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In this work, we compute the corrections in Newton’s law of gravitation due to Kaluza-Klein gravitons in
codimension-1 warped thick braneworld scenarios. We focus in some models recently proposed in the
literature, the so-called asymmetric hybrid brane and compact brane. Such models are deformations of the
ϕ4 and sine-Gordon topological defects, respectively. Therefore we consider the branes engendered by such
defects and we also compute the corrections in their cases. We use suitable numerical techniques to attain
the mass spectrum and its corresponding eigenfunctions which are the essential quantities for computing
the correction to the Newtonian potential. Moreover, we discuss that the existence of massive modes is
necessary for building a braneworld model with a phenomenology involved. We find that the odd
eigenfunctions have nontrivial contributions and the first eigenstate of the Kaluza-Klein tower has the
highest contribution. The calculation of slight deviations in the gravitational potential may be used as a
selection tool for braneworld scenarios matching with future experimental measurements in high energy
collisions.
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I. INTRODUCTION

The idea that our observable universe may be thought
as a (3þ 1)-hypersurface (called brane or membrane)
embedded in a higher-dimensional bulk space-time has
received a lot of attention since it provides good explan-
ations of several puzzling phenomena such as the hierarchy
between the electroweak and the Planck scales [1,2], the
dark matter origin [3], the cosmological constant problem
[4] and the cosmic acceleration [5]. The braneworld
concept has emerged from string theory [6] and unification
models [7,8] and therefore tests of the existence of branes,
or just extra dimensions, are a fundamental challenge.
Evidences of the braneworld hypothesis are expected to be
found through high energy collisions (for instance in the
Large Hadron Collider) wherein new degrees of freedom
should arise such as Kaluza-Klein (KK) excitation of the
particles in the extra dimension [9,10].
Besides the search for extra dimension evidence in high

energy particle colliders, it could be also observed in low-
energy experiments using neutrons if a second brane exists
close enough to us [11]. Neutrons are more suitable than
electrons, protons or atoms for such a purpose [12]. Indeed,
Dubovsky et al. have suggested that the particles of the
standard model should be able to leak into the bulk through
a tunneling effect [13,14]. Furthermore, Sarrazin and Petit
have shown that for a bulk containing at least two parallel
3-branes hidden to each other, matter swapping between
these two worlds should occur triggered by the use of

suitable ambient magnetic vector potentials [12,15–17].
More important, this new effect could be detected and
controlled with present day technology as a possible
experimental confirmation of the braneworld hypothesis.
Recently, an experiment was proposed to investigate matter
swapping between branes by looking at the appearance of
neutrons in a concept similar to light shining through a wall
[18]. Ultracold neutrons stored in a vessel would therefore
have a nonzero probability to escape from our brane toward
the hidden brane at each wall collision. Such a process
would be perceived as a neutron disappearance from the
point of view of an observer in the visible brane [11]. At
last, it is worthwhile to mention the quite recent work by Yu
and collaborators [19], which proposed that gravitational
wave observations of compact binaries and their possible
electromagnetic counterparts may be used to probe the
nature of the extra dimension.
In this work, we will follow the original proposal of the

phenomenological consequences of the braneworld
hypothesis: slight deviations in the Newtonian potential
between two particles [20]. In order to have an effective
four-dimensional theory of gravity, it is required that the
models admit a normalizable zero-energy ground state
which mediates the four-dimensional gravity [21]. We,
in turn, discuss the importance of a model supporting
massive states to have a phenomenology involved. In
general, such states cannot be found analytically. We,
therefore, use suitable numerical techniques to attain the
mass spectrum and its corresponding eigenvalues to com-
pute the corrections in Newton’s law of gravitation for two
braneworld models recently proposed in the literature, the
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so-called asymmetric hybrid brane [22] and the compact
brane [23]. As desired, the spectra are real and monoton-
ically increasing. Moreover, as the parameters of the
models (generally related to the brane tension) increase,
the complete spectra decrease. We show that the compact
brane does not support massive states and, consequently,
does not have contributions to corrections in Newton’s law.
Moreover, the asymmetric hybrid brane has a negligible
correction. Since these sophisticated braneworld scenarios
use deformations from the ϕ4 and sine-Gordon topological
defects, respectively, we study the phenomenology in
branes engendered by such defects. In this new scenario
we find that the sine-Gordon brane [24] has a higher
contribution than the ϕ4 brane. In a previous work [25], we
studied the gravity localization in a recent braneworld
model, called symmetric hybrid brane [26], and computed
its corrections to Newton’s law. This procedure is very
useful as a selection tool for brane models to match with
future experimental measurements. As a matter of fact, it is
important to mention that research on corrections in
Newton’s law is a very attractive area in high energy
physics as a theoretical foundation. For example, correc-
tions to the Newtonian potential in the Palatini fðRÞ
braneworld scenario was performed using an approximate
analytic approach [27]. Moreover, a quantum corrected
Newton’s law was derived in a loop quantum black holes
context [28].
This paper is organized as follows: In Sec. II, we briefly

review the general procedure for building a codimension-1
warped thick braneworld scenario and its metric fluctua-
tions (also called gravity localization). We also discuss the
massive spectrum and the corrections to Newton’s law of
gravitation. In Secs. III and IV, we present the main features
of the asymmetric hybrid brane and compact brane models,
respectively. We, therefore, reinforce their main issues
analyzing the scalar curvature and the analogue quantum
potential in detail. In Sec. V, we present our numerical
results. In order to ensure the stability of our routines, we
first apply the numerical methods in the Randall-Sundrum
model and show that the relative error between the
numerical results and the analytical solutions is less than
0.5% in the first twenty eigenvalues. In Sec. VI, we discuss
the results and the conclusions are given in Sec. VII.

II. THICK BRANE MODELS AND METRIC
FLUCTUATIONS

We will now present a brief review of the usual
procedure for building warped codimension-1 thick brane-
worlds. Consider an auxiliary scalar field ϕ coupled to
gravity in a five-dimensional warped space-time with an
extra coordinate y of infinite extent. The geometry is
described by the metric

ds2 ¼ e2AðyÞημνdxμdxν − dy2; ð1Þ

where AðyÞ is the warp function and ημν is the Minkowski
metric. The general Einstein-Hilbert action with matter in
D dimensions is given by [29]

SD ¼ −
1

2κD
2

Z
dDx

ffiffiffiffiffiffi
−g

p
Rþ

Z
dDx

ffiffiffi
g

p
L; ð2Þ

where κD denotes the D-dimensional gravitational constant
related to the D-dimensional Newton constant GN and the
D-dimensional Planck mass scale as

κD
2 ¼ 8πGN ¼ 8π

M�D−2 : ð3Þ

Moreover, R is the Ricci scalar and Lðϕ; ∂MϕÞ is the
Lagrangian density which describes the scalar field

Lðϕ; ∂MϕÞ ¼ ∂Mϕ∂Mϕ − VðϕÞ; ð4Þ

where M ¼ 0; 1;…; D − 1. The function VðϕÞ is the
potential of the model. The usual ϕ4 and sine-Gordon
potentials, which have kinklike solutions, conduct to branes
modeled by a domain wall defect [24,30]. Moreover, after
the deformation procedure developed in Ref. [31], different
braneworld scenarios could be built using several distinct
topological defects, engendering branes with richer internal
structures [32–35].
Henceforth, we will work in D ¼ 5 in the notation

4πG5 ¼ 1 of Refs. [22,23]. Supposing that the scalar field
only depends on the extra dimension, the equations of
motion, together with the Einstein equations, read [30]

ϕ00 þ 4ϕ0A0 ¼ dV
dϕ

; ð5Þ

A00 ¼ −
2

3
ðϕ0Þ2; ð6Þ

ðA0Þ2 ¼ 1

6
ϕ0 −

1

3
VðϕÞ; ð7Þ

where the primes denote derivatives with respect to y. The
general treatment of the metric fluctuations is rather
difficult, since one has to solve an intricate system of
coupled nonlinear differential equations [36]. On the other
hand, the superpotential approach [32] is a useful mecha-
nism to reduce the second order equations of motion to first
order ones. To this aim, the superpotential WðϕÞ is defined
as [32]

VðϕÞ ¼ 1

2

�
dW
dϕ

�
2

: ð8Þ

Hence, the first order differential equations
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ϕ0 ¼ dW
dϕ

; and A0 ¼ −
2

3
WðϕÞ ð9Þ

solve the equations of motion (5)–(7). Therefore, the
potential in the curved space-time reads

VðϕÞ ¼ 1

2

�
dW
dϕ

�
2

−
4

3
W2ðϕÞ: ð10Þ

The stability of a braneworld scenario is studied by means
of the gravity localization. The usual mechanism to study
the metric fluctuations is performing the following pertur-
bation hμνðx; yÞ [30]:

ds2 ¼ e2AðyÞðημν þ hμνÞdxμνdxμν þ dy2: ð11Þ

Imposing the transverse-traceless gauge, i.e., ∂μhμν¼hμμ¼0

and h5N ¼ 0, the graviton equation of motion is [30]

h00μν þ
2σ0

σ
h0μν ¼ σ−1□hμν; ð12Þ

where □ is the (3þ 1)-dimensional d’Alembertian and
σðyÞ ¼ e2AðyÞ. Furthermore, assuming the Kaluza-Klein

(KK) decomposition hμνðx; yÞ ¼
P

nh
ð0Þ
μν ðxÞφnðyÞ, where

ημν∂μ∂νhð0Þμν ¼ −mn
2hð0Þμν , with mn being the four-

dimensional KK masses of the fluctuation, the gravitational
KK modes in the extra dimension are described by the
following Sturm-Liouville equation:

φ00
nðyÞ þ

2σ0

σ
φ0
nðyÞ ¼ −mn

2σ−1φnðyÞ: ð13Þ

It is convenient to deal with a conformal metric perform-
ing the change of coordinates dz ¼ σ−1=2dy [37]. Further,
defining φnðyÞ ¼ σ−3=4ψnðzÞ, the Sturm-Liouville equa-
tion (13) reduces to a Schrödinger-like form [37]:

−ψ̈nðzÞ þ UðzÞψnðzÞ ¼ mn
2ψnðzÞ; ð14Þ

where

UðzÞ ¼ 3

4

�
σ̈

σ
−
1

4

�
_σ

σ

�
2
�

ð15Þ

is the analogue quantum potential and the overdots
represent derivatives with respect to z. A necessary con-
dition to keep the stability of the gravitational sector is the
absence of tachyonic states. This is ensured by the
Hamiltonian which can be written as [21]

H ¼
�
−

d
dz

þ 3

4

_σ

σ

��
d
dz

þ 3

4

_σ

σ

�
; ð16Þ

which has a supersymmetric quantum mechanics form

Q†QψnðzÞ ¼ m2ψnðzÞ; with Q≡ d
dz

þ 3

4

_σ

σ
: ð17Þ

Furthermore, Eq. (14) has a zero-mode (massless graviton)
solution for a generic form of the warp factor [37],

ψ0ðzÞ ¼ σ3=2ðzÞ; ð18Þ

which is normalizable. This state reproduces the four-
dimensional gravity [37].
An important geometric entity is the scalar curvature

RðyÞ which contains essential information. It is given in
terms of the warp factor as

RðyÞ ¼ −
1

4

�
σ00

σ
þ 19

�
σ0

σ

�
2
�
: ð19Þ

The AdS5 limit of the bulk is characterized by the
asymptotic behavior of the scalar curvature tending to a
negative constant. Moreover, the presence of regions with
positive scalar Ricci can, in principle, be connected with the
capability to trap massive modes near the brane as resonant
states [38].

A. Graviton spectrum

The masses of the Kaluza-Klein (KK) tower are the most
important quantities to study the phenomenology of a
braneworld scenario, since they are used directly to
compute the corrections in the Newtonian potential. In
general, the masses of the graviton excitations cannot be
obtained analytically. Nonetheless, in the Randall-Sundrum
model (RS1), the spectrum has a closed form. In this work,
we are interested in the KK masses for the thick branes
developed in Refs. [22,23]. But first, we will present the
analytical result for the thin brane to test the efficiency of
our routines.
The general solution of Eq. (14) in the RS scenario,

whose warp factor is σ ¼ e−2kjyj, is a linear combination of
Bessel functions [20]:

ψnðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jzj þ 1=k

p
½anJ2ðmnðjzj þ 1=kÞÞ

þ bnY2ðmnðjzj þ 1=kÞÞ�: ð20Þ

The presence of two branes, which corresponds to a cutoff
in the extra dimension, induces the quantization of the
masses of the Kaluza-Klein states. The spectrum is
obtained imposing the boundary conditions [20]:

ψ 0
nðLzÞ ¼ −

3k2

2ðkLz þ 1ÞψnðLzÞ; ð21Þ

where Lz is the location of the TeV brane in the z-
coordinate (Lz ¼ 0 corresponds to the Planck brane).
The transformation of coordinates zðyÞ has the analytical
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solution for the RS warp factor: jzj ¼ ðekjyj − 1Þ=k. Then,
returning to the coordinate y, which effectively represents
the distance along the extra dimension, the cutoff turns to
Lz ¼ ekL=k. Hence, imposing the boundary conditions (21)
in the general solution (20), we have

anJ1

�
mn

k

�
þ bnY1

�
mn

k

�
¼ 0;

anJ1

�
mn

k
ekL

�
þ bnY1

�
mn

k
ekL

�
¼ 0; ð22Þ

which has solutions if its determinant vanishes, i.e.:

J1ðmn
k Þ

J1ðmn
k ekLÞ ¼

Y1ðmn
k Þ

Y1ðmn
k ekLÞ : ð23Þ

In the approximation of small masses, where mn=k ≪ 1,
we have

J1

�
mn

k
ekL

�
¼ 0: ð24Þ

Therefore, the masses of the Kaluza-Klein tower are
given by

mn ≈ ke−kLjn; ð25Þ

where jn are the zeros of the Bessel function J1ðjnÞ ¼ 0
and are all tabled. The spectrum is discrete and monoton-
ically increasing, but not equally spaced. Moreover, in the
RS1 model, the spectrum reduces to mn ¼ kjne−krcπ [39],
where rc is the compactification radius of the extra
dimension. Furthermore, there is an exponential suppressed
mass gap between the massless mode and the first massive
one. It is important to note that the cutoff has influence in
the spectrum. Then, future observations of deviations in
Newtonian potential may be used to adjust the parameters L
and k.

B. Corrections in Newton’s law

In order to have localized four-dimensional gravity, it is
also required that the other solutions of the Schrödinger-
like equation, the Kauza-Klein modes, do not lead to
unacceptable large corrections to Newton’s law in the
four-dimensional theory. To evaluate them, note that a
discrete eigenfunction of the Schrödinger operator with
energy m2 acts in four dimensions like a field of mass m
and, consequently, contributes with a Yukawa-like correc-
tion to the four-dimensional gravitational potential between
two masses M1 and M2 on our brane at z ¼ 0 as [21]

UðrÞ ≈ GN
M1M2

r
þM�−3

M1M2e−mr

r
ψm

2ð0Þ; ð26Þ

where the wave function is normalized to
R
dzψm

2ð0Þ ¼ 1

andM� is the fundamental Planck scale in 5D. As long asm
increases, the correction becomes exponentially smaller.
In the Randall-Sundrum model, the static potential

generated by the exchange of the zero-mode and continuum
Kaluza-Klein mode propagator is [20]

UðrÞ ≈ GN
M1M2

r
þ
Z

∞

0

dm
k

GN
M1M2e−mr

r
m
k

¼ GN
M1M2

r

�
1þ 1

k2r2

�
: ð27Þ

The leading term due to the bound state (zero-energy mode)
is the usual Newtonian potential. Furthermore, the KK
modes generate a highly suppressed correction term.
Such phenomena could be experimented in high-energy
processes.
It is important to note that the quantities necessary to

compute the correction in the gravitational potential are
the masses of the Kaluza-Klein tower and the values of the
corresponding eigenfunctions at the origin. However, in
general, there are not analytical solutions, and hence,
numerical approaches are desirable. In Sec. V, we will
apply appropriate numerical methods to obtain such quan-
tities in the asymmetrical hybrid brane model and in the
compact brane, presented in the following two sections.

III. MODEL I: THE ASYMMETRIC
HYBRID BRANE

The following potential [22],

VpðϕÞ ¼
1

2
ð1 − ϕÞ2ð1þ ϕpÞ2; ð28Þ

leads to the superpotential

WpðϕÞ ¼ ϕ −
ϕ2

2
þ ϕ1þp

1þ p
−

ϕ2þp

2þ p
; ð29Þ

where p is an odd integer. Note that the ordinary ϕ4 model
is recovered for p ¼ 1. The potential VpðϕÞ is depicted in
Fig. 1 for different values of p. The parameter p induces a
special asymmetry: differently from the symmetric hybrid
brane developed in Ref. [26], the potential acquires a
compact shape only in the ϕ-negative sector. In general, the
thick brane scenarios are symmetric, since the source scalar
field presents a Z2 symmetry. However, one can also
consider an asymmetric brane which is of current interest
in brane cosmology, whose contribution lies with the
cosmic acceleration [40,41]. Asymmetric branes also lead
to a possible approach to the hierarchy problem [42]. The
asymmetry of a brane may also be thought of as a
consequence of different cosmological constants on each
sector of the defect [43,44].
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The field solution and the warp factor are obtained from
Eq. (9). Due to the complexity form of the superpotential, a
numerical treatment was needed. To this aim, we solved the
field equation using a simple fourth-order Runge-Kutta
algorithm with the boundary condition ϕpð0Þ ¼ 0 on
each sector. For the warp factor equation, we used the
shooting method with the condition Apð0Þ ¼ 0. We plot
the approximated solutions in Figs. 2(a) and 2(b). Note
that the asymmetric hybrid brane is engendered by a half-
compacton defect. The hybrid profile is understood as
defined in Ref. [26]: while the usual thick branes behave as
thin branes asymptotically, the hybrid brane behaves as a
thin one when the extra dimension is outside the domain
where the energy density is nontrivial: in the present case,
when y < −1.
We also calculated the scalar curvature given by Eq. (19)

which is plotted in Fig 3. The sudden change to a negative

constant characterizes the hybrid behavior of the
brane. Moreover, the different asymptotic values, i.e.,
jRð−∞Þj ≠ jRðþ∞Þj, make clear the different values of
the bulk cosmological constant on each “side” of the brane.
We also plotted the potential in the curved space-time in
Fig. 4. Note that it acquires a limited shape in the negative
part of the domain due to the compacton piece of the
scalar field.
Finally, we calculated the analogue quantum potential

UpðzÞ which is plotted in Fig. 5. The transformation of
coordinates zðyÞ was computed performing the numerical
integral z ¼ R

σ−1=2dy using the numerical approximation
of the warp factor. The case for p ¼ 1 coincides with the
ordinary domain wall brane, as for the symmetric hybrid
brane [25]. As the hybrid profile evolves, the potential
barrier diminishes. Note the hybrid profile for negative z
where the potential behaves as in the thin brane case
(≈1=jzj2). It is important to mention that the small height of
the potential barrier affects only small masses.

IV. MODEL II: THE COMPACT BRANE

One of the newest braneworld model, proposed in
Ref. [23], is the so-called compact brane. Such a model
is engendered by the superpotential

WλðϕÞ ¼ −
1

ð1 − λÞ
1ffiffiffi
λ

p ln

�
1 −

ffiffiffi
λ

p
snðϕ; λÞ

dnðϕ; λÞ
�
; ð30Þ

where snðϕ; λÞ and dnðϕ; λÞ are Jacobi elliptic functions.
The Jacobi elliptic functions are a set of basic elliptic
functions which are denoted by snðϕ; λÞ, cnðϕ; λÞ and
dnðϕ; λÞ, where λ is a parameter in the domain [0, 1]
called elliptic modulus. They arise from the inversion of the
elliptic integral of the first kind:

FIG. 1. Potential VpðϕÞ for p ¼ 1 (thick line), p ¼ 3 (dashed
line), p ¼ 11 (dotted line) and p ¼ 63 (thin line). The potential
function acquires a compact shape in the ϕ-negative sector.

(a) (b)

FIG. 2. Scalar field solution ϕpðyÞ in (a) and warp factor σpðyÞ in (b) for different values of p. The asymmetric hybrid brane is
engendered by a half-compacton defect which causes an asymmetry in the warp factor.
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ϕ ¼ Fðu; λÞ ¼
Z

u

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2 sin2 t

p : ð31Þ

Then, the elliptic functions are given by

snðϕ; λÞ ¼ sin u; cnðϕ; λÞ ¼ cos u;

and dnðϕ; λÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2sin2t

p
: ð32Þ

These functions satisfy the two algebraic relations:

cn2ðϕ; λÞ þ sn2ðϕ; λÞ ¼ 1;

dn2ðϕ; λÞ þ λ2sn2ðϕ; λÞ ¼ 1: ð33Þ

Such functions are interesting since they lead to both
trigonometric and hyperbolic functions. For λ ¼ 0, we

have the usual trigonometric functions, while for λ ¼ 1,
we get the hyperbolic ones:

snðϕ;0Þ ¼ sinϕ; cnðϕ;0Þ ¼ cosϕ;

snðϕ;1Þ ¼ tanhϕ; cnðϕ;1Þ ¼ dnðϕ;0Þ ¼ sechϕ: ð34Þ

Since the derivatives of the three basic Jacobi elliptic
functions are

d
dϕ

snðϕ; λÞ ¼ cnðϕ; λÞdnðϕ; λÞ;
d
dϕ

cnðϕ; λÞ ¼ −snðϕ; λÞdnðϕ; λÞ;
d
dϕ

dnðϕ; λÞ ¼ −λ2snðϕ; λÞcnðϕ; λÞ; ð35Þ

the potential of the kink defect, given by Eq. (8), becomes

VðϕÞ ¼ 1

ð1 − λÞ2
�
1

8

cn2ðϕ; λÞ
dn2ðϕ; λÞ −

1

3λ
ln2

�
1 −

ffiffiffi
λ

p
snðϕ; λÞ

dnðϕ; λÞ
��

;

ð36Þ

which is depicted in Fig. 6 for different values of λ. This
potential changes significantly with the variation of the
parameter λ. Furthermore, its minima also changes. Note
that for λ ¼ 0.0, the sine-Gordon potential is recovered.
The equation for the scalar field reads

ϕ0
λðyÞ ¼

dWλ

dϕ
¼ 1

1 − λ

cnðϕ; λÞ
dnðϕ; λÞ ; ð37Þ

which has the analytical solution

FIG. 3. Scalar curvature for the asymmetric hybrid brane. The
sudden change to a negative constant for y ≈ −0.5 characterizes
the hybrid behavior of the brane.

FIG. 4. Plot of the potential in the curved space-time Vp for the
same values of p in Fig. 3. The potential acquires a limited shape
in the negative part of the domain.

FIG. 5. Analogue quantum potential for the asymmetric hybrid
brane. The case for p ¼ 1 coincides with the ϕ4 ordinary defect.
As the hybrid profile evolves, the potential barrier diminishes.
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ϕλðyÞ ¼ sn−1
�
tanh

�
y

2ð1 − λÞ
�
; λ

�
: ð38Þ

Note that the use of the Jacobi elliptic functions in the
definition of the superpotential (30), as proposed in
Ref. [23], leads to a braneworld scenario whose tension
is related to the elliptic modulus λ.
We obtained numerically the solution for the warp factor

given by Eq. (9) using the same methods employed in the
asymmetric hybrid brane of the previous section. We plot in
Figs 7(a) and 7(b) the scalar field and warp factor,
respectively. The field solution becomes compact (do not
be confused with the compacton defect discussed in the
previous section) and the asymptotic values increases with
λ, which agrees with the displacement of the minima of the
potential function VλðϕÞ displayed in Fig. 6. Note that
when λ → 1, the width of the warp factor decreases

significantly making the extra dimension compact. In the
subgraph of Fig. 7(b), we plot together with the compact
brane case, the warp factor of the Randall-Sundrum model
with k ¼ 30.5, i.e., σRS ¼ e−70.0jyj. Hence, it may be
concluded that the compact brane corresponds to a brane
with very high curvature. This issue prevents the suste-
nance of massive states, as we will show in the next section.
To reinforce the compact profile of the brane, we

computed numerically the scalar curvature given by
Eq. (19). We plot the numerical solution in Fig. 8. As
the parameter λ increases, the brane becomes more and
more compressed around the origin. Note also that the
constant asymptotic values of the scalar curvature become
very negatively large as the brane tends to the compact
regime.
The potential in the curved space-time, given by

Eq. (10), is obtained analytically from the superpotential
(30) as

VλðϕÞ ¼
1

ð1− λÞ2
�
1

8

cn2ðϕ;λÞ
dn2ðϕ;λÞ−

1

3λ
ln2

�
1−

ffiffiffi
λ

p
snðϕ; λÞ

dnðϕ; λÞ
��

:

ð39Þ

The use of the Jacobi elliptic functions in the definition of
the superpotential is very interesting since it interpolates
continuously from the sine-Gordon model to the compact
brane model. Note that the limit λ → 0 leads to the
particular case of the sine-Gordon model studied in
Ref. [30] and recently in Ref. [24], see Fig. 9.
Finally, we computed the analogue quantum potential

given by Eq. (15), which is plotted in Fig. 10 for different
values of λ. The case for λ ¼ 0.0 coincides with the sine-
Gordon braneworld [24]. The analogue quantum potential
is very sensible with variations of the parameter λ and its
barrier increases quickly, evincing the compact profile and

FIG. 6. Potential VλðϕÞ for λ ¼ 0.0 (thick line), λ ¼ 0.30
(dashed line), λ ¼ 0.50 (dotted line) and λ ¼ 0.65 (thin line).

(a) (b)

FIG. 7. Scalar field solution ϕλðyÞ in (a) for different values of the parameter λ. Warp factor σλðyÞ in (b) for the same values of λ. As λ
increases, the warp factor becomes more and more compact. In the inset, we plot the warp factor in the compact regime (λ ¼ 0.95) and
the Randall-Sundrum model with k ¼ 30.5.
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the high curvature of the brane. In the compact limit, which
is plotted for λ ¼ 0.95 in the inset of Fig. 10, the barrier is 3
orders of magnitude higher than the sine-Gordon case. This
issue hinders the presence of bound states, since the height
of the barrier is overly high and the width of the well
becomes extremely sharp. In the next section, we will
present our numerical results from the computation of the
Kaluza-Klein tower of states. We will show the absence of
massive states in the compact brane regime.

V. NUMERICAL RESULTS

We are interested in computing the corrections in
Newton’s law of gravitation due to the gravitational
massive modes in the thick braneworld models proposed
in Refs. [22,23]. To this aim, it is necessary to attain the

mass spectrum solving Eq. (12) or Eq. (14). However, such
equations have no analytical solution. Fortunately, the so-
called matrix method is an efficient numerical method for
solving Sturm-Liouville problems. In the braneworld con-
text, this technique was successfully applied in codimen-
sion-2 models [45–48] and recently, in the symmetric
hybrid brane model [25].
First of all, we applied the matrix method to the quite

known Randall-Sundrum model to test our routines. To get
an efficient approximation for the first twenty eigenvalues,
we have discretized the differential equation (13) in N ¼
4300 steps in the domain ½−6.0; 6.0�, where the warp factor
is sufficiently close to zero near the boundary of the box. In
this uniform grid, the step size is 0.002790. We used
centered finite differences approximation for the derivatives
in Eq. (13) with second order truncation error. Hence, an
eigenvalue problem for a 4300 × 4300 tridiagonal matrix
had to be solved. Moreover, since only the value of the
wave function at the origin is relevant to compute the
correction in Newton’s law, we relinquished the unphysical
boundary condition [30], untying its value at z ¼ 0, and
adopted homogeneous Neumann boundary conditions at
the edges of the box. Note that such conditions also conduct
to the spectrum given by Eq. (25). Moreover, the homo-
geneous Neumann boundary conditions at y ¼ �L is in
accordance with the fact that the solutions ψðzÞ must
behave as plane waves far from the brane. In Table I,
we present the exact solution (25) and the numerical
approximation for k ¼ 0.7 and L ¼ 6.0. Note that the
relative error is predominantly less than 0.06%.
Furthermore, the approximation deteriorates with n after
n ¼ 14. This is a natural attribute of the matrix method.
However, this issue does not interfere in our analysis, since

FIG. 8. Scalar curvature for the compact brane model for the
same parameter values of Fig. 7. As the parameter λ increases, the
brane becomes more and more compressed around the origin.
The inset shows the compact regime.

FIG. 9. Plot of the potential in curved space-time VλðϕÞ for the
same parameter values of Fig. 7. For λ → 0, the potential
coincides with the sine-Gordon model.

FIG. 10. Analogue quantum potential UλðϕÞ for λ ¼ 0.0 (thick
line), λ ¼ 0.30 (dashed line), λ ¼ 0.40 (dotted line) and λ ¼ 0.50
(thin line). The case for λ ¼ 0.0 coincides with the sine-Gordon
braneworld. The potential is very sensible in the parameter λ and,
as the compact profile arises, the potential barrier increases
quickly. The inset corresponds to the scale adjustment of the
λ ¼ 0.95 case.
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only the small masses are of physical interest
[20,21,37,49]. To verify the stability of the numerical
method, we computed the first eigenvalue for several
values of N. We present the relative error in Fig. 11.
Note that the error reduces monotonically as the step size
diminishes.
After testing the efficiency of our routines, we have

applied the matrix method to attain the KK spectrum for the
asymmetric hybrid brane and for the compact brane. We
have studied the cases p ¼ 1 (ϕ4 model), p ¼ 63 (asym-
metric hybrid brane), λ ¼ 0.0 (sine-Gordon brane) and λ ¼
0.95 (compact brane). We plot in Fig. 12 the spectra for all
the mentioned cases. Note that the mass spectrum is model
dependent and the whole set decreases as the parameters
(related to the brane tension) increase. In the compact brane
regime, the spectrum is trivial. In fact, this is consistent
with the thin brane case with very high curvature, whose

first eigenvalue for k ¼ 30.5 is mRS
1 ¼ 3.90 × 10−78 [see

Eq. (25)]. Then, we may conclude that the compact brane
does not have contributions to the corrections in Newton’s
law. For p ¼ 1 in the hybrid model (domain wall brane),
the spectrum matches with our previous results reported in
Ref. [25]. The first four eigenvalues are m1 ¼ 0.0738777,
m2 ¼ 0.135154, m3 ¼ 0.195893 and m4 ¼ 0.256381.
Moreover, in the hybrid regime, the spectrum becomes 1
order of magnitude lower than the domain wall regime.
Then, this model will have a lower contribution to the
correction in the Newtonian potential.
Finally, we have solved the Schrödinger-like equation

for the cases p ¼ 63 and λ ¼ 0.0. We have forsaken the
compact brane regime, since only m ¼ 0 is supported. We
used the well-known Numerov method [50] for the mass

FIG. 11. Relative error in the approximation of the first mass
eigenvalue of the Randall-Sundrum model in terms of the number
of steps in the discretized domain.

TABLE I. Mass eigenvalues in the Randall-Sundrum model
and its numerical approximation.

n mn ¼ ke−kLjn
Numerical

approximation
Relative
error (%)

1 0.0402209 0.0402442 0.0578
2 0.0740640 0.0740264 0.0508
3 0.106790 0.106849 0.0557
4 0.139857 0.139917 0.0430
6 0.172890 0.172951 0.0352
7 0.205906 0.205966 0.0293
8 0.238910 0.238971 0.0256
9 0.271908 0.271970 0.0228
10 0.304901 0.304966 0.0211
11 0.337892 0.337959 0.0198
12 0.370879 0.370951 0.0192
13 0.403866 0.403942 0.0188
14 0.436850 0.436933 0.0190
15 0.469834 0.469925 0.0194
16 0.502817 0.502917 0.0199

FIG. 12. Graviton mass spectrum for the asymmetric hybrid
brane (squares) and compact brane (circles). The spectrum is
model dependent and the whole sets decrease with the param-
eters. For the compact brane (λ ¼ 0.96), the spectrum is trivial.

FIG. 13. Normalized squared odd wave functions for the
asymmetric hybrid brane (p ¼ 63). The mass eigenvalues from
Fig. 12 are m1 ¼ 0.00804991 (thick line), m3 ¼ 0.0213199
(dashed line) and m5 ¼ 0.0344917 (dotted line).
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eigenvalues obtained by the matrix method. The Numerov
method was largely applied in field localization on branes
[38,51–56]. We plot the normalized solutions for the first
three odd eigenfunctions in Figs. 13 and 14. All the even
solutions vanish at z ¼ 0, then we discarded them since
they do not contribute to the correction in the Newtonian
potential [see Eq. (26)]. The solutions for the asymmetric
hybrid brane are purely plane waves. Since all the values at
z ¼ 0 are approximately equal to 0.0050, all the odd
eigenfunctions will contribute equally for the correction
in the gravitational potential. On the other hand, for the
sine-Gordon brane, the contributions of the eigenfunctions
are different, thus all the odd eigenvalues must be taken into
account in the sum of Eq. (26). Note further that the first
massive eigenstate has the highest contribution. Therefore,
possible effects of the Kaluza-Klein tower in high energy
collision may be arising from the first KK mass.
We are now able to compute the corrections in Newton’s

law. The procedure may be done for all the values of p and
λ, but we will concentrate ourselves in the cases shown in
Fig. 12, only. Moreover, from Eq. (3), we are allowed to set
G5 ¼ M�−3. Note that the Planck mass will determine the
spatial range of the interaction. In order to have a clearer
understanding, we plot the corrected Newtonian potential
in Fig. 15 for the asymmetric hybrid brane, for the sine-
Gordon brane and for the ϕ4 brane. The correction due to
the compact brane is trivial. Moreover, the asymmetric
hybrid brane has a negligible contribution. On the other
hand, significant results are observed in the domain-wall
and sine-Gordon branes. The sine-Gordon brane supports a
larger mass spectrum providing a higher correction in
comparison to the domain-wall brane. Therefore, we
conclude that the sophisticated scenarios do not possess

phenomenological implications, leaving the simplest thick
braneworlds the trust of possible realistic models.

VI. DISCUSSION

The phenomenology of the braneworld scenarios is
parametrized by the first Kaluza-Klein (KK) graviton
masses mn. However, in general, the KK masses are
determined by the characteristic radii of curvature of the
geometry, so the spectrum may have complicated depend-
ence on the internal geometry having no closed expression.
Moreover, the parameters in the thick braneworld scenar-
ios, related to the thickness of the defects, which in turn, are
comparable to the bulk curvature, are arbitrary. Then,
experimental measurements should be used to suit the
parameters range. While this is not (yet) tangible, theo-
retical manners to study the best set of parameters values
are always welcome, such as the correction in Newton’s
law of gravitation. For instance, recently, Correa et al. [57]
studied the bounds on the parameters of thick braneworld
models in six dimensions using an information-entropic
measure called configurational entropy. Using the approach
developed in this paper, it can be inferred which braneworld
should have a phenomenological result.
The gravitational massless mode ψ0ðzÞ is the first main

quantity to study the building of a braneworld scenario. Its
normalization reproduces the four-dimensional gravity.
Furthermore, the normalizability of the zero mode is
intimately connected with the asymptotic behavior of the
Schrödinger potential. If UðzÞ ≥ 0 as jzj → ∞, then ψ0ðzÞ
is always normalizable. On the contrary, if UðzÞ < 0 as
jzj → ∞, then ψ0ðzÞ is not normalizable and therefore is of

FIG. 14. Normalized squared odd wave functions for the sine-
Gordon brane (λ ¼ 0.0). All even wave functions vanish in z ¼ 0,
so we omitted here. The mass eigenvalues from Fig. 12 are
m1 ¼ 0.0725202 (thick line), m3 ¼ 0.192295 (dashed line) and
m5 ¼ 0.310824 (dotted line).

Newton’s Law

Asym hybrid brane

domain-wall brane

sine-Gordon brane

FIG. 15. Newtonian potential with corrections due to Kaluza-
Klein modes (thick gray line). The asymmetric hybrid brane
(dashed black line) has a negligible correction. The sine-Gordon
brane (thick black line) provides a higher correction in compari-
son to the ordinary domain wall brane (thin black line).
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no interest, since it cannot describe four-dimensional
gravity [21].
For the case when UðzÞ > 0 as jzj → ∞, the excited

states are separated by a gap from the ground state [21].
Hence, corrections to Newton’s law are exponentially
suppressed as Eq. (26). In the case where the potential
goes to zero at infinity, there is a continuum of scattering
states with eigenvalues m2 ≥ 0 and so the behavior of the
light modes at z ¼ 0 is crucial whether the corrections are
small. However, in practice, the Schrödinger-like equation
for thick brane models cannot be solved analytically, then a
numerical procedure is needed. In such cases, the problem
has to be imposed in a finite domain, which returns directly
a discrete spectrum with a mass gap from the ground state.
The essential quantities to study the phenomenology of a

braneworld scenario in a correction to the gravitational
potential is the pair eigenvalue eigenfunction of the
Schrödinger-like problem describing the massive states.
The correction is exponentially suppressed in the mass and
depends on the values of the wave functions in the origin
(z ¼ 0). We find that only odd eigenfunctions contribute to
the correction, since the value of ψðz ¼ 0Þ is null for even
eigenfunctions.

VII. CONCLUSIONS AND PERSPECTIVES

In this work, we sought to draw attention to the analysis
of the graviton massive states in codimension-1 warped
braneworld scenarios. In addition to the localized massless
mode, it is important to study the Kaluza-Klein (KK) tower,
which conducts to corrections in Newton’s law of gravi-
tation, the primary phenomenological implication of the
braneworld hypothesis [20]. We have studied the correction
in the gravitational potential in the newest brane models
proposed in the literature, the so-called asymmetric hybrid
brane [22] and compact brane [23]. Since these models
come from deformations of the ϕ4 and sine-Gordon
topological defects, we also computed the correction in
branes engendered by such defects. We have used suitable
numerical methods to attain the KK spectrum and its
corresponding eigenfunctions. As expected, the spectra
are real and monotonically increasing. To test the numerical
routines, we have applied the matrix method in the Randall-
Sundrum (RS) model, and we have obtained good

approximations for the first eigenvalues which are of
physical interest. Moreover, we have reinforced the hybrid
and the compact features of the models analyzing the scalar
curvature and the analogue quantum potential.
We have shown that the compact brane only supports the

massless state, then has no contributions to the correction in
Newton’s law. This peculiar model corresponds to a
braneworld scenario with high curvature. Moreover, the
asymmetric hybrid brane has a negligible contribution to
the correction in the Newtonian potential. Therefore, the
simplest braneworld scenarios carry the trust to be possible
realistic models. The sine-Gordon brane provides a higher
correction in the gravitational potential than the ordinary
domain wall brane. We found that only odd eigenfunctions
contribute to the correction, since the values of the even
wave functions are zero at the origin z ¼ 0 (where the
branes are supposed to be located). Thus, although all the
spectrum accounts in the exponentially suppressed correc-
tion, the set of eigenfunctions selects the odd massive
solutions only. Another important result from the numerical
study of the massive eigenstates is that the first normalized
eigenfunction has the highest value at the origin, thus,
effects of the Kaluza-Klein tower may be arising from the
first excited state.
The procedure addressed in this paper is very useful to

determine if a braneworld model should have phenomeno-
logical implications. This may also be used as a selection
tool for braneworld models to match with future exper-
imental measurements.
An extension of the current work consists in applying the

techniques developed here in other braneworld models
which present resonant modes, such as the Bloch branes
[38,58] and study the influence of the resonant Kaluza-
Klein states in the correction of the Newtonian potential.
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