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We present a definition of the geoid that is based on the formalism of general relativity without
approximations; i.e., it allows for arbitrarily strong gravitational fields. For this reason, it applies not only to
the Earth and other planets but also to compact objects such as neutron stars. We define the geoid as a level
surface of a time-independent redshift potential. Such a redshift potential exists in any stationary spacetime.
Therefore, our geoid is well defined for any rigidly rotating object with constant angular velocity and a
fixed rotation axis that is not subject to external forces. Our definition is operational because the level
surfaces of a redshift potential can be realized with the help of standard clocks, which may be connected by
optical fibers. Therefore, these surfaces are also called “isochronometric surfaces.” We deliberately base
our definition of a relativistic geoid on the use of clocks since we believe that clock geodesy offers the best
methods for probing gravitational fields with highest precision in the future. However, we also point out
that our definition of the geoid is mathematically equivalent to a definition in terms of an acceleration
potential, i.e., that our geoid may also be viewed as a level surface orthogonal to plumb lines. Moreover, we
demonstrate that our definition reduces to the known Newtonian and post-Newtonian notions in the
appropriate limits. As an illustration, we determine the isochronometric surfaces for rotating observers in
axisymmetric static and axisymmetric stationary solutions to Einstein’s vacuum field equation, with the
Schwarzschild metric, the Erez-Rosen metric, the q metric, and the Kerr metric as particular examples.
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I. INTRODUCTION

One of the fundamental tasks of geodesy is to determine
the Earth’s geoid from gravity field measurements. Within a
Newtonian framework, the definition of the geoid combines
the Newtonian gravitational potential and the potential
related to centrifugal forces that act on the rotating Earth.
Therefore, the gradient of the total potential describes the
free fall of particles in the corotating frame. From accel-
eration measurements, and the knowledge of the Earth’s
state of rotation, one can deduce the pure Newtonian
potential. Afterward, via geodetic modeling schemes,
information about the change of mass distributions and
mass transport can be obtained. These temporal variations
and long time trends are usually translated into water height
equivalent mass changes on the Earth’s surface for visu-
alization. The geoid itself is also commonly used as a
reference surface for height measurements [1].
Within the last years, the accuracy of measurements of

the gravitational field has improved considerably, and it is
expected to improve even more in the near future. For
example, such an improvement is expected from the
upcoming geodetic space mission GRACE-FO, which
consists of two spacecraft in a polar orbit around the
Earth. The influence of the varying gravitational field along
the orbit causes a variation in the separation of the two
satellites. With the onboard Laser Ranging Interferometer,
it is expected that such variations can be measured to within
an accuracy of 10 nm [2,3]. Another important improve-
ment is expected from the use of clocks in the context of

chronometric geodesy. The basic idea is to surround the
Earth with a network of clocks and to measure their mutual
redshifts (or their redshifts with respect to a master clock).
As clocks now approach a stability of 10−18 [4], it will soon
be possible to measure gravitational redshifts that corre-
spond to height differences of about 1 cm.
Both examples show that for a correct evaluation of

present or near-future measurements of the gravitational
field of the Earth it is mandatory to take general relativity
into account. Of course, the geodetic community is well
aware of this fact. The usual way to consider relativistic
effects is by starting with the Newtonian theory and
applying post-Newtonian (PN) corrections. In particular,
the notion of the geoid was already discussed in such a PN
setting in 1988 by Soffel et al. [5]. They defined a so-called
a-geoid, which is based on acceleration measurements, and
a so-called u-geoid, which is based on using clocks. The
authors showed that, within their setting, the two defini-
tions are equivalent. For a more recent discussion of the
Earth’s geoid in terms of PN calculations, we refer to the
work by Kopeikin et al. [6]. Although the PN approach is
certainly sufficient for calculating all relevant effects with
the desired accuracy in the vicinity of the Earth, from a
methodological point of view, it is more satisfactory to start
out from a fully relativistic setting and then to apply
approximations where appropriate. This makes it necessary
to provide fully relativistic definitions of all the basic
concepts, in particular of the Earth’s geoid.
It is the purpose of this paper to present and discuss such

a fully relativistic definition of the geoid. As we allow the
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gravitational field to be arbitrarily strong, our definition
applies not only to the Earth and to other planets but also
to compact objects such as neutron stars. For lack of a
better word, we always speak of the “geoid,” for all kinds
of gravitating bodies. Our definition is operational, using
clocks as measuring devices. That is to say, in the
terminology of the above-mentioned paper by Soffel et al.,
we define a fully relativistic u-geoid. However, we also
discuss the notion of an a-geoid, and we show that, also in
the relativistic theory without approximations, the two
notions are equivalent. We believe that high-precision
geodesy will be mainly based on the use of clocks in
the future; therefore, we consider the u-geoid as the primary
notion and the fact that it coincides with the a-geoid as
convenient but of secondary importance only.
Our definition assumes a central body that rotates rigidly

with constant angular velocity, where we have to recall that
in general relativity a “rigid motion” is defined by vanish-
ing shear and vanishing expansion for a timelike congru-
ence of worldlines. (This is often called “Born rigidity.”) Of
course, the motion of the Earth (or of neutron stars) is not
perfectly rigid. However, rigidity may be viewed as a
reasonable first approximation, and the effect of deforma-
tions may be considered in terms of small perturbations
afterward. Our definition is based on the mathematical fact
that the gravitational field of a body that rotates rigidly with
constant angular velocity admits a time-independent red-
shift potential. We define the geoid as a surface of constant
redshift potential, which is also called an isochronometric
surface. The equivalence of our (u-) geoid with an
appropriately defined a-geoid follows from the fact that
the redshift potential is also an acceleration potential.
As we will outline below, our definition of a relativistic

geoid may be viewed as a translation into mathematical
language of a definition that was given, just in words,
already in 1985 by Bjerhammar [7,8]. More recently,
inspired by Bjerhammar’s wording, Kopeikin et al. [9]
discussed a relativistic notion of the u-geoid assuming a
particular fluid model for the Earth. Also, Oltean et al. [10]
gave another fully relativistic definition of the geoid, which
is mathematically quite satisfactory. However, we believe
that our definition is more operational. A major difference
is in the fact that, in the above-mentioned terminology,
Oltean et al. defined an a-geoid. In contrast to our work,
Bjerhammar’s, and Kopeikin’s, they do not make any
reference to the use of clocks. We see the advantage of
our framework in the exploration of the use of clocks and
their description in terms of an isometric timelike con-
gruence. We ask for the redshift of any pair of clocks within
such a congruence and use the redshift potential as the basis
for the definition of the relativistic geoid.
For a general review of relativistic geodesy and related

problems, see, e.g., Refs. [11,12]. Reference [13] contains a
comprehensive summary of theoretical methods in relativ-
istic gravimetry, chronometric geodesy, and related fields as

well as applications to a parametrized post-Newtonian
metric. Our notational conventions and a list of symbols
can be found in Appendix B.

II. NONRELATIVISTIC GEOID

The field equation that Newtonian gravity is based upon
is the Poisson equation

ΔU ¼ 4πGρ; ð1Þ

where U is the Newtonian gravitational potential, G is
Newton’s gravitational constant, and ρ is the mass density
of the gravitating source. In the region outside the source,
i.e., in vacuum, the field equation reduces to the Laplace
equation ΔU ¼ 0.
On the rotating Earth, the centrifugal effects give an

additional contribution to the acceleration of a freely falling
particle that is dropped from rest. This total acceleration can
be derived from the potential

W ¼ U þ V ¼ U −
1

2
Ω2d2z : ð2Þ

Here, V is the centrifugal potential, Ω is the angular
velocity of the Earth, and dz is the distance to the rotation
axis, which is defined as the z axis. Whereas the attractive
gravitational potential is a harmonic function in empty
space, the centrifugal part is not.
The shape of the Earth as well as its gravity field shows

an enormous complexity. The idea of using an equipo-
tential surface for defining an idealized “mathematical
figure of the Earth” was brought forward by C. F. Gauss in
1828. The name geoid was coined by J. F. Listing in 1873.
In modern terminology, here quoted from the U.S.
National Geodetic Survey, the geoid is defined as “the
equipotential surface of the Earth’s gravity field which
best fits, in a least squares sense, global mean sea level.
[14]” Here, the term “equipotential surface” refers to the
potential W in Eq. (2). The question of which equipoten-
tial surface is chosen as the geoid is largely a matter of
convention; for the Earth, it is convenient to choose a best
fit to the sea level, while for celestial bodies without a
water surface, such as Mars or the Moon, one could
choose a best fit to the surface.
In a strict sense, the geoid is not time independent

because the Earth undergoes various kinds of deformations
and its angular velocity is not strictly constant. However,
all temporal variabilities may be treated as perturbations
of a time-independent geoid. For having such a time-
independent geoid, one makes the following idealizing
assumptions:
(A1) The Earth is in rigid motion.
(A2) The Earth rotates with constant angular velocity

about a fixed rotation axis.
(A3) There are no external forces acting on the Earth.
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Note that assumption A3 also excludes time-independent
deformations caused by other gravitating bodies such as
the so-called “permanent tides;” see, e.g., Ref. [1]. Just
as the time-dependent variations mentioned above, they
may be considered as perturbations at a later stage.
Physical effects that must be treated in that way include,
among others, the intrinsic time dependence of the mass
multipoles, tidal effects, anelastic deformations, friction,
ocean loading, atmospheric effects, mass variations in
the hydrosphere and cryonosphere, and postglacial mass
variations.
In geodesy, different notions of the geoid are commonly

used. See, e.g., the standard textbook on geodesy [1] for the
definitions of the mean geoid, the nontidal geoid, and the
zero geoid. In this work, since we exclude the influence of
external forces by assumption A3, we refer to the concept
of the nontidal geoid.
The assumptions A1, A2, and A3 guarantee the

existence of the time-independent potential W as given
in Eq. (2); the geoid is then defined as the time-
independent surface

W ¼ W0; ð3Þ

with the constant W0 chosen by an appropriate con-
vention, as indicated above. By definition, the geoid is
perpendicular to the acceleration

∇W ¼ ∇U þ∇V: ð4Þ

The magnitude j∇Wj is called gravity in the geodetic
community. The gravitational part of the potential is
usually expanded into spherical harmonics, cf., e.g.,
Refs. [1,15],

U ¼ −
GM
r

X∞
l¼0

Xl

m¼0

�
RE

r

�
l
Plmðcos ϑÞ½Clm cosðmφÞ

þ Slm sinðmφÞ�: ð5Þ

An additional assumption of axial symmetry reduces the
decomposition (5) to

U ¼ −G
X∞
l¼0

Nl
PlðcosϑÞ

rlþ1
: ð6Þ

Here, M is the mass of the Earth, RE is some reference
radius (e.g., the equatorial radius of the Earth), ðr; ϑ;φÞ
are geocentric spherical coordinates, PlðPlmÞ are the
(associated) Legendre polynomials, and Clm; Slm; Nl are
the multipole coefficients. In geodesy, Eq. (6) is often
rewritten as

U ¼ −
GM
r

X∞
l¼0

�
RE

r

�
l
JlPlðcos ϑÞ; ð7Þ

where the relation between the dimensionless quantities Jl
and the multipole moments Nl is given by Nl ¼ JlRl

EM.
The multipole coefficients Clm, Slm (or Nl in an

axisymmetric model) can be determined by different
measurements. Among others, satellite missions such as
GOCE and GRACE as well as ground-based gravimetry
and leveling observations on the surface of the Earth
contribute to the knowledge of the gravitational field and
the derivation of precise models of the geoid [1]. Modern
space missions use laser ranging (LAGEOS), laser inter-
ferometry (GRACE-FO), and GPS tracking for providing
such precise models.
We end this section by rewriting the three assumptions

A1, A2, and A3, which guarantee the existence of a time-
independent geoid, in a way that facilitates comparison
with the relativistic version to be discussed below. We start
out from the well-known transformation formula from an
inertial system Σ to a reference system Σ0 attached to a
rigidly moving body,

x⃗ ¼ x⃗0ðtÞ þ RðtÞx⃗ 0: ð8Þ
Here, x⃗0ðtÞ is the position vector in Σ of the center of mass
of the central body, and RðtÞ is an orthogonal matrix that
describes the momentary rotation of the central body about
an axis through its center of mass. The orthogonality
condition RðtÞ−1 ¼ RðtÞT implies that the matrix

ωðtÞ ¼ _RðtÞRðtÞ−1 ð9Þ

is antisymmetric. From Eq. (8), we find that

v⃗ ¼ _⃗x ¼ _⃗x0 þωðx⃗ − x⃗0Þ; ð10Þ
where the dot means a derivative with respect to t, keeping
x⃗ 0 fixed. Successive differentiation results in

a⃗ ¼ _⃗v ¼ ̈x⃗0 þ _ωðx⃗ − x⃗0Þ þ ωðv⃗ − _x⃗0Þ; ð11Þ
_⃗a ¼ x⃗0

��� þ ω̈ðx⃗ − x⃗0Þ þ 2 _ωðv⃗ − _x⃗0Þ þωða⃗ − ̈x⃗0Þ: ð12Þ

We will now verify that the three assumptions A1, A2, and
A3 imply the following:
(A1’) The velocity gradient ∇ ⊗ v⃗ is antisymmetric.
(A2’) _ω ¼ 0.

(A3’) _⃗a ¼ ωa⃗.
Clearly, from Eq. (10), we read that the assumption of rigid
motion implies A1’. Moreover, A2 obviously requires A2’.
Finally, A3 implies that ̈x⃗0ðtÞ ¼ 0⃗ (which means that we
may choose the inertial system such that x⃗0 ¼ 0⃗); this result
inserted into (12), together with A2’, gives indeed A3’. The
three conditions A1’, A2’, and A3’, which are necessary for
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defining a time-independent geoid in the Newtonian theory,
have natural analogs in the relativistic theory as we will
demonstrate below.

III. RELATIVISTIC GEOID

Since clocks are the most precise measurement devices
that modern technology offers, a relativistic definition of
the geoid that is based on time and frequency measure-
ments might be most convenient and operationally realiz-
able with high accuracy. In one of the first articles on a
relativistic treatment of geodetic concepts Bjerhammar [7],
see also Ref. [8], proposed the following definition: “The
relativistic geoid is the surface nearest to mean sea level on
which precise clocks run with the same speed.”

A. Redshift potential

If one wants to translate Bjerhammar’s definition into the
language of mathematics, one has to specify what “precise
clocks” are and what is meant by saying that clocks “run at
the same speed.” Presupposing the formalism of general
relativity, without approximations, we suggest the follow-
ing: precise clocks are standard clocks, i.e., clocks that
measure proper time along their respective worldlines. The
notion of standard clocks is mathematically well defined in
the formalism of general relativity by the condition that for
a worldline parametrized by proper time the tangent vector
is normalized; moreover, standard clocks can be equiv-
alently characterized by an operational definition with the
help of light rays and freely falling particles, using the
notions of radar time and radar distance; see Perlick [16].
When comparing predictions from general relativity with
observations, one always assumes that atomic clocks are
standard clocks. This hypothesis is in agreement with all
experiments to date.
Knowing what is meant by “precise clocks,”we still have

to explain what we mean by saying that “two clocks run at
the same speed.” For comparing two clocks, it is obviously
necessary to send signals from one clock to the other. In a
general relativistic setting, it is natural to use light signals
which, in the mathematical formalism, are given by light-
like geodesics. This gives rise to the following well-known
definition of the general-relativistic redshift: let γ and ~γ be
the worldlines of two standard clocks that measure proper
times τ and ~τ, respectively. Assume that a light ray λ is
emitted at γðτÞ and received at ~γð~τÞ, while a second light ray
is emitted at γðτ þ ΔτÞ and received at ~γð~τ þ Δ~τÞ; see
Fig. 1. One defines the redshift z by

zþ 1 ¼ ν

~ν
¼ d~τ

dτ
¼ lim

Δτ→0

Δ~τ

Δτ
; ð13Þ

where ν and ~ν are the frequencies measured by the emitter γ
and by the receiver ~γ, respectively. In general relativity,
there is a universal formula for the redshift of standard
clocks [17],

zþ 1 ¼ ν

~ν
¼

�
gμν

dλμ
ds

dγν

dτ

����
γðτÞ�

gρσ
dλρ
ds

d~γσ

d~τ

����
~γð~τÞ

: ð14Þ

Here, s is an affine parameter for the lightlike geodesic λ. A
simple derivation of the redshift formula was given by Brill
[18]; this derivation can also be found in the book by
Straumann [19]. We are now ready to explain how we
interpret the statement that γ and ~γ run at the same speed: it
is supposed to mean that z ¼ 0.
In this interpretation, Bjerhammar’s definition requires

pairwise vanishing redshift for an entire family of clocks.
Therefore, we now consider a congruence of worldlines,
and we ask for the redshift of any pair of worldlines in this
congruence. The congruence is defined by a 4-velocity
field u, which is normalized according to gμνuμuν ¼ −c2,
i.e., such that its integral curves are parametrized by proper
time. We say that ϕ is a redshift potential for u if

logðzþ 1Þ ¼ ϕð~γð~τÞÞ − ϕðγðτÞÞ ð15Þ

for any two integral curves γ and ~γ of u. According to
Ref. [20], ϕ is a redshift potential if and only if expðϕÞu ≕
ξ is a conformal Killing vector field of the spacetime. The
redshift potential is time independent (i.e., constant along
the integral curves of ξ) if and only if ξ is a Killing vector
field. The integral curves of u are then called Killing
observers. The existence of a time-independent redshift
potential is, thus, guaranteed if and only if the spacetime is
stationary. In this case, we may introduce coordinates
ðt; x1; x2; x3Þ with ξ ¼ ∂t such that the metric reads

g ¼ e2ϕðxÞ½−ðcdtþ αaðxÞdxaÞ2 þ αabðxÞdxadxb�; ð16Þ
where the metric functions ϕ, αa, and αab depend on x ¼
ðx1; x2; x3Þ but not on t.
The redshift potential ϕðxÞ foliates the three-dimensional

space into surfaces which we call isochronometric surfaces.
According to Eq. (15), any two standard clocks, math-
ematically described by integral curves of the vector field
u ¼ expð−ϕÞξ, that are on the same isochronometric sur-
face ϕ ¼ ϕ0 ¼ constant show zero redshift with respect to
each other. We are thus led to the conclusion that

FIG. 1. Definition of the redshift in general relativity: exchang-
ing light signals between two worldlines γ and ~γ.
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Bjerhammar’s definition (with our interpretation of his
wording) makes sense in any stationary spacetime and that
the geoid is an isochronometric surface.
One might ask if the assumption of stationarity is really

necessary for this definition to make sense. As a matter of
fact, it can be shown that a 4-velocity field u must be
proportional to a Killing vector field if any two clocks on
integral curves of u see each other with temporally constant
redshift and if these integral curves are complete; see
Theorem 10 in Ref. [21]. This demonstrates that, based on
redshift measurements, a time-independent geoid can be
defined only in the case of stationarity.
We end this subsection by briefly discussing the notion

of a redshift potential in the Newtonian limit. Given a
stationary spacetime with a metric in the form above, the
redshift potential ϕ is given by the equation

c2e2ϕ ¼ −gμνξμξν ¼ −gtt: ð17Þ
Clearly, the redshift between any two stationary standard
clocks [i.e., standard clocks of which the worldlines are
integral curves of the vector field u ¼ expð−ϕÞξ] is

zþ 1 ¼ ν

~ν
¼ eϕj~γ−ϕjγ ¼ eϕj~γ

eϕjγ
¼

ffiffiffiffiffiffiffiffi−gtt
p j~γffiffiffiffiffiffiffiffi−gtt
p jγ

: ð18Þ

For the Newtonian limit of general relativity, we know that in
a suitable coordinate system −gtt → c2ð1þ 2U=c2Þ; hence,

eϕ ≈ 1þU=c2: ð19Þ
This demonstrates that in the Newtonian approximation
the level sets of the redshift potential ϕ correspond to
equipotential surfaces of the Newtonian gravitational poten-
tial U. In the same approximation, the redshift is determined
by the potential difference between the emitter and receiver,

ν

~ν
≈ 1þU2 − U1

c2
≕ 1þ ΔU

c2
: ð20Þ

Near the surface of the Earth, such a potential difference
corresponds to a height difference. From Eq. (20), one
concludes that the relative frequency change, i.e., the red-
shift, is about 10−16 per meter near the Earth’s surface.
Hence, modern clocks with a stability in the 10−18 regime
can be used to measure height differences at the centimeter
level. Figure 2 shows a sketch of the level sets of the redshift
potential and fibers connecting these surfaces. The redshifts
measured using fibers I and II are identical, whereas the
redshift measured using fiber III vanishes.

B. Clock comparison through optical fibers

The general redshift formula (14) is valid only if the
comparison between the two clocks is made with the help
of freely propagating light rays, i.e., with the help of
lightlike geodesics. We will now show that, by contrast, in
the case of a stationary spacetime, the formula (15) is valid

whenever the comparison between the two clocks is made
with signals that move at the speed of light, even if they are
not freely propagating (i.e., nongeodesic). This has the
important consequence that this formula may be used if the
signals are transmitted through an optical fiber. We have to
assume that the fiber is at rest with respect to the Killing
observers, i.e., that it establishes a time-independent path in
the coordinate representation (16) of the metric. A signal
that propagates along this fiber with the speed of light has
to satisfy the condition

gμν _xμ _xν ¼ 0; ð21Þ
where the dot denotes the derivative with respect to a curve
parameter s. As the signal is future oriented, this is
equivalent to

cdtþ αadxa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αabdxadxb

q
: ð22Þ

As a consequence, the coordinate travel time

Δt ≔ t2 − t1 ¼
Z

t2

t1

dt

¼ 1

c

Z
s2

s1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αab

dxa

ds
dxb

ds

r
− αc

dxc

ds

�
ds ð23Þ

of the signal through the fiber is independent of the
emission time since ∂tαa ¼ 0 and ∂tαab ¼ 0. This implies
that two signals that are emitted with a time difference Δt
will be received with the same time difference Δt. Together
with the fact that, for observers with 4-velocity
u ¼ expð−ϕÞ∂t, proper time and coordinate time are
related by

dτ
dt

¼ eϕ; ð24Þ
this shows that the redshift of signals sent through the
fiber is

zþ 1 ¼ ν

~ν
¼ d~τ

dτ
¼ d~τ

dt
dt
dτ

¼ eϕj~γ
eϕjγ

: ð25Þ

Hence, the redshift potential also gives the correct fre-
quency ratio ν=~ν for clock comparison by signal trans-
mission through an arbitrarily shaped optical fiber,
provided that the fiber is at rest with respect to the
Killing observers.
Using the framework of optical metrics, see, for instance,

Ref. [22], we can also consider fiber links with an index of
refraction n in which the signal does not propagate with the
vacuum speed of light as assumed above. Instead of
Eq. (16), the metric now reads

g ¼ e2ϕðxÞ½−nðxÞ−2ðcdtþ αaðxÞdxaÞ2
þ αabðxÞdxadxb�: ð26Þ
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We again assume that the fiber is at rest with respect to the
Killing observers, i.e., with respect to the emitter and
observer of the signal. The redshift between the two ends of
the fiber now results in

zþ 1 ¼ ν

~ν
¼ eϕj~γ

eϕjγ
njγ
nj~γ

; ð27Þ

such that, again, the redshift potential ϕ gives the correct
result for frequency comparison if the index of refraction is
constant. As can be seen by the equation above, the vacuum
redshift potential ϕ can also be deduced from redshift
measurements using optical fibers when the position-
dependent index of refraction of the fiber is known.

C. Definition of the relativistic geoid

Based on our deliberations in Sec. III A, we suggest the
following definition of the relativistic geoid: the relativistic
geoid is the level surface of the redshift potential ϕ that is
closest to mean sea level.
In the case of celestial bodies without a water surface,

one has to single out one particular level surface of the
redshift potential by some other convention. This definition
of the relativistic geoid makes sense for any celestial body
that is associated with a stationary spacetime, i.e., with a
family of Killing observers. In the next section, we will
show that the assumption of stationarity is tantamount to
three conditions that are analogous to the three conditions
A1’, A2’, and A3’, which are necessary for defining a time-
independent geoid in the Newtonian theory; recall Sec. II.
Our definition is operational in the sense that standard

clocks and fiber links can be used to determine the
relativistic geoid. A clock network may be built such that
all clocks show pairwise zero redshift, and one of them is
positioned at mean sea level. The spatial grid of clocks then
determines the shape of the Earth’s geoid.
We emphasize that our definition of the geoid allows for

arbitrarily strong gravitational fields. For weak fields, we
may use the Newtonian limit for which the redshift
potential can be expressed in terms of the Newtonian
potential; see Sec. III A. In this limit, our definition of the
geoid becomes the usual Newtonian one. At the PN level,
our geoid reduces to the u-geoid of Soffel et al. [5].
Our definition of the geoid should be compared with the

one by Oltean et al. [10], which is also fully relativistic. A
major difference is in the fact that we give an operational
definition in terms of clocks that are connected by fiber
links while their mathematical construction is not immedi-
ately related with an operational prescription. In particular,
they do not make any reference to clocks.

IV. GENERAL RELATIVISTIC MODEL
OF THE SOLID EARTH

Our definition of the geoid requires stationarity, i.e., the
existence of a timelike Killing vector field. In this section,

we will recall some known facts about timelike congruen-
ces. They will demonstrate that the stationarity assumption
is equivalent to a relativistic version of the three conditions
A1’, A2’, and A3’ we have discussed in Sec. II.

A. Rigid and isometric congruences

We consider a timelike congruence of worldlines (see,
e.g., Refs. [23,24]), i.e., a family of timelike curves which
do not intersect and fill a certain region of the four-
dimensional spacetime. The tangents to the worldlines
are given by a timelike vector field u ¼ uμ∂μ, which we
assume to be normalized, gμνuμuν ¼ −c2. We interpret u as
the 4-velocity field of a gravitating body. On the surface of
the body, u may be interpreted as the 4-velocity of
observers with standard clocks that are attached to the
surface. Moreover, we may extend u into the exterior region
where it may be interpreted as the 4-velocity of observers
hovering above the surface, e.g., in satellites. We will
characterize the case that u is proportional to a Killing
vector field; in this case, the congruence is called isometric.
The projection onto the local rest space of the con-

gruence is given by the projection operator

Pμ
ν ¼ δμν þ 1

c2
uμuν: ð28Þ

The acceleration a ¼ aμ∂μ of the congruence is defined by

aμ ≔ _uμ ¼ uνDνuμ: ð29Þ
The acceleration vanishes along a particular integral curve
of u if and only if this curve is a geodesic.
As in nonrelativistic physics, a congruence can be

characterized by the kinematic quantities rotation ωμν,
shear σμν, and expansion θ,

ωμν ≔ Pρ
μPσ

νD½σuρ� ¼ D½νuμ� þ
1

c2
_u½μuν�; ð30aÞ

σμν ≔ Pρ
μPσ

νDðσuρÞ −
1

3
θPμν

¼ DðνuμÞ þ
1

c2
_uðμuνÞ −

1

3
θPμν; ð30bÞ

θ ≔ Dμuμ: ð30cÞ

The rotation is antisymmetric, while the shear is sym-
metric and traceless. The motion of neighboring worldlines
with respect to a chosen worldline with tangent u is
determined by

Dνuμ ¼ ωμν þ σμν þ
1

3
θPμν −

1

c2
uνaμ: ð31Þ

A congruence with vanishing expansion, θ ¼ 0, is
isochoric, i.e., the volume of a comoving spatial region
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does not change over time [23,24]. If the shear vanishes as
well, σμν ¼ 0, the congruence is called Born rigid. This is
true if and only if the spatial distance between any two
infinitesimally neighboring integral curves of u remains
constant over time. In this case, Eq. (31) reduces to

Dνuμ ¼ ωμν −
1

c2
uνaμ: ð32Þ

In analogy to the Newtonian condition A1’, we require the
congruence to be Born rigid, i.e.:
(A1”) Pρ

μPσ
νDðσuρÞ ¼ 0.

For defining the analogs of the Newtonian conditions A2’
and A3’, we introduce the rotation 4-vector ωμ by

ωμ ≔
1

2c
ημνσλuνωσλ ¼

1

c
ημνσλuν∂λuσ: ð33Þ

As ωμuμ ¼ 0, the vector ωμ is spacelike. If we write it in the
form ωμ ¼ ωeμ with eμeμ ¼ 1, the unit vector eμ gives the
direction of the momentary rotation axis, and the scalar ω
gives the modulus of the momentary angular velocity. The
Newtonian requirements A2’ and A3’ now translate into
the following conditions:
(A2”) Pμ

ν _ων ¼ 0.
(A3”) Pμ

ν _aν ¼ ωμ
νaν.

Condition A2” states that the unit vector eμ is Fermi-Walker
transported and that the scalar ω is constant along each
worldline of the congruence; in other words, it states that
the rotation axis and the angular velocity are time inde-
pendent. Condition A3” states that the change of the
acceleration along the congruence is only due to the
rotation and that the acceleration vector always points to
the same neighboring worldline.

B. Acceleration potential

Ehlers [23] has shown that for a rigid congruence the two
requirements A2” and A3” together are equivalent to

D½νaμ� ¼ 0: ð34Þ

The latter condition means that there exists a potential ϕ for
the acceleration,

aμ ¼ c2∂μϕ: ð35Þ

This, in turn, is true for a rigid congruence if and only if u is
proportional to a timelike Killing vector field ξ [25], where
the proportionality is given by

ξ ¼ eϕu: ð36Þ

Clearly, ϕ is equal to the redshift potential considered
above. We have now seen that at the same time it plays the
role of an acceleration potential. Moreover, we have seen

that stationarity is equivalent to the three conditions A1”,
A2”, and A3”. A congruence with these properties is called
isometric. The existence of a time-independent redshift
potential is thus based on assumptions that are quite
analogous to the assumptions A1’, A2’, and A3’ we have
discussed in the Newtonian theory.
The Killing vector field ξ corresponds to a corotating

family of observers. Note that ξ is defined and timelike on a
cylindrical neighborhood of the body. This neighborhood
extends to infinity for a nonrotating (isolated) body but for
a rotating body it is finite. If extended outside of this
neighborhood, the Killing vector field becomes spacelike.

C. General relativistic geoid revisited

We summarize our observations in the following way.
We have seen that a natural generalization of the classical
assumptions A1’, A2’, and A3’ requires the congruence
associated with the Earth to be isometric, i.e., the spacetime
to be stationary. The assumption of stationarity gives rise to
a time-independent potential ϕ with two properties. First, ϕ
is a redshift potential, which means that the surfaces ϕ ¼
constant in 3-space are isochronometric. Second, ϕ is an
acceleration potential, which means that the acceleration aμ

(which is a spatial vector field) is the gradient of the
surfaces ϕ ¼ constant in 3-space. Note that freely falling
particles undergo the acceleration −aμ relative to comoving
observers. Therefore, the acceleration of freely falling
bodies on the Earth, e.g., in falling corner-cube devices,
is governed by the potential ϕ. By the same token, plumb
lines are perpendicular to the surfaces ϕ ¼ constant.
As a consequence, we could rewrite our definition of the

relativistic geoid, as it is given in Sec. III C, by replacing
the words “redshift potential” with the words “acceleration
potential.” The geoid may be determined by a family of
Killing observers with standard clocks. Once a reference
point defining the mean sea level has been chosen, the
geoid may be realized either by clock comparison or by
measuring the gravitational acceleration in falling corner
cubes as shown by Eqs. (35) and (18). In this sense, one
may say that also in the full relativistic theory the notions of
the u-geoid and a-geoid are equivalent; it was already
mentioned that a similar result was proven by Soffel et al.
[5] in a PN setting. This fact is very convenient because it
implies that the geoid may be determined with two
independent types of measurements that complement each
other. As the notions of redshift potential and acceleration
potential coincide, we will speak just of the relativistic
potential in the following.
Our definition of the geoid is based on the assumption of

stationarity. Of course, this is only an approximation. Just
as in the Newtonian theory, temporal variations may be
taken into account by modifying the time-independent
(rigid) geoid by time-dependent perturbations, i.e., by
considering a nonstationary metric Σμν of the form
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Σμν ¼ gμν þ hμν; ð37Þ

where gμν is stationary. In practical geodesy, the stationary
part is defined as the mean value over a sufficiently long
time interval. Thus, this part also contains the permanent
tide effects from the external gravitational field of celestial
bodies like the Moon or the Sun. For the stationary part gμν,
we may still use our definition of the geoid in terms of a
relativistic potential ϕ. In this paper, we will not work out a
theory for such time-dependent perturbations of the rela-
tivistic geoid. For examples of such effects, we refer to the
list given in Sec. II.
However, as our formalism also applies, e.g., to rapidly

rotating neutron stars with “mountains” and other non-
axisymmetric stationary objects, we should mention that
our assumption of stationarity ignores the fact that an
irregularly shaped rotating body emits gravitational radi-
ation, so its angular velocity will actually not be constant
over time. Of course, this is a small effect; for the Earth and
other planets, it is completely negligible.
For rigid motion inside the gravitating body, the

4-velocity field u and, consequently, the Killing vector
field ξ are defined within the interior as well. The extension
of equipotential surfaces (i.e., of the geoid) to regions
inside the body is also well defined. An interior solution
should be considered, and the corresponding isochrono-
metric surfaces need to be calculated. The particular
interior solution must be matched, at the surface, to the
vacuum solution. The level surface that defines the geoid by
the condition of pairwise vanishing redshift for any two
clocks on this particular surface will then be continuous but
in general not differentiable.
In the following two sections, we consider axisymmetric

static and axisymmetric stationary spacetimes, respectively,
and we determine the isochronometric surfaces for various
examples of such spacetimes. Of course, axisymmetric
models are highly overidealized in view of applications to
the Earth; see, e.g., the analysis in Ref. [26]. However, we
believe that these examples are instructive because they
illustrate the general idea behind our definition and its
applicability to compact objects. We emphasize that our
general definition of the geoid does of course not assume
axisymmetry or any other kind of spatial symmetry.
However, the axisymmetric stationary case is mathemati-
cally distinguished by the fact that then we have two
linearly independent Killing vector fields, one of them
is timelike and hypersurface orthogonal near spatial infin-
ity. This allows the use of asymptotically defined time-
independent multipole moments; see below. The only other
case where a Killing vector field exists that is timelike up to
spatial infinity and hypersurface orthogonal (near spatial
infinity) is the case of a static (i.e., nonrotating) gravitating
body. In the exterior of an irregularly shaped rotating body,
we have only one Killing vector field, which becomes
spacelike at a certain distance from the rotation axis; in this

case, the asymptotic definition of time-independent multi-
pole moments is not applicable.
All our examples are vacuum solutions of Einstein’s field

equation. For modeling a gravitating body, they have to be
matched to an interior matter solution. Correspondingly,
the isochronometric surfaces we are calculating are valid
only outside of the gravitating body.

V. AXISYMMETRIC STATIC SPACETIMES

A. Axisymmetric static solutions to
Einstein’s vacuum field equation

Any axisymmetric and static spacetime that satisfies
Einstein’s vacuum field equation is given by the Weyl
metric [27]

gμνdxμdxν ¼ −e2ψc2dt2 þ e−2ψρ2dφ2

þ e−2ψe2γðdρ2 þ dz2Þ; ð38Þ

where ðt; ρ; z;φÞ are Weyl’s canonical coordinates. The
metric functions ψ and γ depend only on the coordinates ρ
and z. The coordinates t and φ are associated with the two
Killing vector fields ∂t and ∂φ. Some important examples
are the Schwarzschild metric, the Erez-Rosen metric [28],
and the q-metric [29] (Zipoy-Voorhees metric [30,31]).
Using the metric (38), the vacuum field equations reduce to,
see, e.g., Ref. [32],

Δψ ¼ 0; ð39aÞ

∂ργ − ρð∂ρψ þ ∂zψÞð∂ρψ − ∂zψÞ ¼ 0; ð39bÞ

∂zγ − 2ρ∂ρψ∂zψ ¼ 0: ð39cÞ

The metric function γ can be obtained by integration once
the Laplace Eq. (39a) for ψ has been solved. The general
solution for all static, axisymmetric, and asymptotically flat
spacetimes is given by [33]

ψ ¼
X∞
l¼0

cl
PlðcosΘÞ

Rlþ1
; ð40aÞ

γ ¼
X∞
l;i¼0

ðiþ 1Þðlþ 1Þ
iþ lþ 2

cicl

×
Plþ1ðcosΘÞPiþ1ðcosΘÞ − PlðcosΘÞPiðcosΘÞ

Rlþiþ2
;

ð40bÞ

where R2 ¼ ρ2 þ z2 and cosΘ ¼ z=R. The PlðcosΘÞ are
Legendre polynomials of degree l, and cl are constant
expansion coefficients, sometimes called Weyl multipoles.
The relativistic geoid is defined by the level sets of the

time-independent redshift potential for observers that form
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an isometric congruence. Hence, their 4-velocity field u is
proportional to a timelike Killing vector field ξ as given by
Eq. (36). The relativistic potential ϕ is related to this Killing
vector field by Eq. (17).
For the spacetime with line element (38), we have two

linearly independent Killing vector fields, ∂t and ∂φ. Note
that any linear combination of these two Killing vector
fields with constant coefficients is again a Killing vector
field. We consider (I) the nonrotating congruence with
worldlines that are integral curves of the timelike Killing
vector field ∂t and (II) a rotating congruence with world-
lines that are integral curves of ∂t þΩ∂φ, with some
Ω ∈ R. Note that the latter congruence is timelike only
on a cylindrical domain about the symmetry axis; on the
boundary of this domain, it becomes lightlike, and farther
away from the axis, it is spacelike. The bigger the Ω, the
smaller the domain on which the congruence is timelike.
Here, Ω has the dimension of an inverse time, i.e., the
dimension of a frequency.
The first congruence, I, is associated with observers of

which the spatial Weyl coordinates ðρ;φ; zÞ remain fixed;
we can think of them as being attached to the surface of a
“nonrotating Earth.” The second congruence, II, can be
associated with observers attached to the surface of a
“rotating Earth” where Ω is the angular velocity. As the
metric is static, the gravitomagnetic field of the Earth is not
taken into account. In the following, all quantities related to
the first congruence, I, will be denoted by the subscript
ð·Þstat, while all quantities related to the second congruence,
II, will be denoted by the subscript ð·Þrot. We obtain,
respectively,

c2e2ϕstat ¼ −gð∂t; ∂tÞ ¼ c2e2ψ ; ð41aÞ

c2e2ϕrot ¼ −gð∂t þΩ∂φ; ∂t þΩ∂φÞ
¼ c2e2ψ −Ω2ρ2e−2ψ : ð41bÞ

The isochronometric surfaces for the respective congruence
are defined by the level sets of ϕ. Therefore, we obtain

e2ϕstat ¼ constant⇔e2ψ ¼ constant; ð42aÞ

e2ϕrot ¼ constant⇔e2ψ −
Ω2

c2
ρ2e−2ψ ¼ constant: ð42bÞ

The relativistic geoid is one of these isochronometric
surfaces, where the constant has to be chosen by a
convention. Inserting the expansion (40a) gives the geoid
in terms of the expansion coefficients cl. However, this
representation gives little insight into the geometry and the
physical situation at hand: already for the simplest member
of the Weyl class, the Schwarzschild spacetime, the
coefficients must be chosen in a complicated way, such
that the series (40a) converges to

ψ ¼ 1

2
log

�
rþ þ r− − 2m
rþ þ r− þ 2m

�
;

r2� ≔ ρ2 þ ðz�mÞ2: ð43Þ

The Schwarzschild metric in its usual form follows after the
coordinate transformation

r
m
− 1 ≔

rþ þ r−
2m

; cos ϑ ≔
rþ − r−
2m

: ð44Þ

To obtain more physical insight, we introduce spheroidal
coordinates ðx; yÞ by the coordinate transformation [32]

ρ2 ≕ m2ðx2 − 1Þð1 − y2Þ; z ≕ mxy; ð45Þ

which is equivalent to

x ≔ r=m − 1; y ≔ cosϑ: ð46Þ
This yields the Weyl metric (38) in spheroidal coordinates,

gμνdxμdxν ¼ −e2ψc2dt2 þm2e−2ψðx2 − 1Þð1 − y2Þdφ2

þm2e−2ψe2γðx2 − y2Þ
�

dx2

x2 − 1
þ dy2

1 − y2

�
:

ð47Þ

In these coordinates, the relativistic potentials are,
respectively,

e2ϕstat ¼ e2ψ ; ð48aÞ

e2ϕrot ¼ e2ψ −
Ω2

c2
m2e−2ψðx2 − 1Þð1 − y2Þ: ð48bÞ

The isochronometric surfaces and, thus, the geoid in
these coordinates are, again, described by the respective
level sets.
The vacuum field equation in the new coordinates can be

found, e.g., in Refs. [32,33]. In Ref. [32], Quevedo has
shown that the general asymptotically flat solution, with
elementary flatness on the axis, in these coordinates is
given by

ψ ¼
X∞
l¼0

ð−1Þlþ1qlQlðxÞPlðyÞ; ð49Þ

where the Ql are the Legendre functions of the second kind
as given in Ref. [34]. The coefficients ql can be related to
the cl in Eq. (40a). Moreover, we will discuss in the next
section how the ql are related to the relativistic multipole
moments of the spacetime and, at the same time, to
multipole moments of the Newtonian potential in the weak
field limit. For the relativistic moments, we use those
defined by Geroch and Hansen [35,36].
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In the representation (49), the Schwarzschild solution is
obtained by simply choosing q0 ¼ 1 and ql ¼ 0 for all
l > 0; see Sec. V D 1 below. For this choice of q0, the
parameter m in (44) is the usual mass parameter of the
Schwarzschild solution, related to the Schwarzschild
radius rs ¼ 2m.

B. Newtonian limit

Ehlers [37] gave a definition of the Newtonian limit that
also yields a definition of the Newtonian multipole
moments. For a Weyl spacetime, one has to assume that
the potential ψ depends on the parameter λ ¼ 1=c2. The
Newtonian potential is then given by the limit

Uðρ; zÞ ¼ lim
λ→0

1

λ
ψðρ; z; λÞ: ð50Þ

Keeping the canonical coordinates ρ and z fixed during the
limit procedure is motivated by the fact that, with respect to
these cylindrical coordinates, ψ satisfies the Laplace
equation, which is supposed to hold also in the limit for
the Newtonian potential U.
It is then inevitable to assume that the coordinates ðx; yÞ

depend on λ. This becomes clear if we consider the
Schwarzschild case by choosing q0 ¼ 1 and ql ¼ 0 for
all l > 0. We see that the Newtonian limit leads to the
potential

U ¼ −
GM
R

; R2 ¼ ρ2 þ z2; ð51Þ

if the parameter m depends on λ according to

m ¼ GM=c2 ¼ GMλ; ð52Þ

where G and M are, of course, independent of λ. Inserting
Eq. (52) into Eq. (47) clarifies how x and y depend on λ.
Performing the limit (50) of the expansion (49) as was

done in Ref. [32],1 we have to calculate

U ¼ lim
λ→0

1

λ

X∞
l¼0

ð−1Þlþ1qlQl

�
rþ þ r−
2λGM

�
Pl

�
rþ − r−
2λGM

�
:

ð53Þ

For the coordinates x and y, expressed in terms of ρ and z,
we calculate the limits

lim
λ→0

x ¼ lim
λ→0

rþ þ r−
2λGM

¼ ∞; ð54aÞ

lim
λ→0

y ¼ lim
λ→0

rþ − r−
2λGM

¼ zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

p : ð54bÞ

Using the fact that the Legendre polynomials are continu-
ous, we obtain

lim
λ→0

PlðyÞ ¼ Pl

�
lim
λ→0

y

�
¼ Pl

�
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ z2
p

�
: ð55Þ

As the limit λ → 0 is equivalent to x → ∞, we expand
QlðxÞ in powers of 1=x [32,34],

QlðxÞ ¼ Ql

�
rþ þ r−
2λGM

�
¼

X∞
k¼0

bllþ2kþ1

�
2λGM
rþ þ r−

�
lþ2kþ1

;

ð56Þ

where

bllþ2kþ1 ¼
ðlþ 2k − 1Þðlþ 2kÞ
2kð2lþ 2kþ 1Þ bllþ2k−1; ð57aÞ

bllþ1 ¼
l!

ð2lþ 1Þ!! : ð57bÞ

The limit of each summand of Eq. (53) exists and is
finite. Absolute convergence allows us to interchange the
sum and the limit [38]. We insert the series expansion for
QlðxÞ and calculate the remaining limit

U ¼
X∞
l¼0

ð−1Þlþ1Pl

�
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ z2
p

�
lim
λ→0

1

λ
qlQl

�
rþ þ r−
2λGM

�

¼
X∞
l¼0

ð−1Þlþ1Pl

�
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ z2
p

�

× lim
λ→0

1

λ
ql
X∞
k¼0

bllþ2kþ1

�
2λGM
rþ þ r−

�
lþ2kþ1

: ð58Þ

This limit exists and is nonzero if the dimensionless
coefficients ql are of the form [32]

ql ¼ ðG=c2Þ−lq̄l ð59Þ

with new coefficients q̄l that are independent of λ and
have dimension ½q̄l� ¼ ðm=kgÞl. Then, only the k ¼ 0
term in (58) gives a nonzero limit. We finally obtain the
Newtonian potential

1We perform the calculation here again, because in Ref. [32],
there are some minor errors in the limit procedure.
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U ¼
X∞
l¼0

ð−1Þlþ1bllþ1Pl

�
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ z2
p

�

× lim
λ→0

qlλl
�

2GM
rþ þ r−

�
lþ1

¼ G
X∞
l¼0

ð−1Þlþ1bllþ1q̄lM
lþ1Pl

�
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ z2
p

�

× lim
λ→0

�
2

rþ þ r−

�
lþ1

¼ −G
X∞
l¼0

ð−1Þl l!
ð2lþ 1Þ!! q̄lM

lþ1
PlðcosΘÞ

Rlþ1
; ð60Þ

where

cosΘ ¼ zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

p ; R2 ¼ ρ2 þ z2: ð61Þ

C. Multipole moments

If we compare Eq. (60) with Eq. (6) for the Newtonian
multipole moments Nl in the axisymmetric case, we see
that

Nl ¼ ð−1Þl l!
ð2lþ 1Þ!! q̄lM

lþ1: ð62Þ

Choosing q0 ¼ q̄0 ¼ 1, we identify M as the total mass of
the source (in kg) that gives the monopole moment
N0 ¼ M. A dipole moment can always be made to vanish
by transforming the origin of the coordinate system into the
center of mass. The quadrupole moment is given by
N2 ¼ −2=15q̄2M3. The lth-order multipole moment has
the dimension ½Nl� ¼ kgml such that for each moment Nl

we get ½Nl=N0� ¼ ml.
From this identification, we deduce that the parameters

q̄l, which are independent of λ, determine the Newtonian
moments of the gravitating source of which the exterior we
describe by the metric (47). On the other hand, the
parameters q̄l also determine the relativistic Geroch-
Hansen moments Rl uniquely. The latter, which depend
of course on λ ¼ c−2, can be written in the form

Rl ¼ Nl þ Cl; ð63Þ

as a sum of the Newtonian moments and relativistic
corrections Cl, where the Cl can be calculated exactly,
i.e., with no approximation involved. Following Quevedo
[32], we obtain

C0 ¼ C1 ¼ C2 ¼ 0; ð64aÞ

C3 ¼ −
2

5
m2N1; ð64bÞ

C4 ¼ −
2

7
m2N2 −

6

7
m

G
c2

N2
1: ð64cÞ

In general, the correction terms Cl are of the form
Cl ¼ ClðNl−2; Nl−3;…; N0Þ. The octupole correction C3

can be made to vanish by transforming away the Newtonian
dipole. Then, a difference between the relativistic and the
Newtonian multipole moments occurs for the first time at
the 16-pole moment R4, which is a surprising result that
was first derived in Ref. [32].

D. Examples

In this section, we apply our definition of the relativistic
geoid to particular axisymmetric and static vacuum sol-
utions to the Einstein field equation. We choose three
examples, all of which are asymptotically flat: the
Schwarzschild metric, the Erez-Rosen metric, and the q
metric (Zipoy-Vorhees metric).

1. Monopole: Schwarzschild metric

Choosing q0 ¼ 1, ql ¼ 0 for all l > 0 in the expansion
(49), we obtain a spacetime which possesses only a monop-
ole moment R0 ¼ M, and the metric functions become

ψ ¼ 1

2
log

�
x − 1

xþ 1

�
; γ ¼ 1

2
log

�
x2 − 1

x2 − y2

�
: ð65Þ

The relativistic potential ϕ in this spacetime is given by
Eqs. (41) and (48) for the two different congruences,
respectively. We obtain

e2ϕstat ¼
�
x − 1

xþ 1

�
; ð66aÞ

e2ϕrot ¼
�
x − 1

xþ 1

�
−
Ω2

c2
m2ðxþ 1Þ2ð1 − y2Þ: ð66bÞ

The metric (47) then yields the well-known Schwarzschild
metric after the coordinate transformation x ¼ r=m − 1 and
y ¼ cosϑ:

g ¼ −
�
1 −

2m
r

�
c2dt2 þ

�
1 −

2m
r

�
−1
dr2

þ r2dϑ2 þ r2sin2ϑdφ2: ð67Þ

Hence, the relativistic potential for static and rotating
observers becomes, respectively,

e2ϕstat ¼
�
1 −

2m
r

�
; ð68aÞ

e2ϕrot ¼
�
1 −

2m
r

�
−
Ω2

c2
r2sin2ϑ: ð68bÞ
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Their equipotential surfaces determine the isochronometric
surfaces

e2ϕstat ¼ constant⇔r ¼ constant; ð69aÞ

e2ϕrot ¼ constant

⇔

�
1 −

2m
r

�
−
Ω2

c2
r2sin2ϑ ¼ constant; ð69bÞ

one of which is the relativistic geoid in this spacetime.
Figure 3(a) shows the level sets of the relativistic potential
for both cases in a coordinate contour plot.
We now compare the relativistic geoid defined by

Eq. (69b) with its Newtonian analog. For the Newtonian
potential U ¼ −GM=R of a spherically symmetric mass
distribution, the geoid is defined by an equipotential
surface, see Eq. (3),

W ¼ −
GM
R

−
1

2
Ω2R2 sin2 ϑ ¼ W0 ¼ constant: ð70Þ

Using the relation m ¼ GM=c2, we get from (69b) the
condition for the relativistic geoid,

1þ 2

c2

�
−
GM
r

−
1

2
Ω2r2sin2ϑ

�
¼ constant: ð71Þ

Hence, the term in brackets must be constant. This is,
formally, the same result as for the nonrelativistic geoid
(70). Of course, the Newtonian geoid is defined in a flat
geometry, while the spatial part of the Schwarzschild metric
is not flat. Therefore, the intrinsic geometry of a surface in
the Schwarzschild geometry is in general different from
that of a surface with the same coordinate representation
in flat space. However, as the spheres r ¼ r0 in the

Schwarzschild geometry have area 4πr20, the intrinsic
geometry of the Schwarzschild geoid for the nonrotating
observers is the same as that of the corresponding
Newtonian geoid.
In Figs. 6 and 7 in the bottom row on the right, we show

an isometric embedding into Euclidean space R3 of the
isochronometric surfaces as seen by the rotating observers.
This isometric embedding reveals the intrinsic geometry of
these surfaces; close to the source the surfaces are
“squashed spheres,” whereas farther away, they deform
into cylinders due to the increasing influence of the rotation
term that is proportional to r2; see Eq. (68b). For details on
the embedding procedure, we refer to Appendix A.

2. Quadrupole I: Erez-Rosen metric

Choosing q0 ¼ 1, q1 ¼ 0, q2 ≠ 0, and ql ¼ 0 for all
l > 2, we obtain a metric that possesses a monopole
moment R0 ¼ M and, additionally, an independent quadru-
pole moment

R2 ¼
2

15
q̄2M3: ð72Þ

The metric functions ψ and γ in Eq. (47) become

2ψ ¼ log

�
x − 1

xþ 1

�
þ q2ð3y2 − 1Þ

�ð3x2 − 1Þ
4

× log

�
x − 1

xþ 1

�
þ 3

2
x

�
; ð73Þ

and

γ ¼ 1

2
ð1þ q2Þ2 log

�
x2 − 1

x2 − y2

�

−
3

2
q2ð1 − y2Þ

�
x log

�
x − 1

xþ 1

�
þ 2

�
þ 9

16
q22ð1 − y2Þ

×

�
x2 þ 4y2 − 9x2y2 −

4

3
þ x

�
x2 þ 7y2 − 9x2y2 −

5

3

�

× log

�
x − 1

xþ 1

�
þ 1

4
ðx2 − 1Þðx2 þ y2 − 9x2y2 − 1Þ

× log

�
x − 1

xþ 1

�
2
	
: ð74Þ

This metric is the vacuum solution found by Erez and
Rosen [28].2 If the quadrupole moment vanishes, q2 → 0,
we reobtain the Schwarzschild metric.
The relativistic potential for static and rotating observers

is, respectively,

I

II
III

FIG. 2. Sketch of surfaces of constant redshift potential ϕ and
optical fibers connecting them. The redshift is independent of the
spatial shape of the chosen fiber as long as the fibers are at rest
with respect to the Killing observers. The redshifts measured
using fiber I and fiber II will be identical, whereas the redshift
measured using fiber III is zero.

2As pointed out in Ref. [39], the original work by Erez and
Rosen contains some mistakes concerning numerical factors
within the expression for the metric functions. A corrected
version can be found, for example, in Ref. [39].
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FIG. 3. The level sets of the relativistic potential in a plane φ ¼ constant. (a): Level sets in the Schwarzschild spacetime for the static
congruence (left) and the rotating congruence (right). (b): Redshift potential in the Erez-Rosen spacetime and a negative quadrupole
parameter (oblate case) for the static congruence (left) and the rotating congruence (right). The pure quadrupolar contribution as
difference to the monopole contribution is shown in the middle. (c): Level sets in Kerr spacetime for the stationary congruence (left) and
the rotating congruence (right). For all plots we introduced pseudo-Cartesian coordinates ðx1; x3Þ by the usual relations to spherical
coordinates ðr; ϑÞ. In either case the dashed line is a circle in these coordinates, corresponding to r ¼ constant surfaces in the respective
spacetime.
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e2ϕstat ¼ e2ψ ¼
�
x − 1

xþ 1

�
exp



q2ð3y2 − 1Þ

�ð3x2 − 1Þ
4

× log

�
x − 1

xþ 1

�
þ 3

2
x

��
; ð75aÞ

e2ϕrot ¼ e2ϕstat −
Ω2

c2
m2ðx2 − 1Þð1 − y2Þe−2ϕstat : ð75bÞ

The isochronometric surfaces are shown in Fig. 3(b). We
also show the effect of the quadrupole term alone by
subtracting the monopole contribution, i.e., subtracting the
Schwarzschild term.
Using the coordinate transformation (46), we can switch

to the coordinates ðr; ϑÞ and obtain

e2ϕstat ¼
�
1 −

2m
r

�
exp



q2ð3cos2ϑ − 1Þ

×

��
3

4

�
r
m
− 1

�
2

−
1

4

�
log

�
1 −

2m
r

�

þ 3

2

�
r
m
− 1

�	�
; ð76aÞ

e2ϕrot ¼ e2ϕstat −
Ω2

c2
r2 sin2 ϑe−2ϕstat : ð76bÞ

Thereupon, the geoid can also be determined in terms of the
coordinates ðr; ϑÞ.
We expand expð2ϕstatÞ up to cubic order in m=r

because this is where quadrupole corrections appear.
We obtain

e2ϕstat ¼ 1 −
2m
r

−
2

15
q2m3

3cos2ϑ − 1

r3
þOðm4=r4Þ

¼ 1 −
2

c2

�
GM
r

þGMm2
2

15
q2

3cos2ϑ − 1

2r3

�

þOðm4=r4Þ

¼ 1 −
2

c2

�
GM
r

þGN2

3cos2ϑ − 1

2r3

�

þOðm4=r4Þ: ð77Þ

For

N2 ¼
2

15
Mm2q2 ¼

2

15
q̄2M3; ð78Þ

the term in brackets is the Newtonian potential of a
quadrupolar gravitational source; see Eq. (6) for
comparison.
This result shows that, indeed, the Newtonian limit

of the Erez-Rosen spacetime yields the Newtonian
gravitational potential of a source that possesses only
a monopole and a quadrupole moment. Hence, the

relativistic geoid for the Erez-Rosen spacetime in terms
of the level sets of Eq. (76) reproduces the Newtonian
expression in lowest order. Higher orders are, however,
different. Moreover, one has to keep in mind that in the
Erez-Rosen spacetime the coordinates do not have the
same geometric meaning as in the Newtonian theory.
The metric on a surface t ¼ constant and r ¼ constant is
not the usual metric on the 2-sphere S2, and r is not an
area coordinate as it was in the Schwarzschild spacetime.
We can visualize the intrinsic geometry of isochrono-
metric surfaces by isometrically embedding them into the
Euclidean space R3. These surfaces are defined by an
equation of the form

e2ϕðr;ϑÞ ¼ f0 ¼ constant: ð79Þ

The value f0 > 0 labels these surfaces. For f0 → 0,
the surface of infinite redshift for observers on integral
curves of ∂t is approached. For static spacetimes, this
surface is a horizon. The relevant equations for con-
structing the embeddings are given in Appendix A. For
the Schwarzschild spacetime, the embedding yields stan-
dard spheres in R3 for the congruence on integral curves
of ∂t, and for the congruence on integral curves of
∂t þ Ω∂φ, the embedding yields deformed spheres close
to the horizon and deformed cylinders further away,
cf. Figs. 6 and 7 on the right in the bottom row.
For the Erez-Rosen spacetime, we have to consider

two different signs of the quadrupole parameter. Hence,
the embedded surfaces are either prolate or oblate; see the
middle rows of Figs. 4–7. We see that the isochrono-
metric surfaces in the Erez-Rosen spacetime for negative
quadrupole parameter develop “bulges” around the poles
close to the horizon. Farther away, the embedded surfaces
become oblate or prolate squashed spheres. With nonzero
rotation, the embedded surfaces deform into cylinders
farther away from the source, analogously to the rotating
Schwarzschild case.

3. Quadrupole II: q metric

Another example of a two-parameter family of metrics
that is actually the simplest generalization of the
Schwarzschild metric is the q metric [29,40–43]. The q
metric, as constructed by Quevedo, is obtained by a Zipoy-
Voorhees transformation of the Schwarzschild solution.
Zipoy [30] and Voorhees [31] considered such solutions
of the vacuum field equation in their papers. A similar
transformation was also used before in the work of Bach
(andWeyl) [44]. For a discussion of the Zipoy-Voorhees (q)
metric, we refer the reader to, e.g., the book by Griffiths and
Podolský [45].
The q metric possesses independent monopole and

quadrupole moments, and all higher multipole moments
are determined by these two. The metric functions read
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e2ψ ¼
�
x − 1

xþ 1

�
1þq

; e2γ ¼
�
x2 − 1

x2 − y2

�ð1þqÞ2
: ð80Þ

The relativistic monopole and quadrupole moments of
this spacetime are given by R0 ¼ ð1þ qÞM and R2 ¼
−Mm2qð1þ qÞð2þ qÞ=3 [42]. The limit q → 0 yields the
Schwarzschild metric. The relativistic potential for static
and rotating observers is, respectively,

e2ϕstat ¼
�
x − 1

xþ 1

�
1þq

; ð81aÞ

e2ϕrot ¼
�
x − 1

xþ 1

�
1þq

−
Ω2

c2
m2

�
x − 1

xþ 1

�
−ð1þqÞ

× ðx2 − 1Þð1 − y2Þ: ð81bÞ

With the coordinate transformation (46), the equations that
define the isochronometric surfaces read

e2ϕstat ¼
�
1 −

2m
r

�
1þq

; ð82aÞ

e2ϕrot ¼
�
1 −

2m
r

�
1þq

−
Ω2

c2

�
1 −

2m
r

�
−q
r2sin2ϑ: ð82bÞ

Even though the level sets of the redshift potential ϕstat
coincide with the surfaces x ¼ constant and thus with
the surfaces r ¼ constant, this does not mean that the
geoid is spherically symmetric. The metric on the surfaces
t ¼ constant and r ¼ constant is not the usual metric on the
S2, and r is not an area coordinate as it was in the
Schwarzschild spacetime. To put this into geometrical
terms, one can use the relativistic flattening [46] that
measures the deviation from spherical symmetry

f ≔ 1 −
Cϑ

Cφ
; ð83Þ

whereCϑ andCφ are the circumferences, measured with the
metric, of circles at r ¼ r0 in the ϑ direction (polar circles)
and φ direction (azimuthal circles), respectively. The
circumference Cφ is measured in the equatorial plane
ϑ ¼ π=2, whereas for Cϑ, the azimuthal angle φ is arbitrary
due to the symmetry. For the Schwarzschild spacetime, this
flattening is zero, whereas for the q metric, we obtain

f ¼ 1 − ðx2 − 1Þq2ð2þqÞ

× x−qð2þqÞ
2F1

�
1

2
;
1

2
qð2þ qÞ; 1; 1=x2

�
: ð84Þ

Here, 2F1 is one of the hypergeometric functions. In the
limits r → ∞ and q → 0, the flattening becomes zero. For a
positive q, the flattening is positive, and the surfaces x ¼
constant are oblate, because circles in the φ direction are
larger. For a negative value of q, these surfaces are prolate.

As for the Erez-Rosen metric, we may also visualize the
isochronometric surfaces of the q metric by isometrically
embedding them into the Euclidean space R3. The result is
shown in the top rows of Figs. 4–7. Again, we refer to
Appendix A for details about the construction of the
embeddings. As for the Erez-Rosen metric, we have two
different signs of the quadrupole parameter. Hence, the
embedded surfaces are either oblate or prolate as can be
seen in the plots. However, in contrast to the Erez-Rosen
metric, the isochronometric surfaces do not develop bulges
near the poles in the oblate case; see Fig. 5 in the top row on
the left. For the rotating case, the embedding yields
cylinders farther away from the source, and the results
are qualitatively similar to those obtained for the
Schwarzschild and Erez-Rosen cases.

VI. AXISYMMETRIC STATIONARY SPACETIMES

A. Axisymmetric stationary solutions to Einstein’s
vacuum field equation

All axisymmetric and stationary solutions to Einstein’s
vacuum field equation can be transformed into the Weyl-
Lewis-Papapetrou form. Here, we use spheroidal coordi-
nates since they have proven to be useful in the last section.
The metric in these coordinates reads

g ¼ −e2ψðcdtþ ωdφÞ2 þ e−2ψσ2
�
e2γðx2 − y2Þ

×

�
dx2

x2 − 1
þ dy2

1 − y2

�
þ ðx2 − 1Þð1 − y2Þdφ2

	
; ð85Þ

where ψ , γ, and ω are functions of x and y while σ is a
constant. Defining the complex Ernst potential

E ≔ e2ψ þ iΣ; ϵ ≔
1 − E
1þ E

; ð86Þ

where Σ is given by

σðx2 − 1Þ∂xΣ ¼ −e4ψ∂yω; ð87aÞ

σð1 − y2Þ∂yΣ ¼ e4ψ∂xω; ð87bÞ

reduces the vacuum field equation to a complex equation
for the Ernst potential, which can be found, for example,
in Ref. [42]. For static spacetimes, the Ernst potential
becomes real, and the formalism of Sec. VA may be used
for constructing solutions. We again construct the relativ-
istic potentials

e2ϕstat ¼ e2ψ ; ð88aÞ

e2ϕrot ¼ e2ψ þ 2
Ω
c
ωe2ψ −

Ω2

c2
½e−2ψσ2ðx2 − 1Þð1 − y2Þ

−ω2e2ψ �; ð88bÞ
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for the Killing vector fields ∂t and ∂t þΩ∂φ. The relativ-
istic potential ϕrot is now defined by the metric function ψ
and the twist potential ω, leading to gravitomagnetic
contributions.
A simple solution to the Ernst equation for ω ¼ 0 is

ξ ¼ 1=x. This yields the Schwarzschild solution in sphe-
roidal coordinates, which we considered in the last section.

B. Example: Kerr spacetime

The best known and most important stationary and
axisymmetric solution to Einstein’s vacuum field equation
is the Kerr metric. In this case, the Ernst potential depends
on the mass parameter m and the spin parameter a,

ϵ−1 ¼ σ

m
xþ i

a
m
y; σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
; ð89Þ

and the metric functions in the Weyl-Lewis-Papapetrou
representation become

e2ψ ¼ σ2x2 þ a2y2 −m2

ðσxþmÞ2 þ a2y2
; ð90aÞ

ω ¼ 2amðσxþmÞð1 − y2Þ
σ2x2 þ a2y2 −m2

; ð90bÞ

γ ¼ 1

2
log

�
σ2x2 þ a2y2 −m2

σ2ðx2 − y2Þ
�
: ð90cÞ

After the coordinate transformation

σx ¼ r −m; y ¼ cosϑ; ð91Þ

we obtain the Kerr metric in its well-known form given in
Boyer-Lindquist coordinates ðt; r; ϑ;φÞ,

g ¼ −
�
1 −

2mr
ρ2

�
c2dt2 þ ρ2

Δ
dr2 þ ρ2dϑ2

þ sin2ϑ

�
r2 þ a2 þ 2mra2sin2ϑ

ρ2

�
dφ2

−
4mrasin2ϑ

ρ2
cdtdφ; ð92Þ

where

ρ2 ¼ r2þa2cos2ϑ; Δ¼ r2þa2− 2mr: ð93Þ
The relativistic potential for the congruence of Killing
observers on integral curves of ∂t is now given by

e2ϕstat ¼ 1 −
2mr
ρ2

¼ 1 −
2mr

r2 þ a2cos2ϑ
: ð94Þ

For Killing observers on a rotating congruence, i.e., on
integral curves of ∂t þ Ω∂φ with Ω ≠ 0, the relativistic
potential ϕ satisfies

e2ϕrot ¼ 1 −
2mr

r2 þ a2 cos2 ϑ
þ 4

Ω
c

amr sin2 ϑ
ðr2 þ a2 cos2 ϑÞ

−
Ω2

c2
sin2 ϑ

�
r2 þ a2 þ 2mra2 sin2 ϑ

r2 þ a2 cos2 ϑ

�
: ð95Þ

In either case, for any two observers within such a
congruence at positions ðr; ϑÞ and ð~r; ~ϑÞ, respectively,
the redshift is

1þ z ¼ ν

~ν
¼ eϕð~r; ~ϑÞ

eϕðr;ϑÞ
: ð96Þ

Figure 3(c) shows a contour plot of the functions
expð2ϕstatÞ and expð2ϕrotÞ in pseudo-Cartesian coordinates.
To infer more about the intrinsic geometry of the iso-
chronometric surfaces Figs. 4–7 show their isometric
embeddings into Euclidean 3-space. The embedding of
the surface expð2ϕstatÞ ¼ f0 exists for all 0 < f0 < 1 and
all values of a=m. In the limit f0 → 0, the isochronometric
surfaces approach the ergosurface, i.e., the boundary of the
ergoregion. An isometric embedding of the ergosurface was
first discussed by Sharp [47]. It is known that the ergosur-
face starts to develop bulges around the poles if a2

approaches its extremal value m2; for a picture, see
Pelavas [48]. Our plots show a similar behavior of the
isochronometric surfaces near the ergosurface.
As an aside, we mention that our formalism may also be

used for calculating the gravitomagnetic redshift on the
surface of the Earth if the spacetime geometry outside of
the Earth is approximated by the Kerr metric. For satellite
orbits, the gravitomagnetic redshift (or gravitomagnetic
clock effect) has been studied before; see Ref. [49] for the
case of arbitrary orbits. For clocks on the surface of the
Earth, we may use the redshift potential (95). If one clock
rotates on the equator, (r, ϑ ¼ π=2), and the other one is
situated at the north pole, (~r, ~ϑ ¼ 0), the redshift becomes

1þ z ¼ ν

~ν

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m~r

~r2þa2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m

r þ 4 Ω
c
am
r − Ω2

c2 ðr2 þ a2 þ 2ma2
r Þ

q : ð97Þ

Subtracting the gravitoelectric part, i.e., the same expres-
sion for a ¼ 0, the remainder gives the gravitomagnetic
redshift between these two clocks. Inserting the values for
all parameters leads to a gravitomagnetic redshift of3

zgrav:magn: ∼ 10−21; ð98Þ

3For the calculation, we used the following values for the
Earth: m ¼ 0.0044 m, a ¼ 743m ¼ 3.3 m, Ω ¼ 2π=86400 s,
equatorial radius r ¼ 6378.137 km, and polar radius ~r ¼
6356.752 km.
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which is about 3 orders of magnitude away from contem-
porary precision but might be measured in the foreseeable
future with further improved clocks.

VII. POST-NEWTONIAN APPROXIMATION
OF THE GEOID

In this section, we consider the PN approximation of the
relativistic geoid, and we demonstrate that, indeed, the
familiar expression is reproduced at the 1PN level.
According to the most recent resolution of the

International Astronomical Union (IAU), see, e.g.,
Refs. [50,51], the PN approximation of the metric of the
Earth in geocentric coordinates ðcT; XiÞ and under the
assumption of stationarity reads

g00 ¼ −
�
1 −

2U
c2

þ 2U2

c4

�
þOðc6Þ; ð99aÞ

g0i ¼ −
4Ui

c3
þOðc5Þ; ð99bÞ

gij ¼ δij

�
1þ 2U

c2

�
þOðc4Þ; ð99cÞ

where the potentials U, Ui fulfill the equations

ΔUðXÞ ¼ −4πGρðXÞ; ð100aÞ

ΔUiðXÞ ¼ −4πGρiðXÞ: ð100bÞ

The quantities ρ; ρi are related to the energy-momentum
tensor of the Earth by ρ ¼ ðT00 þ TiiÞ=c2 and ρi ¼ T0i=c,
evaluated in the Geocentric Celestial Reference System.
For the scalar and vector potentials, one obtains

UðXÞ ¼ G
Z

d3X0 ρðX0Þ
jX −X0j ; ð101aÞ

UiðXÞ ¼ G
Z

d3X0 ρiðX0Þ
jX −X0j : ð101bÞ

Changing to corotating geocentric coordinates ðcT̄; X̄iÞ, the
metric becomes [5]

g00 ¼ −
�
1 −

2U
c2

þ 2U2

c4

�
þΩ2ðX̄2 þ Ȳ2Þ=c2; ð102aÞ

g0i ¼ L − X̄ ×Ω=c; ð102bÞ

gij ¼ δij

�
1þ 2U

c2

�
; ð102cÞ

where

L ¼ −2G
J × X̄
c3R3

; ð103Þ

andΩ, J are the angular velocity and angular momentum of
the Earth. We use the usual three-vector notation only as a
shorthand notation. The vector field ∂ T̄ is a Killing vector
field of the spacetime (102). Observers on the Earth’s
surface move on its integral curves since for them dX̄i ¼ 0.
These observers form an isometric congruence. The cor-
responding relativistic potential ϕPN is given by

e2ϕPN ¼−g00 ¼ 1−
2U
c2

þ 2U2

c4
−Ω2ðX̄2þ Ȳ2Þ=c2: ð104Þ

The defining condition for the relativistic geoid as a level
set of the relativistic potential ϕPN yields

U þ 1

2
Ω2ðX̄2 þ Ȳ2Þ −U2

c2
¼ constant; ð105Þ

which is exactly the expression given by Soffel et al. in
Ref. [5]; see their Eq. (4). The first two terms reproduce the
classical definition of the Newtonian geoid, whereas the
last term adds a relativistic correction at the 1PN level.

VIII. CONCLUSION

In this work, we have generalized the Newtonian and
post-Newtonian definitions of the geoid to a fully general
relativistic setting. As this definition is not restricted to
weak gravitational fields, it makes sense not only for the
Earth and other planets but also for compact objects such as
neutron stars. Just as the former definitions of the geoid, our
definition is based on the assumption that the Earth rotates
rigidly with constant angular velocity about a fixed axis.
Under this assumption, the Earth is associated with an
isometric congruence of worldlines, i.e., with a family of
Killing observers. We have defined the geoid in terms of
isochronometric surfaces that are the level sets of the
redshift potential for this isometric observer congruence.
As the isochronometric surfaces may be realized with
networks of standard clocks that are connected by fiber
links, this is an operational definition of the geoid.
While we consider the definition of the geoid in terms of

clocks as primary, we have also emphasized that the
redshift potential associated with an isometric congruence
is, at the same time, an acceleration potential. This
observation generalizes the equality of the u- and a-geoids,
which was known to hold in a PN setting, into the full
formalism of general relativity.
In practical geodesy, our stationary gravitational field is

the time average of the real gravitational field of the Earth.
The real gravitational field of the Earth contains time-
dependent parts which have to be treated through, e.g., an
appropriate reduction. Here, we focus on the correct and
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fully relativistic definition of the geoid without time
dependence.
We have illustrated our definition of the geoid by

calculating the isochronometric surfaces of axisymmetric
and static spacetimes, with the Schwarzschild metric, the
Erez-Rosen metric, and the qmetric as particular examples.
We have then considered the case of axisymmetric and
stationary spacetimes, with the Kerr metric as a particular
example. As the shape of the isochronometric surfaces in a
chosen coordinate system has no invariant meaning, we
have isometrically embedded these surfaces into Euclidean
3-space to show their intrinsic geometry. As an aside, we
have mentioned that the redshift potential for rotating
observers in the Kerr metric may be used for estimating
the gravitomagnetic redshift for clocks on the surface of
the Earth.
Finally, we have derived the redshift potential and the

relativistic geoid in a 1PN spacetime and recovered the
previously known result.
An important task for the future is to express the geoid of

a rotating and nonaxisymmetric body in terms of multipole
moments. This is conceptually challenging because in this
case the spacetime is not stationary near infinity; the Killing
vector field associated with the rotating body becomes
spacelike outside of a cylindrical region about the rotation
axis. For this reason, the time-independent asymptotically
defined Geroch-Hansen multipole moments do not exist. In
future work, we are planning to tackle the question of
how local measurements in the neighborhood of a gravi-
tating body are to be related to appropriately defined
multipole moments in a relativistic formalism without
approximations.
We emphasize again that our formalism is valid for

stationary nonaxisymmetric objects as well, as long as the
backreaction from gravitational radiation and the resulting
slowdown of the rotation can be ignored. In this sense, our
geoid can be constructed for any irregularly shaped rotat-
ing body.
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APPENDIX A: ISOMETRIC EMBEDDING
OF ISOCHRONOMETRIC SURFACES

As the coordinate representation of the geoid has no
invariant geometric meaning, it is recommendable to
isometrically embed the isochronometric surfaces into
Euclidean 3-space. If such an embedding is possible, it
represents the intrinsic geometry of the geoid.
In all examples that we considered in this paper, the

geoid was defined by the level sets of a function

fðx; yÞ ¼ f0 ¼ constant; ðA1Þ

where x and y are spheroidal coordinates. As an alternative,
we may use the coordinates ðr; ϑÞ, which are related to
ðx; yÞ by the coordinate transformation x ¼ r=m − 1,
y ¼ cosϑ; see Eq. (46).
On the two-dimensional surface defined by (A1), we

must have

0 ¼ df ¼ ∂xfðx; yÞdxþ ∂yfðx; yÞdy; ðA2Þ

hence,

dx2 ¼
�∂yfðx; yÞ
∂xfðx; yÞ

�
2

dy2: ðA3Þ

As a consequence, the two-dimensional Riemannian metric
on the surface f ¼ f0 is

gð2Þ ¼
�
gxxðx; yÞ

�∂yfðx; yÞ
∂xfðx; yÞ

�
2

þ gyy

	
dy2

þ gφφðx; yÞdφ2: ðA4Þ

We want to isometrically embed this surface into
Euclidean 3-space with cylindrical coordinates ðζ;φ; hÞ,

gð3ÞE ¼ dh2 þ dζ2 þ ζ2dφ2: ðA5Þ

The embedding functions hðyÞ and ζðyÞ are to be
determined from the equation

�
gxxðx; yÞ

�∂yfðx; yÞ
∂xfðx; yÞ

�
2

þ gyy

	
dy2 þ gφφðx; yÞdφ2

¼ ðh0ðyÞ2 þ ζ0ðyÞ2Þdy2 þ ζðyÞ2dφ2: ðA6Þ

If Eq. (A1) can be explicitly solved for x ¼ xðyÞ, we may
insert this expression into (A6). Comparing coefficients
results in

ζðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gφφðx; yÞ

q ����
x¼xðyÞ

; ðA7aÞ

DENNIS PHILIPP et al. PHYSICAL REVIEW D 95, 104037 (2017)

104037-18



hðyÞ ¼ �
Z

y

0

dy

�
gxxðx; yÞ

�∂yfðx; yÞ
∂xfðx; yÞ

�
2

þ gyyðx; yÞ

−
g0φφðx; yÞ2
4gφφðx; yÞ

�
1=2

x¼xðyÞ
: ðA7bÞ

In Eq. (A7b), the expression g0φφ, by abuse of notation, is
understood to mean that first xðyÞ is to be inserted and then
the derivativewith respect to y is to be taken. The integral in
Eq. (A7b) has to be calculated either analytically, if this is
possible, or numerically.
Equations (A7a) and (A7b) give us the cylindrical radius

coordinate ζ and the cylindrical height coordinate h in
Euclidean 3-space as functions of the parameter y of which
the allowed range is given by y ∈ ½−1; 1�, corresponding to
ϑ ∈ ½0; π�. In this way, we get a meridional section of the
embedded surface in parametrized form; by letting this
figure rotate about the axis ζ ¼ 0, we get the entire
embedded surface. The embedding is possible near all y
values for which

gxxðx; yÞ
�∂yfðx; yÞ
∂xfðx; yÞ

�
2

þ gyyðx; yÞ >
g0φφðx; yÞ2
4gφφðx; yÞ

: ðA8Þ

If this condition is violated, the surface cannot be isomet-
rically embedded into Euclidean 3-space, which means that
its intrinsic geometry is hard to visualize.
This direct construction of the embedded surface in

parametrized form is possible if Eq. (A1) can be explicitly
solved for x ¼ xðyÞ. If this cannot be done, we have at least

an expression for the derivative of this function, as Eq. (A2)
implies that

x0ðyÞ ¼ dx
dy

¼ −
∂yfðx; yÞ
∂xfðx; yÞ

: ðA9Þ

Using Eq. (A7b), we obtain a coupled system of ordinary
differential equations,

x0ðyÞ ¼ −
∂yfðx; yÞ
∂xfðx; yÞ

����
x¼xðyÞ

; ðA10aÞ

h0ðyÞ ¼
�
gxxðx; yÞ

�∂yfðx; yÞ
∂xfðx; yÞ

�
2

þ gyyðx; yÞ

−
g0φφðx; yÞ2
4gφφðx; yÞ

�
1=2

x¼xðyÞ
; ðA10bÞ

for the functions xðyÞ and hðyÞ, which is to be solved
numerically with initial conditions xð0Þ ¼ x0, hð0Þ ¼ 0. Of
course, this is possible only if an embedding exists. If xðyÞ
and hðyÞ have been determined, the function ζðyÞ is given
by Eq. (A7a).

APPENDIX B: CONVENTIONS AND SYMBOLS

In the following, we summarize our conventions and
collect some frequently used formulas. A directory of
symbols used throughout the text can be found in
Table I. For an arbitrary k tensor Tμ1…μk, the symmetriza-
tion and antisymmetrization are defined by

TABLE I. Directory of symbols.

Symbol Unit Explanation Symbol Unit Explanation

gμν 1 Metric M kg Mass of the central objectffiffiffiffiffiffi−gp
1 Determinant of the metric m m Mass of the central object

δμν 1 Kronecker symbol ρ kgm−3 Mass density
γ, ~γ 1 Observer worldlines G m3kg−1s−2 Newton’s gravitational constant
uμ ms−1 Observer 4-velocity c ms−1 Speed of light
aμ ms−2 Observer 4-acceleration Nl kgml Newtonian multipole moments
ϕ 1 (Redshift, acceleration) potential Rl kgml Geroch-Hansen multipole moments
ξμ ms−1 Killing vector field Cl kgml Relativistic multipole moment corrections
ψ , γ 1 Weyl’s metric functions τ, ~τ s Proper times
ωμν, ωμ s−1 Rotation (tensor, vector) ν1, ν2 s−1 Measured frequencies
σμν s−1 Shear tensor Ω s−1 Angular velocity
θ s−1 Congruence expansion Plm, Pl 1 (Associated) Legendre polynomials
E, ϵ 1 Ernst potentials Ql 1 Legendre functions of 2nd kind
Pμ
ν 1 Projection operator cl mlþ1 Series expansion coefficients

∂μ, Dμ m−1 (Partial, covariant) derivative ðql; q̄lÞ ð1; ml kg−lÞ Series expansion coefficients
D
ds ¼ “_” s−1 Total covariant derivative Cϑ, Cφ m (Polar, azimuthal) circumferences

ðr; ϑ;φÞ (m,1,1) Spherical coordinates f 1 Flattening parameter
ðx; y;φÞ 1 Spheroidal coordinates U m2 s−2 Newtonian gravitational potential
ðρ; z;φÞ (m,m,1) Canonical Weyl coordinates V m2 s−2 Centrifugal potential
ðX; Y; ZÞ m PN geocentric coordinates W m2 s−2 Total potential
ðX̄; Ȳ; Z̄Þ m PN geocentric corotating coordinates fðx; yÞ 1 Geoid embedding functions
ðζ; h;φÞ (m,m,1) Cylindrical coordinates in R3 n 1 Index of refraction
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FIG. 4. Isometric embedding of isochronometric surfaces expð2ϕstatÞ ¼ f0 into the Euclidean space R3. The relativistic geoid is by
definitionone of these surfaces. Thevalue of r0 in the plots is the intersection of the level surfacef0with the radial lines in the equatorial plane.
Upper row: q-metric results for oblate (left) and prolate (right) quadrupole configuration. Middle row: Erez-Rosen metric results for oblate
(left) and prolate (right) quadrupole configuration. Lower row:Kerrmetric results for fixeda ¼ 0.8m but different level surfaces (left) and the
same level surface close to the ergoregion but different values a ¼ ð0; 0.5m; 0.8m;mÞ. The smaller the value of r0 > 2m, the closer the level
surface is to the surface of infinite redshift for observers on integral curves of ∂t. All necessary parameters are depicted in the respective plots.
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FIG. 5. Isometric embedding of isochronometric surfaces expð2ϕstatÞ ¼ f0 into the Euclidean space R3. We show the level surfaces
in 3-dimensional plots. The level surfaces and their order correspond to those shown in Fig. 4. In the bottom row on the right
we additionally show the result for the Kerr spacetime and a ¼ 0.4m. For each plot, the innermost level surface is color coded to
depict the actual shape such that red corresponds to the farthest distance and purple corresponds to the closest distance to the origin
of R3.
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FIG. 6. Isometric embedding of isochronometric surfaces expð2ϕrotÞ ¼ f0 into the Euclidean space R3. The relativistic geoid as seen
by observers on the rotating congruence is by definition one of these surfaces. The value of r0 in the plots is the intersection of the level
surface f0 with the radial lines in the equatorial plane. Upper row: q metric results for oblate (left) and prolate (right) quadrupole
configuration. Middle row: Erez-Rosen metric results for oblate (left) and prolate (right) quadrupole configuration. Lower row: Kerr
metric results for fixed a ¼ 0.99m but different level surfaces (left) and the Schwarzschild result for a ¼ 0 (right). All necessary
parameters are depicted in the respective plots.
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FIG. 7. Isometric embedding of isochronometric surfaces expð2ϕrotÞ ¼ f0 into the Euclidean space R3. We show the level surfaces in
3-dimensional plots. The level surfaces and their order correspond to those shown in Fig. 6. For each plot, the innermost level surface is
color coded to depict the actual shape such that red corresponds to the farthest distance and purple corresponds to the closest distance to
the origin of R3.
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Tðμ1…μkÞ ≔
1

k!

Xk!
I¼1

TπIfμ1…μkg; ðB1Þ

T ½μ1…μk� ≔
1

k!

Xk!
I¼1

ð−1ÞjπI jTπIfμ1…μkg; ðB2Þ

where the sum is taken over all possible permutations
(symbolically denoted by πIfμ1…μkg) of its k indices.
The signature of the spacetime metric is assumed to be

ð−;þ;þ;þÞ. Greek indices μ; ν; λ;… are spacetime indi-
ces and take values 0…3. Latin indices i, j, k are spatial
indices and take values 1…3.
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