit (ISCO) at rISCO ¼ 6GM=c2

L ¼
�
1 −

ffiffiffi
8

9

r �
_M ∼ 0.06 _M: ð1Þ

Using the table of luminosities of active galactic nuclei
included in Ref. [16], we note that the accretion rate
of a supermassive black hole with MBH ¼ 109 M⊙ is
_M ≲ 1 M⊙=yr. The accretion rate in a rotating black
hole of similar luminosity could be even smaller, since
L ∼ 0.42 _Mc2 for near-extremal rotation. This implies that it
would take ∼107 years to change the mass of the black hole
by 1%. Therefore, it is reasonable to assume that spacetime
is static within time scales we are interested in.
At this point of the discussion, it is necessary to provide

an approximate expression of the matter density distribu-
tion outside the black hole’s horizon. This is not by any
means a full discussion of the radial structure equations for
accretion disks. However, we provide sufficient arguments
to justify our choice of a matter distribution. It must remain
nearly static within the time scale estimated previously. For

that purpose, we consider that radial matter density at a
given radius r is proportional to some positive power of the
time that particles spend in orbits passing through that r.
Stable orbits are possible only when r ≥ rISCO ¼ 6GM=c2.
Therefore, the dynamics of a test particle moving in
Schwarzschild spacetime only provides two scenarios in
which matter can be found at r < rISCO: (I) these are on
“no-return” trajectories towards the horizon or (II) particles
are travelling on eccentric trajectories with a minimal
radius smaller than rISCO. The latter case is highly unlikely
as viscous forces spread anisotropies all along the accretion
disk via diffusion. In Ref. [17], one can find a simplified
linear model explaining that the cause of viscosity is the
radial propagation of angular momentum from one orbit to
another in the disk of matter. In this case, a final state of
radial homogeneity is reached very rapidly. In a more
realistic scenario, diffusion is driven by nonlinear viscous
forces studied in magnetohydrodynamical (MHD) simu-
lations of rotating (and slightly magnetized) systems, as
explained in Ref. [18]. In any case, the probability of
finding matter on orbits within innermost stable circular
orbit (ISCO) is greatly reduced, and in consequence, so is
the matter density in those regions. For black holes with
low accretion rates, this density drop could be sufficient to
unscreen the scalarons within immediate vicinity of the
black hole, as we will show in the following sections.
Using the arguments aforementioned and considering

σ ∈ ½0; 1Þ as the density contrast parameter, our rough
prescription for the pressureless matter distribution is

ρ ¼
�
σρ0; rg < r < rISCO
ρ0; r ≥ rISCO;

ð2Þ

where rg ¼ 2GM=c2 is gravitational radius where black
hole horizon is located. This coincides with the distribution
suggested in Ref. [11] when σ ¼ 0. For numerical reasons,
the use of a smooth matter profile approximated by a
hyperbolic tangent is more convenient

ρ ¼ ð1 − σÞρ0
1þ tanha0ðr − rISCOÞ

2
þ σρ0; ð3Þ

where a0 ≫ 1 and ρ0 > 0. The shape of this matter
distribution is a crude approximation of the results pre-
sented in Ref. [18] when σ < 10−4. As a consequence, we
will set up all the wave equations for the scalar field using
the Schwarzschild geometry

ds2 ¼ −
�
1 −

rg
r

�
dt2 þ dr2

1 − rg
r

þ r2dΩ2: ð4Þ

and the matter density profile suggested in (3). However, it
is convenient to change from Schwarzschild to tortoise
coordinates dr ¼ ð1 − rg=rÞdx
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ds2 ¼
�
1 −

rg
rðxÞ

�
½−dt2 þ dx2� þ r2ðxÞdΩ2: ð5Þ

The coordinate change from r to x and its inversion is
discussed in detail in Appendix A 6. We neglect back-
reaction of the scalaron dynamics on the background
geometry for all the scalar-tensor theories explored in this
project, and treat the metric as static in the scalaron
equations of motion. Using (5), we can write the equation
of motion of the scalar field □ϕ ¼ V 0

effðϕÞ which appears
in (10) and (25) as a spatially damped wave equation in
1þ 1 dimensions

�
−

∂2

∂t2 þ
∂2

∂x2 þ
2

rðxÞ
�
1 −

rg
rðxÞ

� ∂
∂x

�
ϕðt; xÞ

−
�
1 −

rg
rðxÞ

�
V 0
effðϕÞ ¼ 0: ð6Þ

This choice of coordinates is sufficient for our purposes
since the scalar solutions we seek do not need to cover the
black hole’s interior (r < rg). For simplicity of the imple-
mentation, we use units of rg ¼ 1 in the code, but other
choices can also be considered without difficulty.

III. SCALAR ACCRETION IN f ðRÞ THEORIES

In this section we describe the two examples of fðRÞ
theories considered in this work: the Starobinsky and
Hu-Sawicki models, where the Ricci scalar R in the
Einstein-Hilbert action is replaced by a function of R.
We will consider equations of motion derived in the metric
formalism. Alternative formalisms like the Palatini or the
metric-affine mentioned in Refs. [19–22] can change the
number and/or the nature of the degrees of freedom that
emerge. In particular, in Ref. [19], we see that the Palatini
formulation of fðRÞ is equivalent to a ω0 ¼ −3=2 Brans-
Dicke theory, and no new dynamical degrees of freedom
appear. In all cases, one needs to ensure that the model
remains ghost-free in the gravity sector and that there are no
tachyonic modes for it to be viable. A recent discussion on
ghosts in various formulations appeared in Ref. [23].

A. Chameleons in Starobinsky and Hu-Sawicki model

We first consider fðRÞ theories described, in the Jordan
frame, by the action

S ¼
Z

fðRÞ
16πG

ffiffiffiffiffiffi
−g

p
d4xþ Sm½gμν;ψ �; ð7Þ

where gμν is the Jordan frame metric and ψ are the matter
fields. Varying the action with respect to the metric gμν we
obtain equations of motion which replace Einstein’s equa-
tion in the fðRÞ models; they are

fRRμν−
1

2
fgμν¼8πGTμνþ∇μ∇νfR−gμν□fR; ð8Þ

where fR ≡ ∂f=∂R. The last two terms on the right hand
side of Eq. (8) contain fourth-order derivatives of the
metric, a signal that a new degree of freedom emerges
in the theory. This can be seen explicitly by taking the trace
of the equation above

□fR ¼ 1

3
ð2f − fRRÞ þ

8πG
3

T; ð9Þ

which yields a second order equation of motion for the real
field fR with a canonical kinetic term under the influence of
an effective potential V 0 ≡ ð2f − fRRÞ=3 and an external
force term F ≡ −8πGT=3 with T ≡ Tμ

μ. By defining ϕ≡
fR − 1 we can rewrite equation (9) simply as

□ϕ ¼ V 0ðϕÞ − F ; ð10Þ

where prime denotes derivative with respect to ϕ.
Alternatively, one can explicitly see the emergence of
the extra degree of freedom, usually dubbed “scalaron,”
by mapping the action (7) into the Einstein frame, as
described in Ref. [24,25]. Solving the Eq. (10) requires the
knowledge of the potential VðϕÞ which is defined in a
parametric form via

dV
dR

¼ dV
dϕ

dϕ
dR

¼ 1

3
ð2f − fRRÞfRR; ð11Þ

or, integrating with a choice VjR¼0 ¼ 0 for a constant,

ϕðRÞ ¼ fR − 1; ð12Þ

VðRÞ ¼ 1

3

Z
R

0

d ~Rð2fð ~RÞ − f0ð ~RÞ ~RÞf00ð ~RÞ: ð13Þ

When plotting the scalar potentials in Fig. 1, we observe
that they are generally multivalued, with turning points at
field values where f00ðRÞ ¼ 0. One must be aware of the
branch choice when determining the curvature value R and
the effective force V 0ðϕÞ for the field ϕ in the wave
equation (10). The branch we are interested in is the one
connected to the large curvature R → þ∞ where Einstein
gravity is recovered by screening. The particular models we
study are defined by specific forms of fðRÞ

fS ¼ Rþ λ

�
1

ð1þ ðR=R0Þ2Þn
− 1

�
R0; ð14Þ

fHS ¼ R −
αðR=R0ÞnR0

1þ βðR=R0Þn
; ð15Þ

which correspond to the Starobinsky—in Ref. [5]—and
Hu-Sawicki—in Ref. [6]—models respectively. Hence, by
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replacing the solution of (13) in fS or fHS (and their
derivatives) the potentials are completely determined as
functions of ϕ for every physical choice of parameters.
A particular feature of (15) is that it has an apparent
extra parameter compared to (14). However, it is entirely
free, and we can reduce the number of parameters by
considering the transformation α → λaα, β → λbβ and
R0 → λcR0. fHS is invariant under this transformation if

a − ðn − 1Þc ¼ 0;

b − nc ¼ 0; ð16Þ

for a given value of n. It is therefore possible to map any
solution for one set of parameters to an equivalent one for a
different set following (16), hence we fixed the parameter β
to be 1 throughout the rest of the paper and one can convert
to other choices via these transformations. Our choices of β
and the crossover curvature scale R0 are useful to compare
these results with the solutions from the Starobinsky model.
As summarized in Ref. [19], fðRÞ models of gravity in
metric formalism must have f0ðRÞ > 0 and f00ðRÞ > 0 to
avoid ghostlike gravitons and tachyonic scalarons,
respectively.
From Eq. (10), we can define an environmentally

dependent effective potential VeffðϕÞ that provides the
same equations of motion in the regions of constant force
F by

VeffðϕÞ ¼ VðϕÞ − Fϕ: ð17Þ

One peculiar feature of the effective potential is that the
extra term coming from the interaction with matter provides
an external source term. As a result of this, the no-hair
theorem in its usual form is in general not applicable. In this

paper, the presence of matter with Tμ
μ ≠ 0 (which excludes

electromagnetic radiation) is not neglected.
One must consider any particular choice of model

parameters for fHS and fS that could emerge from their
corresponding renormalization group flows. Therefore, it is
prudent to study the flow lines in parameter space by
exploring the stability of the scalar wave equation for
different choices of model parameters, even when we
consider cases where the model does not match with
current observations. The field solutions are screened in
the same way as we described in Sec. VI, henceforth fS and
fHS scalarons can also be dubbed as “chameleons.”

B. Accreting chameleons in Hu-Sawicki
and Starobinsky models

Now we present our results after evaluating the scalar
equations of motion in (10). In order to proceed, we must
first find the effective potentials corresponding to (14) with
arbitrary densities of matter.
In the left panel of Fig. 1 we observe that the features of

this potential correspond to what is usually called a
chameleon field. Just as described in Ref. [26], the steep-
ness and depth of the potential grows with the surrounding
matter density in which the field propagates. The effective
potential of the Hu-Sawicki model is plotted in the right
panel of Fig. 1.
In both cases, we observe that the formation of curvature

singularities do not require infinite energies to be achieved.
In addition to that, we notice the existence of an equilib-
rium configuration for the field, the corresponding mini-
mum in the effective potential V 0

effðϕÞ ¼ 0 is defined by

V 0ðϕÞ ¼ F : ð18Þ

FIG. 1. Left panel: bare and effective potential for λ ¼ 2.0 and n ¼ 1 in the Starobinsky model. Matter defines an effective minimum
and a mass for the field. Right panel: bare and effective potential for α ¼ 0.8 and n ¼ 2 in the Hu-Sawicki model. Increasing densities of
surrounding matter also define a steady-state solution. Both effective potentials are concave up around the equilibrium position, which
means that the scalarons are not tachyonic.
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In the presence of accreting matter outside rISCO ¼ 3rg the
field is screened, which implies a very small value of it in
this region. Inside rISCO, we can set the matter density in (3)
to zero for now. Naively, one should not expect significant
differences in our results calculated in the Jordan frame
when compared with what is expected in the Einstein frame
after conformal transformations: inside rISCO, the matter
density is zero regardless of any value of the field; outside,
the screening sets the conformal coupling to one. It is
typically argued that there are changes in the metric and
equations of motion of a test particle when these entities are
rephrased in this frame: the derivatives of the conformal
coupling might modify these entities in a non-negligible
way. This is true in general, however these changes do not
represent a significant contribution to the solutions we
present since these modifications are always proportional to
the first and second radial derivatives of the field, which is a
smooth function outside the event horizon.
In order to find the screening value of ρ0 in (3), we

evaluate the equilibrium condition in (18) at the screened
value of the field ϕ0 far away from rISCO (which is very
close to zero). Numerically, this is more convenient than
(but still equivalent to) finding the equilibrium value of ϕ
for a given value of ρ0 from (18) since the dependence of
V 0ðϕÞ on the field is implicit.
The evolution of the system requires initial conditions. In

what follows, we set the units of the field ϕ in terms of a

pivot value ϕ�, which for fðRÞmodels is dimensionless and
is chosen to be simply ϕ� ¼ 1. We consider a completely
screened initial configuration of the field ϕðr; t0Þ ¼
−10−4ϕ� which is originally spatially homogeneous, and
assume _ϕðr; t0Þ ¼ 0 for the initial field velocity. Our choice
of initial conditions is the same in our treatment of both
fðRÞ models we present here. In the left panel of Fig. 2, we
see the accretion of the Starobinsky chameleon until it
approaches to its static solution, choosing n ¼ 1, λ ¼ 2.0
and R0 ¼ 10−2=r2g as the model parameters to run the
simulation.
The chameleon accretes around the horizon, then it

oscillates slightly around the static solution. Gradients
do not cancel outside the horizon for r ≤ rISCO, which
make the “hair” profile nontrivial. In addition to this, the
screening outside rISCO is not lost during accretion. Which
shows that the equilibrium condition in (18) is being held.
Field evolution of the Hu-Sawicki chameleon is plotted

in the right panel of Fig. 2, where we used the same initial
conditions. n ¼ 1, α ¼ 2.0 and R0 ¼ 10−2=r2g were the
model parameters chosen for the numerical evolution. Hu-
Sawicki chameleon also accretes around the event horizon
resulting in a nontrivial hair solution. We study the negative
field branches of the potentials in Fig. 1 that roughly scale
as ϕ1=κ with κ > 2, therefore the field becomes less massive
in the regions where its amplitude deviates from the
screened value.

FIG. 2. Accretion of the field in the Starobinsky (left panel) and Hu-Sawicki (right panel) models in tortoise coordinates. Field profiles
are plotted on top of the intensity map: each line represents the amplitude of the field at constant time. The values of the field are
consistent with the condition f0ðRÞ > 0.
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The convergence into a hair solution as well as its shape
are sensitive to choice of model parameters. Static solutions
are found using the relaxation method described in
Appendix A 5, where we also discuss all the details related
to the numerical evolution. In Fig. 3, we evaluate the
solutions of (6) in the static limit for different parameters of
the Starobinsky model. We find the solutions for different
values of n, while keeping λ ¼ 1.0 as a constant. Likewise,
in Fig. 4 we evaluate the change of the static field profile
when λ varies and n ¼ 1 is kept as a constant. In the same
way, we represent static solutions for different values of the
density contrast parameter σ.
Different values of λ and R0 define how effective is the

modification of gravity with respect to GR. In particular, λ
controls the depth and vertical extension of the effective
potential and in consequence, it affects the existence and
stability of the field solutions, while R0 sets the crossover
curvature scale. In particular, we chose R0 ¼ 10−2=r2g to
have the same value throughout this paper.

FIG. 3. Static profiles of the scalar field in the Starobinsky
model for λ ¼ 1.0 and varying n.

FIG. 4. Static profiles of the scalar field in the Starobinsky
model for n ¼ 1 and varying λ.

FIG. 5. Static profiles of the scalar field in the Starobinsky
model for n ¼ 1 and varying density contrast σ.

FIG. 6. Static profiles of the scalar field in the Hu-Sawicki
model for α ¼ 1.0 and varying n.

FIG. 7. Static profiles of the scalar field in the Hu-Sawicki
model for n ¼ 1 and varying α.
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As expected, we notice the reduction of the field
amplitude in r ∈ ðrg; rISCO� for larger values of σ.
However, it is not required to impose σ ¼ 0 to obtain a
hairy solution. Furthermore, we calculate the static solu-
tions corresponding to different choices parameters of the
Hu-Sawicki model. The shape of the static solution for
different values of n can be found in Fig. 6. Additionally,
steady-state solutions for different values of α and σ are
represented in Fig. 7 and Fig. 8, respectively. In all of these
cases, the rest of the parameters were kept as constants. The
dynamical results exposed show the accretion of the
chameleon solutions and proof the existence of nontrivial

stable solutions of the static version of (6) outside r ¼ rg
for the parameters we chose. The radial scalar flux J ≡
4πr2T½ϕ�r0 ¼ 4πr2ϕ;xϕ;t is represented in Fig. 9, showing
no propagation outside rISCO.
We show an additional way to test that the static profiles

in Figs. 3–7 are suitable representations of field configu-
rations around the minimum of the effective potentials in
Fig. 1. In the large curvature limit, one can notice that
V 0ðϕÞ≃ R=3, and so the equilibrium condition in (18)
implies R≃ −8πGT just as it is in GR. As a consistency
check, in Fig. 10 we tested the validity of the general
relativistic limit in the case of a nontrivial value of the
density contrast in the Hu-Sawicki model for a configura-
tion that remains fully screened. This result remains valid
for different values of the density contrast and further
extends to the Starobinsky model.
So far, we discussed a few cases where we notice a

smooth evolution into a nontrivial static solution.
Nonetheless, the existence of static hair solutions is not
enough to ensure smooth convergence to them. In Fig. 1,
we find the field values where infinite curvature is reached
are close to the minima of the potential for different choices
of model parameters, which is consistent with the results in
Refs. [27,28]. Small field excursions from the minimum are
sufficient to form curvature singularities outside the event
horizon, and it can happen dynamically.
Equilibrium solutions for the field are defined by

locating the “valleys” of VeffðϕÞ, which in these cases
are not distant from reaching the point of infinite scalar

FIG. 8. Static profiles of the scalar field in the Hu-Sawicki
model for n ¼ 1 and varying density contrast σ.

FIG. 9. Scalar field flux accreting towards horizon in the Starobinsky model (left panel) and in the Hu-Sawicki model (right panel).
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curvature. Further modifications of the functional form of
fðRÞ, for example the addition of a term proportional to R2,
can create a potential wall which will shield the field from
reaching singularity. We will explore this alternative in the
next section.
In Fig. 11, we show the dynamical formation of a

curvature singularity outside the black hole’s event horizon.
We chose n ¼ 3 and λ ¼ 2.1 as parameters for the
Starobinsky model. Similarly, in Fig. 12, we pick n ¼ 3
and α ¼ 4.31 to form a naked singularity in the Hu-Sawicki
model. The profiles of field ϕ themselves do not diverge or
show irregular behaviour while the singularities are formed,
but the curvature R goes singular under algebraic inversion
R≡ RðϕÞ at ϕ ¼ 0. The singularity is rather weak, and
most likely of integrable type, but it is nonetheless a naked
singularity formed in evolution of the regular data, which
shows cosmic censorship conjecture is violated in these
models.

IV. RESOLVING CURVATURE SINGULARITIES
IN f ðRÞ THEORIES

In Figs. 11 and 12, we observed the formation of
integrable curvature peaks in the Starobinsky and Hu-
Sawicki models. In both cases, these were located in r ∈
ðrg; rISCO� and appeared as a consequence of small field
excursions from the potential minima reaching the field
value corresponding to infinite curvature. In this section,
we briefly discuss that the addition of an extra “mass” term
in the functional form of fðRÞ

~fS ¼ Rþ λ

�
1

ð1þ ðR=R0Þ2Þn
− 1

�
R0 þ

μ

R0

R2; ð19Þ

~fHS ¼ R −
αðR=R0ÞnR0

1þ βðR=R0Þn
þ μ

R0

R2; ð20Þ

is enough to remediate the divergencies appearing in both
models for the same choices of model parameters chosen in
the previous section, as suggested in Refs. [28,29]. Here the
singular point is avoided by adding an infinite barrier that
regularizes the potential and its derivatives. In the same
reference, it is possible to find constraints of the value of μ
mostly related with the expected decay time of the
scalarons in cosmological scales. Here we chose μ ¼
10−6 to leave the low-curvature features of the model
unaffected, while putting a cap at moderate curvature
values to avoid numerical dynamical range issues which
might cloud the discussion. Note that the extra mass term
does not appear in the definition of V 0ðϕÞ described in (9),
regardless of any choice of μ. In Fig. 14, we evaluated the
dynamics of the scalar curvature in tortoise coordinates
considering n ¼ 3 and λ ¼ 2.1 as parameters for the
Starobinsky model and n ¼ 3, α ¼ 4.31 for the Hu-
Sawicki model. These choices produced unstable evolution
truncated in the large curvature regime when using fS and
fHS. After adding the corrections in (19) and (20), the

FIG. 10. Checking for local scalaron equilibrium in fully
screened configuration with σ ¼ 0.5 in the Hu-Sawicki model.
This result is very similar in the case of the Starobinsky model.

FIG. 11. Formation of a naked singularity for n ¼ 3 and
λ ¼ 2.1 in the Starobinsky model.

FIG. 12. Formation of a naked singularity for n ¼ 3 and
α ¼ 4.31 in the Hu-Sawicki model.
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curvature peaks are limited and absorbed without reaching
infinite values, with evolution toward an equilibrium
configuration continuing without further inconveniences.
However, even when the evolution of the curvature peaks
is more benign these are still formed outside the event
horizon. Thus, if such cusps are not observed, their
existence in the model will pose constraints not only for

specific choices of initial conditions or parameters, but for
the entire subspace of the model parameters connected to
the troublesome region by the renormalization flow. For the
Hu-Sawicki model, the parameter scaling (16) that leaves
action invariant will involve μ, nonetheless it is still
possible to find a family of parameters with similar
curvature features starting from only one solution.

V. SCALAR ACCRETION FOR THE
SYMMETRON MODEL

A. Action and equations of motion

We now turn to the symmetron model described by a
scalar-tensor action of the form

S ¼
Z �

R
16πG

−
1

2
ð∇ϕÞ2 − VðϕÞ

� ffiffiffiffiffiffi
−g

p
d4x

þ Sm½A2ðϕÞgμν;ψ �; ð21Þ

where gμν is now in the Einstein frame metric and ψ are the
matter fields minimally coupled to the Jordan metric
A2ðϕÞgμν. For simplicity, we will describe the dynamics
of the scalar ϕ in the Einstein frame as in Ref. [11].
The symmetron is then modeled with a potential

FIG. 13. Effective potential of the symmetron model. ϕ� goes to
zero as the matter density grows.

FIG. 14. Dynamical resolution of the curvature singularities found in Figs. 11 and 12 after the definitions in (19) and (20). Left panel:
evolution of the curvature cusp for n ¼ 3 and λ ¼ 2.1 in the Starobinsky model. Right panel: evolution of curvature peak for n ¼ 3 and
α ¼ 4.31 in the Hu-Sawicki model. In both cases, the formation and absorption of the (approximately null) curvature peaks does not
interfere with the stable evolution of the curvature profile.
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VðϕÞ ¼ V0 −
μ

2
ϕ2 þ λ

4
ϕ4; ð22Þ

and a coupling function

AðϕÞ ¼ 1þ ℏ
2

ϕ2

m2
S
; ð23Þ

where λ and μ are positive coupling constants and m2
S is a

high mass scale that suppresses any contributions higher or
equal than Oðϕ4=m4

SÞ. The equation of motion for the
Einstein frame metric are

Rμν −
1

2
Rgμν ¼ 8πGðT ½ϕ�

μν þ T ½m�
μν Þ; ð24Þ

while for the real scalar ϕ the equation of motion reads

□ϕ ¼ V 0
effðϕÞ: ð25Þ

The effective potential Veff ≡ VðϕÞ − TAðϕÞ is defined as

VeffðϕÞ ¼ ~V0 þ
1

2

�
−
ℏT
m2

S
− μ

�
ϕ2 þ λ

4
ϕ4; ð26Þ

and, as in the case of fðRÞ theories, it is dependent on the
environment through the trace of stress-energy tensor
T ≡ Tμ

μ. The coefficient of ϕ2 in Eq. (26) changes sign
depending on the magnitude of T, and determines the shape
of the symmetron effective potential. In case of an
environment made solely of dust (T ¼ −ρ), we can define
ρcrit ¼ μm2

S=ℏ such that for energy densities ρ < ρcrit the
effective potential becomes a shape of a mexican hat. For
vanishing density, the two minima are at ϕ ¼ �ϕ� with
ϕ� ≡

ffiffiffiffiffiffiffiffi
μ=λ

p
. In regions of high density, ρ > ρcrit, there is

one single minimum at ϕ ¼ 0. Hence AðϕÞ ¼ 1 for high
densities and the field decouples from matter. This mecha-
nism allows the symmetron model, with the proper param-
eters, to pass the solar system tests of GR. In the case of this
model, the difference between the field dynamics in high
density regions described in the Jordan and in the Einstein
frame is not substantial because of the quadratic depend-
ence of the conformal factor on ϕ=mS.

B. Accreting symmetrons

In this section we evaluate the dynamics of the accreting
symmetrons. Previously, we discussed a simplified model
equipped with spontaneously broken Z2 symmetry and
an environmentally dependent mass. The shape of the

FIG. 15. Evolution of the symmetron field for two sets of model parameters in tortoise coordinates. Left panel: Convergence towards a
trivial field profile for λ ¼ 10−2=ℏ, μ ¼ 8 × 10−4=r2g and m2

S ¼ 10−3ℏ2=r2g. Right panel: Nontrivial hair solution for λ ¼ 102=ℏ, μ ¼
8 × 10−1=r2g and m2

S ¼ ℏ2=r2g .
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potential and the effects of the coupling with matter are
shown in Fig. 13. In regions of high matter overdensities,
the only stable field configuration is ϕ ¼ 0; however, as we
discussed in the previous section, the field takes a nonzero
vacuum expectation value in zones of lower energy density.
In consequence, considering the mass distribution in (3),
the initial radial profile used is

ϕðr; t ¼ t0Þ ¼
�
ϕ�; r < rISCO
0; r ≥ rISCO;

ð27Þ

which can be smoothed by using an hyperbolic tangent in
the same manner as in the matter profile. An equivalent but
more physically motivated way to choose the initial field
configuration is to place it in equilibrium V 0

effðϕÞ ¼ 0 for a
given matter distribution. Once again we will assume
_ϕðr; t ¼ t0Þ ¼ 0 for initial field velocity. With these initial
conditions and choosing σ ¼ 0, we compute the evolution of
the field profile for two different sets of model parameters:
(a) λ ¼ 10−2=ℏ, μ ¼ 8 × 10−4=r2g, m2

S ¼ 10−3ℏ2=r2g and
(b) λ ¼ 102=ℏ, μ ¼ 8 × 10−1=r2g, m2

S ¼ ℏ2=r2g. In Fig. 15,
we calculated the evolution of the field toward equilibrium
for both choices. Depending on parameters chosen, sym-
metrons do not always form nontrivial static hair solutions.

The flux of the symmetron fieldJ ≡ 4πr2ϕ;xϕ;t is shown in
Fig. 16. All the ingoing scalar fluxes calculated here settle to
zero smoothly after initial transient.
The difference in evolution lies in the contribution of the

matter source to the effective potential: In the left panel of
Fig. 16, we suppressed the effects of the “external force”
driven by the static matter density. Therefore this limit case
is consistent with the standard no-hair theorem. However,
that is not the case for the model depicted in the right panel,
where the mass of the black hole is the same as the coupling
parameter mS. In accordance with our description in the
previous subsection, we will explore the cases in which we
can find nontrivial static solutions. From Fig. 13, we can
recognize at least one of equilibrium field configurations
which correspond to the different vacua for a given shape of
the deformed “Mexican hat” potential. In Figs. 17–19, we
compute the static solutions for different values of the
model parameters.

FIG. 16. Scalar field flux in the symmetron field evolution.
Initial transient splits into ingoing and outgoing waves, which are
transported to horizon and spatial infinity without attenuation.
Overall flux settles to zero soon after initial transient.

FIG. 17. Static solutions of the symmetron field for different
values of μ, we set σ ¼ 0 as a constant.

FIG. 18. Static solutions of the symmetron field for different
values of λ, μ ¼ 0.8m2

S was held as a constant. λ acts as an overall
normalization constant for the solution.
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VI. ACCRETION OF THE RATRA-PEEBLES
CHAMELEONS

A. Equations of motion and setup

We now study the prototypical example of the chame-
leon screening, defined in the Einstein frame by the same
scalar-tensor action as in (21), with the Ratra-Peebles
potential

VðϕÞ ¼ V0 þ
γnþ4

ϕn ð28Þ

and an approximate coupling function

AðϕÞ ≈ 1þ εϕ

mC
; ð29Þ

where γ and ε are positive model parameters and mC plays
the role of a high mass scale where the screening is
effective. Here we also choose to work in the Einstein
frame being consistent with the procedures followed in
Ref. [11]. The equations of motion for both the metric and
the scalar field are the same as in (24) and (25), but now the
effective potential is given by

VeffðϕÞ ¼ V0 þ
γnþ4

ϕn þ εϕ

mC
ð−TÞ: ð30Þ

This is another case of an effective potential dependent on
the environment. Due to the term proportional to T, it is
possible to find an equilibrium configuration for the field
from V 0

effðϕÞ ¼ 0

ϕ̄C ¼
�
nγnþ4

mC

−εT

� 1
nþ1

; ð31Þ

FIG. 20. Left panel: Evolution of the Ratra-Peebles chameleon for n ¼ 1. The field smoothly evolves into a static hair solution after
initial transient. Right panel: Scalar field flux of the same evolution. The scalar flux represents how the field gets absorbed into the black
hole’s event horizon.

FIG. 19. Field profiles for different values of σ in the symme-
tron model, μ ¼ 0.8m2

S and λ ¼ 102 were held as constants.
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in the case of pressureless matter (T ¼ −ρ), we see that the
field is suppressed in dense regions (with energies larger
than mC) and unscreened in regions with lower densities.
The effective mass of the field is given by

V 00
effðϕ̄CÞ ¼ ðnþ 1Þn− 1

nþ1γ−
nþ4
nþ1

�
−εT
mC

�nþ2
nþ1

; ð32Þ

which becomes larger in dense environments. It is widely
known that chameleon screening occurs in a different
way as in the case of the symmetron as a consequence
of the reduction of the field correlation length due to a
larger effective mass of the field. In a low density
environment, the minimum can be found at ϕ ¼ ϕ�
with ϕ� ≡ ðnγnþ4mC=ðεσρ0ÞÞ 1

nþ1, where σρ0 is the density
at r < rISCO.

B. Accreting chameleons

Here we evaluate the accretion of the Ratra-Peebles
chameleons in the background described in Sec. II. In
Fig. 21 we observe the shape of the potential found as a
function of the field ϕ, and the effects of the coupling with
matter. The effective mass—i.e. the concavity of the
effective potential—increases with the environmental mat-
ter density of dust.
We derive initial conditions compatible with (18) by

replacing the matter distribution proposed in (3) into (31),
avoiding the value of σ ¼ 0 to not have any divergencies in
the initial field profile at r < rISCO. The constitution of
the Ratra-Peebles model offers the possibility of finding the
corresponding initial field configuration as a function of the
surrounding matter density, the reverse process can also be
coded without inconveniences. Assuming static initial
conditions and σ ¼ 0.01, ε ¼ 102, γ ¼ 0.3mC and a

FIG. 21. Effective potential for the Ratra-Peebles chameleon
considering arbitrary spatially constant matter densities and
positive model parameters for n ¼ 1.

FIG. 22. Static solutions of the chameleon field for different
values of γ, we set n ¼ 1 and σ ¼ 0.01 as constants.

FIG. 23. Ratra-Peebles chameleons for different values of
n. This parameter also shifts the initial equilibrium configuration
for ϕ.

FIG. 24. Field profiles for different values of σ in the chame-
leon model. Notice the screening at r < rISCO of the hair solution
for larger values of σ.
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surrounding dust density of −T ¼ ρ0 ¼ 3 × 10−2mC=r3g,
we find the evolution of the field from initial conditions
towards a static solution in the left panel of Fig. 20. From
this figure, we can notice that the evolution of the field is
not significantly different from our results for the
Starobinsky and the Hu-Sawicki models in Fig. 2, which
is consistent with the effects of the chameleon screening in
these models. Additionally, the ingoing field flux is
depicted in the right panel of the same figure. Here the
flux is regular and converges to the limit where there is no
other source apart from the static matter distribution.
Ingoing flux lines are represented around xðrISCOÞ≈3.89.
We also present static solutions for different choices of the
model parameters. In Figs. 22–24, we show the changes in
shape of the hair profiles for different parameter choices. In
this case, the tuning of the parameter in the runaway
potential is sensitive to changes in the orders of magnitude:
it is simple to suppress the whole contribution this part of
the potential by accident, due to the (nþ 4) power of γ.

VII. DISCUSSION

In this paper, we describe the dynamics of scalar
accretion onto a Schwarzschild black hole in the presence
of a static matter distribution modeled by (3). In particular,
we studied the accretion of the extra scalar degrees of
freedom appearing in two models of fðRÞ gravity, the
Starobinsky and Hu-Sawicki model, as well as in the
symmetron model. Stable convergence to static scalar hair
profiles results from varying parameters for each specific
model. In the cases of the Starobinsky and Hu-Sawicki
model, we can obtain dynamical chameleon solutions with
singular curvature outside horizon without requiring an
infinite energy budget. In the case of accreting symmetrons,
it is not always possible to form a nontrivial static solution
since it depends on the strength of the coupling with matter.
More concretely, it depends on how large is the energy
scale mS compared to the mass of the black hole. Our
results for the field fluxes are included for all the cases we
studied, along with the static solutions for different model
parameters.
Even when the simulations of astrophysical rotating

black holes suggest a large density contrast, we noticed
that the formation of nontrivial static solutions does not
require an absolute vacuum environment close to the black
hole’s event horizon, where r ∈ ðrg; rISCO�. We did not
consider the effects of backreaction of the field in the
spacetime solutions since these are small even during the
formation of integrable naked singularities.
We acknowledge the progress made in Refs. [11,30],

wherein approximate analytic expressions for scalar hair
solutions in the case of rotating black holes are found.
Additionally, this paper discusses the possibility of a non-
negligible ratio between the radiated power from extra
scalar sources and the quadrupole gravitational radiation in
GR, which might be testable by the future generation of

gravitational-wave detectors. In our approach, apart from
calculating static solutions in different circumstances, we
evaluated the scalar accretion dynamically in such a way
that it is possible to converge to a hairy or a “bald” solution,
depending on the model and its parameters. These results
also motivate further explorations on the effect of fifth
forces confined by screening, surrounded by a nontrivial
matter profile for merging binary systems.
The existence of nontrivial field profiles has also been

studied for scalars with noncanonical kinetic terms, such as
in the Galileons studied in Refs. [31,32]. Those solutions
are described in vacuum environments and do not accrete
into the black hole’s horizon. The form of the equations of
motion of Galileon is not semilinear, and is harder to study
numerically, as Galileons propagate with speeds that vary at
different locations. Numerical implementation of a dynami-
cal code designed to compute evolution of such scalar fields
will be covered in a future project. We are also considering
to extend the techniques developed here to full 3D scalar
field scattering by a black hole.
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APPENDIX A: NUMERICAL IMPLEMENTATION

1. Scalar field equations of motion

Equations of motion describing evolution of a scalar
field ϕ with a (nonlinear) self-interaction potential VðϕÞ
and an external force term F propagating on a fixed
background spacetime are described by a (semilinear) PDE

□ϕ ¼ V 0ðϕÞ − F ; ðA1Þ

where □ denotes a covariant d’Alembert operator. For a
spherically symmetric black hole described by the
Schwarzschild metric

ds2 ¼ −gðrÞdt2 þ dr2

gðrÞ þ r2dΩ2; ðA2Þ

where dΩ2 is the metric on a unit sphere, and the metric
function gðrÞ is
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gðrÞ ¼ 1 −
2M
r

; ðA3Þ

the left hand side of the equation of motion is simply

□ϕ ¼ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νϕÞ

¼ −
1

gðrÞ ∂
2
tϕþ 1

r2
∂rðr2gðrÞ∂rϕÞ: ðA4Þ

This can be reduced to a one-dimensional wave equation
with constant propagation speed by introducing the tortoise
coordinate x by ∂x ¼ gðrÞ∂r. With this redefinition, the
scalar field equation of motion reads

−∂2
tϕþ 1

r2
∂xðr2∂xϕÞ ¼ gðV 0ðϕÞ − F Þ: ðA5Þ

Explicit form of the tortoise coordinate x for the
Schwarzschild spacetime can be obtained by integrating

x ¼
Z

dr
gðrÞ ¼ rþ 2M ln

�
r
2M

− 1

�
: ðA6Þ

Tortoise coordinate x is vastly preferable for numerical
integration of the wave equation over areal coordinate r
since the characteristic speed is constant on the sampled
time slice, but the added difficulty with this choice is that
accurate rðxÞ inversion is quite nontrivial numerically, as
detailed in Appendix A 6.
The standard numerical evolution scheme would involve

first-order Hamiltonian dynamical system

_ϕ ¼ π; _π ¼ 1

r2
∂xðr2∂xϕÞ − gðV 0ðϕÞ − F Þ: ðA7Þ

However, as we will see in the following section, it is easier
to handle absorbing boundary conditions if we rewrite
equations of motion in a flux-conservative form by intro-
ducing auxiliary variables u≡ ∂tϕ and v≡ r2∂xϕ, so that
equations of motion become

−∂tuþ 1

r2
∂xv ¼ gðV 0ðϕÞ − F Þ;

−∂tvþ r2∂xu ¼ 0: ðA8Þ

The first equation is the identical rewrite of the wave
equation (A5), while the second is the integrability con-
dition requiring that the partial derivatives of ϕ commute.

2. Absorbing boundary conditions

The scalar field degree of freedom ϕ asymptotes to a free
field evolution near horizon (where g → 0), and a massive
field evolution far away from the black hole (where
V 0ðϕÞ → F ). Physically, excitations in ϕ take infinite

amount of time t to reach both boundaries, yet truncating
or compactifying the evolution domain for numerical
purposes will inevitably lead to spurious reflections unless
special care is taken. The best technique to avoid spurious
reflections is to introduce absorbing boundary conditions
via perfectly matched layers (PMLs) as described in
Ref. [33], which damp the solution at the boundaries while
guaranteeing identically vanishing reflection coefficient at
the absorption layer. This is achieved by analytic continu-
ation of the equations of motion into the complex domain

x → xþ ifðxÞ; ∂x →
∂x

1þ if0ðxÞ≡
∂x

1þ γðxÞ
∂t

; ðA9Þ

which turns the oscillatory traveling waves eikx−iωt into
exponentially decaying functions of x instead. To make
attenuation length independent of ω, frequency dependent
contour deformation f0 ¼ γðxÞ=ω is chosen and i=ω is
transformed back into explicit integration operator in the
time domain. Applying this idea to the scalar field
equations of motion in flux-conservative form (A8) for
an arbitrary damping function γðxÞ, we obtain

−ð∂t þ γÞuþ 1

r2
∂xv ¼

�
1þ γðxÞ

∂t

�
½gðV 0ðϕÞ − F Þ�;

−ð∂t þ γÞvþ r2∂xu ¼ 0: ðA10Þ

To turn the inverse time evolution operator ∂−1
t into a

differential equation form, introduction of a third auxiliary
variable w is in order. With redefinition u → uþ w, the
nonreflecting PML equations of motion then become

∂tϕ ¼ u − w; ðA11aÞ

∂tu ¼ 1

r2
∂xv − γu; ðA11bÞ

∂tv ¼ r2∂xðu − wÞ − γv; ðA11cÞ

∂tw ¼ gðV 0ðϕÞ − F Þ: ðA11dÞ

The damping function γðxÞ can be quite arbitrary, but it
should have compact support near the boundaries to not
affect the evolution in the interior, and have sufficient
support and magnitude to absorb the impinging waves
which hit the boundary during the expected evolution.

3. Spectral basis

As the scalar field is usually quite stiff and does not form
shocks in the course of evolution, the method of choice to
evaluate derivative operators is spectral, as described in
Ref. [34]. Compactifying the tortoise coordinate x on a
scale l
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y ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ l2

p ≡ cos θ;
x
l
¼ y

1 − y2
¼ cot θ ðA12Þ

and introducing a Chebyshev basis on interval y ∈ ½−1; 1�

Tn ¼ cosðnθÞ;
∂xTn ¼

n
l
sinðnθÞsin2θ;

∂2
xTn ¼

n
l2

ðn cosðnθÞ þ 2 cot θ sinðnθÞÞsin4θ; ðA13Þ

we arrive at the spectral representation of the solution

ϕðxÞ ¼
X
n

cnTnðyÞ ðA14Þ

truncated to a finite number of modes. While Galerkin
method to discretize equations of motion can be employed,
the simplest method to evaluate derivative operators is
pseudospectral, where equations of motion are solved on a
Gauss-Lobatto grid

θi ¼
�
n − iþ 1

2

�
π

n
; xi ¼ l cot θi: ðA15Þ

One does not have to explicitly find coefficients cn to
evaluate the derivative operators of a function ϕðxÞ sampled
on a collocation grid xi. Instead, derivative operators like
Dij and Lij can be found in advance by solving linear
matrix equations

X
j

DijTnðxjÞ ¼ ∂xTnðxiÞ; ðA16aÞ

X
j

LijTnðxjÞ ¼
�
∂x þ

2g
r

�
∂xTnðxiÞ; ðA16bÞ

and so on for every basis function Tn evaluated at all
nodes xi.

4. Gauss-Legendre integrator

Packing the scalar field variables ϕ, u, v, w evaluated at
the collocation grid points xi into a state vector
y ≡ fϕðxiÞ; uðxiÞ; vðxiÞ; wðxiÞg, the wave equation (A11)
reduces to an autonomous dynamical system

dy
dt

¼ fðyÞ; ðA17Þ

which can be integrated by an implicit Runge-Kutta
method, as presented in Ref. [35]

y → y þ Δt ·
X
i

bigðiÞ; ðA18Þ

where the trial directions gðiÞ are defined by

gðiÞ ¼ f

�
y þ Δt ·

X
j

aijg
ðjÞ
�
: ðA19Þ

Particularly accurate choice of coefficients for a time
integrator corresponds to a Gauss-Legendre quadrature,
where the trial directions are evaluated at the zeroes of the
(shifted) Legendre polynomial

Pnð2cðiÞ − 1Þ ¼ 0; ðA20Þ

with coefficients aij and bj set by

X
j

aij½cðjÞ�k−1 ¼
1

k
½cðiÞ�k ðA21Þ

X
j

bj½cðjÞ�k−1 ¼
1

k
: ðA22Þ

The resulting time integration method is A-stable and
symplectic for Hamiltonian problems, and is extremely
easy to implement using a simple iterative scheme.

5. Static solver

Static configurations of the field ϕ have ∂tϕ ¼ 0 and can
be found by solving a (semilinear) elliptical problem

Lϕ ¼ gðV 0ðϕÞ − F Þ: ðA23Þ

One can improve a trial solution ϕ̄ using Newton’s method
by linearizing ϕ ¼ ϕ̄þ δϕ and solving

Lðϕ̄þ δϕÞ ¼ gðV 0ðϕ̄þ δϕÞ − F Þ; ðA24Þ

which translates the residual R ¼ −Lϕ̄þ gðV 0ðϕ̄Þ − F Þ
into a correction δϕ by solving a set of linear equations

ðL − gV 00ðϕ̄ÞÞδϕ ¼ −Lϕ̄þ gðV 0ðϕ̄Þ − F Þ: ðA25Þ

With the basis as chosen in the last section, this scheme
converges to machine precision in about 16 iterations or so
for most of the potentials.

6. Inverting tortoise coordinate

Accurately inverting Schwarzschild tortoise coordinate

x ¼ rþ 2M ln

�
r
2M

− 1

�
ðA26Þ

to yield areal coordinate r as a function of x turns out to be a
rather nontrivial task, despite appearances. The problem is
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that asymptotic for large positive x, where r≃ x−
2M ln ðx=2M − 1Þ, and for large negative x, where r≃
2M with exponentially suppressed metric function
ln g≃ x=2M − 1, have vastly different derivatives with
respect to x (which hampers numerical schemes like
Newton’s method), and no closed form algebraic inverse.
A trick that works for the entire usable range of x is to

solve for an approximation variable q≃ x − 2M instead

q ¼ 2M ln

�
exp

�
r
2M

− 1

�
− 1

�
; ðA27Þ

which (unlike x) is easily invertible to yield r

r ¼ 2M

�
1þ ln

�
1þ exp

q
2M

��
; ðA28Þ

and can be readily found by Newton’s method iterating
q → qþ δq with

δq ¼ −
�
rþ 2M ln

�
r
2M

− 1

�
− x

�
·
dq
dx

; ðA29Þ

as the derivative

dq
dx

¼
�
1þ exp

−q
2M

�
gðrÞ ðA30Þ

is of order one on the entire domain of definition of x. One
still has to be careful to avoid numerical overflows in the
exponents or catastrophic loss of precision when taking
logarithms of one plus a small number, which can be
achieved by evaluating

ln ð1þ eqÞ ¼
(
qþ ln ð1þ e−qÞ; q ≥ 0

2atanh eq
2þeq ; q < 0

ðA31Þ

in different limits.
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