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Gravitational-wave observations of binary neutron star systems can provide information about the
masses, spins, and structure of neutron stars. However, this requires accurate and computationally efficient
waveform models that take ≲1 s to evaluate for use in Bayesian parameter estimation codes that perform
107–108 waveform evaluations. We present a surrogate model of a nonspinning effective-one-body
waveform model with l ¼ 2, 3, and 4 tidal multipole moments that reproduces waveforms of binary
neutron star numerical simulations up to merger. The surrogate is built from compact sets of effective-one-
body waveform amplitude and phase data that each form a reduced basis. We find that 12 amplitude and 7
phase basis elements are sufficient to reconstruct any binary neutron star waveform with a starting
frequency of 10 Hz. The surrogate has maximum errors of 3.8% in amplitude (0.04% excluding the last
100M before merger) and 0.043 rad in phase. This leads to typical mismatches of 10−5 − 10−4 for
Advanced LIGO depending on the component masses, with a worst case match of 7 × 10−4 when both stars
have masses ≥2 M⊙. The version implemented in the LIGO Algorithm Library takes ∼0.07 s to evaluate
for a starting frequency of 30 Hz and ∼0.8 s for a starting frequency of 10 Hz, resulting in a speed-up factor
of Oð103Þ relative to the original MATLAB code. This allows parameter estimation codes to run in days to
weeks rather than years, and we demonstrate this with a nested sampling run that recovers the masses and
tidal parameters of a simulated binary neutron star system.

DOI: 10.1103/PhysRevD.95.104036

I. INTRODUCTION

One of the primary targets for gravitational-wave detec-
tors such as Advanced LIGO (aLIGO) [1], Advanced Virgo
[2], KAGRA [3], and LIGO-India [4] is the inspiral of
binary neutron star (BNS) systems. The evolution of the
waveform provides detailed information about the masses
and spins of the two neutron stars (NSs) as well as
information about the NS structure and equation of state
(EOS) encoded in the tidal interactions of the two NSs.
Measuring the parameters of the binary, however,

requires waveform models that are both fast, for use in
Bayesian parameter estimation codes, and accurate, to
minimize systematic errors in the recovered parameters.
Almost all previous Bayesian parameter-estimation studies
of BNS systems [5–9] have used post-Newtonian (PN)
waveform models [10,11]. These models typically take
∼1 s or less to evaluate, and are therefore suitable for
Markov-chain Monte Carlo or nested-sampling codes (see
[12] for a review) that require 107–108 waveform evalu-
ations. Unfortunately, because the PN expansion is only
known completely to 3.5PN order, there is an uncertainty in

waveform phase that increases with frequency. From the
beginning of the aLIGO band at ∼10 to 1000 Hz, this
results in an accumulating phase uncertainty of ∼4 rad (see
Fig. 4 of Ref. [13]) which grows to ∼10 rad by the time the
binary merges. This can lead to significant biases in the
measured masses and tidal interactions [6,14,15].
The effective one body (EOB) formalism first introduced

in Ref. [16] provides an alternative that includes several
effects beyond the standard PN expansion (see Ref. [17] for a
review) and can be calibratedwith numerical relativity binary
black hole (BBH) simulations near merger [18–22]. Most
implementations of EOB waveforms, however, are signifi-
cantly slower than for PNwaveforms, sometimes taking tens
of minutes to generate a single waveform, and this is
unusably slow for most parameter estimation algorithms.
Recent work on optimizing EOB waveform generation for
BBHs has resulted in a significant speed-up [23], but this
optimization must be done for each new waveform model
and will not work for numerical relativity simulations.
Reduced-order modeling techniques provide a frame-

work for reducing large data sets that can be used to build
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lightweight models that are rapidly evaluated as a sub-
stitute, or surrogate, in place of the slow waveform
generation code. The method, introduced in [24], begins
with a training set of waveforms that covers the waveform
parameter space. A greedy algorithm [25–28] exposes the
most relevant waveforms needed to accurately represent the
full training set [29]. This relatively small number of
judiciously chosen waveforms, also called a reduced basis,
captures the dependence of the training-set waveforms on
parameters.
Waveforms for arbitrary parameter values (in the training

region) can then be generated from the reduced basis by
estimating the parametric dependence of the projection
coefficients. This can be done in two ways. In one case,
each coefficient is interpolated as a function of waveform
parameters using the training data [30,31]. In the other case,
one uses the empirical interpolation method [24,32,33] to
build an interpolant that is customized to the waveform data
such that at a relatively few specific times (i.e., the
interpolation nodes) one fits for the parametric variation
of the waveform data [24]. This second approach is
compact, robust to round-off noise, and allows for the
intrinsic waveform errors to be incorporated in the error of
the final surrogate model (e.g., see [34]).
Reduced-order modeling in gravitational-wave physics

started with an observation that the inspiral dynamics of
precessing BBHs can be dimensionally reduced, meaning
that many configurations share similar, almost redundant,
qualities that vary smoothly across parameter space [35].
The result implied that the multidimensional parameter
space for precession waveforms might effectively be
considerably smaller thus providing a possible avenue
towards beating the “curse of dimensionality” for template
bank coverage. At the same time, compression factors ∼10
of a small template bank of nonspinning gravitational
waveforms were achieved using a singular value decom-
position [36]. Subsequently, reduced-order modeling tech-
niques have been used to efficiently represent or compress
large waveform banks [29,37–40] and to build fast and
accurate surrogate models [24] of merger waveforms
[24,30,31,34,41], which can be used in multiple-query
applications like parameter estimation studies [42–44] that
use reduced-order quadratures [45]. In fact, reduced-order
models are crucial in modern GW search pipelines [46] and
in parameter estimation studies to accelerate waveform
generation and likelihood computations.
In this work, we construct a reduced-order surrogate

model (or “surrogate”) for the l ¼ m ¼ 2 mode of BNS
waveforms generated with the EOB formalism. This EOB
model, described in Ref. [47], incorporates tidal interactions
that are parameterized by the quadrupolar l ¼ 2 tidal
deformability Λ2 of each star as well as the l ¼ 3 and 4
tidal deformabilities Λ3 and Λ4, respectively. These tidal
interactions enter at the fifth, seventh, and ninth PN orders,
respectively, in a resummed form, and lead to an

accumulating phase shift of ∼1 rad up to a gravitational-
wave frequency of 400Hzand∼10 radup to theBNSmerger
frequency as shown in Fig. 1 below. (An alternative model
that includes tidally excited resonances has recently been
developed [48].) We construct separate reduced bases for the
amplitude and phase, and find them to be extremely compact;
we find that 12 amplitude bases and 7 phase bases are
sufficient to accurately reproduce any waveform in the

FIG. 1. Contribution of each tidal multipolemoment to the phase
evolution of an equal mass BNS system with component masses
ðMA;MBÞ ¼ ð1.4; 1.4ÞM⊙ beginning at 30 Hz for the soft EOS
SLY (top) and the stiff EOS MS1b (bottom). The phase contribu-
tion is given by the difference in phase betweenwaveformswith no
tidal interactions ΦnotðtÞ, only the l ¼ 2 interaction Φl¼2ðtÞ, the
l ¼ 2, 3 interactions Φl¼2;3ðtÞ, and the l ¼ 2, 3, 4 interactions
Φl¼2;3;4ðtÞ. Also shown by the dashed curve is the error that results
from using the fitting functionsΛfit

3 ðΛ2Þ andΛfit
4 ðΛ2Þ instead of the

values ofΛ3 andΛ4 calculated from the EOSΦfitðtÞ. Each curve is
plotted as a parametric function of the phase difference between the
two waveforms jΦ2ðtÞ −Φ1ðtÞj versus the frequency of the
waveform with no tidal interactions fnotðtÞ. In this way, the phase
difference between waveforms is calculated at the same time
instead of the same frequency. This can be more directly compared
to phase errors in the surrogatemodel belowwhich are calculated as
a function of time.

BENJAMIN D. LACKEY et al. PHYSICAL REVIEW D 95, 104036 (2017)

104036-2



training set.We then interpolate the amplitude and phase as a
function of waveform parameters at the times chosen
by the empirical interpolation method using Chebyshev
interpolation.
Because EOBmodels with both tidal interactions and spin

are just starting to become available, our surrogate only
applies to nonspinning BNS systems. In future work we
intend to incorporate NS spins once they are available in the
EOB models for tidally interacting systems. We note that
inspiraling BNS systems are not likely to have significant
spins. The fastest known NS in a confirmed BNS system has
a spin frequency of 44 Hz [49], corresponding to a dimen-
sionless spin of ∼0.04. Another potential BNS system has a
NS with a spin frequency of 239 Hz [50], corresponding to a
dimensionless spin of ∼0.2. However, even a spin of ∼0.03
can lead to a systematic bias in the estimated tidal parameters
that are as large as the statistical errors if not incorporated into
the waveform model [14,15].
Weorganize the paper as follows. In Sec. II, we summarize

the EOB model for BNS systems from which we construct
the reduced-order surrogate model. We describe the steps to
build the surrogate in Sec. III, and present its accuracy and
speed for predicting EOB waveforms at new parameter
values in Sec. IV. Finally, we summarize our results and
discuss future work in Sec. V. In the Appendix, we describe
the accuracy of approximating the l ¼ 3 and l ¼ 4 tidal
interactions in terms of the l ¼ 2 tidal interaction.
Unless explicitly stated, we use units where G ¼ c ¼ 1.

II. TIDAL EOB WAVEFORM MODEL

A. TEOBResum

In this work, we use the tidal EOB (TEOB) model
developed in [47] and called TEOBResum. TEOBResum
incorporates an enhanced (resummed) attractive tidal
potential derived from recent analytical advances in the
PN and gravitational self-force description of relativistic
tidal interactions [51,52]. The resummed tidal potential of
TEOBResum significantly improves the description of tidal
interactions near the merger over the previous next-next-to-
leading-order (NNLO) TEOB model [53,54] and over the
conventional PN models. In particular, TEOBResum predicts
high-resolution, multiorbit numerical relativity results
within their uncertainties and without fitting parameters
to BNS numerical waveforms [47].
The main features of TEOBResum are summarized in what

follows. The Hamiltonian isHEOB ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðĤeff − 1Þ

q
with

Ĥeffðu;pr� ;pφÞ
≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðu;νÞð1þp2

φu2þ2νð4−3νÞu2p4
r�Þþp2

r�
q

; ð1Þ

where the binary mass is M ¼ MA þMB, the symmetric
mass ratio is ν ¼ MAMB=M2, u≡ 1=r, r is the EOB radial

coordinate, and pφ and pr� are the conjugate momenta (see,
e.g., [53]). The EOB potential

Aðu; νÞ≡ A0ðu; νÞ þ ATðu; νÞ ð2Þ

is the sum of a point-mass term and a tidal term. A0ðu; νÞ
is defined as the (1,5) Padé approximant of the formal
5PN expressionA5PN

0 ðu;νÞ¼1�2uþa3u3þa4u4þðac5ðνÞþ
aln5 lnuÞu5þðac6ðνÞþaln6 lnuÞu6. The coefficients up to 4PN,
i.e., ða3; a4; ac5ðνÞ; aln5 Þ, are analytically known [55].
Although the 5PN term aln6 and the linear-in-ν part of
ac6ðνÞ are analytically known [56,57], we use the value
ac6ðνÞ ¼ 3097.3ν2 − 1330.6νþ 81.38 fit to NR data in [58].
The tidal term,

AðþÞ
T ðu; νÞ≡ −

X4
l¼2

½κAlu2lþ2ÂðlþÞ
A þ ðA ↔ BÞ�; ð3Þ

models the gravitoelectric sector of the interaction [59],
where

κAl ¼ 2
MBM2l

A

M2lþ1

kAl
C2lþ1
A

¼ 2Q−1
�
XA

CA

�
2lþ1

kAl ; ð4aÞ

κBl ¼ 2
MAM2l

B

M2lþ1

kBl
C2lþ1
B

¼ 2Q

�
XB

CB

�
2lþ1

kBl ; ð4bÞ

are the l ¼ 2, 3, 4 tidal polarizability parameters (or tidal
coupling constants) [51]. LabelsA,B refer to the stars,MA is
the gravitational mass of star A, RA the areal radius,
CA ¼ MA=RA, XA ¼ MA=M, and kAl are the dimensionless
Love numbers [53,60–62]. The expressions above assume
MA ≥ MB, so that Q ¼ MA=MB ≥ 1. In the equal-mass
case, the tidal interaction and EOS information are fully
encoded at leading order (LO) in the total dimensionless
quadrupolar tidal coupling constant

κT2 ≡ κð2ÞA þ κð2ÞB : ð5Þ

The relativistic correction factors ÂðlþÞ
A formally include all

the high PN corrections to the leading order. The particular

choice of ÂðlþÞ
A defines the TEOB model considered in this

paper. The PN-expanded NNLO, fractionally 2PN accurate,
expression is

ÂðlþÞ
A ðuÞ ¼ 1þ αðlÞ1 uþ αðlÞ2 u2 ½NNLO�; ð6Þ

with αð2Þ;ð3Þ1;2 ≠ 0 computed analytically and αð4Þ1;2 ¼ 0 [63].
This TEOBNNLO model has been compared against NR
simulations in [47,54], significant deviations are observed at
dimensionless GW frequencies Mω22 ≳ 0.8, i.e., after con-
tact and during the last 2–3 orbits to merger. The TEOBResum
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model is defined from TEOBNNLO by substituting the l ¼ 2
term in (6) with the expression

Âð2þÞ
A ðuÞ ¼ 1þ 3u2

1 − rLRu
þ XA

~Að2þÞ1SF
1

ð1 − rLRuÞ7=2
þ X2

A
~Að2þÞ2SF
2

ð1 − rLRuÞp
;

ð7Þ

where the functions ~Að2þÞ1SF
1 ðuÞ and ~Að2þÞ2SF

2 ðuÞ are given in
[52] and p ¼ 4. The key idea of TEOBResum is to use as pole

location in Eq. (7) the light ring rLRðν; κðlÞA Þ of the
TEOBNNLO model, i.e., the location of the maximum of

ANNLOðr; ν; κðlÞA Þ=r2. TEOBResum is completed with a
resummed waveform [64] that includes the NLO tidal
contributions computed in [51,65,66].
A black-hole limit of TEOBResum is given by setting

κðlÞA;B → 0. Waveforms obtained this way, however, do not
accurately represent BBH ones because the model does not
include next-to-quasicircular corrections tuned to BBH NR
data (so it actually differs from the model of [58]). For this

reason we exclude the κðlÞA;B ¼ 0 configurations from the
surrogate model. That is not a serious limitation because
BBH waveform models are independently available, and
because BBH sources are not expected in the mass range
covered by our surrogate. Additionally, including the
correct BBH limit would introduce a discontinuity in the
waveform’s parameters space that would affect the overall
accuracy of the surrogate. In a similar way, configurations

with κðlÞB → 0 approximate black hole–neutron star bina-
ries, but with an astrophysically unexpected small mass
ratio Q.
The TEOBResum waveform model is determined by seven

input parameters (7D parameter space): the binary mass-
ratio Q and the l ¼ 2, 3, 4 tidal polarizability parameters
(or tidal coupling constants) κA;Bl . The latter are linked to
the usual multipolar dimensionless tidal parameters, e.g.,
[51,67]. For each star we define

ΛA
l ¼ 2kAl

C2lþ1
A ð2l − 1Þ!! ; ð8Þ

which are proportional to theQ-independent part of κAl , and
correspond to the multipolar quantities called λ̄l in [67].

B. Approximation of higher-order tidal effects

In constructing a surrogate, it is extremely important to
reduce the dimensionality of the parameter space as much
as possible in order to avoid high-dimensional interpolation
which is often inaccurate and computationally demanding.
We first note that, for this inspiral model, the EOB
equations of motion can be written such that they do not
depend explicitly on the individual masses, but on the mass
ratio q and total mass M which can be scaled out of the

equations as is the case for binary black hole inspiral. This
results in a 7D parameter space

ðq;ΛA
2 ;ΛB

2 ;ΛA
3 ;ΛB

3 ;ΛA
4 ;ΛB

4 Þ; ð9Þ

where q ¼ MB=MA ≤ 1. In addition, Yagi found tight
correlations between the l ¼ 2 tidal parameter and the
l ¼ 3 and l ¼ 4 tidal parameters that are nearly indepen-
dent of the choice of EOS for plausible NS EOS models
[67]. Yagi then constructed fits Λfit

3 ðΛ2Þ and Λfit
4 ðΛ2Þ for the

l ¼ 3 and l ¼ 4 tidal parameters in terms of the l ¼ 2
tidal parameter. This reduces the 7D parameter space to the
3D parameter space

ðq;ΛA
2 ;ΛB

2 Þ: ð10Þ

We evaluate the systematic uncertainty from these fits for
14 different EOS and for NS masses in the range
M ∈ ½0.9 M⊙;Mmax�, where Mmax is the maximum mass.
For these EOS and masses, we find the l ¼ 3 fit Λfit

3 ðΛ2Þ
results in fractional errors in the range −0.098 ≤
ΔΛ3=Λ3 ≤ 0.17 with an average absolute fractional error
of hjΔΛ3=Λ3ji ¼ 0.04. The l ¼ 4 fit Λfit

4 ðΛ2Þ results in
fractional errors in the range −0.22 ≤ ΔΛ4=Λ4 ≤ 0.28with
an average absolute fractional error of hjΔΛ4=Λ4ji ¼ 0.08.
Details are given in the Appendix.
In Fig. 1, we show the contribution of each tidal effect to

the phase evolution of the waveform for both the soft EOS
SLY [68] and the stiff EOS MS1b [69]. (See [70] for the
naming convention.) The phase shift due to the tidal
interactions is usually ∼10 rad for the l ¼ 2 interaction,
∼1 rad for the l ¼ 3 interaction, and∼0.1 rad for the l ¼ 4
interaction for frequencies up to the maximum amplitude.
Also shown is the typical error expected in the phase that
results from using the fitsΛfit

3 ðΛ2Þ andΛfit
4 ðΛ2Þ instead of the

true values ofΛ3 andΛ4 determined by the EOS. This fitting
error is at least 2 orders of magnitude smaller than the overall
size of the tidal effect. It will therefore result in a negligible
error when estimating the size of the tidal effect which is
parameterized in terms of the l ¼ 2 tidal parameter.

III. BUILDING THE TIDAL EOB
WAVEFORM SURROGATE

TEOBResum is implemented as a publicly available
MATLAB code available to download at [71]. As mentioned
above, the time it takes for this code to generate a typical
waveform in a ground-based gravitational wave detector’s
frequency band is about 20 minutes. Unfortunately, this
computational time is far too long for the waveform
generation code to be used in practical gravitational-wave
data analysis applications. A solution to this problem is
provided by reduced-order surrogate modeling, which
produces a fast-to-evaluate and compact model that can
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be used as a substitute for the original TEOBResum code
implementation with negligible loss in accuracy.
The recipe for building a reduced-order surrogate model,

or surrogate for short, was introduced in [24] to which the
reader is referred to for further details. There are four main
steps in the surrogate building process:
(0) Precondition the set of precomputed waveforms to

vary as smoothly as possible with parameters. This
often results in a very compact surrogate model
while also improving the accuracy of the surrogate’s
predictions, in the end.

(1) Build a reduced basis from a set of precomputed
waveforms. This results in a compression in param-
eter space.

(2) Build an empirical interpolant from the reduced
basis. This results in a dual compression of the data
in the time (or frequency) dimension.

(3) Estimate or fit for the parametric dependence of the
waveform data at specific values of the time (or
frequency) samples in the data.

We discuss the details of these steps for building a surrogate
for TEOBResum waveforms in the following subsections.
However, the set of precomputed waveforms (called a
training set) needed for building a reduced basis repre-
sentation in step 1 often requires preconditioning the data
so that the resulting surrogate model will be as compact and
accurate as possible. This preconditioning step, which can
be thought of as the zeroth step in surrogate building, often
involves several choices that must be made in advance,
sometimes with input and foresight of steps further down
the surrogate building process. For example, the size of the
reduced basis generated in step 1 depends crucially on the
features and morphologies of the training-set waveforms,
which can be minimized through the choices made in
preconditioning the training data. As such, building a
surrogate may involve a few iterations to converge to the
particular strategy and set of choices that end up being
suitable for achieving the desired evaluation speed and
accuracy. In the next subsection, we discuss how the
training data of TEOBResum waveforms was generated as
well as the choices we made for preconditioning the data.

A. Step 0: Training set and preconditioning

When constructing a training set, significant care is
required in choosing the waveform parameters as the choice
made can impact the accuracy (and sometimes the ability)
to accurately estimate or fit the waveform data in step 3
above. As discussed in Sec. II B, we work in units where
the waveform amplitude and time samples are rescaled
by the total mass M ¼ MA þMB so that a mass-ratio
parameter is the only mass parameter needed for the
surrogate. Three common choices are q ¼ MB=MA ≤ 1,
Q ¼ MA=MB ≥ 1, and the symmetric mass ratio
ν ¼ MAMB=M2 ≤ 1=4. We have found that the symmetric
mass ratio ν is a poor choice for TEOBResum. This results

because, for a fixed number of samples, the waveform
varies more between samples near the value ν ¼ 0.25 than
it does between samples near q ¼ 1 orQ ¼ 1. This makes it
more difficult to accurately interpolate the amplitude and
phase as a function of parameters near equal masses when
using ν than when using q orQ as the mass ratio parameter.
We find that q provides slightly better accuracy than Q for
the final surrogate model, so we choose q ∈ ½0.5; 1� as the
mass ratio parameter.
For the tidal parameters, we use a rectangular grid of

ΛA
2 ∈ ½50; 5000� for the more massive NS and ΛB

2 ∈
½50; 5000� for the less massive NS. For any realistic
EOS, ΛB

2 ≥ ΛA
2 , so only a triangular half of this rectangular

grid is physically plausible. However, because most imple-
mentations of accurate interpolation algorithms for multi-
dimensional data require rectangular grids, we will sample
the entire rectangular grid. Other choices for the two tidal
parameters include κA2 and κ

B
2 [defined in Eq. (4)], as well as

~Λ and δ ~Λ, which are another linear combination of ΛA
2 and

ΛB
2 used in parameter estimation [6,14]. Both of these

alternative choices suffer from the same problem. In
particular, mapping a rectangular grid of fκA2 ; κB2 g or
f ~Λ; δ ~Λg to the corresponding values of fΛA

2 ;ΛB
2 g can take

Λ2 outside the domain where the fits Λfit
3 ðΛ2Þ and Λfit

4 ðΛ2Þ
[Eq. (A1)] are valid. This makes it impossible to evaluate
the l ¼ 3, 4 tidal parameters.
With this choice of parameters,

θ ≔ ðq;ΛA
2 ;ΛB

2 Þ; ð11Þ

we next choose a discretization of the parameter space to
define the training set that will be used in step 1. As
discussed in Sec. III D below, we will use Chebyshev
interpolation to fit for the variation of the amplitude and
phase in terms of the waveform parameters θ. So, in
constructing our training set, we choose waveform param-
eters at Chebyshev-Gauss-Lobatto nodes [72]. For each
parameter, after linearly rescaling the range to x ∈ ½−1; 1�,
the location of the M nodes are given by

xk ¼ − cos
�

kπ
M − 1

�
; ð12Þ

where k ¼ 0;…;M − 1. We have found that a grid of 16 ×
16 × 16 ¼ 4096 parameters, shown in Fig. 2, is sufficient
to reach the desired accuracy of the final model. These
N ¼ 4096 points define our training set of parameters,
T N ≔ fθigNi¼1, that is used in building our surrogate model.
This grid is more densely sampled at the edges of the
parameter space, which is convenient because the algorithm
we use for constructing the reduced basis (see step 1) tends
to choose parameters near the boundary of the training set.
We then run the TEOBResum code to generate 4096 wave-
forms at these training-set parameter values with a starting
frequency that is less than 10 Hz for any combination of
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parameters with MA ≥ MB ≥ 1 M⊙, which corresponds to
a length of ∼2 × 108M in dimensionless units. This
collection of waveforms constitutes our training data.
As discussed in Appendix E of Ref. [24], it is very

helpful that the training-set waveforms be accurately
aligned at maximum amplitude. Otherwise, the amplitude
and phase will not be smooth functions of the waveform
parameters and the resulting surrogate model may not have
a compact size, which automatically results in a loss of
evaluation speed. We do this alignment by (i) densely
sampling a waveform near the time of maximum amplitude,
(ii) interpolating the amplitude with cubic splines,
(iii) numerically finding the maximum of the interpolated
amplitude, and (iv) shifting the waveform such that t ¼ 0
corresponds to the maximum amplitude. We then set the
phase to zero at the common starting time for the shifted
waveform. This alignment procedure is performed for all
waveforms in the training data set.
Finally, we resample all of the training data waveforms to

reduce the physical memory storage requirements. Before
t ¼ −103M, we sample the amplitude and phase uniformly
in phase with a spacing ofΔΦ ¼ π. After this time we use a
uniform in time sampling with a spacing of Δt ¼ 0.1M to
capture the more complicated behavior near merger. This
leads to waveforms that only require ∼7 × 104 samples
compared to ≳108 samples if we had sampled uniformly in
time with sufficient accuracy to capture the behavior near

merger. Our nonuniform downsampling allows us to store
the entire waveform training data in ∼7 GB instead of
many TB. More elaborate downsampling strategies exist
including one that uses theoretically derived bounds on
cubic spline errors to estimate the largest spacing between
data points [30] and one that uses a greedy algorithm to
select only those data points that are sufficient to recover
the full data set up to a requested accuracy by a spline of a
given, arbitrary degree [73,74].

B. Step 1: Reduced basis

With the training set of waveforms in hand we now focus
on reducing the data to its essential components in both
parameters (this subsection) and time (in the next sub-
section). The reduction to a compact set of parameters can
be achieved by building a reduced basis such that the
projection P of any training-set waveform onto the basis
will be indistinguishable from the original waveform up to
some tolerance that is specified. We build a reduced basis
using a greedy algorithm [25–28], which exposes the most
relevant parameters in the training set that capture the
salient features of the waveform training data.
The greedy algorithm we use is given in [24], to which

we refer the reader for further details, and shown in
Algorithm 1. The algorithm terminates after n iterations
when the projection error is smaller than a specified
tolerance ϵ. The output of the greedy algorithm includes
a set of parameter tuples fμigni¼1, sometimes called greedy
parameters or greedy points, and a reduced basis feiðtÞgni¼1.
We use the symbol X as a placeholder for a waveform
variable. In Algorithm 1 and throughout, jj · jj2 ¼ h·; ·i is
the squared L2 norm where

hf; gi ¼
Z

dtf�ðtÞgðtÞ ð13Þ

is the integral of the product of two generally complex
functions fðtÞ and gðtÞ and is sometimes called an inner
product.

Algorithm 1 Greedy algorithm for reduced basis

1: Input: fθi; Xð·; θiÞgNi¼1, ϵ
2: Set i ¼ 0 and define σ0 ¼ 1
3: Seed choice (arbitrary): μ1 ∈ T , e1 ¼ Xð·; μ1Þ
4: RB ¼ fe1g
5: while σi ≥ ϵ do
6: i ¼ iþ 1
7: σi ¼ maxθ∈T ∥Xð·; θÞ − PiXð·; θÞ∥2
8: μiþ1 ¼ argmaxθ∈T ∥Xð·; θÞ − PiXð·; θÞ∥2
9: eiþ1 ¼ Xð·; μiþ1Þ − PiXð·; μiþ1Þ (Gram-Schmidt)
10: eiþ1 ¼ eiþ1=∥eiþ1∥ (normalization)
11: RB ¼ RB ∪eiþ1

12: end while
13: Set n ¼ i
14: Output: RB ¼ feigni¼1 and greedy points fμigni¼1

FIG. 2. The training set is constructed from the Chebyshev-
Gauss-Lobatto nodes with 16 nodes in each dimension for a total
of 4096 waveforms. The waveform parameters have the range
q ∈ ½0.5; 1�, ΛA

2 ∈ ½50; 5000�, and ΛB
2 ∈ ½50; 5000�. The same

grid is also used for the Chebyshev interpolation to evaluate the
amplitude and phase at the empirical nodes τj. Red △s represent
the 12 waveforms chosen by the greedy algorithm to generate the
amplitude-reduced basis, while blue ○s represent the 7 wave-
forms chosen for the phase-reduced basis.
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To make the reduced basis as compact as possible, we
follow [24,30,31,34] and represent the complex waveforms
by their amplitudes and phases instead of real and imagi-
nary parts. We then build a separate reduced basis for each
of the amplitude and phase training data. This decom-
position is made because the amplitude and phase of a
waveform have less variation and features in both time and
parameters than do the real and imaginary parts of the
waveform, which have many oscillations. The greedy
algorithm is sensitive to waveform morphologies and will
tend to increase the size of the reduced basis in order to
resolve these structures. As a result, using an amplitude and
phase representation for the waveform allows, in our case,
for an extremely compact pair of bases.
We executed the greedy algorithm separately on the

amplitudes and the phases of the training-set waveforms. In
practice, we use an iterated, modified Gram-Schmidt
process [75], which is known to be robust against the
accumulation of numerical round-off, to generate the
orthogonal basis vectors in line 9 of Alg. 1. We chose
relative tolerances of ϵ ¼ 10−10 and 10−15 for the amplitude
and phase, respectively. We found that this resulted in
extremely compact reduced basis sizes of nA ¼ 12 for
amplitudes and nΦ ¼ 7 for phases. These 12 and 7 greedy
parameters are the minimal amount of information needed
to represent the entire training set of TEOBResum waveform
amplitudes and phases, respectively, to within our chosen
tolerances, as measured with the squared L2 norm.
Mathematically, if A and Φ denote the amplitude and
phase of a waveform and if feAi ðtÞg12i¼1 and feΦi ðtÞg7i¼1 are
their corresponding reduced bases then

Aðt; θÞ ≈
X12
i¼1

eAi ðtÞcAi ðθÞ ð14aÞ

Φðt; θÞ ≈
X7
i¼1

eΦi ðtÞcΦi ðθÞ ð14bÞ

where the coefficients are

cAi ðθÞ ¼ heAi ð·Þ; Að·; θÞi ð15aÞ

cΦi ðθÞ ¼ heΦi ð·Þ;Φð·; θÞi: ð15bÞ

The orthonormal reduced basis elements for the phase are
shown in Fig. 3. For comparison, if we had constructed a
reduced basis for the complex waveform itself then the
basis size would be several hundred to reach a maximum
projection error of 10−10 across the entire training set of
waveforms. The choice to decompose the waveforms into
amplitude and phase is thus justified here.
The reduced basis greedy algorithm depends on a choice

of seed, which is arbitrarily selected. The resulting
sequence of parameter tuples selected by the greedy
algorithm will depend on that choice of seed. A different

choice still produces a reduced basis that represents all of
the training data to within the specified tolerance, by
construction. However, the sizes of the reduced bases built
from different seeds tend to vary but will often lie within a
few percent of each other so that the seed choice is
immaterial [29,73]. What matters is that we have a compact
reduced basis to represent accurately the waveform ampli-
tude and phase training data.
Greedy algorithms are extremely flexible for incorporat-

ing many decisions and choices for building a reduced-order
model. For example, in a greedy algorithm one can measure
the projection errorswith theL2 norm, aswe did here, orwith
the L∞ norm to provide a more stringent requirement of the
reduced basis to represent the data in a pointwise sense.Other
problem-specific error measures may be more appropriate
(e.g., see [40]). One may also implement different greedy
algorithms strategies for very large training spaces. For
example, the training set can be randomly resampled at
every iteration of the greedy algorithm, as described in [40].
Yet another strategy is to parallelize the computation of the
inner product integrals used to compute the projections onto
the reduced basis [76].

C. Step 2: Empirical interpolation

The reduced basis representations of the amplitude and
phase in (14) require knowing the coefficients in (15) or,
equivalently, the data Aðt; θÞ and Φðt; θÞ that one is
projecting onto the basis. We wish to predict these
coefficients in the linear representations. One way to do
this is to simply fit for the parametric dependence (i.e., θ) of
the coefficients themselves [30,31]. However, the θ
dependence of the coefficients can become increasingly
noisy as the index i increases, which can make the fits
unreliable and the ensuing surrogate model evaluations not
meet stringent accuracy requirements at new parameter
values [24,77].

FIG. 3. The seven orthonormal reduced basis functions
feΦi ðtÞg7i¼1 for the waveform phase. These functions accurately
capture the features in the waveform phases within the range of
parameters considered. The x axis is linear in the range
½−101; 101� and logarithmic elsewhere.
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The second step of surrogate building aims to provide a
sparse subset of times from which it is possible to
reconstruct the waveform at any other time by using an
empirical interpolant [32], which is informed by the
structure and features of TEOBResum waveforms via the
reduced basis found in step 1. As wewill discuss in the next
subsection, fitting for the θ dependence of the coefficients
is done at each of these time subsamples, which are called
empirical interpolation nodes. The data being fitted turn out
to be robust to the gradual appearance of round-off noise,
unlike fitting directly for the projection coefficients men-
tioned in the previous paragraph [24].

The algorithm for building an empirical interpolant is
given in [24], to which we refer the reader for further
details, and shown in Algorithm 2. The empirical inter-
polant is built from a second greedy algorithm and proceeds
as follows [33]. (We focus the presentation on the wave-
form amplitude for clarity but the same steps are taken for
the phase.) First, we choose a value of time τ1 from the
discrete set of available time samples t ≔ ftigLi¼1 where L
is the number of samples. In our case, we mentioned in
Sec. III A that our data have L ¼ 7 × 104 time samples that
are nonuniformly distributed. This first time subsample τ1
is a seed for this greedy algorithm. In practice, for reasons
of conditioning, one chooses the seed to be the time sample
at which the first reduced basis function e1ðtÞ is a
maximum in absolute value so that τ1 ¼ arg maxtje1ðtÞj.
We follow this convention here.
For the next step, we build an empirical interpolant. We

label the empirical interpolant I of a function Aðt; θÞ by the
number m of time subsamples we currently have, namely,
Im½A�ðt; θÞ. The notation here is to indicate that Im is an
operator that acts on a function Aðt; θÞ. If the function is
independent of θ then so will be the interpolant’s operation
on that function.
Currently, m ¼ 1 and we represent the interpolant as a

linear combination of the first m reduced basis elements so
that

I1½A�ðt; θÞ ¼ e1ðtÞC1ðθÞ: ð16Þ

We assume that the empirical interpolant can always be
written in affine form where the dependence on parameters
θ and time t is factorized. To solve for the unknown
coefficient C1ðθÞ in (16) we demand that the interpolant
reproduce the data at t ¼ τ1 so that I1½A�ðt; θÞ ¼ Aðt; θÞ.
The solution is easily found and given by C1ðθÞ ¼
Aðτ1; θÞ=e1ðτ1Þ and the empirical interpolant so far is
given by

I1½A�ðt; θÞ ¼ B1ðtÞAðτ1; θÞ ð17Þ

where B1ðtÞ ¼ e1ðtÞ=e1ðτ1Þ. In operator form, the m ¼ 1
empirical interpolant is I1½·� ¼ B1ðtÞð·jt¼τ1

Þ.
The second empirical interpolant node τ2 is the time

subsample at which the next reduced basis element e2ðtÞ
and its interpolation with the current interpolant I1½e2�ðtÞ is
largest in absolute value,

τ2 ≔ arg maxtje2ðtÞ − I1½e2�ðtÞj: ð18Þ

Notice that we are choosing the next time subsample in an
effort to improve the empirical interpolant’s pointwise
representation of the reduced basis elements themselves.
Recall that the reduced basis is all that is needed to
accurately span the (training set of) waveforms. The set
of nodes is now fτ1; τ2g and

I2½A�ðt; θÞ ¼
X2
i¼1

eiðtÞCiðθÞ ð19Þ

is the empirical interpolant at this step. The coefficients are
found as in usual interpolation problems. At the interpo-
lation nodes fτ1; τ2g we require that (19) equal to the data
Aðτi; θÞ and then solve the linear equation

X2
i¼1

VjiCiðθÞ ¼ Aðτj; θÞ ð20Þ

where Vji ≔ eiðτjÞ, which are the elements of a
Vandermonde matrix. After finding the solution, the
m ¼ 2 empirical interpolant is

I2½A�ðt; θÞ ¼
X2
j¼1

BjðtÞAðτj; θÞ ð21Þ

where BjðtÞ ¼
P

2
j¼1 eiðtÞðV−1Þij for i ¼ 1, 2.

This process is repeated until we have used all n of the
reduced basis elements to build the final empirical inter-
polant,

In½A�ðt; θÞ ¼
Xn
j¼1

BjðtÞAðτj; θÞ ð22Þ

Algorithm 2 Empirical Interpolation (EI) Method

1: Input: feigni¼1, t ≔ ftigLi¼1

2: i ¼ argmaxje1ðtÞj (argmax returns the largest entry of its
argument).

3: Set T1 ¼ ti
4: for j ¼ 2 → n do
5: Build I j−1½ej�ðtÞ from (22)–(24)
6: r⃗ ¼ I j−1½ej�ðtÞ − ejðtÞ
7: i ¼ argmaxjr⃗j
8: Tj ¼ ti
9: end for
10: Output: EI nodes fTigni¼1, interpolant operator In
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where

BjðtÞ ¼
Xn
i¼1

eiðtÞðV−1Þij ð23Þ

is the jth element of the empirical interpolation operator B.
In operator form, the empirical interpolant is

In½·� ¼
Xn
j¼1

BjðtÞð·jt¼τj
Þ: ð24Þ

Notice that B in (23) is independent of the parameter θ and
can be computed off-line once the reduced basis is built in
step 1. The quantities fτjgnj¼1 are the corresponding
interpolation nodes. In addition, the parameter dependence
of the empirical interpolant depends on how the function A
varies only at the nodes fτjgnj¼1. Finally, notice that, given a
parameter tuple θ, one still needs to know the actual values
of the fAðτj; θÞgnj¼1 in order to compute the empirical
interpolant in (22). We will show how surrogate modeling
addresses this issue in Sec. III D.
We applied this greedy algorithm to build an empirical

interpolant separately for the waveform amplitude and
phase, which are given by

IA
12½A�ðt; θÞ ¼

X12
j¼1

BA
j ðtÞAðτAj ; θÞ ð25aÞ

IΦ
7 ½Φ�ðt; θÞ ¼

X7
j¼1

BΦ
j ðtÞΦðτΦj ; θÞ: ð25bÞ

The interpolating functions for the phase are shown in
Fig. 4. The empirical interpolation nodes fτΦj g7j¼1 are not
uniformly spaced because they depend on the underlying
features of the TEOBResum waveform family.

The empirical interpolation greedy algorithm we just
described and used in this paper is not optimized for speed.
As discussed in Appendix B of [45], the original (discrete)
empirical interpolation method algorithm proposed in [33],
which is the one we discussed above, has a computational
cost at the mth step of the greedy algorithm that scales as
Oðm4Þ. However, this relatively slow evaluation time is
immaterial for our surrogate since the sizes of the amplitude
(nA ¼ 12) and phase (nΦ ¼ 7) reduced bases are very
small. A faster algorithm was put forward in [45] (see
Algorithm 5 in their Appendix A) and was used in
describing the reduced-order surrogate modeling strategy
in [24]. This faster implementation has a cost that scales as
Oðm3Þ [45]. The computational savings with this faster
algorithm is particularly useful for problems involving a
large reduced basis, such as the reduced-order model built
in [44] for the IMRPhenomPv2 waveform family [78] that
contained at most 1253 basis elements.

D. Step 3: Estimating the parametric variation

The last step in building the surrogate model is to
estimate the θ dependence at each of the empirical
interpolation nodes for both the waveform amplitude
and phase data. Because the parameter space is three-
dimensional, we intentionally selected our training points
in Sec. III A to correspond to the nodes of Chebyshev
interpolation in three dimensions. Chebyshev interpolation,
which for smooth C∞ functions, has errors that converge
exponentially with the number of Chebyshev polynomials
TnðxÞ [72]. The amplitude and phase at each empirical
interpolation node are approximated as a tensor product of
Chebyshev polynomials,

AðτAj ; θÞ ≈ ~AjðθÞ ≔
X
l;m;n

aj;lmnTlðqÞTmðΛA
2 ÞTnðΛB

2 Þ; ð26aÞ

ΦðτΦj ;θÞ≈ ~ΦjðθÞ≔
X
l;m;n

bj;lmnTlðqÞTmðΛA
2 ÞTnðΛB

2 Þ; ð26bÞ

for j ¼ 1;…nX and X ¼ fA;Φg. Although it would be
possible to optimize the number of coefficients for each
node τj, for simplicity we use all 16 × 16 × 16 coefficients
at each node. The summations are efficiently performed
using Clenshaw summation [79]. The coefficients aj;lmn

and bj;lmn of the Chebyshev series are precomputed from
the known amplitudes and phases on the training-set grid
using Gaussian quadrature [72]. This quadrature is effi-
ciently performed using a type-I discrete cosine trans-
form [80].
The required fractional accuracy of the interpolation is

the maximum allowed amplitude or phase error divided by
the range of values that the amplitude or phase takes at each
empirical node τj over the training set. This is most
stringent for the phase where, near the merger, we would

FIG. 4. The seven elements of the empirical interpolation
operator fBΦ

j ðtÞg7j¼1 for the waveform phase. The empirical
interpolation nodes fτΦj g7j¼1 are shown as black dots. The x axis
is linear in the range ½−101; 101� and logarithmic elsewhere.
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like the error to be≲0.1 rad but the spread is ∼103 rad over
the considered parameter space. This requires a fractional
accuracy of ∼10−4 for the interpolation. We assess the
errors in the surrogate model due to interpolation in
Sec. IVA.
A distinct advantage of reduced-order surrogate models

is that the data output from a simulation or code is used
directly for building the model. The first steps (building a
reduced basis and empirical interpolant) are accomplished
off-line using only the training data generated by the
TEOBResum code. The only model inputs come in the last
step when we estimate the parameter dependence of the
data at the empirical interpolation nodes because we
implement a choice of fitting functions that can affect
the resulting quality of the surrogate predictions. This often
results in a surrogate that nearly retains the accuracy of the
underlying training data used to build the model. In
addition, propagating the training data uncertainties and
assessing the surrogate errors is fairly straightforward
because of the minimal amount of modeling inputs, which
are isolated to step 3. An example of this is given in [34]
where a reduced-order surrogate model is built for the
gravitational waveforms of nonspinning BBH coalescences
produced by numerical relativity simulations.

E. Surrogate waveform evaluation

After step 3, the surrogate model for the amplitude and
phase is defined by evaluating the corresponding empirical
interpolant in (25) using the parametric estimations in (26)
to predict the values at any new parameter values,

ASðt; θÞ ≔
X12
i¼1

BA
i ðtÞ ~AiðθÞ ð27aÞ

ΦSðt; θÞ ≔
X7
i¼1

BΦ
i ðtÞ ~ΦiðθÞ: ð27bÞ

The surrogate evaluation is performed online once a
parameter tuple ðq;ΛA

2 ;ΛB
2 Þ is given.

In practical gravitational-wave data analysis applica-
tions, one rescales from geometric units to physical units
of time and amplitude. This rescaling also depends on the
total mass M of the compact binary. In addition, one
specifies a starting frequency fstart. The starting time tstart
corresponding to fstart is calculated by numerically solving
fstart ¼ fðtstartÞ, where fðtÞ ¼ ðdΦS=dtÞ=ð2πÞ is the fre-
quency once given a tuple of parameter values ðq;ΛA

2 ;ΛB
2 Þ.

We then perform the necessary time and phase shifts and
resample the amplitude and phase surrogate predictions in
(27). The final expression for the surrogate model wave-
forms takes the form

hþSðt; θÞ ¼
1

2
ð1þ cos ιÞGM

c2d
AS

�
c3t
GM

; θ

�

× cosΦS

�
c3t
GM

; θ

�
; ð28aÞ

h×Sðt;θÞ¼ cos ι
GM
c2d

AS

�
c3t
GM

;θ

�
sinΦS

�
c3t
GM

;θ

�
; ð28bÞ

where ι is the binary inclination angle and d is the distance
to the gravitational-wave source.
In this paper, we have built a surrogate model for the

amplitude and phase of TEOBResum waveforms in the time
domain. This surrogate approximates the waveform in a
nonlinear representation (because the dependence on phase
is nonlinear) and, as such, cannot be used directly for
speeding up likelihood computations in parameter estima-
tion studies [42–44] that use reduced-order quadratures
[45]. However, it is straightforward to use our surrogate to
build a new surrogate for this purpose in the following way.
As we will discuss in the next section, our surrogate
accurately predicts waveforms output by the
TEOBresum code. As such, we may use the surrogate
above to generate a new training set in hþ and h× form,
which is a linear representation. Then, one can repeat the
surrogate building steps 1–3 for the two waveform polar-
izations directly. As mentioned earlier, this would generate
reduced basis sizes that contain a few hundred elements and
so would be somewhat larger in physical memory size and
slower to evaluate the resulting surrogate. Furthermore, one
could do this in the frequency domain by computing
Fourier transforms of the time-domain training waveforms
generated by the surrogate in (28) so that the transformation
is part of the off-line stage. One may still use our time
domain surrogate presented here for parameter estimation
studies but we expect significant speed-ups could be
obtained by following the strategy just outlined for like-
lihood computations.

IV. RESULTS

A. Accuracy

The required accuracy of the surrogate is determined by
the smallest effect that wewant to model. For BNS systems,
this is the tidal interaction that effects the waveform by
∼10 rad up to merger for typical EOSs. This means that we
will require the waveform error to be significantly smaller
than ∼10 rad.
The accuracy of the surrogate can be assessed by

comparing it to the training set used to construct the
reduced basis as well as to a large set of waveforms with
randomly sampled parameters. Figure 5 shows the frac-
tional error in the amplitude as well as the error in the phase
between the surrogate waveform and each of the 4096
training-set waveforms. The difference between the
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surrogate and each training-set waveform is maximized
over all times. For clarity we suppress the third parameter
ΛB
2 and only show the maximum error for the 16 values of

ΛB
2 at each grid point. The maximum fractional error in

amplitude is ΔA=A ¼ 7.7 × 10−5, and the maximum error
in phase is ΔΦ ¼ 0.014 rad. Because the interpolated
values of A and Φ exactly match the training set at each
grid point at the empirical nodes τj, we see from (27) that
the error in reproducing each training-set waveform is due
almost entirely to the finite number of reduced bases.
To determine how well the surrogate reproduces a

generic waveform within the parameter space, we produce
104 waveforms with parameters randomly sampled in the
range q ∈ ½0.5; 1�, ΛA

2 ∈ ½50; 5000�, and ΛB
2 ∈ ½50; 5000�.

The fractional amplitude and phase errors in reproducing
the generic waveforms are shown in Fig. 6. The errors are
maximized over time for each waveform. We find a
maximum fractional amplitude error of ΔA=A ¼ 0.038,
but note that, prior to the last 100M before merger, the
maximum error is ΔA=A ¼ 4 × 10−4, about 2 orders of
magnitude smaller. The maximum phase error is
ΔΦ ¼ 0.043 rad. For both the amplitude and phase, the

error is largest for small values of the parameters. This
results because both the amplitude and phase vary most
rapidly for small values of the waveform parameters, so the
interpolation of the amplitude AðτAj ; q;ΛA

2 ;ΛB
2 Þ and phase

ΦðτΦj ; q;ΛA
2 ;ΛB

2 Þ at each empirical node τj is least accu-
rate there.
In Fig. 7, we show the last 103M of the ∼108M long

waveform that is reproduced by the surrogate with the
largest phase error. The phase error typically increases

FIG. 5. Error between the surrogate and the 163 training-set
waveforms used to construct the reduced basis. Larger points
represent larger errors. The fractional amplitude and phase errors,
maximized over time and waveform parameters, are ΔA=A ¼
7.7 × 10−5 and ΔΦ ¼ 0.014, respectively. These errors are due to
the finite number of reduced bases.

FIG. 6. Error between the surrogate and 104 waveforms with
randomly sampled parameters not in the training set. Larger
points represent larger errors. Top: Fractional amplitude error
ΔA=A maximized over all times except the last 100M. Middle:
Fractional amplitude error ΔA=A maximized over all times.
Bottom: Phase error ΔΦ maximized over all times.
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gradually with time. On the other hand, the amplitude error
increases dramatically during the last cycle, and is typically
2 orders of magnitude smaller before the last cycle. This
increase in error near the maximum amplitude likely results
from the finite accuracy with which the training-set wave-
forms are numerically aligned at maximum amplitude
where the amplitude changes more rapidly with time,
making accurate interpolation more difficult.
As a final check of the surrogate model accuracy, we

examine the mismatch between the surrogate model and the
original EOB waveform. The mismatch represents the loss
in signal-to-noise ratio that would result from using the
surrogate model instead of the original EOBwaveform. It is
defined by the deviation from a perfect overlap after
aligning the two waveforms using the time and phase free
parameters t0 and ϕ0,

M ¼ 1 −max
t0;ϕ0

ðhEOB; hSurÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðhEOB; hEOBÞðhSur; hSurÞ
p : ð29Þ

The inner product here is the integral of the Fourier-
transformed waveforms ~hðfÞ weighted by the noise power
spectral density (PSD) SnðfÞ of the detector,

ðh1; h2Þ ¼ 4ℜ
Z

fhigh

flow

~h1ðfÞ ~h�2ðfÞ
SnðfÞ

df: ð30Þ

In Fig. 8, we show the distribution of mismatch M
between our surrogate and the 104 randomly sampled
EOB waveforms. We use the design sensitivity aLIGO
PSD [81] and a sampling rate of 4096 Hz. Our integration
bounds are flow ¼ 30 Hz and the Nyquist frequency

fhigh ¼ 2048 Hz. Because the surrogate can be rescaled
with mass, we show results for the smaller massMB fixed at
1 M⊙ or fixed at 2 M⊙. The mismatch is larger for the
higher-mass systems because the frequency where thewave-
formends scales inverselywith the totalmass, resulting in the
less accurate end of the waveform occurring at smaller
frequencies where the detector is more sensitive. Overall,
the mismatch is typically smaller than ∼10−4 except for
systems with large component masses, and the mismatch
never exceeds 7 × 10−4.

B. Timing

One of the main purposes for generating a surrogate is to
make parameter estimation more computationally efficient.
In particular, parameter estimation codes, usually based on
Markov-chain Monte Carlo or nested sampling methods,
typically require 107–108 sequential waveform evaluations,
and the computational time is dominated by the waveform
evaluation time even for PN waveforms [82,83]. Recently, a
few parallel algorithms have become available [84,85].
However, the performance of these algorithms still scales
linearly with the performance of the waveform generator.
We have produced a prototype PYTHON implementation

of our surrogate and a C implementation in the LIGO
Algorithm Library (LAL) [86] under the name
TEOBResum_ROM which is about 2 times faster than the
PYTHON version. The performance of the LAL implemen-
tation is shown in Fig. 9. For each waveform evaluation,
there is a flat cost of ∼0.04 s to calculate the amplitude and
phase of the waveform at the ∼7 × 104 samples using
Eq. (27). The difference in evaluation time as the starting
frequency fstart is varied results from the resampling of the
amplitude and phase at evenly spaced times in Eq. (28). The
number of these samples increases rapidly as the starting

FIG. 7. Final ∼10 cycles of the waveform with the largest phase
error. The parameters are fq;ΛA

2 ;ΛB
2 g ¼ f0.618; 420; 81g. The

amplitude errors are always largest during the last gravitational-
wave cycle, and are about 2 orders of magnitude smaller before
the last gravitational-wave cycle.

FIG. 8. Histogram of the mismatch between the surrogate and
the 104 randomly sampled EOB waveforms. The smaller mass
MB is set to either 1 M⊙ or 2 M⊙. The PSD corresponds to the
aLIGO design sensitivity and the lower and upper frequency
integration bounds are flow ¼ 30 Hz and fhigh ¼ 2048 Hz.
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frequency is decreased. Most parameter estimation is done
at 4096 Hz with a starting frequency of 30 Hz down to
10 Hz. The total waveform evaluation time will therefore be
about 0.07 s up to 0.8 s. If necessary, the resampling of the
amplitude and phase, which is the bottleneck for low
starting frequencies, can be parallelized. The original
implementation of the EOB code in MATLAB can take
∼20 minutes to evaluate beginning at 10 Hz, so this
represents a speed-up factor of Oð103Þ.

C. Parameter estimation

As an end-to-end test of the surrogate, we inject a
waveform into simulated aLIGO data and estimate its
parameters using a nested sampling algorithm as imple-
mented in LAL [87–90]. Although EOB waveforms have
been used in Bayesian parameter estimation for BBH
systems which have significantly fewer cycles (e.g., [91]),
this is one of the first times EOB waveforms have been used
in a Bayesian analysis for BNS systems. Another analysis
using a parallelized algorithm [85] is in progress [92].
The synthetic data are taken to be stationary andGaussian,

with a PSD corresponding to the aLIGO final design
sensitivity [81]; two detectors are assumed, located at the
Hanford and Livingston sites. For the simulated signal we
choose an arbitrary sky position and orientation, a distance of
87Mpc, and component masses ðMA;MBÞ ¼ ð1.4; 1.4ÞM⊙.
The EOS is taken to be MS1b, so that for the given masses
one has ΛA

2 ¼ ΛB
2 ¼ 1286 [7]. For the parameter choices

made, the optimal signal-to-noise ratio is 26.28.
For the parameter estimation, the prior densities for sky

position as well as orientation are chosen to be uniform on
the sphere, and the distance prior is uniform in comoving
volume with an upper cutoff at 100 Mpc. Component
masses are uniform in the interval ½1; 2�M⊙, and we take
ΛA
2 , ΛB

2 to be uniform in the interval [50, 5000]. In the

nested sampling we use 512 live points and up to 5000
Markov-chain Monte Carlo points [89], leading to 107–108

likelihood evaluations; results from four different sampling
chains are combined. Since the tidal effects we are
interested in manifest themselves predominantly at high
frequency, for this first exploration we use a lower cutoff
frequency of 40 Hz; the sampling rate is 4096 Hz.
Since ΛA

2 and ΛB
2 are highly correlated, after the nested

sampling algorithmhas finishedwe change parameters to the
~Λ, δ ~Λ introduced in [6], which depend on ðq;ΛA

2 ;ΛB
2 Þ; note

that these have the convenient properties ~Λðq ¼ 1;ΛA
2 ¼

ΛB
2 ¼ ΛÞ ¼ Λ and δ ~Λðq ¼ 1;ΛA

2 ¼ ΛB
2 ¼ ΛÞ ¼ 0.

Posterior density functions for ~Λ and δ ~Λ are shown in
Fig. 10; both these parameters are recovered quite well. The
parameter estimation code ran for 15 days; without a
surrogate it would have taken well over a year.
Finally, as shown in [5,7,8], if the functional dependence

of ΛA
2 , ΛB

2 on component masses is expressed in terms of
observables that can be expected to take approximately the
same values for all sources, then posterior density functions
for the latter can be trivially combined across detections to

FIG. 9. Performance of the surrogate implemented in LAL for a
binary with component masses ð1.4; 1.4ÞM⊙. We used sampling
frequencies of 4096 Hz and 16384 Hz. The evaluation time at
each starting frequency is averaged over 16 evaluations on a
2.7 GHz Intel Xeon CPU using one core.

FIG. 10. Posterior densities for the tidal parameters ~Λ (top) and
δ ~Λ (bottom). The simulated signal had component masses
ð1.4; 1.4ÞM⊙ and EOS MS1b, so that ~Λ ¼ 1286 and δ ~Λ ¼ 0,
as indicated by the vertical red lines.
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arrive at a more accurate measurement. These observables
could be coefficients in a Taylor expansion [5,8], or the
parameters in a representation of the EOS in terms of
piecewise polytropes [7]. An implementation for the surro-
gate model presented in this paper is left for future work.

V. DISCUSSION AND FUTURE WORK

We have constructed a surrogate for waveforms from
nonspinning BNS systems that includes the l ¼ 2 tidal
interaction and approximates the l ¼ 3 and l ¼ 4 tidal
interactions. The error of the surrogate is small compared to
the size of the tidal effect, and we have demonstrated that
this surrogate can be used in generic parameter estimation
algorithms.
The implementation of the model in LAL takes ∼0.07 s

to evaluate for flow ¼ 30 Hz and ∼0.8 s to evaluate for
flow ¼ 10 Hz, but there remains plenty of room for
improvements. For starting frequencies below ∼30 Hz,
the waveform generation time is dominated by straightfor-
ward interpolation of the amplitude and phase at uniformly
sampled times. This interpolation can be optimized or even
parallelized on either CPUs or a GPU if necessary. Most
other operations can be parallelized as well. In addition, the
number of amplitude and phase bases as well as the number
of time samples used to store the amplitude and phase bases
(currently ∼7 × 104) can be optimized, and the number of
Chebyshev coefficients for the interpolation can be stra-
tegically reduced as well. We expect speed-up factors of a
few should be possible without significantly affecting the
accuracy of the surrogate. Finally, one could use our time
domain surrogate to build a linear frequency domain
surrogate that can be used directly in a reduced-order
quadratures implementation of likelihood computations for
speeding up parameter estimation studies.
Because EOB models that include both spin and tidal

interactions are still in progress [93,94], our surrogate leaves
out spin parameters. Once thesemodels are available, adding
the two spin magnitudes jS1j and jS2j for aligned spin
systems for a total of five parameters will likely be straight-
forward using a standard grid-based interpolation scheme.
However, incorporating an additional four parameters to
account for the spin orientations will likely be significantly
more difficult. So far this problem has not been fully solved
for BBH systems without tidal interactions.
Finally, we have also left out the postmerger stage for

BNS systems. Unlike BBH systems, the postmerger stage
can only be modeled by expensive numerical relativity
simulations, and it is unlikely that more than 100–1000
simulations could be performed over the course of a few
years. However, work by Clark et al. has shown that it is
possible to reconstruct postmerger waveforms with a small
number of orthonormal bases [95]. In future work, we
would like to examine the possibility of constructing a
surrogate model for the complete inspiral-postmerger
waveform for BNS systems.
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APPENDIX: SYSTEMATIC UNCERTAINTIES
RELATED TO l = 3, 4 TIDAL POLARIZABILITY

COEFFICIENTS

In our 3D surrogate the quantities Λ3;4 are computed
from Λ2 using [67]

lnΛfit
l ¼

X4
i¼0

aðlÞi ðlnΛ2Þi ðl ¼ 3; 4Þ ðA1Þ

where ðað3Þi Þ ¼ ð−1.15; 1.18; 2.51 × 10−2;−1.31 × 10−3;

2.52 × 10−5Þ and ðað4Þi Þ ¼ ð−2.45; 1.43; 3.95 × 10−2;

FIG. 11. Relative errors ΔΛ3=Λ3 and ΔΛ4=Λ4, with ΔΛl ¼
Λl − Λfit

l (only 300 points shown).
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−1.81 × 10−3; 2.80 × 10−5Þ. The accuracy of these fits and
the systematic uncertainties that they introduce in the
surrogate are tested using a sample of 14 EOSs and, for
each EOS, about 3000 star configurations spanning themass
range M ∈ ½0.9;Mmax�M⊙.
Figure 11 and Table I quantify the relative errors of the

fits, where by definition ΔΛl ¼ Λl − Λfit
l . The largest fit

errors occur for small Λ2 ∼ 1–10, which occur when the NS
is near its maximum mass. The largest positive error is for
EOS BGN1H1 near its maximummass of 1.64 M⊙ and the
largest negative error is for MPA1 near its maximum mass
of 2.43 M⊙. These fit errors have the range ΔΛ3=Λ3 ∈
½−0.10; 0.17� and ΔΛ4=Λ4 ∈ ½−0.22; 0.29�. These high

mass configurations, however, are not expected to be found
in a BNS system. Comparing with Ref. [67], we obtain a
larger range of errors because we use a larger sample
of EOS.
Because the tidal effect is largest for equal mass systems

and the tidal parameter is largest for smaller masses, the
error in the waveform phase due to the fit is largest for equal
mass q ¼ 1 systems with smaller masses. In Fig. 1 and
Table I, we show the phase error from NSs with more likely
masses of 1.4 M⊙ using the soft EOS SLY and the stiff
EOS MS1b. The phase error grows with time, reaching its
maximum near merger, and in general, we find typical
phase errors of jΔϕj≲ 0.01 rad.
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