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We show that Guilfoyle’s exact solutions of the Einstein-Maxwell equations for spherical symmetric
static electrically charged matter with a Reissner-Nordström exterior possess a bewildering plethora of
different types of solutions. For the parameter space of the solutions we use two normalized variables,
q2=R2 and r0=R, where q is the total electric charge, r0 is the radius of the object, and R is a length
representing the square root of the inverse energy density of the matter. The two other parameters, the mass
m and the Guilfoyle parameter a, both dependent on q, r0 and R, are analyzed in detail. The full parameter
space of solutions q2=R2 × r0=R is explored with the corresponding types of solutions being identified and
analyzed. The different types of solutions are regular charged stars, including charged dust stars and stars
saturating the Buchdahl-Andréasson bound, quasiblack holes, regular charged black holes with a de Sitter
core, regular black holes with a core of phantom charged matter, other exotic regular black holes,
Schwarzschild stars, Schwarzschild black holes, Kasner spacetimes, pointlike and planar naked
singularities, and the Minkowski spacetime. Allowing for q2 < 0, in which case it is not possible to
interpret q as electric charge, also yields new solutions, some of which are interesting and regular, others
are singular. Some of these types of solutions as well as the matter properties have been previously found
and studied, here the full spectrum being presented in a unified manner.
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I. INTRODUCTION

Guilfoyle found an amazing class of electric spherically
symmetric interior fluid solutions joined to a Reissner-
Nordström outer spacetime [1]. The considerable potential
of these starlike solutions has been understood by Lemos
and Zanchin, who studied the specific aspects of its fluid
properties [2], analyzed quasiblack holes as the frozen stars
[3], tested the sequence of configurations that saturate the
Buchdahl-Andréasson bound for gravitational collapse [4],
and found regular black holes within the whole set of
solutions [5]. From these previous works it is clear that
Guilfoyle’s solutions possess a richness of solutions that
must be explored in full. We thus embark on a full study of
the properties of the bewildering variety of this class of
Guilfoyle’s star solutions, i.e., we give the full spectrum
of the solutions.
The motivation for the Guilfoyle’s solutions [1] starts

with the work of Weyl [6] who has considered static
Einstein-Maxwell systems. Static Einstein-Maxwell sys-
tems have played an important role in understanding the

structure of extremely compacted objects in general
relativity. The relative simplicity of the resulting system
of differential equations allied to the rich analytical proper-
ties resulting from the coupling of the electrostatic Maxwell
and the gravitational fields are a reason for such a
relevance. In Weyl [6] a functional relation between the
metric component gtt ≡ B and the electric potential ϕ,
B ¼ BðϕÞ, the Weyl ansatz, is assumed to exist. In electro-
vacuum he found that if there is a relation, it must be of a
quadratic form BðϕÞ ¼ ð−ϵϕþ bÞ2 þ c, the Weyl relation,
where ϵ ¼ �1, b and c are arbitrary constants, and we use
units such that the speed of light and the Newton’s
gravitational constant equal unity. Majumdar [7] showed
that such a quadratic relation exists for generic static
spacetimes, not only for the axisymetric ones that Weyl
had used [6]. When c ¼ 0 the relation between the
potentials is a perfect square and in that case Majumdar
[7] and Papapetrou [8] showed that the solution is the
vacuum solution exterior to some static charged dust
distribution in which the gravitational attraction balances
exactly the electric repulsion. When the Majumdar-
Papapetrou relation holds, i.e., BðϕÞ ¼ ð−ϵϕþ bÞ2, and
besides electric fields there is matter one can further show
[7,8] that the pressure of the matter content should vanish
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and that the charge density ρe and the energy density ρm of
the charged dust must obey ρe ¼ ϵρm, i.e., the matter is
extremal matter (see also [9]). One can then construct
interior Majumdar-Papapetrou matter solutions matched to
an exterior Majumdar-Papapetrou vacuum solution. For
spherical symmetry these solutions are the Bonnor stars
[10,11], with an exterior extremal Reissner-Nordström
spacetime. On the other hand, if one wants to include
fluid pressure into the solutions, the Majumdar-Papapetrou
relation cannot hold and the Weyl relation runs into
difficulties. So a new route, other than Weyl’s and
Majumdar and Papapetrou’s, was taken. The idea was to
generalize the interior spherical symmetric Schwarzschild
solution, a very interesting and useful solution, and this was
done by Cooperstock and de la Cruz [12] and Florides [13].
They found electric star solutions. Guilfoyle final motiva-
tion was to use B ¼ BðϕÞ, the Weyl ansatz, and see which
functional forms would work that would give solutions
with pressure [1]. A simple one is BðϕÞ ¼ að−ϵϕþ bÞ2,
with a a new parameter, the Guilfoyle parameter, in which
case the Cooperstock and de la Cruz [12] star is reproduced
as a particular solution, but there are others also used in [1].
The motivation for the work [2] is related to the study of

the fluid properties that obey a Weyl ansatz B ¼ BðϕÞ,
namely, fluids that obey either a Weyl relation, a
Majumdar-Papapetrou relation, or a Guilfoyle relation.
The work [2] is based, besides [1], in the works of Das
[14], De and Raychaudhuri [15], Gautreau and Hoffman
[16], and Bonnor [17]. Das [14], showed that if the ratio
ρe=ρm ¼ ϵ is assumed, then the relation between potentials
must be of the form of the Majumdar-Papapetrou relation
B ¼ ð−ϵϕþ bÞ2. De and Raychaudhuri [15] went a step
further and generalized this theorem assuming more gen-
eral conditions, such as there is a closed equipotential
within the charged dust fluid with no singularities, holes, or
another kind of matter, then the charged dust fluid
corresponds to a Majumdar-Papapetrou solution. The
inclusion of matter with pressure into the Weyl relation
was first considered by Gautreau and Hoffman [16]. They
verified that if the metric potential B is given by the Weyl
relation BðϕÞ ¼ ð−ϵϕþ bÞ2 þ c, then the perfect fluid
satisfies the condition ρeðϵϕ − bÞ ¼ −ϵðρm þ 3pÞ ffiffiffiffi

B
p

.
Bonnor [17] also displayed some theorems for these type
of systems. In [2] the Gautreau and Hoffman [16] result was
generalized to systems obeying a Guilfoyle relation,
namely, aρeðϵϕ − bÞ ¼ −ϵðρm þ 3pþ ϵð1 − aÞρemÞ

ffiffiffiffi
B

p
,

where ρem is the electromagnetic energy density, and some
new results drawn upon [1] were extended.
The motivation for [3] was the search for quasiblack

holes within Guilfoyle’s stars [1]. Quasiblack holes are
stars on the verge of becoming black holes, stars whose
boundary to the exterior is the event horizon. Quasiblack
holes have been reported in [18–20]. Their properties were
studied in [21–25]. Previous results with electric stars with
quasiblack hole properties were reported by Bonnor [26]

(see also [10]) and in [27–29], in [28] a stability analysis of
the solutions was performed. Quasiblack holes with non-
Abelian gauge fields were found in [30] and quasiblack
holes with rotation have also been found in [31]. Now, in
[1] some simple cases of solutions were displayed, notably
solutions which obeyed the condition m > q2

r0
, where m, q,

and r0 are the mass, electric charge and radius of the star,
respectively. By extending these solutions to the limiting

case m ¼ q2

r0
quasiblack holes with pressure, i.e., relativistic

charged spheres as frozen stars, were found within
Guilfoyle’s solutions [3].
The motivation for [4] was to search whether Guilfoyle’s

stars [1] saturate the Buchdahl-Andréasson bound.
Buchdahl [32] showed that, under some physical assump-
tions, a star made of a perfect fluid would obey a compact-
ness bound r0=m ≥ 9=4. The interior Schwarzschild
solution obeys this bound, the equality appearing when
the star’s central pressure goes to infinity. For electrically
charged matter it was found by Andréasson [33] that there
was also a bound r0=m ≥ 9=ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3q2=r20

p
Þ2. While

Buchdahl’s proof is appropriate for stars, Andréasson’s
proof is appropriate for thin shells, and he demonstrated
that indeed thin shells saturate his bound, the Buchdahl-
Andréasson bound. In [4] it was shown that Guilfoyle’s
stars also saturate the Buchdahl-Andréasson bound. There
are other electric stars that do not saturate the bound,
although they almost do [34,35].
The motivation for [5] was to search for regular black

holes within Guilfoyle’s solutions [1]. Regular black holes
were envisioned by Bardeen [36] and subsequent works
displayed other type of solutions and their properties
[37–42]. In [5] it was shown that indeed there are also
regular black holes in Guilfoyle’s solutions [1].
Here we perform a full analysis and make a classification

of the plethora of Guilfoyle’s solutions for the relation
BðϕÞ ¼ að−ϵϕþ bÞ2, this set was named Ia in [1]. We
explore the whole parameter space and try to interpret all
the corresponding solutions. In passing we will deal with
imaginary electric charges, a concept that appeared first in
the context of particle solutions in general relativity and is
linked to the Einstein-Rosen bridge [43], see also [44], and
we will also deal with Kasner metrics that arise in the
interior of black holes [45,46].
The paper is organized as follows. In Sec. II the exact

Guilfoyle’s set of solutions with the ansatz BðϕÞ ¼
að−ϵϕþ bÞ2 is displayed in full, with its interior, exterior,
and junction surface. We also display the constraints the
parameters should satisfy. In Sec. III a general analysis of
the mass m and the Guilfoyle parameter a of the solutions
in terms of the other free parameters is done. In Sec. IV we
show that it is useful to visualize the parameter space
regions in a plot r0=R × q2=R2. The regions, i.e., areas in
this parameter space, then appear naturally according to the
characteristics of the respective solutions and we classify
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them and name the corresponding objects, such as normal
stars, tension stars, regular black holes, singular black holes
and others. A brief description of the kinds of solutions
contained in each region is also given. In Sec. V we study
the solutions belonging to the boundaries of the regions,
i.e., areas, described in the previous section. These regions
are lines and points in the parameter space on which
interesting solutions can be found. Finally, in Sec. VI we
conclude.

II. GUILFOYLE’S SOLUTIONS AND
CONSTRAINTS ON THE SOLUTIONS

A. Spherical static Weyl-Guilfoyle systems
and equations

The spacetime is static and spherically symmetric with
the metric written in the form

ds2 ¼ −BðrÞdt2 þ AðrÞdr2 þ r2ðdθ2 þ sin2 θdφ2Þ; ð1Þ

where ðt; r; θ;φÞ are spherical symmetric spacetime coor-
dinates, and the functions A and B depend only on the
radial coordinate r.
The source is a static charged fluid distribution with

spherical symmetry. The fluid has an energy density ρmðrÞ,
an isotropic pressure pðrÞ, an electric charge density ρeðrÞ,
and a time component of the four-velocity given by

Ut ¼ −
ffiffiffiffiffiffiffiffiffi
BðrÞ

p
; ð2Þ

the other components of the four-velocity being zero. The
electromagnetic gauge potential has only one nonzero
component, given by

At ¼ −ϕðrÞ; ð3Þ

with ϕðrÞ being the electric potential.
The mass MðrÞ inside a sphere of radius r is defined as

MðrÞ ¼
Z

r

0

4πr2
�
ρmðrÞ þ

Q2ðrÞ
8πr4

�
drþQ2ðrÞ

2r
; ð4Þ

and the electric charge QðrÞ inside a sphere of radius r is
defined as

QðrÞ ¼ 4π

Z
r

0

ρeðrÞ
ffiffiffiffiffiffiffiffiffi
AðrÞ

p
r2dr: ð5Þ

These two quantities, MðrÞ and QðrÞ, are auxiliary and
important quantities.
Now, we impose a Weyl ansatz into the system, i.e., the

metric potential BðrÞ and the electric potential ϕðrÞ are
functionally related through some relation B ¼ BðϕÞ, or in
detail BðrÞ ¼ BðϕðrÞÞ. Here we want to study systems that
obey the Guilfoyle relation [1] (see also [2]), namely,

BðrÞ ¼ a½−ϵϕðrÞ þ b�2, where ϵ ¼ �1, and a and b being
arbitrary constants. Without loss of generality one can set
b ¼ 0, since it can be absorbed into the electric potential ϕ.
Thus, the Guilfoyle relation can be written as

BðrÞ ¼ aϕ2ðrÞ; ð6Þ

with a being called the Guilfoyle parameter.
The Einstein-Maxwell equations provide the set of

equations for this system. The gravitational part of the
equations yields the relations,

B0ðrÞ
BðrÞ þ

A0ðrÞ
AðrÞ ¼ 8πrAðrÞ½ρmðrÞ þ pðrÞ�; ð7Þ

�
r

AðrÞ
�0

¼ 1 − 8πr2
�
ρmðrÞ þ

Q2ðrÞ
8πr4

�
; ð8Þ

with a prime denoting the derivative with respect to the
radial coordinate r (units in which the gravitational con-
stant and the speed of light are set to one are used). The
definition of the total charge QðrÞ inside r, see Eq. (5),
gives that the only nontrivial component of the Maxwell
equation is QðrÞ ¼ r2ϕ0ðrÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

BðrÞAðrÞp
, where an integra-

tion constant has been put to zero. The electric potential
ϕðrÞ can be written in terms of BðrÞ as ϵϕðrÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

BðrÞ=ap
,

see Eq. (6). Then, Eq. (5), can be written as

QðrÞ ¼ −ϵr2B0ðrÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffi
aAðrÞp

BðrÞ : ð9Þ

Once one has the metric functions BðrÞ and AðrÞ one
obtains the electric charge distribution through Eq. (9).
Equations (7)–(9) provide the equations for Weyl-Guilfoyle
systems.

B. Guilfoyle’s solutions

1. Interior solution

We assume that the interior solution extends from r ¼ 0
up to r ¼ r0. Guilfoyle’s solutions are found under the
additional assumption that the effective energy density
ρmðrÞ þQ2ðrÞ=8πr4 is a constant, i.e.,

8πρmðrÞ þ
Q2ðrÞ
r4

¼ 3

R2
; ð10Þ

where R, is a length parameter associated to the inverse of
the total energy density. Through the junction conditions of
the metric at the surface r0, one finds that R is to be related
to the parameters of the exterior solution, namely, the total
mass m and the total charge q. The equation of state (10) is
a generalization of the interior Schwarzschild solution
equation of state to include electrically charged matter
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and had been proposed previously [12,13]. With this
additional assumption provided by (10), one can find that
Guilfoyle’s solutions [1] are given by

AðrÞ ¼
�
1 −

r2

R2

�−1
; ð11Þ

BðrÞ ¼
�ð2 − aÞ2

a2
F2ðrÞ

�
a=ða−2Þ

; ð12Þ

ϕðrÞ ¼ ϵ

ffiffiffiffiffiffiffiffiffi
BðrÞ
a

r
; ð13Þ

8πρmðrÞ ¼
3

R2
−

a
ð2 − aÞ2

k20
R4

r2

F2ðrÞ ; ð14Þ

8πpðrÞ ¼ −
1

R2
þ a
ð2 − aÞ2

k20
R4

r2

F2ðrÞ

þ 2a
2 − a

k0
R2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

R2

q
FðrÞ ; ð15Þ

4πρeðrÞ ¼
ϵ

ffiffiffi
a

p
2 − a

k20
R4

r2

F2ðrÞ
�
1þ

3FðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

R2

q
k0r2

�
: ð16Þ

The functions MðrÞ and QðrÞ, defined in Eqs. (4) and (5),
respectively, are then

MðrÞ ¼ r3

2R2
þ a
2ð2 − aÞ2

k20
R4

r5

F2ðrÞ ; ð17Þ

QðrÞ ¼ ϵ
ffiffiffi
a

p
2 − a

k0
R2

r3

FðrÞ : ð18Þ

The function FðrÞ has the following definition

FðrÞ ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r2

R2

r
− k1; ð19Þ

with the integration constants k0 and k1 given by

k0 ¼
R2

r20

�
m
r0

−
q2

r20

��
1 −

r20
R2

�−1=a
; ð20Þ

k1 ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r20
R2

r �
1 −

a
2 − a

r20
R2

�
m
r0

−
q2

r20

�−1�
; ð21Þ

where

m≡Mðr0Þ; ð22Þ

q≡Qðr0Þ: ð23Þ

The constants k0 and k1 were found through the junction
conditions. In this work we are interested in all possible
values for the parameter a, −∞ < a < ∞. The limiting
case a → �∞ yields the uncharged, q ¼ 0, Schwarzschild
interior solution.

2. Exterior solution

For the external region, r > r0, the solution of the
Einstein-Maxwell field equations, Eqs. (7)–(9), is the
Reissner-Nordström solution, i.e.,

AðrÞ ¼ 1

1 − 2m
r þ q2

r2

; ð24Þ

BðrÞ ¼ 1

AðrÞ ¼ 1 −
2m
r

þ q2

r2
; ð25Þ

ϕðrÞ ¼ q
r
; ð26Þ

ρmðrÞ ¼ 0; ð27Þ

pðrÞ ¼ 0; ð28Þ

ρe ¼ 0: ð29Þ

The functions MðrÞ and QðrÞ are simply

MðrÞ ¼ m; ð30Þ

QðrÞ ¼ q; ð31Þ

again, withm and q being the total mass and total charge of
the exterior spacetime. By continuity, one finds that at
r ¼ r0, the metric functions are Bðr0Þ ¼ 1=Aðr0Þ ¼
1 − 2m=r0 þ q2=r20. One must also have ϕðr0Þ ¼ q=r0,
Mðr0Þ ¼ m, and Qðr0Þ ¼ q. Such a spherical electrovac-
uum spacetime has two radii associated with it, the
gravitational and the Cauchy radii, given in terms of m
and q. The gravitational radius is given by

rþ ¼ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

q
: ð32Þ

It is the horizon radius if there is a black hole. The Cauchy
radius is given by

r− ¼ m −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

q
: ð33Þ

3. Junction conditions

The matching between the interior and the exterior
solution is done at the boundary surface r ¼ r0. At this
boundary the metric should be continuous. So, by making
the junction of the interior metric function grr ¼ AðrÞ in
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Eq. (11) to the grr coefficient of the exterior metric function
given by Eq. (25), one finds [1] that

m ¼ r0
2

�
r20
R2

þ q2

r20

�
: ð34Þ

An additional junction condition has to be imposed
at r ¼ r0, namely, one must impose the continuity of the
gtt ¼ BðrÞ metric coefficient and the continuity of its first
radial derivative to obtain

a ¼ r20
4q2

�
r20
R2

−
q2

r20

�
2
�
1 −

r20
R2

�−1
; ð35Þ

where the fact that Qðr0Þ ¼ q was also taken into account.
The constants k0 and k1 in Eqs. (20)–(21) have been also
found through the junction conditions.

4. Some constraints

If we restrict the solutions to be static spheres, the
condition r0 < R has to be obeyed. This condition has been
imposed in [1]. On the other hand, when the matching
surface r0 is pushed toR one finds regular black holeswhose
central core of charged matter fills up to the Cauchy horizon
r0 ¼ r− ¼ R [4]. Therefore, we impose the constraint

r0 ≤ R: ð36Þ
In [1] it was displayed solutions satisfying some con-

ditions, m ≥ jqj and r0 > rþ, which implied m > q2=r0.
Also some energy conditions were imposed. Herewe release
all these constraints, except Eq. (36), and look at the whole
space of parameters. We give a physical interpretation to the
resulting solutions. Clearly, there is a large region in the
parameter space for which there are solutions, indeed there is
a plethora of many interesting solutions.

5. Further considerations

Let us briefly mention some of the territory in the space
of solutions we are going to explore.
First, there is the special case a ¼ 1, not considered by

Guilfoyle [1]. For the ansatz BðrÞ ¼ aϕ2ðrÞ, Eq. (6), with
a ¼ 1 one has the case with zero pressure, i.e., it is the
Majumdar-Papapetrou ansatz for electrically charged fluids
[7,8]. When this Majumdar-Papapetrou matter is joined
into a spherically symmetric vacuum one gets the Bonnor
stars with q ¼ m [9,10].
Second, for a ≠ 1 and a > 0, one finds from Eq. (34)

that there is the possibility in which the equality mr0 ¼ q2

holds, which can yield, as a particular case, the relation
q ¼ m, an extremal solution. This case has also not been
considered in [1]. This limit, mr0 ¼ q2 and q ¼ m is the
quasiblack hole limit [3]. Since the inequality a ≠ 1 holds
in this case, it means the corresponding quasiblack hole is
made of a fluid with nonzero pressure. As we will see, in
fact, this point in the parameter space, namely, q ¼ r0 ¼ m
is degenerated.

Third, another region in the parameter space, also not
explored in the original paper [1], corresponds to extremely
compact objects [4]. These objects are found by allowing the
central pressure to assume arbitrarily large values and the
objects saturate the Buchdahl-Andréasson bound [32,33].
The above mentioned solutions are valid for all a > 0,

with the a → ∞ needing a special treatment. The case
a ¼ 0 is also special and requires a careful analysis in order
to check if there are solutions in such a limit. If one allows
a < 0 then other interesting solutions may be found. In the
following we study all the possibilities.

III. GENERAL ANALYSIS, ANALYSIS
OF THE PARAMETERS m AND a, AND DISPLAY

OF SOME SPECIAL CASES

A. General analysis

1. The range of the parameters of the two-dimensional
parameter space q2=R2 × r0=R

These solutions have five parameters, namely, a, m, r0,
R, and q. Taking into account the two relations (34) and
(35), one can consider that the free parameters of the model
are three, we choose them to be the electric charge q, the
radius of the star r0, and the energy density parameter R.
In the respective parameter space, these parameters in
principle have the following range: 0 ≤ r0 < ∞,
−∞ < q < ∞, and 0 ≤ R < ∞. The choice for the range
of r0 is obvious. The choice for the range of q is based in
the usual physical interpretation of the electric charge.
However, we will do differently, and will allow q to assume
imaginary values, i.e., we will allow q2 < 0. The inter-
pretation of the parameter R, following its definition from
Eq. (10), is that large R means low energy densities while
small R represents large energy densities. The limiting
value R → 0 may be interpreted as a singular pointlike
solution, while R → ∞ represents empty space. To display
in a clear way the spectrum of solutions we can do better,
and without loss of generality, display the solutions in a
two-dimensional parameter space instead of in the three-
dimensional space spanned by r0, q, and R.
For this let us give arguments to choose the two-

dimensional dimensionless parameter space q2=R2 ×
r0=R as the most interesting choice and also give the
range of q2=R2 and r0=R.
We consider the dimensionless ratio q2=R2 as a first free

parameter. Now, the constraint (36) together with
Eqs. (34)–(35) imply m and a may be zero or negative
only if q2 is allowed to be negative. So, we may consider
the dimensionless ratio q2=R2 with a range of q2=R2 not
restricted, i.e.,

−∞ <
q2

R2
< ∞: ð37Þ

We are thus allowing for an imaginary electric charge. The
range of q2 is the same as the range of q2=R2. We use the
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usual convention for the modulus of the electric charge, i.e.,
for q2 < 0 we denote jqj ¼

ffiffiffiffiffiffiffiffi
jq2j

p
and for q2 > 0 we

denote jqj ¼
ffiffiffiffiffi
q2

p
.

We consider the dimensionless ratio r0=R as a second
free parameter. The constraint (36) together with the size of
the charged matter distributions, which is given by its
radius r0 and the total energy density, codified by the
parameter R, are related to the compactness of the objects.
For instance, large energy densities may be obtained by
taking a fixed mass m and diminishing r0, or by fixing r0
and diminishing R. Moreover, the metric functions depend
only on the ratio r0=R, and, of course, on r=R. Hence, it is
interesting to consider the ratio r0=R as the true free
parameter of the model. This, together with the constraint
r0 ≤ R imposed by the model, Eq. (36), implies that the
range of the r0=R parameter is

0 ≤
r0
R

≤ 1: ð38Þ

The parameter space q2=R2 × r0=R is therefore two-
dimensional. The range of the parameters given in Eqs. (37)
and (38) defines then a strip in the two-dimensional
parameter space. A preliminary analysis will be performed

on the parameters m and a in terms of the free parameters
q2=R2 and r0=R. Figures 1 to 4 will help in the under-
standing of the whole spectrum of solutions.
For the study that follows, it shall be convenient to divide

the parameter space into two sectors: (I) q2=R2 > 0, and
(II) q2=R2 < 0, the q2=R2 ¼ 0 case being a vertical line.
These sectors are properly indicated in Figs. 1 and 2.

2. On the imaginary electric charge

From Eq. (37) the case of negative squared charge,
q2=R2 < 0 also enters the analysis. It deserves some
comments.
Equation (35) implies that for negative q2 the parameter

amust be negative. This is clear after replacing q2 by −jqj2
and taking into account that r20=R

2 is not larger than unity.
This has implications for the interior. From Eq. (18) one

finds that in this case, i.e., for a < 0, Q2ðrÞ is negative. So
QðrÞ is a pure imaginary number, as is q. The electric

1.0 0.5 0.0 0.5 1.0 1.5

0.0

0.2

0.4

0.6

0.8

1.0

m
q

m
0 m

q

m q

m q

m q

m 0

r0

R

q2

R2

Q

B

S

r0 r Rr0 r R r0 r R

r0 r 0 r0 r 0

II I

FIG. 1. Level curves for m and corresponding areas in the
q2=R2 × r0=R plane. For q2=R2 > 0 the curve for m ¼ jqj co-
incideswith the curve fora ¼ 1.Also indicated are the lines r0 ¼ r−
(dotted-dashed horizontal line r0=R ¼ 1, with q2=R2 ≥ 1),
r0 ¼ rþ (dotted-dashed horizontal line r0=R ¼ 1, with
q2=R2 ≤ 1), rþ ¼ r0 ¼ 0, and r− ¼ r0 ¼ 0, as well as the points
B representing the Buchdahl limit with ðq ¼ 0; m=r0 ¼ 4=9Þ, Q
representing the quasiblack hole limit with ðrþ ¼ r− ¼
r0 ¼ m ¼ jqjÞ, and S representing the Schwarzschild black hole
limit with ðq ¼ 0; r0 ¼ 0Þ.
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FIG. 2. Several contours for different values of the parameter a
as a function of the normalized charge (q2=R2) and radius of the
star r0=R. The set of curves in the q2 > 0 sector [sector (I)] are all
for positive values of a, including a ¼ 0. The set of curves in the
q2 < 0 sector [sector (II)] are all for negative values of a. Curves
with the following a s are drawn: a ¼ �0.0 [solid line in sector
(I) only], a ¼ �0.5 (dashed closed line, in both sectors), a ¼
�1.0 (dotted-dashed closed line, in both sectors), a ¼ �2.5
(spaced-dashed closed line, in both sectors), a ¼ �10 (dotted
external curve, in both sectors). The a ¼ �∞ curves are
composed of the three axes (top horizontal, vertical, bottom
horizontal) in the q2 ≥ 0 sector, and the three axes (top hori-
zontal, vertical, bottom horizontal) in the q2 ≤ 0 sector, respec-
tively, and can be thought as closing at q2=R2 → �∞,
respectively. All contours are closed curves (the a ¼ 0 line
can be considered a trivial closed curve). See text for details.
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potential ϕ is also a pure imaginary function to guarantee
the metric coefficient BðrÞ is a real and positive function.
On the other hand, all the metric spacetime functions are
real since they depend on q2 which is a real negative
parameter.
The negativity of q2 has also implications for the exterior.

For negative q2 the metric function of the external Reissner-
Nordström spacetime, BðrÞ¼1=AðrÞ¼1�2m=rþq2=r2¼
1−2m=r−jqj2=r2, Eq. (25), has only one positive root, rþ,
given by rþ ¼ mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jqj2

p
, i.e., it is given as in

Eq. (32) with q2 → −jqj2. This is the gravitational radius
of the solution, a horizon if r0 < rþ. Using Eq. (34) we can
show that for q2 < 0 the gravitational radius rþ is never
larger than the radius of the matching boundary r0, i.e.,
rþ ≤ r0, for q2 < 0, with the equality holding in the limit
q2 → −∞. Hence, no black hole-type solutions are found for
q2 < 0. Further properties of the solutions with q2 < 0 are
discussed later.
For a negative q2 it is not possible to interpret q as

electric charge. Notwithstanding, a negative q2 term was
suggested by Einstein and Rosen in considering singularity
free massless particles [43]. A similar situation happens for
static spherical black hole solutions in a brane-world
gravity scenario [44], where a tidal charge that may be
negative plays the same role as the negative q2 term in the
Reissner-Nordström metric.

B. Analysis of the mass parameter mðq2;r0;RÞ
1. Generics

The behavior of the mass m is given in Eq. (34). Clearly
m is a function of q2, r0 and R (it is actually a function of
R2, but since R > 0, the choice for R or R2 is indifferent, it
is done here for reasons of better graphic displaying).
Also from Eq. (34) one sees that the mass function
mðq2; r0; RÞ can be written formally as mðq2; r0; RÞ ¼
mðr0; q2=R2; r0=RÞ. Figure 1 shows the behavior of the
mass function mðq2; r0; RÞ ¼ mðr0; q2=R2; r0=RÞ given by
Eq. (34). Figures 3 and 4 will also be referred to in this
analysis.
To simplify the analysis, we consider separately the

regions of the parameter space corresponding to five
interesting classes of m: m < 0; m ¼ 0; 0 < m < jqj;
m ¼ jqj; and m > jqj, where again, for q2 < 0 we denote
jqj ¼

ffiffiffiffiffiffiffiffi
jq2j

p
and for q2 > 0 we denote jqj ¼

ffiffiffiffiffi
q2

p
. Of

special interest is the classm ¼ jqj, it is a curve that has two
branches, namely, a closed curve in sector (I) and an open
curve in sector (II), see Fig. 1.

2. The various classes of m

m < 0.—Since we are allowing mass contribution from the
electromagnetic field to be negative, the total gravitational
mass of the system can be negative. The related region of

the parameter space is below the curve m ¼ 0 as seen in
Fig. 1. In Figs. 3 and 4 the region corresponding to the
m < 0 solutions is labeled by (h).
A particular case that can be dealt with analytically

is the case m ¼ −jqj. This solution is obtained by putting
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−q2 ¼ m2 into Eq. (34). The resulting negative mass is
given by m ¼ r0ð−1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r20=R

2
p

Þ. The corresponding
curve is not drawn in Fig. 1. The curve would be in region
(h) of Figs. 3 and 4 but it is also not drawn.
All the solutions with m < 0 are singular and seem to be

of little physical interest.
m ¼ 0.—The condition

mðr0; q2=R2; r0=RÞ ¼ 0; ð39Þ
imposed to Eq. (34) furnishes the relation

q2

R2
¼ −

r40
R4

: ð40Þ

The Guilfoyle parameter is negative in this case, it is given
by a ¼ −ðr20=R2Þð1 − r20=R

2Þ. This yields the curve m ¼ 0
shown in sector (II) of Fig. 1, see also Figs. 3 and 4 where
the curvem ¼ 0 is denoted byC5. The solutions on this line
present singularities and have little importance as star
models.

0 < m < jqj.—The solutions with the mass m in this range
of values represent stars, see Fig. 1. The star radius r0 is
larger than the gravitational radius, i.e., r0 > rþ both when
q2 > 0 or q2 < 0. For q2 > 0 the stars are overcharged.
Some of these solutions are regular, as those in regions (b)
and (i) of Figs. 3 and 4, while others are singular, as those in
regions (c) and (g) of the same figures. Notice that only
parts of regions (g) and (i) contains object that satisfy
0 < m < jqj. The main aspects of these positive mass
overcharged starts are examined in some detail later.
m ¼ jqj.—The condition

m2ðr0; q2=R2; r0=RÞ ¼ �q2; ð41Þ

imposed to Eq. (34) yields two equations depending on the
sign of q2. We analyze the two cases separately.
q2=r20 < 0: In this case Eqs. (34) and (41) give

m2

r20
þ 2m

r0
−

r20
R2

¼ 0: ð42Þ

There are two solutions to this equation, namely,
m ¼ r0ð−1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r20=R

2
p

Þ. One of them yields a negative
mass, which was already considered in the case m < 0
above. Here we take the one that yields positive mass,

m ¼ jqj ¼ r0

�
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r20

R2

r �
; ð43Þ

or

m2 ¼ −q2 ¼ r20

�
2þ r20

R2
− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r20

R2

r �
: ð44Þ

This equation generates the line indicated by the appro-
priate label in sector (II) of Fig. 1. The solutions on this line
can be regular stars or singular objects, and the pressure
does not vanishes inside the fluid for these stars. The
regular stars are located in region (i), while the singular
solutions are located in region (g) of Figs. 3 and 4. These
solutions have not been studied in the literature. The region
to the right-hand side of such a curve contains charged
starlike solutions and other solutions with m > jqj, while
the region to the left of that curve contains solutions
with m < jqj.
q2=r20 > 0: In this case Eqs. (34) and (41) give

m2

r20
−
2m
r0

þ r20
R2

¼ 0: ð45Þ

The solution to this equation is

m ¼ jqj ¼ r0

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r20
R2

r �
; ð46Þ

or

m2 ¼ q2 ¼ r20

�
2 −

r20
R2

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r20
R2

r �
: ð47Þ

The closed curve indicated by the label m ¼ jqj in the
sector (I) of Fig. 1 is the complete solution, found joining
the plus and minus solutions of Eq. (46). In Figs. 3 and 4
them ¼ jqj solution is the sum of the curves denoted by C0

and C2. In the Guilfoyle’s solutions [1] the condition m ¼
jqj is identical to the condition a ¼ 1. This means that for
this class of solutions the pressure is zero everywhere inside
the fluid [9] (see also [2]), corresponding to charged dust
stars and also to quasiblack holes [3].

m > jqj.—This class has objects for a large range of
parameters and in several regions of the parameter space.
In the region q2=R2 < 0, sector (II) in Fig. 1, the

solutions with m > jqj are in the small portion of the
sector between the axis q2=R2 ¼ 0 and the line m ¼ jqj.
Objects in this region may be regular stars, as those in the
part of region (i) in Figs. 3 and 4 above the curve m ¼ jqj,
or singular objects such those in the part of region (g) above
the curve m ¼ jqj.
In the region 0 < q2=R2 < 1, within sector (I) in Fig. 1,

the objects with m > jqj are locate in the region above the
curve m ¼ jqj. In Figs. 3 and 4 this region is labeled by (f)
and (a). The Buchdahl-Andréasson bound divides the
undercharged star solutions that are regular [in region
(i)] from those that are singular [in region (f)]. For the
Buchdahl-Andréasson bound line see below and see curve
C4 in Figs. 3 and 4).
In the region 1 < q2=R2 < ∞, within sector (I) in Fig. 1,

the objects with m > jqj are located are located in the
region outside the curve m ¼ jqj. Here the constraint
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r0 < r− holds and the solutions are regular black holes, see
[5] for more information. In Figs. 3 and 4 these solutions
cover regions (d) and (e).

C. Analysis of the parameter aðq2;r0;RÞ
1. Generics

The behavior of the Guilfoyle parameter a is given in
Eq. (35). Clearly a is a function of q2, r0 and R (it is
actually a function of R2, but since R > 0, the choice for R
or R2 is indifferent, it is done here for reasons of better
graphic displaying). Also from Eq. (35) one sees that the
Guilfoyle parameter aðq2; r0; RÞ can be written formally as
aðq2; r0; RÞ ¼ aðq2=R2; r0=RÞ. Figure 2, where some
important curves are drawn, shows the behavior of the
Guilfoyle parameter aðq2; r0; RÞ ¼ aðq2=R2; r0=RÞ given
by Eq. (35). We identify some special regions in the
parameter space according to the values of a and give
the general properties of the solutions belonging to each
one of such regions. Figures 3 and 4 will also be referred in
this analysis. Figure 1, which shows some curves for the
mass m, is also useful in the study of the parameter a.
From Eq. (35), taking into account the parameter

intervals given in Eqs. (37) and (38), it follows that a
assumes values in the interval

−∞ < a < ∞: ð48Þ
As seen from Eq. (35), the limit of infinite a, a → ∞,
corresponds to a vanishing electric charge. Also, from
Eq. (6), in this limit the electric potential vanishes in such a
way that the geometric function BðrÞ remains finite. In this
sense the Schwarzschild interior solution is a particular
case of the Guilfoyle’s solutions. The limit a → −∞ has the
same properties as the limit a → ∞. Moreover, a also
acquires arbitrarily large values when r0=R ¼ 0 for q2 ≠ 0,
and r0=R ¼ 1 for all values of q2=R2 except q2=r20 ¼ 1. In
the other limit, the limit of vanishing a, a ¼ 0, it requires
that the electric charge assumes arbitrarily large values, in
such a way that the limit of aϕ2 is finite. This case is
considered here for completeness. The parameter a also
vanishes for q2=R2 ¼ r40=R

4 with r20=R
2 ≠ 1. Hence, a ¼ 0

is also of interest in the present study. The Guilfoyle
parameter is therefore in the range given in Eq. (48).
Now it is convenient to consider separately the two

sectors: (I) q2=R2 > 0 and 0 ≤ r0=R ≤ 1, where a is
positive; (II) q2=R2 < 0 and 0 ≤ r0=R ≤ 1, where a is
negative, as indicated in Fig. 2, see also Fig. 1. We draw
some curves for constant values of aðq2=R2; r0=RÞ for the
ranges given in Eqs. (37) and (38), i.e., −∞ < q2=R2 < ∞
and 0 ≤ r0=R ≤ 1, see Fig. 2. Considering that the a ¼ −∞
line closes at q2=R2 → −∞, that a ¼ 0 line is a closed
curve, actually trivially closed, and that the a ¼ −∞ line
closes at q2=R2 → ∞, one finds that all contours a ¼
constant are closed curves.

To simplify the analysis, we study separately the regions
of the parameter space in seven interesting classes of a:
a ¼ −∞; −∞ < a < 0; a ¼ 0; 0 < a < 1; a ¼ 1;
1 < a < ∞; a ¼ ∞. Below we investigate each one of
these classes.

2. The various classes of a

a ¼ −∞: Singular solutions and uncharged Schwarzschild
stars.—The limit a ¼ −∞ arises only for q2 ≤ 0. In Fig. 2,
the a ¼ −∞ limit is composed of the top horizontal line
r0=R ¼ 1 with r0 ¼ rþ ¼ R in the sector q2 < 0, plus the
vertical line q2=r20 ¼ 0, plus the bottom horizontal line
r0=R ¼ 0 with r0 ¼ r− ¼ 0 in the sector q2 < 0. One can
then think that the top and bottom horizontal lines join to
form a closed curve at q2=R2 → −∞. Indeed, the a ¼ −∞
limit appears in several instances that can be deduced using
Eq. (35) as we now show.
One instance is when r0=R → 1. Here, one finds that the

a ¼ −∞ limit admits charged singular solutions with
r0=R ¼ 1 and where r0 ¼ rþ ¼ R, see Fig. 2.
Another instance is for q2=r20 → 0 with nonzero r0=R,

i.e., the zero charged solutions with finite nonzero radius r0
yield a ¼ −∞. These solutions compose the interior
Schwarzschild solution and correspond to the vertical line
q2=R2 ¼ 0 in Fig. 2.
Yet another instance is when r0=R → 0. Here, one finds

that the a ¼ −∞ limit admits charged singular solutions
where r0 ¼ rþ ¼ 0, see Fig. 2.
Finally, one can then think that the top and bottom

horizontal lines join at q2=R2 → −∞ to form a
closed curve.

−∞ < a < 0: Regular stars and singular solutions.—The
negative a class, −∞ < a < 0, includes all the sector (II) in
Fig. 2, which covers the parameter space portion given by
q2=R2 < 0 (i.e., imaginary electric charge) and
0 < r0=R < 1. In Fig. 2 four representative curves of this
class, namely, a ¼ −10, a ¼ −2.5, a ¼ −1.0, and
a ¼ −0.5, are shown as a dotted closed line, a spaced-
dashed closed line, and a dotted-dashed closed line, and a
dashed closed line, respectively.
In this class, the matching surface r0 is outside the

gravitational radius rþ ¼ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jqj2

p
[see Eq. (32)

and the discussion in Sec. III A 2]. So there are no black
holes in this class. The solutions can be regular or singular,
depending on the relative values of the parameters. A more
complete discussion of sector (II) is given below, see also
Figs. 3 and 4.

a ¼ 0: The Schwarzschild vacuum solution, the quasiblack
hole, and generic singular solutions.—The curve

aðr0; q2=R2; r0=RÞ ¼ 0; ð49Þ
is shown in Fig. 2, it is the solid line in region (I). In Figs. 3
and 4 the curve is indicated by C1. Considering the
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Guilfoyle relation, Eq. (6), one sees that Eq. (49), will give
solutions with BðrÞ ¼ 0. Note also that from Eq. (35) the
condition a ¼ 0 only occurs for q2=R2 > 0, i.e., q2 > 0.
Bearing in mind this restriction we can say the following
for a ¼ 0.
From Eq. (35), one sees that Eq. (49), is satisfied in the

plane q2=R2 × r0=R, by the curve

r0
R

¼
ffiffiffiffiffiffi
jqj
R

r
; ð50Þ

for q2=R2 ≠ 0 and r0=R ≠ 0, q2=R2 ≠ 1 and r0=R ≠ 1, and
q2=R2 > 0 as stated above. The corresponding mass is
m ¼ r30=R

2 ¼ q2=r0. The solutions in this curve represent
singular solutions. They are without physical interest
except for the two limiting end points of the curve.
The two limiting points of the curve, namely, q2=R2 ¼ 0

and r0=R ¼ 0, and q2=R2 ¼ 1 and r0=R ¼ 1, must be
analyzed with care. In the case q2=R2 ¼ 0 and r0=R ¼ 0,
one finds that to get a ¼ 0 the point must be approached in
a specific way, namely, from Eq. (35) one should put first
r40 ¼ R2q2, and only then one takes r20=R

2 → 0 and so
q2=r20 → 0, then also a ¼ 0 [if one had put q2=r20 ¼ 0

without r40 ¼ R2q2 holding, then from Eq. (35) one gets
a → ∞]. This point is the point S displayed in Figs. 3 and 4
and through this limit S represents the Schwarzschild
vacuum solution. The other possible case with Eq. (49)
holding is the other limiting point q2=R2 ¼ 1 and
r0=R ¼ 1. It is the quasiblack hole point Q also displayed
in Figs. 3 and 4. These points will be discussed later on.

0 < a < 1: Overcharged tension stars and singular
solutions.—The class for which the condition 0 < a < 1
holds occupies a portion in sector (I) of Fig. 2. It is also the
same portion for whichm < jqj, with q2 > 0, see Fig. 1. In
Fig. 2 one representative curve of this class, namely
a ¼ 0.5, is shown as a dashed closed line. In Figs. 3
and 4 such a portion covers the regions indicated by (b) and
(c), and also the curve C1. The matching surface is outside
the gravitational radius, r0 > rþ, so the solutions in this
portion are not black holes. For relatively large values of
r20=q

2, namely, for r40 > q2R2, within this portion, the
solutions are regular everywhere, whereas for r40 < q2R2,
the solutions are singular in the sense that there are surfaces
of infinite pressure or infinite energy density for some
radius r inside r0. In Figs. 3 and 4, region (b) contains
overcharged tension (negative pressure) stars, region
(c) contains the singular solutions just mentioned.

a ¼ 1: Charged dust stars and other solutions.—The
equation

aðq2=R2; r0=RÞ ¼ 1; ð51Þ

defines a closed curve indicated by a dotted-dashed line in
sector (I) of Fig. 2. It is also the closed curve labeled as

m ¼ jqj for q2=R2 in Fig. 1. In Figs. 3 and 4 this closed
curve is given by the union of the curves C0 and C2.
All the solutions on this curve have zero pressure,

pðrÞ ¼ 0, and the matter is extremely charged ρm ¼ ρe,
i.e., it is made of Majumdar-Papapetrou matter. For all
these solutions, the spacetime region exterior to the
boundary r > r0 is the extreme Reissner-Nordström space-
time, for which m ¼ jqj.
The left part of the a ¼ 1 curve in Fig. 2, labeled byC0 in

Figs. 3 and 4, contains solutions that represent zero
pressure regular charged stars. These are the Bonnor stars
studied in the literature. The right part of the a ¼ 1 curve in
Fig. 2, labeled by C2 in Figs. 3 and 4, contains solutions
that represent zero pressure singular solutions, the energy
density ρm reaching arbitrarily large values for certain
values of the radius r within the star.
The two parts of the a ¼ 1 curve meet at two points, the

upper point Q and the lower point S. The point Q is the
quasiblack hole limit (see Figs. 3 and 4). It is a degenerated
point in the sense that, besides solutions with zero pressure,
it contains solutions with nonzero pressure. Q is the
quasiblack hole point [3]. The point S is also degenerated,
it represents different solutions. The limit along these two
parts of the curve gives the Minkowski empty spacetime.
More details on these points are given later on.

1 < a < ∞: Charged stars, regular black holes, singular
black holes, and other singular solutions.—The class for
which the condition 1 < a < ∞ holds occupies an outer
portion in sector (I) of Fig. 2. In Fig. 2 two representative
curves of this class, namely, a ¼ 2.5 and a ¼ 10, are shown
as a spaced-dashed closed line and a dotted closed line,
respectively.
There are several distinct subclasses of solutions. These

subclasses appear distinctively in Figs. 3 and 4, and the
corresponding regions are indicated by (a) which has
undercharged stars studied in the original work by
Guilfoyle [1], (d) which shows regular black holes with
negative energy density [5], (e) which presents regular
black holes with a central core of phantommatter studied in
[5], and (f) which has singular solutions. A description of
the properties of each class of solutions will be done later.

a ¼ ∞: Regular black holes with a de Sitter core, singular
solutions, and uncharged Schwarzschild stars.—The limit
a ¼ ∞ arises only for q2 ≥ 0. In Fig. 2, the a ¼ ∞ limit is
composed of the top horizontal line r0=R ¼ 1 with r0 ¼
rþ ¼ R and r0 ¼ r− ¼ R in the sector q2 > 0, plus the
vertical line q2=r20 ¼ 0, plus the bottom horizontal line
r0=R ¼ 0 with r0 ¼ r− ¼ 0 in the sector q2 > 0. One can
then think that the top and bottom horizontal line join to
form a closed curve at q2=R2 → ∞. Indeed, the a ¼ ∞
limit appears in several instances that can be deduced using
Eq. (35) as we now show.
One instance is when q2=r20 ≠ r20=R

2 and r0=R → 1. One
finds that the a ¼ ∞ limit admits charged solutions with
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r0=R ¼ 1 for which the matching radius r0 coincides with
the inner horizon r− of the Reissner-Nordström black hole
[5] (see also [41]). These are regular black holes containing
a perfect fluid of de Sitter type and a coat of electric charge
at the surface boundary r0, where r0 ¼ r− ¼ R, see Fig. 2.
One also finds that the a ¼ ∞ limit admits charged singular
solutions with r0=R ¼ 1 and where r0 ¼ rþ ¼ R, see
Fig. 2. Note that the excluded point in the analysis above,
q2=R2 ¼ 1, r0=R ¼ 1, is the quasiblack hole point, indi-
cated by Q in Figs. 3 and 4. It is characterized by
r0 ¼ r− ¼ rþ ¼ R. In this case aðq; r0Þ is not defined
there, it has any value including a ¼ ∞, depending on how
each one of the parameters approaches unity. A more
detailed analysis is given later.
Another instance is for q2=r20 → 0 with nonzero r0=R,

i.e., the zero charged solutions with finite nonzero radius r0
yield a ¼ ∞. These solutions compose the interior
Schwarzschild solution and correspond to the vertical line
q2=R2 ¼ 0 in Fig. 2.
Yet another instance is when r0=R → 0. Here, one finds

that the a ¼ ∞ limit admits charged singular solutions
where r0 ¼ r− ¼ 0, see Fig. 2.
Finally, one can then think that the top and bottom

horizontal lines join at q2=R2 → ∞ to form a closed curve.

D. Special nontrivial cases that can be displayed
analytically

1. The Schwarzschild interior solution and the
Schwarzschild star

In the limit of zero electrical charge q2 ¼ 0 one obtains
expressions for the metric potentials and for the fluid
quantities directly from the Guilfoyle’s solution. In this
limit q2 ¼ 0 one also has that the a parameter obeys
a ¼ �∞, see Eq. (35). Taking then the limit q2 → 0 one
gets for the functions given in Eqs. (11)–(16) the following
expressions,

AðrÞ ¼
�
1 −

r2

R2

�−1
; ð52Þ

BðrÞ ¼ 1

4

�
3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r20
R2

r
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r2

R2

r �2

; ð53Þ

ϕðrÞ ¼ 0; ð54Þ

8πρmðrÞ ¼
3

R2
; ð55Þ

8πpðrÞ ¼ −1þ
2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

R2

q
3

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

0

R2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

R2

q ; ð56Þ

ρeðrÞ ¼ 0: ð57Þ

The functionsMðrÞ andQðrÞ of Eqs. (17) and (18) are now

MðrÞ ¼ 1

2

r3

R2
; ð58Þ

QðrÞ ¼ 0 ð59Þ

respectively. The auxiliary function FðrÞ given in Eq. (19)
is still

FðrÞ ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r2

R2

r
− k1; ð60Þ

and k0 and k1 given in Eqs. (20) and (21) are now

k0 ¼
m
r0

R2

r20
; ð61Þ

k1 ¼
�
1þ m

r0

R2

r20

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r20
R2

r
; ð62Þ

respectively. The auxiliary function FðrÞ and k0 and k1 are
already embedded into Eqs. (52)–(57). Also the mass m
and the electric charge q defined in Eqs. (22) and (23)
are now

m ¼ Mðr0Þ ¼
1

2

r30
R2

; ð63Þ

q ¼ Qðr0Þ ¼ 0: ð64Þ

Of course this set of equations are the Schwarzschild
interior solution. The exterior solution is the
Schwarzschild spacetime, with the metric coefficients of
Eqs. (24) and (25) being now given by

AðrÞ ¼ 1

1 − 2m
r

; ð65Þ

BðrÞ ¼ 1

AðrÞ ¼ 1 −
2m
r

: ð66Þ

These metric potentials should then be inserted into the
metric (1). The electric potential and the electric field
components are equal to zero. Interior and exterior
Schwarzschild solutions compose what one may call the
Schwarzschild star.
Note that from Eq. (58) the mass m of these

Schwarzschild stars goes to zero with r30. Therefore, the
resulting solution in the limit of r0 ¼ 0 is the Minkowski
spacetime.
In Figs. 1–4 the Schwarzschild stars are contained in the

line segment q2=R2 ¼ 0 and 0 < r0=R < 1. When one
takes the limit of the line q2=R2 ¼ 0 down to r0=R ¼ 0 one
arrives at the point S shown in Fig. 1 and Figs. 3–4, which
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in this limit represents Minkowski spacetime. In Fig. 2 the
line q2=R2 ¼ 0 and 0 < r0=R < 1 is part of the
curves a → �∞.

2. The Buchdahl-Andréasson bound

An important relation between the parameters of the
solutions, i.e., betweenm, q, and r0, appears when the fluid
pressure at the center of the star goes to infinity. This limit
gives the Buchdahl-Andréasson bound [4],

m
r0

¼
�
1

3
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

9
þ q2

3r20

s �2

: ð67Þ

From Eq. (67) one can extract three interesting cases. For
q2=r20 ¼ 0, i.e., the zero electrically charged case, one gets
the Buchdahl bound, m=r0 ¼ 4=9 [4]. For q2=r20 ¼ 1, i.e.,
the extremal case, one gets the quasiblack hole limit,
m=r0 ¼ 1 [3]. For q2=r2 ¼ −1=3, i.e., the maximal com-
pact star, one gets the maximum value of the Buchdahl-
Andréasson bound, m=r0 ¼ 9, indeed a very compact star
that has negative q2, not considered in [4], but clearly the
bound also holds for negative q2 as long as one
has q2=r20 ≥ −1=3.
The Buchdahl-Andréasson bound appears as the curve

C4 in Figs. 3 and 4.

3. The case r0 = r+
When the radius of the object r0 reaches rþ one has two

situations. From Eq. (32) one has r0 ¼ mðq; r0; RÞ þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ðq; r0; RÞ − q2

p
and from Eq. (34) this yields

r0 ¼
q2

2r0
þ r30
2R2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
q2

2r0
þ r30
2R2

�
2

− q2

s
. ð68Þ

Equation (68) has two solutions.
One solution is

r0 ¼ rþ ¼ R; ð69Þ

which is satisfied as long as −∞ < q2=R2 < 1. It repre-
sents infinite pressure solutions with matching at the
Reissner-Nordström horizon, i.e., singular solutions.
The other solution is

r0 ¼ rþ ¼ 0; ð70Þ

satisfied for all q2 ≤ 0. It represents negative mass naked
singularities, see Appendix A 1 for details.
In Figs. 1–4 these two sets of singular solutions are

represented and explicitly indicated by the appropriate
labels. In Fig. 2 the solutions mentioned in this section
are part of the curves a ¼ �∞.

4. The case r0 = r−
When the radius of the object r0 reaches r− one has very

interesting situations. From Eq. (33) one has r0 ¼
mðq; r0; RÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ðq; r0; RÞ − q2

p
and from Eq. (34) this

yields

r0 ¼
q2

2r0
þ r30
2R2

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
q2

2r0
þ r30
2R2

�
2

− q2

s
: ð71Þ

Equation (71) has two solutions.
One solution is

r0 ¼ r− ¼ R; ð72Þ

which is satisfied only for q2=R2 > 1. It gives regular black
holes with a de Sitter core with a matching at the Cauchy
horizon. These solutions were studied in [5] (see also [41]).
The other solution is

r0 ¼ r− ¼ 0; ð73Þ

satisfied for all q2=R2 > 0. It is a Kasner spacetime time,
see Appendix A 2 for details.
In Figs. 1–4 these two sets of solutions are represented

and explicitly indicated by the appropriate labels. In
Fig. 2 the solutions mentioned above are part of the curves
a ¼ �∞.

5. The case r0 = r+ = r−
When the radius of the object r0 reaches a double

horizon rþ ¼ r− one has from Eqs. (32)–(34) the result

r0 ¼ rþ ¼ r− ¼ m ¼ q ¼ R: ð74Þ

This is the quasiblack hole. It is an extremal object with
very interesting properties, for details see [3].
In Figs. 1–4 the quasiblack hole is represented. In Fig. 1

and Figs. 3–4 it is explicitly indicated by the appropriate
labels. In Fig. 2 it is a point in all positive a curves, in
particular in the curve a ¼ ∞.

E. Generics to the next two sections

A point in the parameter space q2=R2 × r0=R represents
one solution. Thus all solutions are represented in this
parameter space. These solutions can be physical or
unphysical, although this division can be subjective. In
the sector q2 ≥ 0, the physical ones are normal under-
charged stars, dust extremely charged stars, overcharged
tension stars, and regular black holes with a phantommatter
core, and the unphysical ones are regular black holes with
negative energy densities and singular solutions. In the
sector q2 < 0, there are regular and singular solutions.
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Figures 3 and 4 display the regions, areas in the figure,
where the solutions are regular, represented by white
regions, and solutions where the pressure and, or, the
energy-density inside the fluid distribution are singular,
represented by gray regions. The boundaries of these
regions are lines or points which also represent solutions.
In the next two sections we comment carefully what the
regions and boundaries represent physically. We start with
regions in the q2=R2 ≥ 0 sector [regions (a), (b), (c), (d),
(e), and (f)], some of them have solutions with interesting
physical meaning, and then continue into regions in the
q2=R2 < 0 sector [regions (g), (h), and (i)]. We also study
the lines and points, boundaries of the analyzed areas,
namely, the curves C0, C1, C2, C3, C4, C5, the horizontal
and vertical axes and lines, and the points S, B, and Q.
The analysis has been performed usingMathematica and

exploring in detail the whole spectrum of this plethora of
solutions. It was a meticulous work.

IV. REGULARAND SINGULARREGIONS (AREAS)
IN THE PARAMETER SPACE q2=R2 × r0=R

A. Region (a): Undercharged stars

Region (a) is the region of undercharged nonsingular
stars and is delimited by three curves, namely, the q2=R2 ¼
0 coordinate axis from the origin up to the point B, the
sector of curve C4 joining B to the pointQ (separating gray
and white regions), and the curve of zero pressure indicated
by C0, see Figs. 3 and 4. C0 is a branch of the curve
m ¼ jqj, or a ¼ 1, and C4 is the Buchdahl-Andréasson
curve, see also Figs. 1 and 2.
Some more detail is now given. Undercharged stars are

characterized by m > jqj. In this nonsingular region of
undercharged stars, region (a), the constraint r0=rþ > 1 is
satisfied, so that black holes are not present. Moreover, the
Guilfoyle parameter a satisfies the constraint a > 1 in the
whole region, except at the boundaries. The stars with
radius r0 and charge q belonging to this region of the
parameter space satisfies the energy conditions, as studied
by Guilfoyle [1]. Further analysis of the objects, including
the point Q in Figs. 3 and 4, is given in [2].
The boundaries of region (a) have solutions whose

physical properties are discussed later.

B. Region (b): Overcharged tension stars

Region (b) is the region of overcharged nonsingular
tension stars and is delimited by C0 and C1 in Figs. 3 and 4.
C0 is a branch of the curve m ¼ jqj, or a ¼ 1, and C1 is the
curve given by a ¼ 0, see also Figs. 1 and 2.
Some more detail is now given. Overcharged stars are

characterized by m < jqj. The parameter space for the
whole set, singular and nonsingular overcharged solutions,
with m < jqj can be found using Eq. (34). The condition
m ≤ jqj gives jqj2=r20 − 2jqj=r0 þ r20=R

2 ≤ 0, see also
Eq. (45). The equality furnishes the curve m ¼ jqj which

for q2=R2 > 0, i.e., q2 > 0, is the closed curve formed by
the C0 and C2 curves in Figs. 3 and 4. Thus, the over-
charged region of the parameter space is the whole region
inside such a curve. The curve C1 separates the nonsingular
from the singular overcharged solutions. Indeed, in the C1

line the Guilfoyle parameter vanishes, aðq2; r0Þ ¼ 0 [see
Eq. (50)] and the fluid quantities are singular. So, non-
singular overcharged solutions are delimited by C0 and C1.
Note that the curve m ¼ jqj in the sector q2=R2 > 0 is

the closed curve explicitly given in Fig. 1. Since m ¼ jqj
coincides with the a ¼ 1 curve, one also finds that the
overcharged region corresponds to small values of the
Guilfoyle parameter a, namely, 0 < a < 1, and that in these
solutions the pressure within the fluid is negative pðrÞ < 0
for all solutions there, i.e., it is a tension.
The boundaries of region (b) have solutions whose

physical properties are discussed later.

C. Region (c): Overcharged solutions, wildly
behaved solutions

Region (c) is the region of overcharged singular sol-
utions with wild behavior of the energy density and
pressure and is delimited by the curves C1 and C2, see
Figs. 3 and 4. C1 is the curve given by a ¼ 0, and C2 is a
branch of the curve m ¼ jqj, or a ¼ 1, see also Figs. 1
and 2.
Some more detail is now given. These are overcharged

solutions still with m < jqj. The energy density of the
solutions in this region behaves wildly, it is positive and
finite at the center and changes to very high negative values
close to the surface. The pressure of these solutions behaves
as wildly as the energy density, it is negative and finite at
the center, and oscillates to very high positive values close
to the surface of the solution and finally goes to zero at the
surface. Because of this wild behavior, these solutions are
highly weird and we do not study them further.
The boundaries of region (c) have solutions whose

physical properties are discussed later.

D. Region (d): Regular black holes with negative
energy densities

Region (d) is the region of regular black holes with
negative energy delimited by the curves C2 and C3, and the
horizontal line r0 ¼ r− ¼ 0 in Fig. 3, part of it being seen
also in Fig. 4. C2 is a branch of the curvem ¼ jqj, or a ¼ 1,
C3 is a curve with no special features in terms of the
parameters m or a, and the horizontal line r0 ¼ r− ¼ 0 is a
portion of the curve a ¼ ∞, see also Figs. 1 and 2.
Some more detail is now given. The solutions in region

(d) are characterized by several facts. First, the matching
surface defined by r0 is timelike, and its radius is smaller
than the Cauchy horizon radius r−, r0=r− < 1. So the
solutions represent black holes. Second, the solutions are
regular, i.e., there are no singularities. Third, the energy
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density is negative for a range of radii in the solutions and
the pressure can also be negative going to zero at the
surface r0. Fourth, due to the negativity of the energy
density, these regular black holes have less interest than
those of region (e) below.
The boundaries of region (d) have solutions whose

physical properties are discussed later.

E. Region (e): Regular black holes
with a phantom matter core

Region (e) is the region of regular black holes with a
phantom matter core and is delimited by the curve C3 and
the line r0 ¼ r− ¼ R in Fig. 3, it is outside the range of
Fig. 4. C3 is a curve with no special features in terms of the
parameters m or a, the line r0 ¼ r− ¼ R is a branch of the
a ¼ ∞ curve, see also Figs. 1 and 2.
Somemore detail is nowgiven. The solutions in region (e),

like those in region (d) above, are characterized by several
facts. First, the matching surface defined by r0 is timelike,
and its radius is smaller than the Cauchy horizon radius r−,
r0=r− < 1. So the solutions represent black holes. Second,
the solutions are regular, i.e., there are no singularities. Third,
the energy density is positive everywhere inside matter, the
pressure is negative and it goes to zero at the surface r0.
Fourth, this negative pressure at the center is larger than the
central density, thus for a finite region inside the matter one
finds ρm þ p < 0, meaning there is phantom matter and
consequently the energy conditions are violated. In brief, in
region (e) one gets regular black holes with an electrically
charged phantommatter core. These regular black holeswere
investigated in [5].
The boundaries of region (e) have solutions whose

physical properties are discussed later.

F. Region (f): Singular solutions

Region (f) is a region of singular solutions, delimited by
three curves, namely, the q2=R2 ¼ 0 coordinate axis from
the point B up to r0=R ¼ 1, by the curve C4 in the q2=R2 >
0 sector, and by the line r0 ¼ rþ ¼ R, see Figs. 3 and 4.
The curve C4 is the Buchdahl-Andréasson bound curve,
and the vertical line q2=R2 ¼ 0 and the horizontal line r0 ¼
rþ ¼ R are part of the a ¼ ∞ curve, see also Figs. 1 and 2.
All solutions in region (f) are singular, since the pressure

diverges at some point inside the matter distribution.
The boundaries of region (f) have solutions whose

physical properties are discussed later.

G. Region (g): Singular solutions withm > 0 and q2 < 0

Region (g) is the region of singular solutions with m > 0

and q2=R2 < 0, i.e., q2 < 0, and is delimited by the
q2=R2 ¼ 0 coordinate axis from the point B up to
r0=R ¼ 1, the horizontal line r0 ¼ rþ ¼ R, the curve C5,
and the curves C4 in the sector q2=R2 < 0, see Fig. 3 and in
more detail Fig. 4. The curveC4 is the Buchdahl-Andréasson

bound curve, the vertical line q2=R2 ¼ 0 and the horizontal
line r0 ¼ rþ ¼ R are a portion of the curve a ¼ −∞, and
the curve C5 is the curve m ¼ 0, see also Figs. 1 and 2.
For all solutions in this region of the parameter space the

energy density becomes infinitely large and the pressure
becomes arbitrarily large and negative for some radius
inside the matter distribution. Thus, this region of the
parameter space bears solutions of limited physical interest.
The boundaries of region (g) have solutions whose

physical properties are discussed later.

H. Region (h): Singular solutions withm < 0 and q2 < 0

Region (h) is the region of singular solutions with
negative mass, m < 0, which implies here q2=R2 < 0,
i.e., q2 < 0, and is delimited by the curve C5 and the
horizontal line r0 ¼ rþ ¼ 0, see Fig. 3 and in more detail
Fig. 4. The curve C5 is the curve m ¼ 0 and the horizontal
line r0 ¼ rþ ¼ 0 is a portion of the curve a ¼ −∞, see also
Figs. 1 and 2.
This region presents solutions which are similar to those

belonging to region (g), the only difference is that here the
mass is negative, m < 0. The solutions are singular, the
matter interior is plagued with energy densities arbitrarily
large, and the pressure also assumes arbitrarily large
negative values. These singular solutions have also limited
interest.
The boundaries of region (h) have solutions whose

physical properties are discussed later.

I. Region (i): Regular stars with m > 0 and q2 < 0

Region (i) is the region of regular stars with positive
mass, m > 0, and q2=R2 < 0, i.e., q2 < 0, and is delimited
by the q2=R2 ¼ 0 coordinate axis from the origin up to the
point B, and a portion of the curve C4 in the sector
q2=R2 < 0, see Figs. 3 and 4. The vertical line q2=R2 ¼ 0 is
part of the curve a ¼ −∞ and the curveC4 is the Buchdahl-
Andréasson bound curve, see also Figs. 1 and 2.
Some more detail is now given. In this region since

q2 < 0 the electric charge q is imaginary, and the Guilfoyle
parameter a is negative, a < 0. One finds that the radius r0
of the matching surface is greater than the gravitational

radius, r0 > rþ where rþ ¼ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jqj2

p
. The solu-

tions are nonsingular. So the solutions represent charged
stars with imaginary electric charge.
The boundaries of region (i) have solutions whose

physical properties are discussed later.

V. REGULAR AND SINGULAR BOUNDARIES
(LINES AND POINTS) IN THE PARAMETER

SPACE r0=R × q2=R2

A. Curve C0: Bonnor stars

The curve C0 is the line of charged dust stars. It begins at
point S and extends to point Q, see Figs. 3 and 4. C0
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corresponds to m ¼ jqj in the sector q2 > 0 and is part of
the closed a ¼ 1 curve, see also Figs. 1 and 2.
On C0 the fluid pressure vanishes throughout the interior

of the matter distribution, so it is dust, and the spacetime
region exterior to the boundary r > r0 is the extreme
m ¼ jqj Reissner-Nordström spacetime. The stars in this
curve are called Bonnor stars, i.e., charged dust stars [10,11].

B. Curve C1: Boundary of regular overcharged
tension star solutions

The curve C1 has overcharged solutions and it separates
region (b) of regular overcharged stars with tension from
region (c) of overcharged singular solutions with tension,
see Figs. 3 and 4. C1 has objects with m < jqj in the sector
q2 > 0 and it corresponds to a ¼ 0, i.e., it is the curve given
by the equation q2=R2 ¼ r40=R

4, see Eq. (50), see also
Figs. 1 and 2.
On C1 the solutions are singular.

C. Curve C2: Singular charged dust solutions

The curve C2 is the line of singular charged dust
solutions, and as C0 it begins at point S and extends to
point Q, see Figs. 3 and 4. C2 also corresponds to m ¼ jqj
in the sector q2 > 0 and is the other part of the closed a ¼ 1
curve, see also Figs. 1 and 2.
On C2 the solutions contain matter that is extremely

charged, the pressure is zero, however, the energy density is
negative assuming very large values close to the center of
the solution, a similar behavior to the solutions of region
(c). We regard these solutions as singular solutions.

D. Curve C3: Boundary between regular black holes
with phantom matter and regular black holes with

negative energy matter

The curve C3 is the line that divides regular black holes
with negative energy matter shown in region (d) from
regular black holes with phantom matter shown in region
(e), see Figs. 3 and 4. The curve C3 has no relation with the
m and a curves displayed in Figs. 1 and 2.
For the regular black holes on C3, the matching surface

radius r0 is smaller than the Cauchy horizon of the
Reissner-Nordström metric r−, r0 < r−. Even though being
regular, the matter functions inside r0 present some peculiar
properties, for instance, the energy density vanishes for
some radii r.

E. Curve C4: The Buchdahl-Andréasson bound

The curve C4 is the Buchdahl-Andréasson bound line,
i.e., it is the line obtained taking the limit of the central
pressure going to infinity, see Figs. 3 and 4. The curve C4

has no relation with them and a curves displayed in Figs. 1
and 2.
The Buchdahl-Andréasson bound is discussed in Sec. III

D 2, particularly Eq. (67). The Buchdahl-Andréasson
bound penetrates the region of negative electrical charge,

q2 < 0, a region not considered in [4]. The bound holds as
long as one has q2=r20 ≥ −1=3. The maximum value
of the Buchdahl-Andréasson bound is m=r0 ¼ 9 for
q2=r20 ¼ −1=3, a very compact star with negative q2.
The curve C4 contains the three very special and important
points, the quasiblack hole pointQ (q2=R2 ¼ 1, r0=R ¼ 1),
the Buchdahl point B (q2=R2 ¼ 0, r0=R ¼ 2

ffiffiffi
2

p
=3), and the

Schwarzschild point S (q2=R2 ¼ 0, r0=R ¼ 0).

F. Line r0 = r+ =R and 0 < q2 < R2: Singular solutions
with the matter boundary at the Reissner-Nordström

gravitational radius

The line r0=R ¼ rþ=R ¼ 1 for 0 < q2=R2 < 1 is a line
that represents singular solutions with the matter boundary
at the Reissner-Nordström gravitational radius r0=rþ ¼ 1,
it starts at q2=R2 ¼ 0 and goes up to point Q, see Figs. 3
and 4. This line has no relation with the m curves and is a
part of the a ¼ ∞ curve, see also Figs. 1 and 2.
Each point on this line represents a solution where the

interior region, i.e., from r ¼ 0 up to r ¼ r0 ¼ rþ, is filled
with a charged fluid, and it is matched to the exterior
Reissner-Nordström region by a lightlike surface. However,
this matching can be realized only for infinite pressure, and
thus the solutions are not well defined, they are singular.
The line is discussed in Sec. III D 3.

G. Line r0 = r− =R and q2 > R2: Regular black holes
with a de Sitter core and the matter boundary at the

Cauchy horizon

The line r0=R ¼ r−=R ¼ 1 for q2=R2 > 1 is a line that
represents regular black holes with a de Sitter core and the
matter boundary at the Cauchy horizon r0=r− ¼ 1, it starts
at point Q and goes up to infinity to the right, see Figs. 3
and 4. This line has no relation with the m curves and is a
part of the a ¼ ∞ curve, see also Figs. 1 and 2.
Each point on this line represents a regular charged black

hole whose interior region is de Sitter, the exterior is
Reissner-Nordström, and the matching surface is a layer of
uniform charge density, the total charge being located on
the boundary surface, i.e., at the Cauchy horizon. These
solutions were studied in detail in [5] (see also [41]). The
line is discussed in Sec. III D 4.

H. Line r0 = r− = 0 and q2 > 0: Kasner spacetimes

The line r0=R ¼ r−=R ¼ 0 for q2=R2 > 0 is a line for
which each point represents a Kasner spacetime, see Figs. 3
and 4. This line has no relation with the m curves and is a
part of the a ¼ ∞ curve, see also Figs. 1 and 2.
The Kasner spacetime has planar symmetry and appears

in several contexts, see Appendix A 2.

I. Line 0 < r0 < R and q2 = 0: The Schwarzschild star

The line 0 < r0=R < 1 for q2=R2 ¼ 0 is a line that
represents the whole class of neutral, i.e., electrically
uncharged, solutions within the Guilfoyle’s solutions [1].
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It starts at the point S and goes up vertically up to the point
r0=R ¼ 1, see Figs. 3 and 4. This line has no relation with
the m curves and is a part of both the a ¼ ∞ and the
a ¼ −∞ curves, see also Figs. 1 and 2.
Each point on this line represents a Schwarzschild star,

i.e., the Schwarzschild interior solution matched to the
Schwarzschild exterior solution, see Sec. III D 1. Note that
from Eq. (58) the mass of these stars goes to zero as r30.
Therefore, the resulting solution found by taking the limit
to the point S down the line q2=R2 ¼ 0 is the Minkowski
spacetime, see Figs. 3 and 4.

J. Curve C5: Singular zero mass solutions

The curve C5 represents zero mass solutions which can
only exist in these solutions for q2 < 0, see Figs. 3 and 4. It
also appears in Fig. 1 as the curve m ¼ 0 in the q2 < 0
sector, in sector (I). This line has no relation with the a
curves, see Fig. 2.
The Guilfoyle parameter a is negative for these solu-

tions. The fluid quantities in this curve are not well defined
and the solutions are of no physical interest. See also
Sec. III B 2, particularly Eq. (40).

K. Line r0 = r+ =R and q2 < 0: Singular solutions with
the matter boundary at the Reissner-Nordström

gravitational radius in the negative electric charge
square sector

The line r0=R ¼ rþ=R ¼ 1 for q2=R2 < 0 is a line that
represents singular solutions with the matter boundary at
the Reissner-Nordström gravitational radius, it starts at
q2=R2 ¼ −∞ and goes up to point q2=R2 ¼ 0, see Figs. 3
and 4. This line has no relation with the m curves,
see Fig. 1, and is a part of the a ¼ −∞ curve, see
Fig. 2.
Each point on the line r0 ¼ rþ ¼ R, q2 < 0 represents a

solution where the interior region, i.e., from r ¼ 0 up to
r ¼ r0 ¼ rþ, is filled with a charged fluid with negative
square charge, and it is matched to the exterior Reissner-
Nordström region by a lightlike surface. However, this
matching can be realized only for infinite pressure, and thus
the solutions are not well defined they are singular. These
solutions have similar behavior to those with r0 ¼ rþ ¼ R,
0 < q2 < R2 discussed in Sec. V F. The line is also
discussed in Sec. III D 3.

L. Line r0 = r+ = 0 and q2 < 0: Naked singularities
in the negative electric charge square sector

The line r0=R ¼ rþ=R ¼ 0 for q2=R2 < 0 is a line that
represents naked singularities, see Figs. 3 and 4. This line
has no relation with them curves, see Fig. 1, and is a part of
the a ¼ −∞ curve, see Fig. 2.
In this case the spacetime for small r has planar

symmetry and is singular at r ¼ 0, see Sec. III D 3. It
represents naked singularities, see also Appendix A 1.

M. Point S, q2 = 0, r0 = 0: The Minkowski spacetime,
the Kasner solution, the Schwarzschild solution, the
Schwarzschild negative mass singularity, and the
plane-symmetric static spacetime naked singularity

1. Point S from above, q2 = 0, r0 → 0:
Minkowski spacetime

When one approaches point S from above, i.e., perform-
ing q2=R2 ¼ 0 and r0=R → 0, see Figs. 3 and 4, one finds a
Minkowski spacetime.
In this limit the mass m indeed vanishes and the result is

the Minkowski spacetime as follows from Eq. (58) and we
have commented in Sec. V I. In addition, in this limit the
parameter a becomes arbitrarily large.

2. Point S from the right, r0 = r− = 0, q2 → 0+ :
Kasner spacetime

When one approaches point S from the right, i.e.,
performing r0=R ¼ r−=R ¼ 0 and q2=R2 → 0þ, see
Figs. 3 and 4, one finds a Kasner spacetime.
The limiting process is to take r0=R to zero, independ-

ently of q2=R2, and then taking q2=R2 to zero. The first part
of the process leads to the Kasner metric, and the second
part of the process does not change the resulting geometry,
because the charge and mass are transformed way by
changing the coordinates. The result is then a Kasner
spacetime, see also Sec. V H and Appendix A 2. In this
limit a ¼ ∞.

3. Point S from the skew right, r0 > 0, q2 > 0:
Minkowski spacetime, Schwarzschild black hole,

and Kasner spacetime

Generics.—When one approaches point S from a skew path
on the right, see Figs. 3 and 4, one finds, depending on the
approaching path, a Minkowski spacetime, or a
Schwarzschild black hole, or a Kasner spacetime. All
the three cases have zero electric charge and zero electric
potential, of course, since point S has q2 ¼ 0. Some
physical quantities on S have values that depend on how
the point is approached. A particular important quantity is
the mass. That is a reason to get different spacetimes on
approaching S by different paths.
To see this, let γ be a path in the two-dimensional

parameter space spanned by the parameters q2=R2 and
r0=R approaching S. The curve γ may be parametrized by
q2=R2 so that along γ we may write r0=R ¼ fðq2=R2Þ. To
simplify the notation from now onward define x≡ q2=R2

and y≡ r0=R, so that the two-dimensional space is x × y
and along γ we may write y ¼ fðxÞ with γ being para-
metrized by x. Assume f to be a piecewise continuous
function of its argument. Since fðxÞ has also to satisfy the
condition limx→0fðxÞ ¼ 0 in order to get to the point S at
the end of the limiting process, for small x it must be of the
form fðxÞ ∼ xβ with positive β. Let f0ðxÞ denote the
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derivative of fðxÞ with respect to its argument. Then, three
situations can happen. We discuss them now.

Slow approach to S: Minkowski spacetime.—If
limx→0xf0ðxÞ=fðxÞ < 1, then y ¼ fðxÞ ∼ αx1−δ (i.e.,
r0=R ∼ ðq2=R2Þ1−δÞ, with positive α and δ. Moreover,
the mass goes as m ∼ xδ=2α and vanishes in the limit
x → 0, so that the result in this case is the Minkowski
spacetime. Finally, the Guilfoyle parameter a is zero if
δ > 1=2, is finite if δ ¼ 1=2, and diverges if δ < 1=2.

Linear approach to S: Schwarzschild black hole.—If
limx→0xf0ðxÞ=fðxÞ ¼ 1, then the function y ¼ fðxÞ tends
to zero as y ¼ fðxÞ ∼ αx (i.e., r0=R ∼ αq2=R2), with
positive α. In this case, limx→0m ¼ α−1=2. Hence,
limx→0rþ ¼ 2m ¼ α−1 and limx→0r− ¼ 0. The metric func-
tions are BðrÞ ¼ 1=AðrÞ ¼ 1�2m=r for all r > 0, the
electric charge q and the electric charge function QðrÞ
vanish, and so does the electric potential ϕðrÞ. In such a
case the result is a Schwarzschild black hole spacetime. The
Guilfoyle parameter a diverges.

Fast approach to S: Kasner spacetime.—If limx→0xf0ðxÞ=
fðxÞ > 1, then y¼ fðxÞ∼αx1þδ (i.e., r0=R ∼ ðq2=R2Þ1þδÞ,
with positive α and δ. The mass goes as m ∼ 1=ð2αxδÞ and
diverges in the limit x → 0. This is exactly what happens
when approaching the point S along the line r0 ¼ 0,
q2 > 0, and the result in this case is a Kasner spacetime
as shown in Sec. VM 2 and in Appendix A 2. The
Guilfoyle parameter a diverges.

Synopsis.—As we have seen, for q2=R2 > 0, the mass
function mðq2; r0; RÞ may have different values at point S,
the value it assumes there depends on how the point S is
approached. The limiting mass value may be zero, implying
a Minkowski spacetime, it may be finite and nonzero,
implying a Schwarzschild black hole, and it may diverge,
implying a Kasner spacetime.

4. Point S from the left, r0 = r+ = 0, q2 → 0− :
Kasner spacetime

When one approaches point S from the left, i.e.,
performing r0=R ¼ r−=R ¼ 0 and q2=R2 → 0−, see
Figs. 3 and 4, one finds a Kasner spacetime. So the
resulting spacetime is the same as found in Sec. VM 2,
by approaching point S from the right performing r0=R ¼
r−=R ¼ 0 and q2=R2 → 0þ.
The limiting process is to take r0=R to zero, independ-

ently of q2=R2, with the constraint q2=R2 < 0, and then
taking q2=R2 to zero. The first part of the process leads to a
naked singularity metric with negative mass, and the
second part of the process makes the charge and mass
be transformed way by changing the coordinates. The result
is then a naked planar singularity, more precisely, it is a
static Kasner spacetime, see Sec. V L, Appendix A 1 and
Appendix A 2.

5. Point S from the skew left, r0 > 0, q2 < 0: Minkowski
spacetime, Schwarzschild negative mass singularity, and
a plane-symmetric static spacetime naked singularity

Generics.—When one approaches point S from a skew
path on the left, see Figs. 3 and 4, one finds, depending
on the approaching path, a Minkowski spacetime, or
Schwarzschild black hole, or a Kasner spacetime. All
the three cases have zero electric charge and zero electric
potential, of course, since point S has q2 ¼ 0.
The analysis of Sec. VM 3 is also appropriate here, since

the behavior of the mass function when reaching the point S
from negative values of q2 < 0 is similar as for the q2 > 0

case. We define here x≡ jqj2=R2 and y≡ r0=R. Let γ be a
a path in the two-dimensional parameter space spanned by
x and y. Along γ we may write y ¼ fðxÞ with γ being
parametrized by x. Assume f to be a piecewise continuous
function of its argument. Since fðxÞ has also to satisfy the
condition limx→0fðxÞ ¼ 0 in order to get to the point S at
the end of the limiting process, for small x it must be of the
form fðxÞ ∼ xβ with positive β. Let f0ðxÞ denote the
derivative of fðxÞ with respect to its argument. Then again,
three situations can happen. We discuss them now.

Slow approach to S: Minkowski spacetime.—If
limx→0xf0ðxÞ=fðxÞ < 1, then fðxÞ ∼ x1−δ (i.e.,
r0=R ∼ ðjqj2=R2Þ1−δÞ, with positive α and δ, the mass goes
as m ∼ −xδ=2α, so is negative, and vanishes in the limit
x → 0. The result in this case is the Minkowski spacetime.

Linear approach to S: Schwarzschild negative mass
singularity.—If limx→0xf0ðxÞ=fðxÞ ¼ 1, then the function
fðxÞ tends to zero as y ¼ fðxÞ ∼ αx (i.e., r0=R ∼ αq2=R2),
with positive α, and we have limx→0m ¼ −α−1=2, so the
mass is negative. There are no horizons. The metric
functions result in BðrÞ ¼ 1=AðrÞ ¼ 1þ 2jmj=r for all
r > 0, the electric charge q and the electric charge function
QðrÞ vanish, and so does the electric potential ϕðrÞ. In such
a case there are no horizons and the result is a
Schwarzschild negative mass singularity.

Fast approach to S: A plane-symmetric static spacetime
naked singularity.—If limx→0xf0ðxÞ=fðxÞ > 1, then the
function fðxÞ tends to zero as y ¼ fðxÞ ∼ αx1þδ (i.e.,
r0=R ∼ αðjqj2=R2Þ1þδ), with positive α and δ, and the mass
goes asm ∼ −1=ð2αxδÞwhich is negative and diverges in the
limit x → 0. This is exactly what happens along the line
r0 ¼ 0, q2 > 0, but now the mass is negative, so the metric
assumes the form ds2¼−2jmjdt2=rþrdr2=ð2jmjÞþr2dΩ2.
One can then transform thismetric away into amore common
plane symmetric static naked singularity metric form, more
precisely, it is a static Kasner spacetime, see Sec. V H and
Appendix A 1.

Synopsis.—As we have seen, for q2=R2 < 0, the mass
function mðq2; r0; RÞ assumes at the point S different
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values depending on how the point S is approached. In
terms of the resulting spacetime, the limit is three-folded.
The limiting mass value may be zero, implying the
Minkowski spacetime, may be finite and nonzero, implying
a negative mass naked Schwarzschild singularity, and may
diverge, resulting in a planar static naked singularity
Kasner type spacetime.

N. Point B: The Buchdahl bound

Point B is the Buchdahl bound [32], here represented by
a Schwarzschild star (i.e., a Schwarzschild interior solution
matched to the Schwarzschild vacuum solution) for which
r0=m ¼ 9=4, see Figs. 3 and 4.
Point B is the zero electric charge, i.e., q2 ¼ 0, limit of

the Buchdahl-Andréasson bound curve C4, see Sec. III D 2,
particularly Eq. (67), and Sec. (V E) (for a detailed study of
the Buchdahl-Andréasson bound see [4]). The features of
point B may be found by taking the limit q2=R2 → 0 and
then by putting the central pressure to infinity in the
solutions. This furnishes r0=R ¼ 2

ffiffiffi
2

p
=3. The limit for

the mass function gives mð0; r0; RÞ ¼ r30=2R
2 and then we

get the Buchdahl limit in the usual form, r0=m ¼ 9=4.

O. Point Q, q=m= r+ = r− = r0 =R: Quasiblack holes

Point Q represents quasiblack hole configurations, i.e.,
extremal charged stars that are on the verge of being a black
hole [3], see Figs. 3 and 4.
Point Q is found by taking the limits q=R → 1 and

r0=R → 1, and it gives q ¼ m ¼ rþ ¼ r− ¼ r0 ¼ R. Point
Q belongs to the boundary of four very different regions:
Region (a) with its undercharged regular stars, region (b) of
the overcharged regular stars, region (c) of overcharged
singular solutions, regions (d) and (e) of regular black
holes. It is also the convergence of several curves or lines:
The Buchdahl-Andréasson curve C4, the dust curve C0, the
curve C1 of null Guilfoyle parameter a ¼ 0, the second
branch of the dust curve C2, the curve C3, the line
rþ ¼ r0 ¼ R, and the line of regular black holes with
matching at the inner horizon r0 ¼ r− ¼ R. This means
that the solutions corresponding to this point are very
special and highly degenerated, they are quasiblack holes,
see also Sec. III D 5 and [3].

VI. CONCLUSIONS

We have explored the full parameter space of Guilfoyle’s
exact solutions for relativistic charged spheres [1].
There are three free parameters among the various

parameters of the model. We have chosen the normalized
charge squared parameter q2=R2 and the normalized radius
of the spheres r0=R as the good normalized parameters,
where R is the third free parameter characterizing the
constant energy-density of the model, 8πρmðrÞþ
Q2ðrÞ=r4 ¼ 3=R2. In order to avoid spacelike matching,
the ratio r0=R is constrained in the interval 0 ≤ r0=R ≤ 1.

The limiting value r0=R ¼ 1 implies the matching surface
is lightlike, while r0=R < 1 leads to different kinds of
spacetime. We allow the parameter q2=R2 to assume all
values in the real line. When q2 is negative the interpre-
tation of the parameter q as electric charge is not possible.
However, q2 may be interpreted as a tidal charge in a
braneworld gravity. The other two parameters, the mass m
and the Guilfoyle parameter a depend on the three free
parameters mentioned above. The Guilfoyle parameter a
relates the metric to the gauge potentials. Allowing a to run
along all values of the real line has proved essential in the
search for new solutions.
The plethora of solutions found has been proved to bear

very interesting spacetimes. Besides the well-behaved elec-
trically charged stars examined in the original work [1], for
which it was shown that the fluid content has precise
algebraic properties [2], there are quasiblack holes with
pressure [3], there are charged stars that saturate the
Buchdahl-Andréasson bound [4] when the central pressure
is allowed to reach arbitrarily large values, in the very same
way the Schwarzschild interior solutions saturate the
Buchdahl bound in the limit that the central pressure
diverges, there are regular black holes with a de Sitter core
and a coat of electric charge, regular black holes with a core
of charged phantom fluid [5], other exotic regular black
holes, as well as other solutions. This shows that the full
spectrum presents a bewildering variety of possible solu-
tions, from all types of stars to all types of black holes, though
wormholes donot appear in the spectrum.A stability analysis
of Guilfoyle’s solutions is yet to be performed.
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APPENDIX: PLANAR NAKED NEGATIVE MASS
SINGULARITY AND KASNER METRICS:

DETAILS

1. r0 = r+ = 0, q2 < 0: Planar naked negative
mass singularities

In the r0 ¼ rþ ¼ 0 case, discussed in Sec. III D 3, for a
fixed value of q2=R2 < 0 one finds that the spacetime for
small r has planar symmetry and is singular at r ¼ 0. To see
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this, let us analyze the limit r0=R → 0 in the Guilfoyle
solutions for a fixed value of q2=R2 < 0.
Putting r0=R → 0 in the mass function, Eq. (34), one

finds

m ¼ −
jqj2
2r0

þ O

�
r20
jqj2

�
3=2

: ðA1Þ

So, the mass is negative and divergent in this limit.
Putting r0=R → 0 in the equation for the Guilfoyle

parameter a, Eq. (35), one finds

a ¼ −
jqj2
4r20

−
jqj2
4

þ O

�
r0
R

�
2

: ðA2Þ

So, a is negative and divergent in this limit.
Putting r0=R → 0 in the equation for the gravitational

radius rþ, Eq. (32), using Eq. (34), and q2 ¼ −jqj2, yields

rþ ¼ r0 − O

�
r20
jqj2

�
7=2

: ðA3Þ

Hence, in this limit the gravitational radius rþ goes to zero
as r0, giving rise to a spacetime singularity at r ¼ r0 ¼
rþ ¼ 0.
Putting r0=R → 0 in the equation for the Cauchy radius

r−, Eq. (33), using Eq. (34), and q2 ¼ −jqj2, yields

r− ¼ −
jqj2
2r0

þ r0 þ O

�
r20
jqj2

�
3=2

: ðA4Þ

Hence, in this limit the Cauchy radius is negative and of no
interest at all, since we are considering solutions with r ≥ 0.
To interpret the resulting metric note that for r0 very

small but not zero, the metric for r > r0 is the Reissner-
Nordström metric with arbitrarily large and negative m,
from Eq. (A1). This is equivalent to take the limit of large
−m with finite q2 < 0 in the Reissner-Nordström metric,
Eqs. (1), (24) and (25), yielding

ds2 ¼ −
2jmj
r

dt2 þ rdr2

2jmj þ r2ðdθ2 þ sin2 θdφ2Þ: ðA5Þ

This metric is the negative mass Schwarzschild black hole
metric close to the singularity. It can be put into a form that
makes explicit the planar symmetry. Defining a new space-
like coordinate l such that dl2 ¼ rdr2=2jmj we get ds2 ¼
−ðl=l0Þ−2=3dt2 þ dl2 þ ðl=l0Þ4=3ð4jmj2Þðdθ2 þ sin2 θdφ2Þ,
where we defined l0 ¼ 4jmj=3. To complete the transforma-
tion into a plane-symmetric metric, note that at a given point
with coordinates ðt; l; θ0;φ0Þ we may define local Cartesian
coordinates x ¼ 2mðθ − θ0Þ and y ¼ 2mðφ − φ0Þ sin θ0,
where ðθ;φÞ are in the neighborhood of ðθ0;φ0Þ, so the
metric results in

ds2 ¼ −
�
l
l0

�
−2=3

dt2 þ dl2 þ
�
l
l0

�
4=3

ðdx2 þ dy2Þ; ðA6Þ

which shows the planar symmetry of the surfaces defined by
t; l ¼ constant. Thismetric can be considered a static Kasner
metric (see, e.g., [45,46]), derived from the usual Kasner
metric by a complex transformation that swaps the time
coordinate with the radial one [46], with characteristic
Kasner parameters given by p1 ¼ −1=3, and p2 ¼
p3 ¼ 2=3. The radius of the matter distribution region r0
canbe finally set to zero, so that the two-dimensional timelike
boundary surface r ¼ r0 ¼ rþ flattens to a plane at l ¼ 0,
giving rise to a timelike plane-symmetric singularity. The
plane-symmetric singularity at l ¼ 0 is naked.

2. r0 = r− = 0, q2 > 0: Kasner spacetimes

In the r0 ¼ r− ¼ 0 case, discussed in Sec. III D 4, for a
fixed value of q2=R2 < 0 one finds that the spacetime for
small r is a Kasner spacetime. To see this, let us analyze the
limit r0=R → 0 in the Guilfoyle solutions for a fixed value
of q2=R2 > 0.
Putting r0=R → 0 in the mass function, Eq. (34), one

finds

m ¼ q2

2r0
þ O

�
r20
q2

�
3=2

: ðA7Þ

So, for finite charge and in the limit r0=R → 0, the mass
inside r0 is positive and diverges giving rise to a spacetime
singularity at r− ¼ r0 ¼ 0.
Putting r0=R → 0 in the equation for the Guilfoyle

parameter a, Eq. (35), one finds

a ¼ q2

4r20
þ q2

4
þ O

�
r0
R

�
2

: ðA8Þ

So, a is positive and divergent in this limit.
Putting r0=R → 0 in the equation for the gravitational

radius rþ, Eq. (32), using Eq. (34) for q2 > 0, yields

rþ ¼ q2

2r0
− r0 þ O

�
r20
q2

�
3=2

: ðA9Þ

Hence, in this limit the gravitational radius rþ diverges.
Putting r0=R → 0 in the equation for the Cauchy radius

r−, Eq. (33), using Eq. (34) for q2, yields

r− ¼ r0 þ O

�
r20
q2

�
7=2

: ðA10Þ

Hence, in this limit the Cauchy radius goes to zero as r0, it
disappears.
To interpret the resulting metric note that for r0 very

small but not zero, the metric for r > r0 is the Reissner-
Nordström metric with arbitrarily large and positive m,
from Eq. (A1). This is equivalent to take the limit of largem
with finite q2 > 0 in the Reissner-Nordström metric,
Eqs. (1), (24) and (25), yielding
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ds2 ¼ þ 2m
r

dt2 −
rdr2

2m
þ r2ðdθ2 þ sin2 θdφ2Þ: ðA11Þ

This metric is the Schwarzschild black hole metric close to
the singularity. It can be put into a form that is locally a
Kasner metric (see, e.g., [45]). Defining a new timelike
coordinate τ such that dτ2 ¼ rdr2=2m, and a new spacelike
coordinate r by r ¼ t we get ds2¼−dτ2þðτ=τ0Þ−2=3dr2þ
ðτ=τ0Þ4=3ð4m2Þðdθ2þsin2θdφ2Þ, where we defined
τ0 ¼ 4m=3. To complete the transformation into a plane-
symmetric metric, note that at a given point with coordinates
ðt; l; θ0;φ0Þ we may define local Cartesian coordinates x ¼
2mðθ − θ0Þ and y ¼ 2mðφ − φ0Þ sin θ0, where ðθ;φÞ are in
the neighborhood of ðθ0;φ0Þ, so the metric results in

ds2 ¼ −dτ2 þ
�
τ

τ0

�
−2=3

dr2 þ
�
τ

τ0

�
4=3

ðdx2 þ dy2Þ;

ðA12Þ

which is the Kasner universe metric with characteristic
Kasner parameters given by p1 ¼ −1=3, and p2 ¼ p3 ¼
2=3 (see, e.g., [45,46]). The radius of the matter distribution
r0 can be finally set to zero, so that the two-dimensional
timelike boundary surface at r ¼ r0 flattens to a plane
containing an infinite mass, giving rise to a spacelike
singularity. The singularity is at τ ¼ 0, a big-bang or a
big-crunch like singularity. The surfaces τ, r ¼ constant are
now two-dimensional spacelike planes.
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