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The simplicity constraint is studied in the context of four-dimensional spinfoam models with a
cosmological constant. We find that the quantum simplicity constraint is realized as the two-dimensional
surface defect in SLð2;CÞ Chern-Simons theory in the construction of spinfoam amplitudes. By this
realization of the simplicity constraint in Chern-Simons theory, we are able to construct the new spinfoam
amplitude with a cosmological constant for an arbitrary simplicial complex (with many 4-simplices). The
semiclassical asymptotics of the amplitude is shown to correctly reproduce the four-dimensional
Einstein-Regge action with a cosmological constant term.
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I. INTRODUCTION

There has been significant development recently in
including a cosmological constant in loop quantum gravity
(LQG) [1–6].1 A new covariant formulation of LQG has
been developed, which gives a nice relation between the
covariant LQG in four dimensions and Chern-Simons
theory on a 3-manifold. In this new formalism, the
spinfoam vertex amplitude is constructed by using the
SLð2;CÞ Chern-Simons theory on a 3-sphere with a Wilson
graph. This new formulation using Chern-Simons theory
evolves from the earlier formulation using quantum groups
[12–14].
This work focuses on the spinfoam amplitude con-

structed from the new formalism. In particular, this work
studies the quantum application of the simplicity constraint
to the spinfoam amplitude in the presence of a cosmologi-
cal constant. It turns out that the simplicity constraint is
realized as the two-dimensional (2d) surface defect in
SLð2;CÞ Chern-Simons theory used in constructing spin-
foam amplitudes. By this realization of the simplicity
constraint in Chern-Simons theory, we are able to non-
perturbatively construct the new spinfoam amplitude with a
cosmological constant for an arbitrary simplicial complex
(with many 4-simplices). The semiclassical asymptotics of
the amplitude is shown to correctly reproduce the four-
dimensional (4d) Einstein-Regge action with a cosmologi-
cal constant term.
In the classical Plebanski formulation, gravity in four

dimensions is formulated by using the topological BF

theory and implementing the simplicity constraint. The
simplicity constraint restricts the bivector B field to be
simple and related to the tetrad by BIJ ¼ �ðeI ∧ eJÞ, which
reduces the BF action to the Palatini action of gravity.
In the spinfoam formulation of covariant LQG, the

simplicity constraint is quantized and imposed on the
partition function of quantum BF theory. In the Engle-
Pereira-Rovelli-Livine/Freidel-Krasnov (EPRL/FK) spin-
foam model [15,16], a linear version of the simplicity
constraint is imposed on the spinfoam amplitude. Given a
simplicial complex, the linear simplicity constraint states
that for each tetrahedron t, the bivector B-field smeared on
its faces BIJ

f shares the same time-like normal vector NI. It
is convenient to fix the time gauge so that, locally in each
tetrahedron, the reference frame is chosen such that
NI ¼ ð1; 0; 0; 0Þ. The time gauge breaks the local
Lorentz symmetry to three-dimensional (3d) rotational
symmetry. The simplicity constraint then implies that all
bivectors BIJ

f are spatial for each tetrahedron and are related
to the spatial normals of tetrahedron faces.
The EPRL/FK spinfoammodel is obtained by quantizing

the above linear simplicity constraint and weakly imposing
it on the BF partition function [17–20]. The reason for
weakly imposing the constraint is that at the quantum level
the components of the linear simplicity constraint are not
commutative. Strongly imposing the constraint results in
that the solution space does not have enough degrees of
freedom. Similar phenomena also occur in the Gupta-
Bleuler formalism of quantizing the electromagnetic field,
and the covariant quantization of strings.
The quantum simplicity constraint of the EPRL/FK

model guarantees that the boundary degrees of freedom
of the spinfoam amplitude precisely match the quantum 3d
geometry emerging from canonical LQG (namely, the
boundary data of the EPRL/FK amplitude are SU(2)
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spin-network data). It also guarantees that the semiclassical
large-spin asymptotics of the spinfoam amplitude correctly
reproduces the Einstein-Regge action (without a cosmo-
logical constant term) evaluated at simplicial geometries
with flat 4-simplices [21–25].
This work carries out the analysis of the simplicity

constraint for the spinfoam model with a cosmological
constant. The four-dimensional spinfoam amplitude with a
cosmological constant is constructed by using SLð2;CÞ
Chern-Simons theory on a 3-manifold [1–3].2 In this
formalism, the local Lorentz symmetry of the 4d spinfoam
model is translated to the SLð2;CÞ gauge symmetry of
Chern-Simons theory. The bivectors BIJ

f are naturally
exponentiated and given by the holonomy of the flat
connection traveling transversely around the Wilson line.
The tetrahedron in the 4d spinfoam model corresponds to
the neighborhood of the vertex where four Wilson lines join
(see Fig. 1 for the Wilson graph used for constructing the
4-simplex amplitude).
It is explained in Sec. II that the simplicity constraint and

time gauge correspond to requiring that on the four-holed
sphere enclosing a four-valent vertex, the gauge group of
Chern-Simons theory is broken from SLð2;CÞ to SU(2). In
the classical limit, the flat connections on the four-holed
sphere are restricted to be SU(2). It is known that SU(2) flat
connections on a four-holed sphere are in one-to-one
correspondence to tetrahedron geometries with constant
curvature [6]. Thus, imposing the simplicity constraint
ensures the geometricity of the tetrahedron at the classical

level, similar to the situation in the EPRL/FK model (with
flat tetrahedron geometries).
In Sec. III, we perform a quantization of the simplicity

constraint, and define the constraint operators on the
Hilbert space of SLð2;CÞ Chern-Simons wave functions.
Similar to the situation in the EPRL/FK model, we find that
the constraint operators are noncommutative, which moti-
vates us to instead impose a weaker version of the
constraints. We propose to use the master constraint
technique [26–28]. The master constraint effectively
reduces the Hilbert space to a subspace, whose wave
functions are equivalent to SU(2) Chern-Simons wave
functions. We might view the master constraint as a
Hamiltonian, for which the SU(2) Chern-Simons wave
functions on the four-holed sphere are ground states; other
SLð2;CÞ Chern-Simons states are created as excitations
similar to a harmonic oscillator.
In addition, we find that the weak simplicity constraint is

not unique. Indeed, the solution of the master constraint is a
coherent state peaked at the phase-space point which solves
the classical simplicity constraint. We know that the
coherent state which saturates the Heisenberg uncertainty
is not unique, e.g., the squeezed coherent states. It turns out
that different ways to define coherent states peaked at
classical solutions of the simplicity constraint correspond to
different ways of weakly imposing the simplicity constraint
at the quantum level.
In Sec. IV, we consider the graph complement

3-manifold S3nΓ5 similar to Refs. [2,3]. We impose the
quantum simplicity constraint and project the SLð2;CÞ
Chern-Simons wave function to the space of solutions. The
resulting wave function Z is proposed as a spinfoam
4-simplex amplitude with a cosmological constant. We
show that, thanks to the simplicity constraint, the amplitude
ensures that the boundary degrees of freedom match
precisely with discrete 3d geometry data on the boundary
of the 4-simplex. The 3d geometry data is an analog of
spin-network data (or semiclassically twisted geometry
data) [5]. Also, the semiclassical asymptotics of the
amplitude correctly reproduce the Einstein-Regge action
with a cosmological constant term on a constant-curvature
4-simplex. The situation is a generalization of the
EPRL/FK model to include the cosmological constant.
In Sec. V, we generalize the analysis to an arbitrary

simplicial complex with many 4-simplices. The spinfoam
amplitude on a 4d simplicial complex is a SLð2;CÞ Chern-
Simons theory on a 3-manifoldM3 made by gluing copies
of S3nΓ5. We find that the implementation of the simplicity
constraint corresponds to inserting 2d surface defects into
SLð2;CÞ Chern-Simons theory on the 3-manifold. The
surface defects are inserted at the gluing interface (four-
holed spheres) between pairs of S3nΓ5, i.e., they divide the
entire 3-manifold into copies of S3nΓ5. Each surface defect
restricts the Chern-Simons states—which travel from one
S3nΓ5 to another—to be solutions of the simplicity

1 2 3 4 5

FIG. 1. Γ5 graph embedded in S3.

2Following Ref. [1], SLð2;CÞ Chern-Simons theory can be
viewed to be equivalent to 4d BF theory with a cosmological
constant term, when the 3d space where Chern-Simons lives is the
boundary of the 4d space where BF theory lives. Schematically,
the BF action with a cosmological constant reads SBF ¼R
M4

BIJ ∧ �FIJ þ Λ
6
BIJ ∧ �BIJ . Integrating out the B field leads

to S ∼ 1
Λ

R
M4

FIJ ∧ �FIJ ∼ i
Λ

R
∂M4

trðA ∧ dAþ 2
3
A ∧ A ∧ AÞþ

c:c:, where I; J ¼ 0;…; 3 are Lorentz vector indices. A ¼ Aiσi
is the sl2C-valued complex Chern-Simons connection. See
Ref. [1] for details in the presence of the Barbero-Immirzi
parameter.
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constraint, i.e. to be equivalent to SU(2) Chern-Simons
states. Due to our understanding of the simplicity constraint
at the quantum level, we are able to formulate the spinfoam
amplitude nonperturbatively on an arbitrary simplicial
complex, which improves the result in Ref. [4].
Because surface defects impose the quantum simplicity

constraint, the two key properties of the 4-simplex ampli-
tude are generalized to the general spinfoam amplitude on a
simplicial complex. The boundary data are always 3d
geometry data, so the amplitude describes the quantum
history of 3d geometries. The semiclassical asymptotics
correctly reproduce the Einstein-Regge action with a
cosmological constant term on the simplicial complex.
4d simplicial geometries emerge from critical points of

the spinfoam amplitude, where locally each 4-simplex is of
constant curvature. Interestingly, the 3-manifoldM3 carry-
ing the Chern-Simons theory has a number of nontrivial
cycles, each of which is associated with a torus cusp defect.
The longitude holonomy along the B-cycle of the torus
cusp is noncontractible, since it is associated with a
noncontractible cycle of 3-manifold. It turns out that each
noncontractible cycle corresponds to a triangle in a 4d
simplicial complex, and the noncontractible B-cycle hol-
onomy corresponds to the nontrivial deficit angle hinged by
the triangle. The 4d curvature is effectively created by the
nontrivial cycles of the 3-manifold M3.
In Sec. VI, we consider the field-theoretic description of

the surface defect. We can define an operator insertion in
the Chern-Simons path integral in terms of the continuous
field theory variable. The 2d “surface operator” inserted
into the path integral effectively implements the quantum
simplicity constraint. In general, the defect of topological
quantum field theory has a certain dependence on the
background metric, since it breaks the topological invari-
ance to a certain extend. A typical example is the framing
dependence of Wilson line operators. Here, the surface
defect implementing the simplicity constraint also depends
on the choice of the metric on the 2-surface. Different
choices of metrics in the field-theoretic context may be
viewed as analogs of choosing different squeezed coherent
states mentioned above. Thus, different surface metrics for
the surface defect correspond to different ways of weakly
implementing the quantum simplicity constraint.
The semiclassical behavior is checked for the spinfoam

amplitude in this field-theoretic formulation. The asymp-
totics again reproduce the Einstein-Regge action with a
cosmological constant on the entire simplicial complex.
Although line defects have been widely studied in

Chern-Simons theory, the results about surface defects
(or domain walls) are insufficient in the literature (some
results can be found in, e.g., Refs. [29–31]). The surface
defect appearing here has not been studied before. In
Sec. VII, we investigate the surface defect by studying
the propagating physical degrees of freedom on the defect
2-surface. As mentioned above, the surface defect reduces

SLð2;CÞ Chern-Simons states to SU(2) in order to imple-
ment the simplicity constraint. On the defect where the
gauge symmetry is broken, the previous gauge degrees of
freedom become the physically propagating degrees of
freedom. In other words, some additional propagating
degrees of freedom have to be implemented in order to
recover the original gauge symmetry on the defect. The
standard example is the boundary of Chern-Simons theory,
on which the Wess-Zumino-Witten model describes the
propagating degree of freedom. We analyze the additional
propagating degrees of freedom on the surface defect,
which reinstall the SLð2;CÞ gauge invariance in the model.
We show that, at least at the linearized level, the propa-
gating field behaves as a 2d sigma model gauged by the
Chern-Simons connection.

II. SIMPLICITY CONSTRAINT AND
A CURVED TETRAHEDRON

In the spinfoam formulation without a cosmological
constant, the classical linear simplicity constraint requires
that, given a flat tetrahedron t, each of the four face
bivectors BIJ

f should be orthogonal to the time-like normal
NI of the tetrahedron,3

BIJ
f NI ¼ 0; ∀ f ⊂ ∂t: ð2:1Þ

The time gauge may be chosen such that NI ¼ ð1; 0; 0; 0Þ,
which is understood as a frame choice inside the tetrahe-
dron. The frame can be located at any point inside the
tetrahedron since the tetrahedron is flat.
The choice of time gauge breaks the local Lorentz

symmetry down to spatial rotational symmetry. We have
for each bivector BIJ

f ¼ Bij
f , where i, j are 3d vector

indices, and

afn̂if ¼ 1

2
εijkðBfÞjk; ð2:2Þ

where n̂ is a unit space-like vector. Moreover, because of
the closure constraint

0 ¼
X4
f¼1

BIJ
f ¼

X4
f¼1

afn̂f; ð2:3Þ

we know that the data BIJ
f satisfying the simplicity

constraint endow the tetrahedron t with the geometry, in
which af is the face area and n̂f is the unit face normal
vector.
In the recent spinfoam models with a cosmological

constant, the 4d spinfoam 4-simplex amplitude is formu-
lated as a SLð2;CÞ Chern-Simons theory on S2 with Γ5

Wilson graph defect (Fig. 1) [1–3]. In this formulation,

3I; J ¼ 0;…; 3 are vector indices of the Lorentz group.
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each tetrahedron of the 4-simplex is related to a four-holed
sphere S enclosing a vertex of the Γ5 graph. By the Chern-
Simons equation of motion (in the semiclassical limit), the
SLð2;CÞ flat Chern-Simons connection on each four-holed
sphere gives a holonomy version of the closure constraint,

H4H3H2H1 ¼ 1: ð2:4Þ

Fixing a base point on S, Hf is the holonomy of the flat
connection circling the fth hole (each hole is dual to a
tetrahedron face). The above formula can be viewed as a
closure constraint generalizing

P
fB

IJ
f ¼ 0 because each

SL(2,C) holonomy can be written as an exponential
Hf ¼ expðΛ

3
BIJ
f J IJÞ, where J IJ are Lorentz generators.

When the cosmological constant Λ → 0, Eq. (2.4) implies
the usual closure

P
fB

IJ
f ¼ 0 by linearization.

When we apply the simplicity constraint (2.1) and time
gauge in this context, BIJ

f is again restricted to be spatial;
thus,

Hf ¼ exp

�
Λ
3
BIJ
f J IJ

�
¼ exp

�
Λ
3
afn̂f · τ⃗

�
∈ SUð2Þ;

τ⃗ ¼ i
2
σ⃗; ð2:5Þ

where σ⃗ are Pauli matrices. Therefore, the simplicity
constraint and time gauge effectively reduce the structure
group of Chern-Simons from SLð2;CÞ to SU(2) on each
four-holed sphere. SLð2;CÞ flat connections are reduced to
SU(2). Equation (2.4) becomes a product of SU(2)
matrices.
It has been shown in Refs. [1,6] that the SU(2) flat

connections on a four-holed sphere S are in one-to-one
correspondence with the geometries of the constant-
curvature tetrahedron, in which af in Eq. (2.5) is the face
area and n̂f is the unit face normal. However, since the
tetrahedron is curved, a base point of the tetrahedron has to
be chosen in order to make sense of the frame choice for the
time gauge. Then, n̂f is the unit face normal vector located
at the tetrahedron base point.
The closure constraint (2.4) and the relation (2.5) suggest

that in the presence of a cosmological constant, the flux
variable used in LQG is naturally exponentiated. The
exponentiated flux variable has been recently studied in,
e.g., Refs. [5,32,33].
The moduli space of the flat SU(2) connection is of real

dimension six, which parametrizes all degrees of freedom
for constant-curvature tetrahedron geometries. The eigen-
values of SU(2) holonomies Hf around the four holes are
related to the four triangle areas of the tetrahedron. It was
shown in Ref. [6] that the shapes of a tetrahedron with fixed
areas are parametrized by the flat connection coordinates
x; y ∈ Uð1Þ. x ∈ Uð1Þ is related to the diagonal length of a
spherical four-sided polygon, while y ∈ Uð1Þ is related to
the “bending angle.”

In the moduli space of SLð2;CÞ flat connections on S,
the coordinates x, y are known as Fenchel-Nielsen (FN)
coordinates [5,6,34],4 but now x; y ∈ Cnf0g since they
parametrize SLð2;CÞ flat connections. The symplectic
structure of the moduli space implies that x, y are
canonically conjugate5:

Ω ¼ dy2

y2
∧ dx

x
: ð2:6Þ

Recall that the simplicity constraint reduces the flat con-
nection on S from SLð2;CÞ to SU(2). In terms of the
coordinates, the simplicity constraint implies

Reðln xÞ ¼ 0; Reðln yÞ ¼ 0: ð2:7Þ

Namely, under the constraint, x, y become U(1) numbers
parametrizing the shape of the tetrahedron.
For completeness, the simplicity constraint also restricts

the eigenvalues of Hf to be U(1) numbers as well, since
they are related to face areas. But it turns out that these
restrictions can be easily imposed at the quantum level. The
only nontrivial task is to quantize the constraint (2.7),
which we focus on in the following. For convenience, we
often denote X ¼ ln x and P ¼ ln y2 in the following
discussion.

III. QUANTIZATIONOF THE FLAT CONNECTION
AND SIMPLICITY CONSTRAINT

We denote by PS the phase space of SLð2;CÞ flat
connections on S with a fixed holonomy eigenvalue around
each hole. PS is of complex dimension two. The coor-
dinates on PS can be chosen to be ðx; y2Þ. The symplectic
structure of SLð2;CÞ Chern-Simons theory reads

ωk;s ¼
1

4π
ðtΩþ t̄ Ω̄Þ t ¼ kþ is; t̄ ¼ k − is

¼ k
2π

ðdReP ∧ dReX − dImP ∧ dImXÞ

−
s
2π

ðdReP ∧ dImX þ dImP ∧ dReXÞ: ð3:1Þ

The quantization of the phase space PS can be carried
out in a similar way as in Ref. [35]. x ¼ expX and

4The FN coordinates are defined by cutting the four-holed
sphere S into two three-holed spheres. The flat connection on S
gives a SLð2;CÞ holonomy hx along the cut, whose eigenvalue is
the FN complex length variable x. The FN twist variable y has a
more technical definition. In nontechnical language, it comes
from a holonomy hy of the flat connection traveling from one
three-holed sphere to the other, which transversely intersects hx.
The diagonalization of hy gives the twist variable y. We refer the
reader to, e.g., Refs. [3,5,34] for a mathematically precise
definition.

5The square on y is conventional.
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y2 ¼ expP imply that ImX, ImP are periodic with period
2π. Weil’s criterion of prequantization then requires k ∈ Z.
s ∈ R leads to ωk;s being real, so that the Chern-Simons
theory is unitary with respect to a standard Hermitian
construction.6

As a convenient way to parametrize the complex Chern-
Simons level, we write

is ¼ k
1 − b2

1þ b2
∈ iR ð3:2Þ

with jbj ¼ 1. We can parametrize x, y2 and their complex
conjugates by

x ¼ exp
2πi
k

ð−ibμ −mÞ; x̄ ¼ exp
2πi
k

ð−ib−1μþmÞ;

y2 ¼ exp
2πi
k

ð−ibν− nÞ; ȳ2 ¼ exp
2πi
k

ð−ib−1νþ nÞ;
ð3:3Þ

where m, n ∈ R are periodic (m ∼mþ k, n ∼ nþ k), and
μ, ν are also real parameters. The Chern-Simons symplectic
form ωk;s can be rewritten in terms of new variables,

ωk;s ¼
2π

k
ðdν ∧ dμ − dn ∧ dmÞ ð3:4Þ

The quantization of PS promotes the parameters μ, ν, m, n
to operators μ, ν, m, n, whose nonvanishing commutation
relation is

½μ; ν� ¼ k
2πi

; ½m;n� ¼ −
k
2πi

; ð3:5Þ

or, in terms of x, y2,

xy2¼qy2x; x̄ȳ2¼ ~qȳ2x̄; q¼ exp
4πi
t
; ~q¼ exp

4πi
t̄
:

ð3:6Þ

The operator algebra is represented on the space of wave
functions fðμ; mÞ of two variables. Here, μ ∈ R is con-
tinuous but m ∈ Z=kZ is discrete. m only takes integer
value because both of the canonically conjugate variables
m and n are periodic. The operators μ, ν, m, n are
represented by

μfðμ;mÞ¼ μfðμ;mÞ; νfðμ;mÞ¼−
k
2πi

∂μfðμ;mÞ
e
2πi
k mfðμ;mÞ¼ e

2πi
k mfðμ;mÞ; e

2πi
k nfðμ;mÞ¼ fðμ;mþ1Þ:

ð3:7Þ

The simplicity constraint E(2.7) leads to the condition
μ ¼ ν ¼ 0 in the new parametrization. To quantize the
constraint, one might naively impose the operator equations
μψ ¼ νψ ¼ 0 on the wave functions. However, the naive
operator equations trivialize the wave function since
½μ; ν� ¼ k

2πi. Therefore, to realize the simplicity constraint
at the quantum level, we have to impose a weaker version
of the constraint. This fact makes the quantum implemen-
tation of the simplicity constraint nontrivial. Here, we
choose to impose the operator equation

ðμ − iνÞψ ¼ 0 ⇒ ψ solðμ; mÞ ¼ exp
�
−
πμ2

k

�
fðmÞ;

ð3:8Þ

where fðmÞ is an arbitrary function on Z=kZ. Here the
solution space is simply a k-dimensional vector space Ck,
which is the Hilbert space of SU(2) Chern-Simons theory
of level k. The simplicity constraint at the quantum level
reduces the SLð2;CÞ Chern-Simons wave function to
SU(2).
As an equivalent way to impose the constraint, one

may also consider imposing the “master constraint”
ðμ2 þ ν2Þψ ¼ 0 up to the “zero-point” energy.7 The sol-
ution (the dependence on μ) is simply the ground state of
the harmonic oscillator, the same as above. In this sense the
states (3.8) may be viewed as the ground states, while the
full spectrum of SLð2;CÞ Chern-Simons states are created
by the action of the “creation operator” ðμþ iνÞ.
As we have seen, the constraint μ ¼ ν ¼ 0 at the

quantum level can only be satisfied weakly. The solution
of the quantum constraint is a coherent state with its peak at
μ ¼ ν ¼ 0. So μ ¼ ν ¼ 0 is satisfied only in the semi-
classical limit. It is known that the coherent state peaks at a
phase-space point that is not unique. We may choose other
squeezed coherent states, which still minimize the
Heisenberg uncertainty. We introduce a squeezing param-
eter w ∈ R, and impose ðμ − iw2νÞψ ¼ 0 instead of
Eq. (3.8), whose solution is

ψ ðwÞ
sol ðμ; mÞ ¼ exp

�
−
πμ2

w2k

�
fðmÞ: ð3:9Þ

6There is another unitary branch s ∈ iR via a nonstandard
Hermitian structure [36].

7See Refs. [26–28] for the idea of the master constraint in
canonical LQG. See Refs. [15,20] for the use of the master
constraint in the spinfoam model to solve the simplicity
constraint.
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We may introduce a “metric” and define a “squeezed”
master constraint (w−2μ2 þ w2ν2). The above squeezed
coherent state satisfies ðw−2μ2 þ w2ν2Þψ ðwÞ

sol ¼ 0 up to the
same zero-point energy as above (the zero-point energy is
independent of w).
The squeezing parameter introduces an ambiguity in the

solution of the simplicity constraint at each four-holed
sphere S. The essential reason for the ambiguity is the
noncommutativity of the simplicity constraints μ ¼ 0,
ν ¼ 0. In Secs. IV and V, we keep w ≠ 0 as a free
parameter, and focus on the construction of Chern-
Simons theory with defects, as well as the geometrical
reconstruction on M4. We come back to the issue of
ambiguity in Sec. VI.

IV. SLð2;CÞ CHERN-SIMONS THEORY ON S3nΓ5

The partition function of SLð2;CÞ Chern-Simons theory
on S3nΓ5 can be viewed as a wave function
ZS3nΓ5

ðλl; λ̄l; xS; x̄SÞ [2,3]. The phase space of flat con-
nections PS3nΓ5

associated to the boundary of S3nΓ5 is of
complex dimension 30. The boundary ∂ðS3nΓ5Þ is a closed
2-surface made of five four-holed spheres S connected by
ten annuli l. For convenience, the complex FN coordinates
λl; τl are used for each annulus, and the xS; y2S (or μS, νS,
mS , nS) coordinates are used for each four-holed sphere S.
Here, λl is the complex FN length, which is the eigenvalue
of the meridian holonomy around the annulus l.
The implementation of the simplicity constraint projects

the Chern-Simons wave function to the above solution
space. The projection is done by the inner product:
jZS3nΓ5

i → jψ solihψ soljZS3nΓ5
i. The resulting wave function

reads

ZS3nΓ5
ðλl; λ̄l; mSÞ ¼

Z
R5

Y
S

dμSZS3nΓ5
ðλl; λ̄l; μS; mSÞ

×
Y
S

exp

�
−
πμ2S
w2k

�
: ð4:1Þ

Here λl is nothing but the eigenvalue of Hf in Eq. (2.4).
The simplicity constraint about the eigenvalue ofHf can be
easily implemented by restricting λl ∈ Uð1Þ in the wave
function.
Now the wave function Z only depends on the data of

SU(2) flat connections on the Riemann surface
Σ6 ¼ ∂S3nΓ5. It has been shown that the SU(2) flat
connections on the Riemann surface parametrizes the
twisted geometry on 3d discrete space [5]. Thus, Z is
indeed qualified to be a quantum amplitude describing the
evolution of 3d geometry. For the relation with spin-
network data, we will explain shortly that λl is related
to the spins jl. mS ∈ Z=kZ quantizes SU(2) flat connec-
tions on a four-holed sphere, and thus essentially is a label
of the conformal blocks [or, equivalently, 4-valent

intertwiners of the quantum group SUð2Þq, where q is a
root of unity] [37].
We consider the semiclassical limit of the resulting

ZS3nΓ5
ðλl; mSÞ as k; s → ∞. Comparing the semiclassical

limit to the commutators (3.5) motivates us to rescale μS,
νS , mS , nS by

μS ↦
k
2π

μS; νS ↦
k
2π

νS; mS ↦
k
2π

mS; nS ↦
k
2π

nS:

ð4:2Þ

After rescaling, mS, nS become continuous periodic
variables as k → ∞.
The semiclassical behavior of ZS3nΓ5

ðλl; λ̄l; μS; mSÞ is
known as [38,39] (� � � stands for the quantum corrections)

ZS3nΓ5
ðλl; λ̄l; μS; mSÞ

¼
X
α

exp

�
i
Z ðλl;λ̄l;μS ;mSÞ

c⊂Lα

�
t
4π

X
l

ln τl
dλ0l
λ0l

þ t̄
4π

X
l

ln τ̄l
dλ̄0l
λ̄0l

þ k
2π

X
S

ðνSdμ0S þ nSdm0
SÞ� þ � � �

�
:

ð4:3Þ

The moduli space of flat connections on S3nΓ5,
MflatðS3nΓ5; SLð2;CÞÞ≃ L is understood as the
Lagrangian submanifold of the phase space. Lα is the
branch of L associated to the flat connection α on S3nΓ5. L
can be represented as a set of polynomial equations in
symplectic coordinates, whose expressions have been
derived in Ref. [4]. The quantity in the exponential is an
integral of the Liouville 1-form associated to ωk;s along a
contour c in Lα.
Inserting the asymptotic expression for

ZS3nΓ5
ðλl; λ̄l; μS; mSÞ into the integral (4.1),

ZS3nΓ5
ðλl; λ̄l; mSÞ

¼
X
α

Z
R5

dμS exp ½Sαðλl; λ̄l; μS; mSÞ þ � � ��; ð4:4Þ

where Sαðλl; λ̄; μS; mSÞ reads

Sα ¼ i
Z ðλl;λ̄l;μS ;mSÞ

c⊂Lα

�
t
4π

X
l

ln τl
dλ0l
λ0l

þ t̄
4π

X
l

ln τ̄l
dλ̄0l
λ̄0l

þ k
2π

X
S

ðνSdμ0S þ nSdm0
SÞ
�
−
X
S

kμ2S
4πw2

: ð4:5Þ

In the semiclassical limit, the μS integral (4.4) localizes
asymptotically at the critical points, i.e., the solutions of
critical equations ∂Sα=∂μS ¼ ReðSαÞ ¼ 0. The critical
equations are easy to derive:
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iw2νS − μS ¼ μS ¼ 0 ⇒ μS ¼ νS ¼ 0; ð4:6Þ
where we see that the critical equation ∂Sα=∂μS ¼ 0 is a
classical version of the quantum simplicity constraint (3.8).
The critical equations imply the simplicity constraint, and
thus require the flat connections on all S to be SU(2).
The condition μS ¼ νS ¼ 0 may not be simultaneously

satisfied for generic branches Lα of the Lagrangian sub-
manifold. However, it has been shown in Ref. [3] that there
exist exactly two branches Lα4d and L ~α4d , where
νSðμS ¼ 0Þ ¼ 0 can be satisfied. The SLð2;CÞ flat con-
nection α4d on S3nΓ5 equivalently describes the geometry
of a nondegenerate 4-simplex with constant curvature. The
other flat connection ~α4d is referred to as the “parity
partner,” which corresponds to the same 4-simplex geom-
etry as α4d, but with opposite 4d orientation.
Those α’s whose Lα are not consistent with μS ¼ νS ¼ 0

only give exponentially suppressed contributions to
ZS3nΓ5

ðλl; λ̄l; mSÞ in Eq. (4.4). Therefore,

ZS3nΓ5
ðλl; λ̄l; mSÞ ¼ eSα4d ðλl;λ̄lÞþ��� þ eSᾱ4d ðλl;λ̄lÞþ���; ð4:7Þ

where Sα4d reads8

Sα4d ¼ i
Z ðλl;λ̄l;mSÞ

c⊂Lα4d

�
t
4π

X
l

ln τl
dλ0l
λ0l

þ t̄
4π

X
l

ln τ̄l
dλ̄0l
λ̄0l

þ k
2π

X
S

nSdm0
S

�
: ð4:8Þ

The integral in Sα4d has been reduced to be of the same form
as the one treated in Refs. [2,3].
To compute Sα4d , we use the geometrical interpretation of

flat connections and the FN coordinates in terms of
constant-curvature 4-simplex geometries. This geometrical
interpretation has been studied extensively in Refs. [1,3].
The ten annuli l are in one-to-one correspondence to the
ten triangles of the 4-simplex. By the correspondence
between 4-simplex geometry and the flat connection on
S3nΓ5, the complex FN length λl is related to the area of the
triangle aðflÞ. The dihedral angle ΘðflÞ hinged by the
triangle fl corresponding to l is related to the complex FN
twist τl. Explicitly,

λl ¼ exp
h
−
iΛ
6
aðflÞ þ πisl

i
;

τl ¼ exp ½−sgnðV4ÞΘðflÞ�; ð4:9Þ

where sl ∈ f0; 1g parametrizes the lifts from PSLð2;CÞ to
SLð2;CÞ. sgnðV4Þ is the 4d orientation of the 4-simplex,
which takes different values at α4d and ᾱ4d.

Inserting Eq. (4.9) into the integral (4.8), the integrand
becomes proportional to

P
10
l¼1ΘðflÞdaðflÞ except for the

last term in Eq. (4.8). Because all data ΘðflÞ; aðflÞ are
associated to a geometrical 4-simplex, and satisfy the
Schläfli identity [40,41]

X10
l¼1

aðflÞdΘðflÞ ¼ ΛdjV4j; ð4:10Þ

where V4 is the volume of the constant curvature 4-simplex,P
10
l¼1ΘðflÞdaðflÞ is a total derivative:

X10
l¼1

ΘðflÞdaðflÞ¼ dSRegge;Λ;

SRegge;Λ ¼
X
l

aðflÞΘðflÞ−ΛjV4j: ð4:11Þ

SRegge;Λ is the Regge action on a single 4-simplex with a
cosmological constant term.
The last term in Eq. (4.8) contributes the same between

α4d and ᾱ4d [3]. To remove this overall term in the
asymptotics, we may consider a coherent state peaked at
the phase-space point m

∘
S; n

∘
S, which behaves as follows

when k → ∞:

ϕðkÞ
m
∘
;n
∘ ðmSÞ ∼ e−

k
4π

P
S
ðmS−m

∘
SÞ2− ik

2π

P
S
n
∘
SmS : ð4:12Þ

A candidate for ϕðkÞ can be chosen as a product of Jacobi
theta functions [see Eq. (4.19) of Ref. [42]] to respect the
periodicity of mS. As k → ∞, the quantity

X
mS

ZS3nΓ5
ðλl; λ̄l; mSÞϕðkÞ

m
∘
;n
∘ ðmSÞ ð4:13Þ

gives the critical equation of mS:

mS ¼ m
∘
S; nS ¼ n

∘
S: ð4:14Þ

At the critical point, the last term in Eq. (4.8) cancels the
second term in the exponential in ϕðkÞ.
As a result, Eq. (4.13) behaves asymptotically as

e
i
l2
P
SRegge;Λþ��� þ e

− i
l2
P
SRegge;Λþ���

; ð4:15Þ

where l2
P ¼ j 12πsΛ j.

The above asymptotics reproduce the result in
Refs. [1–3]. The previous asymptotic results were obtained
either by semiclassically picking up the branches α4d and
ᾱ4d, or by using a certain ansatz of the Wilson graph
operator. However, here we obtain the result by a system-
atic study of the simplicity constraint at the quantum level,

8We have choose the integration contour such that the flat
connections on the contour all correspond to the 4d geometries.
Therefore, the Schläfli identity can be used in the derivation (see
Ref. [3] for details). The contour is in the plane with μS ¼ 0.
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and project the partition function onto the space
of quantum solutions. The method used here is
especially useful when generalizing the amplitude to many
4-simplices.

V. SLð2;CÞ CHERN-SIMONS THEORY ON M3
WITH SURFACE DEFECT

The correspondence between the SLð2;CÞ flat connec-
tion on a 3-manifold and 4d geometry can be generalized to
an arbitrary 4d simplicial manifoldM4. The corresponding
3-manifold M3 corresponding to M4 can be constructed
by gluing copies of S3nΓ5 (see Fig. 2). The number of glued
S3nΓ5’s coincides with the number of 4-simplices in M4.
The gluing interface between a pair of S3nΓ5 ’s is always a
four-holed sphere S.
To construct the partition function ZM3

on M3, we
simply multiply the resulting partition functions
ZS3nΓ5

ðλl; λ̄l; mSÞ (reduced by the simplicity constraint),
then identify and sum over the data mS associated to the
gluing interfaces S. So we obtain a state-sum model,

ZM3
ðλl; λ̄lÞ ¼

X
mS∈Z=kZ

Y
S3nΓ5

ZS3nΓ5
ðλl; λ̄l; mSÞ: ð5:1Þ

In this formula, mS ∈ Z=kZ is the one before the rescaling
(4.2) in the semiclassical analysis. In general, the resulting
ZM3

may also depend on some leftover mS’s if M3 after
gluing still has geodesic boundary components S.
The simplicity constraint has been implemented at the

gluing interfaces S. The constraint projects the quantum

states on S of SLð2;CÞ Chern-Simons theory onto the
space of solutions (3.8), which is essentially the state space
of SU(2) Chern-Simons theory. Therefore, the simplicity
constraint introduces the defects into SLð2;CÞ Chern-
Simons theory. The defects are localized at the interfaces
S where a pair of S3nΓ5 ’s are glued. The defects are
supported on 2-surfaces S embedded in M3. The effect of
the defect is that SLð2;CÞ Chern-Simons theory reduces to
SU(2) at the 2-surface.
Schematically, the surface defect may be understood via

the insertions of certain “surface operators” in SLð2;CÞ
Chern-Simons theory, i.e., we write ZM3

ðλl; λ̄lÞ as a
functional integral,

ZM3
ðλl; λ̄lÞ ¼

Z
DADĀe

it
8π

R
M3

trðAdAþ2
3
A3Þþ it̄

8π

R
M3

trðĀdĀþ2
3
Ā3Þ

×
Y
S

OS½A; Ā�: ð5:2Þ

The insertions OS, located at the gluing interfaces S play
the role of the projections jψ solihψ solj. We will discuss the
operator OS½A; Ā� further in Sec. VI.
We consider the semiclassical behavior of the state sum

ZM3
as k, s → ∞. We again perform the rescaling for mS

by Eq. (4.2). Then we see that as k → ∞ the sum over mS
in Eq. (5.1) approximates an integral over S1. The semi-
classical asymptotics can again be studied using the sta-
tionary phase approximation, similar to the analysis of
ZS3nΓ5

. In addition to the critical equations (4.6), we have

FIG. 2. M3 is obtained by gluing a number of S3nΓ5 ’s, each of which corresponds to a 4-simplex in M4. The gluing of S3nΓ5 ’s is
deduced from the gluing of 4-simplices in M4. In drawing the 3-manifold S3nΓ5 and M3, we imagine viewing S3nΓ5 from 4d and
suppress one dimension. The 3-manifold S3nΓ5 has five geodesic boundary components as four-holed spheres, coming from removing
the neighborhood of five vertices of Γ5. It has ten cusp boundary components as ten annuli, coming from removing the neighborhood of
ten edges of Γ5. The red curves are the annuli connecting four-holed spheres. Two S3nΓ5’s can be glued through a pair of four-holed
spheres, via a certain identification of holes. Each four-holed sphere as the gluing interface corresponds to a tetrahedron shared by two
4-simplices inM4. Each hole of the four-holed sphere (or each tunnel traveling through the four-holed sphere) corresponds to a triangle
in the shared tetrahedron.
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one more critical equation at each gluing interface S,
because of the integration of mS,

nS þ n0S ¼ 0; ð5:3Þ
where nS comes from the flat connection on the S3nΓ5 on
the left of S, and n0S comes from the S3nΓ5 on the right of S.
Semiclassically, nS ¼ −n0S identifies the SU(2) flat

connections on the interface S from the left and right
S3nΓ5’s (mS has been identified). The minus sign reflects
the opposite orientations on S in the gluing. Thus the
SLð2;CÞ flat connections on the copies of S3nΓ5 are glued
to become a flat connection on the entire M3.
Let us first consider that M3 is obtained by gluing 2

copies of S3nΓ5 through a pair of four-holed spheres S;S0,
and the fundamental group π1ðM3Þ is given by two copies
of π1ðS3nΓ5Þ modulo the identification of generators on S
and S0 [π1ðSÞ≃ π1ðS0Þ with the isomorphism denoted by
I]. π1ðM3Þ is isomorphic to the fundamental group of a
1-skeleton π1ðskðM4ÞÞ from the 4d polyhedron M4

obtained by gluing a pair of 4-simplices. However, here
the 1-skeleton skðM4Þ includes the edges of the tetrahe-
dron shared by the pair of 4-simplices (Fig. 2).
Given two flat connections A, A0 as representations

π1ðS3nΓ5Þ → SLð2;CÞmodulo conjugation, they are glued
and give a flat connection A on M3 when they induce the
same representation of π1ðSÞ and π1ðS0Þ (i.e., A ¼ A0∘I).
We reduce the flat connection on S;S0 to be SU(2), and
consider that A, A0 corresponds to two constant-curvature
4-simplicesS,S0. When A, A0 are glued toA onM3, they
induce the same SU(2) representation (modulo conjuga-
tion) of π1ðSÞ and π1ðS0Þ. The SU(2) flat connection
reconstructs a unique geometrical tetrahedron of constant
curvature. The constant-curvature tetrahedron belongs to
bothS;S0, and implies thatS,S0 are of the same constant
curvature. Therefore, the flat connection A on M3 effec-
tively glues a pair of constant-curvature 4-simplicesS,S0,
and determines a four-dimensional simplicial geometry on
M4. The procedure can be continued to arbitrary
M3 ¼ ∪N

i¼1ðS3nΓ5Þ. For each simplicial 4-manifold M4,
the corresponding M3 can be constructed as in Fig. 2.
A class of flat connections A on M3 can be obtained by
gluing flat connections on S3nΓ5. Each A determines a
4d simplicial geometry ðM4; gÞ obtained by gluing
N 4-simplices with the same constant curvature. When
the simplicial complexM4 is sufficiently refined, arbitrary
smooth geometries can be approximated by the simplicial
geometries.
The gluing of flat connections gives an extra constraint

on A, A0 as well as the boundary data λl. It is possible that a
set of λl does not lead to any flat connection on M3

corresponding to 4d simplicial geometry. In that case, we
say the areas relating to λl are non-Regge-like, and
otherwise we say the areas are Regge-like.
In general,M3 can be viewed as the complement of (the

open neighborhood of) a certain graph Γ in an ambient

closed 3-manifoldX3. GenericallyX3 is not S3. It is shown
as an example in Fig. 3, where we glue three S3nΓ5’s. X3

has a noncontractible cycle which is generated by the
gluing procedure. In other words, the fundamental group
π1ðX3Þ is nontrivial. In the case of Fig. 3, the noncontrac-
tible cycle of X3 is associated with a closed tunnel which is
made by connecting a number of annuli in S3nΓ5. In
general, each closed tunnel always goes along a non-
contractible cycle in X3. The tunnel gives a torus boundary
T2 ofM3. Following the correspondence betweenM3 and
M4, it is not hard to see that each torus boundary T2

corresponds to an internal triangle shared by a number of
4-simplices.
The flat connection A gives the commutative meridian

(A-cycle) and longitude (B-cycle) holonomies on each T2.
The commutativity implies that the two holonomies can be
simultaneously diagonalized. The eigenvalue λT2 of the
meridian holonomy is equal to the annulus meridian
holonomy eigenvalue λl for all λl building T2. From the
correspondence between A and simplicial 4-geometry, it is
not hard to see that λT2 is related to the area aðfT2Þ of the
internal triangle fT2 ,

λ2T2 ¼ exp

�
−
iΛ
3
aðfT2Þ

�
: ð5:4Þ

FIG. 3. This picture shows the result when we glue three
S3nΓ5’s. The yellow outer shell indicates the ambient 3-manifold
X3. The four-holed spheres B1 and R3 are a shared boundary
between the blue S3nΓ5 and red S3nΓ5. Similarly, ðB5; G3Þ and
ðR4; G2Þ are the blue-green shared boundary and red-green shared
boundary, respectively. At the center of the picture, there is a
noncontractible cycle, which makes π1ðX3Þ nontrivial. There is a
closed tunnel with three different colors at the center which
corresponds to an internal triangle shared by three 4-simplices
in M4.
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The eigenvalue τT2 of the longitude holonomy can be
obtained from the product of FN twists τl for all λl building
T2. This has been computed in Ref. [4]. When we connect a
pair of annuli l1, l2 in X3, the FN twist of the connected
annuli l1∪l2 is a product of the FN twists of l1 and l2, and
the same relation also holds for y2l:

τl1∪l2 ¼ τl1τl2 ; y2l1∪l2
¼ y2l1y

2
l2
: ð5:5Þ

When a number of annuli are connected to form a T2, τT2 ¼
yl1∪���∪ln

is the eigenvalue of the longitude holonomy,
which is a product of yl1 ;…; yln . We also have
τ2T2 ¼ τl1∪���∪ln . Because of the relation between yl and
the 4-simplex hyper-dihedral angle in Eq. (4.9), τT2 is
related to the deficit angle εðfT2Þ hinged by the internal
triangle fT2 ,

τT2¼e−
1
2
sgnðV4ÞεðfT2 Þ−i

2
πηðfT2 Þ; whereεðfT2Þ¼

X
S;fT2⊂S

ΘSðfT2Þ;

ð5:6Þ

when sgnðV4Þ is a constant for all 4-simplices sharing fT2 . It
was shown in Ref. [4] that ηðfT2Þ is an index taking values
in f0; 1g. The fact that ηðfT2Þ ¼ 0 everywhere on M4

means that the 4d spacetime is globally time oriented.
The gluing of 4-simplices via gluing S3nΓ5 does not put

any constraint on the orientation sgnðV4Þ of each
4-simplex. There are 2N flat connections on M4 corre-
sponding to the same geometry on M4 but with different
local orientations. Among them there are a pair of flat
connections that give the globally oriented geometry
on M4.
We again label by α4d the flat connection on M3 which

corresponds to 4d simplicial geometry, which is globally
oriented [sgnðV4Þ is constant] and globally time oriented
[ηðfT2Þ vanishes constantly]. The contribution from each
α4d to ZM3

asymptotically behaves as ZM3
∼ exp Sα4d ,

when k; s → ∞, where

Sα4d ¼ i
Z ðλ;λ̄;mÞ

c⊂Lα4d

�
t
4π

� X
T2⊂∂M3

lnτT2

dλ02T2

λ02T2

þ
X

l⊂∂M3

lnτl
dλ0l
λ0l

�

þ t̄
4π

� X
T2⊂∂M3

ln τ̄T2

dλ̄02T2

λ̄02T2

þ
X

l⊂∂M3

ln τ̄l
dλ̄0l
λ̄0l

�

þ k
2π

X
S⊂∂M3

nSdm0
S

�
: ð5:7Þ

This type of integral has been computed in Ref. [4]. The
method of computation is similar to Eq. (4.8). Key steps are
again using the geometrical interpretations (5.6) and (5.4),
as well as the Schläfli identity for each 4-simplex. The
result gives the Einstein-Regge action on the simplicial
complexM4, up to some additional boundary terms which

correspond to the overall phase of the wave function (see
Sec. VI in Ref. [4] for details):

Sα4d ¼ −
isΛsgnðV4Þ

12π

�X
f

aðfÞεðfÞ − Λ
X
S

jV4ðSÞj
�

þ ikΛ
3

X
f

NðfÞaðfÞ þ ik
2π

Z ðλ;λ̄;mÞ

Lα4d

X
S⊂∂M3

nSdm0
S;

ð5:8Þ
where we have neglected the integration constant. To make
the formula short, εðfÞ here denotes the deficit angle for
internal f or the dihedral angle for boundary f. The
coefficient in front of the Regge action is the (inverse)
Planck scale in 4d,

l2
P ¼

���� 12πsΛ

����: ð5:9Þ

NðfÞ indicates that the leading order of Sα4d is a multivalued
function since it comes from integrating the logarithmic
function (see Ref. [42] for an interpretation). However, if
there is a quantization of area,

Λ
3

X
f

NðfÞaðfÞ ∈ 2πZ: ð5:10Þ

The asymptotics of expSα4d does not depend on the choice
of branches NðfÞ. This area-quantization condition has
been treated in Ref. [3]. It is fulfilled when the boundary
condition λl comes from the SLð2;CÞ Wilson lines in X3

labeled by unitary irreps ð2jl; 2γjlÞ, where jl ∈ N=2 and
γ ¼ s=k is a universal constant. The area relates the
representation label by aðfÞ ¼ γjl with the correspondence
between f and l.
The last term in Eq. (5.8) is only related to the boundary

of M3 or M4. If we fix the boundary data m
∘
S, n

∘
S which

parametrize the shapes of boundary tetrahedra, and con-
sider the branches α on which the boundary data can be
achieved, i.e., nðαÞS ðm∘ Þ ¼ n

∘
S, the last term in Eq. (5.8) on

these branches α takes the same value, and thus corre-
sponds to an overall phase in ZM3

[3,4]. This overall phase
can again be removed in the asymptotics by projecting the
partition function on coherent states inmS, as in Eqs. (4.12)
and (4.13).
The result (5.8) reproduces the earlier asymptotics result

in Ref. [4], which is obtained by semiclassically picking up
the branches α4d. By picking up α4d semiclassically, the
amplitude is only defined perturbatively via a semiclassical
expansion. However, here the result is achieved by a
systematic quantization of the simplicity constraint and
imposing the constraint quantum mechanically imposing
the constraint on the amplitude. The resulting amplitude on
the simplicial complex is a nonperturbative definition,
which has not been achieved in earlier works. The above
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analysis shows that the branch α4d stands out from the
semiclassical approximation of the nonperturbative ampli-
tude, which gives the correct semiclassical behavior.

VI. A FIELD-THEORETIC DESCRIPTION OF
THE SURFACE DEFECT

Recall that the insertion OS in Eq. (5.2) projects
Chern-Simons states on S onto the ground states ψ sol of
the “Hamiltonian” H ¼ μ2 þ ν2. It has been mentioned that
we can also introduce a squeezed version HðwÞ ¼
w−2μ2 þ w2ν2. The ground state ψw

sol of H
ðwÞ is a squeezed

coherent state such that ψw¼1
sol ¼ ψ sol. The squeezing param-

eter w introduces an ambiguity into the model at each
four-holed sphere S. [In the following, we equivalently
understand S as a sphere with four marked points, which are
the intersections with the Wilson lines; see Eq. (6.3).]
Here we would like to find a field-theoretic under-

standing of the surface defect OS, as well as the associated
ambiguity. The continuum counterparts of the conjugate
variables μ, ν are ϕi

1 ¼ ImðAi
1Þ and ϕi

2 ¼ ImðAi
2Þ (the

coordinates on S are chosen to be x1;2),

½ϕi
1ðxÞ;ϕj

2ðx0Þ� ¼
ik
4π

δijδð3Þðx; x0Þ: ð6:1Þ

The Hamiltonian H ¼ μ2 þ ν2 has the continuous counter-
part

R
Sðϕi

1ϕ
i
1 þ ϕi

2ϕ
i
2Þ. However, in order to make it

coordinate independent, we have to introduce a surface
metric hab (a, b ¼ 1, 2), and write

R
S d

2x
ffiffiffi
h

p
habϕi

aϕ
i
b. As a

result, the following operator plays the role of the projector
jψ solihψ solj:

OS½A;Ā;hab�¼exp

�
−
k
4π

Z
S
d2x

ffiffiffi
h

p
habϕi

aϕ
i
b

�
; a;b¼1;2:

ð6:2Þ
The coupling constant has to be the same as the Chern-
Simons level k. If we have chosen an independent coupling
constant and scale it to be large, OS would have been the
same as inserting delta functions δðϕi

1Þδðϕi
2Þ in the path

integral. However, at the quantum level ϕi
1, ϕ

i
2 cannot be

simultaneously constrained to zero by the uncertainty prin-
ciple, since they are canonically conjugate variables. It is
related to the zero-point energy of H. Letting the coupling
constant be the same as k gives the sharpest projection.
Here we find that the surface metric hab is an analog or

generalization of the above squeezing parameter w.
Inserting O into the Chern-Simons theory breaks the
topological invariance near the surface S, and makes the
path integral explicitly depend on the metric hab of each S.
This metric dependence is the ambiguity of imposing the
simplicity constraint in the field-theoretic description.
It is standard that the defect in Chern-Simons theory has

a certain metric dependence, by breaking the topological
invariance of Chern-Simons theory. A standard example is

the Wilson line defect, whose metric dependence is
reflected as the framing dependence.
The defect might not depend on all of the metric degrees of

freedom, similar to the situation of Wilson lines. At the
classical level, OS is both conformal and reparametrization
invariant on S. The metric dependence ofOS is essentially on
the conformal equivalence classes of hab. Two metrics from
different classes are not related by conformal transformation
and reparametrization. On a sphere with four marked points,
one can always use conformal transformation to move three
marked points to 0,1, and∞. The position of the last marked
point on S2, denoted by τ, labels the conformal equivalence
classes of the metric. So the metric dependence of OS is
essentially on a single complex parameter in classical theory.
It is interesting to understand whether this type of metric
dependence is preserved at the quantum level, or how this
property receives quantum corrections. The study of this
point is postponed to future research.
Explicitly, we write the spinfoam amplitude on M4 as a

topological quantum field theory (TQFT) on a 3-manifold
X3 with both surface and line defects,

ZM3
¼

Z
DADĀe−iCS½X3jA;Ā�

Y
S

OS½A; Ā; hμν�

×
Y
l

Wð2jl;2γjlÞ½A; Ā�; ð6:3Þ

where the SLð2;CÞ Chern-Simons action reads

CS½X3jA; Ā� ¼
t
8π

Z
X3

tr

�
A ∧ dAþ 2

3
A ∧ A ∧ A

�

þ t̄
8π

Z
X3

tr
�
Ā ∧ dĀþ 2

3
Ā ∧ Ā ∧ Ā

�
:

ð6:4Þ

Here, instead of defining the theory on M3, we write the
theory on the ambient space X3 and introduce a Wilson
loop operatorWðjl;γjlÞ½A; Ā� for each torus cusp. TheWilson
loops are traces of holonomies in the unitary representation
ð2jl; 2γjlÞ of SLð2;CÞ, where γ ¼ s=k is the Barbero-
Immirzi parameter. In the case where M4 has a boundary,
the Wilson line operators adjoint at vertices have to be
introduced in X3, corresponding to the annuli cusps adjoint
at four-holed spheres as the boundary of M3. For the
simplicity of the following discussion, we focus on the case
where M4 has no boundary, so that Wðjl;γjlÞ½A; Ā� are all
Wilson loops.
Indeed, inserting Wilson loops into a TQFT on X3 is

equivalent to a TQFTon the complementM3 ¼ X3nflg. It
is standard that the Wilson loop operator has a path integral
expression [43],
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Y
l

Wð2jl;2γjlÞ½A; Ā�

¼
Z

DYDȲe
P

l
i
2

R
l
tr½ðνlþκlÞY−1ðdþAÞYþðνl−κlÞȲ−1ðdþĀÞȲ�;

ð6:5Þ

where ν, κ are related to the representation labels
νl ¼ −γjlσ3, κl ¼ ijlσ3 (σ3 is the third Pauli matrix).
Y∶ ×l l → SLð2;CÞ is a group-valued field. In the tubular
neighborhood NðlÞ of each Wilson loop, the Chern-Simons
action can be written as

t
8π

Z
NðlÞ

trðA⊥ ∧ dA⊥Þ þ
t
4π

Z
NðlÞ

trðF⊥ ∧ AtÞ þ c:c:;

ð6:6Þ

where At, A⊥ are the components of A along and
perpendicular to l. F⊥ ¼ dA⊥ þ A⊥ ∧ A⊥ is the curvature.
The above Chern-Simons action on NðlÞ is coupled with
the path integral of the Wilson loop. The coupled action is
linear in At and Āt, while the other ingredients in ZM3

do
not depend on At or Āt. At and Āt can be integrated to get
two delta functions constraining F⊥ and F̄⊥ [43]:

t
4π

FT⊥ ¼ 1

2

X
l

Yðνl þ κlÞY−1δð2Þl ðxÞdx1 ∧ dx2:

t̄
4π

F̄T⊥ ¼ 1

2

X
l

Ȳ ðνl − κlÞȲ−1δð2Þl ðxÞdx1 ∧ dx2: ð6:7Þ

We have chosen local coordinates ðx1; x2Þ on D so that the
Wilson line goes through the origin. The constraints imply
that the eigenvalue of median holonomy on each T2 is

λl ¼ exp

�
2πi
k

jl

�
; ð6:8Þ

which is the boundary condition imposed on the theory on
the complementM3 ¼ X3nflg. λl is the same as λT2 in the
last section. Equivalently,ZM3

can be written as a TQFTon
M3 with surface defects and the above boundary condition,

ZM3
¼

Z
λl;λ̄l

DADĀe−iCS½M3jA;Ā�
Y
S

OS½A; Ā; hμν�: ð6:9Þ

The above is the field-theoretic version of the wave
function (5.1) defined in the previous sections.
As k, s → ∞ and keeping λl fixed, the leading con-

tribution of ZM3
comes from the solutions of critical

equations δS ¼ ReS ¼ 0 when the path integral is written
as

R
eS. ReS ¼ 0 implies ϕa ¼ 0 on each interface S, i.e.,

the connection reduces to SU(2) on S. At the solution of
ReS ¼ 0, the equation of motion δS ¼ 0 is simply the same
as the Chern-Simons theory without the surface defect, i.e.,
the connection is flat on M3,

F ¼ F̄ ¼ 0 on M3; ð6:10Þ

and satisfies the boundary condition. It was shown in the
last section that all of the flat connections satisfying the
critical equations correspond to the simplicial geometries
on M4, although some flat connections may not give a
uniform orientation sgnðV4Þ on M4.
At the semiclassical limit k, s → ∞, the leading con-

tribution of each critical point is given by evaluating the
action at the critical point. In Eq. (6.3), OS ¼ 1 at each
critical point. The Chern-Simons action and the Wilson-
loop action evaluated at a flat connection give [39,44]

−
t
2π

Z
c⊂Lα

ln τl
dλl
λl

−
t̄
2π

Z
c⊂Lα

ln τ̄l
dλ̄l
λ̄l

; ð6:11Þ

where the integration is along a contour c in the Lagrangian
submanifold L≃MflatðM3;SLð2;CÞÞ. α labels the
branch of L where the flat connection is located. λl and
τl are the eigenvalues of meridian and longitude holono-
mies on the T2 boundary. As a result, the contribution of a
critical point gives the same result as Eqs. (5.7) and (5.8) up
to an overall constant [removing the boundary terms in
Eqs. (5.7) and (5.8)]. The leading contribution of the flat
connection α4d gives the Regge action with a cosmological
constant on M4,

ZM4
∼ exp

i
l2
P

�X
f

aðfÞεðfÞ − Λ
X
S

jV4ðSÞj
�
: ð6:12Þ

VII. SURFACE DEGREE OF FREEDOM

The surface defect introduced in Eq. (6.2) explicitly
breaks the SLð2;CÞ gauge invariance into SU(2) on the
surface S. Then from the field theory point of view, the
gauge degree of freedom becomes the physically propa-
gating degree of freedom on S, similar to the case of the 2d
Wess-Zumino-Witten model as the boundary field theory of
Chern-Simons theory in the 3d bulk. In other words,
introducing an additional degree of freedom on S recovers
the SLð2;CÞ gauge invariance on S.
We consider the infinitesimal gauge transformation of

the SLð2;CÞ connection, which turns out to be sufficient
for the present purpose:

δξAi
μ ¼ Dμξ

i ¼ ∂μξ
i þ εijkAj

μξk;

δξĀi
μ ¼ D̄με̄

i ¼ ∂μξ̄
i þ εijkĀj

μξ̄k: ð7:1Þ

We consider that the background field ðA; ĀÞ is a critical
point of the path integral, which satisfies ϕi

a ¼ 0 on S. So
we have Ai

a is a SU(2) connection, and Da ¼ D̄a is a
SU(2)-covariant derivative on S with respect to the back-
ground field. Therefore the gauge transformation of ϕi

a is
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δξϕ
i
a ¼

1

2i
Daðξi − ξ̄iÞ≡Daφ

i; ð7:2Þ

where φi ¼ 1
2i ðξi − ξ̄iÞ is a scalar in the adjoint represen-

tation of SU(2).
The infinitesimal gauge transformation of OS in

Eq. (6.2) gives

δφ

�
−

k
4π

Z
S
d2x

ffiffiffi
h

p
habϕi

aϕ
i
b

�

¼ −
k
4π

Z
S
d2x

ffiffiffi
h

p
habDaφ

iDbφ
i þ oðφ3Þ ð7:3Þ

at the critical background field with ϕi
a ¼ 0 on S. If we add

it to the exponent of Eq. (6.2) and redefine OS by

OS½A;Ā;hab�≔
Z

Dφiexp

�
−

k
4π

Z
S
d2x

ffiffiffi
h

p
habϕi

aϕ
i
b

−
k
4π

δφ

�Z
S
d2x

ffiffiffi
h

p
habϕi

aϕ
i
b

��
; ð7:4Þ

then OS½A; Ā; hab� is invariant under the SLð2;CÞ gauge
transformation (any gauge transformation can be compen-
sated by a shift of the gauge parameter φ). Expanding the
term δφð

R
S d

2x
ffiffiffi
h

p
habϕi

aϕ
i
bÞ at the critical background field

gives Eq. (7.3) as the leading order for small φ. The
additional term in φ looks like a (gauged) linear sigma
model on S.
When we insert the above complete operator

OS½A; Ā; hab� into Eq. (6.3), the additional degree of
freedom φ on S does not modify our previous semiclassical
analysis. The Chern-Simons connections A that we are
interested in are nontrivial on all four-holed spheres S.
Turning on a nontrivial background field Aa ≠ 0 on S
makes φ massive, whose mass term is given by

εijkεilmhabAj
aAl

bφ
kφm ¼ habðδjlδkm − δjmδklÞAj

aAl
bφ

kφm

¼ ½habðδkmAl
aAl

b − Am
a Ak

bÞ�φkφm:

ð7:5Þ

One can diagonalize the mass matrix in the square bracket
by an orthogonal transformation N, i.e., N−1½trðAThAÞ1−
AThA�N ¼ trðAThAÞ1− diagðx1; x2; x3Þ, where x1;2;3 ≥ 0

and trðAThAÞ ¼ x1 þ x2 þ x3 > 0.9 So the eigenvalues
of the mass matrix are all positive. φ being massive
motivates us to integrate out φ, which at the semiclassical
level projects to the ground state φ ¼ 0.

The surface defect OS modifies the equations of motion
by adding a singular term

FðAÞ ¼ δðtÞdt ∧ Jðhab;ϕi
a;φiÞ; ð7:6Þ

where t is the coordinate transverse to S, and the location of
S corresponds to t ¼ 0. The critical equations ϕi

a ¼ 0 and
φ ¼ 0 on S imply Jðhab;ϕi

a;φiÞ ¼ 0 on the right-hand side
of the equation of motion. Thus the equation of motion
reduces to the flatness equation (6.10). So we conclude that
all of the critical flat connections on M3 studied in the last
section are still critical, even when we take into account the
additional degree of freedom φ on the surface defect.

VIII. CONCLUSION AND OUTLOOK

In this paper we studied the quantization and imple-
mentation of the LQG simplicity constraint in the spinfoam
model in the presence of a cosmological constant.
Spinfoam amplitudes with a cosmological constant were
formulated as complex Chern-Simons theories on a certain
class of 3-manifolds. The implementation of the quantum
simplicity constraint results in surface defects in the Chern-
Simons theory. These surface defects guarantee that the
amplitude has the correct semiclassical limit, which repro-
duces the Einstein-Regge action with a cosmological
constant on the 4d simplicial complex.
This work relates the LQG simplicity constraint to

surface defects in Chern-Simons theory. Although line
defects have been widely studied in Chern-Simons theory,
surface defects (or domain walls) have not been sufficiently
studied in the literature. The surface defect appearing here
has not been studied before. We have done some prelimi-
nary investigations of the surface defect by studying the
propagating physical degrees of freedom on the defect
surface. We have shown that at the linearized level, the
propagating field behaves as a 2d sigma model gauged by
the Chern-Simons connection.
The formalism in this paper makes it possible to

rigorously define the spinfoam amplitude with a cosmo-
logical constant. The present definition of the amplitude
either uses the infinite-dimensional path integral [1] or a
semiclassical expansion [2]. However, it is known that the
Chern-Simons partition function ZS3nΓ5

can be expressed as
a finite-dimensional integral [4]. Now the spinfoam ampli-
tude is constructed by projecting ZS3nΓ5

onto the solution of
the simplicity constraint using Eq. (4.1), which is also a
well-defined operation. So the entire spinfoam amplitude
can be written as a finite-dimensional integral, whose
finiteness is ready to be studied. Research on this aspect
is currently in progress.
Further studies of the proposed surface defect are also

postponed to future research. It would be interesting to
understand the dynamics of the sigma model propagating
on the defect, including its interaction with Chern-Simons
theory. The metric dependence of the surface defect might

9AThA is a positive-semidefinite matrix when A ≠ 0. xi may
vanish since Ai

a may not be a nondegenerate matrix. But if all
x1;2;3 ¼ 0, it would lead to ðANÞThðANÞ ¼ 0, which implies
AN ¼ 0 and A ¼ 0, since N is invertible.
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be understood in more detail in the future. The defect may
not depend on all of the metric degrees of freedom (like the
situation of Wilson lines). Classically, the surface defect
only depends on the complex structure of the four-holed
sphere, since the defect is classically both reparametrization
and conformally invariant. It would then be interesting to
see whether this type of metric dependence is preserved at
the quantum level, or how this property receives quantum
corrections.
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