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It is known that the Cardassian universe is successful in describing the accelerated expansion of the
universe, but its dynamic equations are hard to get from the action principle. In this paper, we establish
the connection between the Cardassian universe and fðT; T Þ gravity, where T is the torsion scalar and T is
the trace of the matter energy-momentum tensor. For dust matter, we find that the modified Friedmann
equations from fðT; T Þ gravity can correspond to those of Cardassian models, and thus, a possible origin
of Cardassian universe is given. We obtain the original Cardassian model, the modified polytropic
Cardassian model, and the exponential Cardassian model from the Lagrangians of fðT; T Þ theory.
Furthermore, by adding an additional term to the corresponding Lagrangians, we give three generalized
Cardassian models from fðT; T Þ theory. Using the observation data of type Ia supernovae, cosmic
microwave background radiation, and baryon acoustic oscillations, we get the fitting results of the
cosmological parameters and give constraints of model parameters for all of these models.
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I. INTRODUCTION

The Cardassian universe [1–4] has been known to
describe the accelerating expansion of the universe with
remarkable agreement with observations, whereas it lacked
a solid theoretical foundation up until now. In Cardassian
models, the Friedmann equation is modified by the intro-
duction of an additional nonlinear term of energy density
while without the introduction of a cosmological constant
or any dynamic dark energy component. In these models,
the universe can be flat and yet consist of only matter
and radiation and still be compatible with observations.
Matter can be sufficient to provide a flat geometry.
The possible origin for Cardassian models is from the
consideration of braneworld scenarios, where our observ-
able universe is a three dimensional membrane embedded
in extra dimensions [5]. The modified Friedmann equation
may result from the existence of extra dimensions, but it
is difficult to find a simple higher dimensional theory, i.e.,
a higher-dimensional momentum tensor that produces
the Cardassian cosmology [6]. Inspired by the study on
the correspondence between thermodynamic behavior and
gravitational equations, a couple of us have studied the
thermodynamic origin of the Cardassian universe [7].
However, it is still hard to get the dynamic equations of
this model from the action principle.
To explain the accelerated expansion of the universe,

besides adding Cardassian terms or unknown fields such as
quintessence [8,9] and phantom [10,11], there is another
kind of theory known as modified gravity, which uses an

alternative gravity theory instead of Einstein’s theory, such
as fðRÞ theory [12,13], MOND cosmology [14], Poincaré
gauge theory [15–17], and de Sitter gauge theory [18]. On
the other hand, Einstein constructed the “Teleparallel
Equivalence of General Relativity” (TEGR) which is
equivalent to the general relativity (GR) from the
Einstein-Hilbert action [19–23]. In TEGR, the curvature-
less Weitzenböck connection takes the place of the torsion-
less Levi-Civita one, and the vierbein is used as the
fundamental field instead of the metric. In the
Lagrangian of TEGR, the torsion scalar T, from contrac-
tions of the torsion tensor, takes the place of the curvature
scalar R. The simplest approach in TEGR to modify gravity
is fðTÞ theory [24,25], whose important advantage is that
the field equations are second order and not fourth order as
in fðRÞ theory. Recently, we established two concrete fðTÞ
models that do not change the successful aspects of the
Lambda cold dark matter scenario under the error band of
fitting values, as describing the evolution history of the
universe including the radiation-dominated era, the matter-
dominated era, and the present accelerating expansion [26].
We also considered the spherical collapse and virialization
in fðTÞ gravities [27]. Furthermore, extensions of fðT; T Þ
theory [28] where T is the trace of the matter energy-
momentum tensor T μν were constructed, whose cosmo-
logical implications are rich and varied.
Recently, it was shown [29] that modified gravity models

may lead to a Cardassian-like expansion. In this paper, we
try to find the relation between Cardassian models and
fðT; T Þ theory. Under the reconsidered scheme of fðT; T Þ
theory, we obtain the original Cardassian model, the
modified polytropic Cardassian model, and the exponential
Cardassian model through the action principle and
thus give a possible origin of the Cardassian universe.
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Furthermore, by adding an additional term to the
corresponding Lagrangians, we give three generalized
Cardassian models from fðT; T Þ theory. Using the obser-
vation data of type Ia supernovae (SNeIa), cosmic micro-
wave background radiation (CMB), and baryon acoustic
oscillations (BAO), we get the fitting results of the
cosmological parameters and give constraints of model
parameters for all of these models.
The paper is organized as follows: in Sec. II, with the

discussion of the self-consistent form of the Lagrangian of
barotropic perfect fluid, we give a new derivation of fðT; T Þ
theory. In Sec. III, the actions of the three Cardassianmodels
from fðT; T Þ theory are given explicitly and generalized
Cardassian models from fðT; T Þ theory are further
given. We also examine the observational constraints of
each model in this section. Finally, Sec. IV is devoted to the
conclusion and discussion. We use the signature convention
ðþ;−;−;−Þ in this paper.

II. f ðT;T Þ THEORY WITH BAROTROPIC
PERFECT FLUID

A. The Lagrangian of barotropic perfect fluid

There exist two types of Lagrangian Lm for the perfect
fluid in modified gravity theories, so we have to define
one or the other of these two. Harko has pointed out that
Lm ¼ ϵðρÞ is a more reasonable choice [30] in modified
gravity theories, where ϵðρÞ is the total energy density of
the fluid and ρ is the rest mass density.
In the work of Brown [31], it is shown that the on shell

perfect-fluid Lagrangian in GR can be Lm ¼ ρ or
Lm ¼ −p, where ρ is the rest mass density and p is the
pressure. Both Lagrangians lead to the same perfect fluid
stress-energy tensor concordant with the laws of thermo-
dynamics and hence, the same equations of motion. In past
years, some authors have adopted some specific form of
Lm ¼ −p from the work of Brown for their alternative
theories of gravity [29,32–37]. However, according to
Refs. [30,38], we have to reconsider how to take the form
of Lm for the perfect fluid in modified gravity theories,
including fðT; T Þ theory.
The usual form of the stress tensor of a barotropic perfect

fluid is

T μν ¼ −½ϵðρÞ þ pðρÞ�uμuν þ pðρÞgμν; ð1Þ

where ϵðρÞ and pðρÞ are the total energy density and the
pressure of the fluid, respectively, which both depend on
the rest mass density ρ. On the other hand, if the Lagrangian
of a barotropic perfect fluid Lm does not depend on the
derivatives of the metric, the usual definition of the stress-
energy tensor T μν

T μν ¼ −Lmgμν þ 2
∂Lm

∂gμν ; ð2Þ

whereLm can be assumed to depend on ρ only. Considering
the conservation of the matter current ∇σðρuσÞ ¼ 0, one
can prove that [30,39]

δρ ¼ 1

2
ρðgμν − uμuνÞδgμν; ð3Þ

where the four velocity of the fluid uα satisfies the
conditions uαuα ¼ 1. Substituting these results into
Eq. (2), one can obtain [30,40]

T μν ¼ −ρ
dLm

dρ
uμuν −

�
Lm − ρ

dLm

dρ

�
gμν: ð4Þ

From a comparison of Eq. (1) and Eq. (4), we have

Lm ¼ ϵðρÞ ¼ ρ

�
c2 þ

Z
pðρÞ=ρ2dρ

�
ð5Þ

and

dϵðρÞ
dρ

¼ ϵðρÞ þ pðρÞ
ρ

; ð6Þ

where c is the speed of light, and the unit c ¼ 1 is taken
hereinafter. In other words, Lm ¼ ϵðρÞ is a direct and
reasonable generalization from Lm ¼ ρ in GR to fðT; T Þ
theory, because Brown’s argument becomes invalid
in modified gravity theories. When compared with it,
Lm ¼ −p is only a direct employment from GR.
Furthermore, we can verify the conservation of the total

energy. Actually, one can easily obtain the divergence of
the energy density current

∇σðϵuσÞ ¼
�
1þ

Z
p
ρ2

dρþ p
ρ

�
∇σðρuσÞ − p∇σuσ: ð7Þ

Under the conservation of matter current ∇σðρuσÞ ¼ 0,
Eq. (7) is the conservation of the total energy. For example,
under the Friedmann-Walker-Robertson (FRW) metric it
becomes

_ϵþ 3Hðϵþ pÞ ¼ 0; ð8Þ

which is the usual form of energy conservation in
cosmology.

B. The field equations in f ðT;T Þ Theory
We can find a set of smooth basis vector fields êðμÞ in

different patches of the manifold M and make sure things
are well-behaved on the overlaps as usual, where Greek
indices run over the coordinates of spacetime. The set of
vectors eA, comprising an orthonormal basis, is known as a
tetrad or vierbein, where Latin indices run over the tangent
space Tp at each point p in M. A natural basis of Tp is
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given by êðAÞ ¼ ∂=∂xA. Any vector can be expressed as
linear combinations of the basis vector, so we have

êðAÞ ¼ eAμêðμÞ; ð9Þ

where the components eAμ form a 4 × 4 invertible matrix.
We will also refer to eAμ as the vierbein in accordance with
the usual practice of blurring the distinction between
objects and their components. The vectors êðμÞ in terms of
êðAÞ are

êðμÞ ¼ eAμêðAÞ; ð10Þ

where the inverse vierbeins eAμ satisfy

eAμeBμ ¼ δAB; eAμeAν ¼ δμν : ð11Þ

Therefore, the metric is obtained from eAμ

gμν ¼ ηABeAμeBν; ð12Þ

or equivalently

ηAB ¼ gμνeAμeBν; ð13Þ

and the root of the metric determinant is given by
jej ¼ ffiffiffiffiffiffi−gp ¼ detðeAμÞ.
In TEGR, one uses the standard Weitzenböck’s con-

nection defined as

Γα
μν ¼ eAα∂νeAμ ¼ −eAμ∂νeAα; ð14Þ

and the covariant derivative Dμ satisfies the equation

DμeAν ¼ ∂μeAν − Γα
νμeAα ¼ 0: ð15Þ

Then the components of the torsion and contorsion tensors
are given by

Tα
μν ¼ Γα

νμ − Γα
μν ¼ eAαð∂μeAν − ∂νeAμÞ; ð16Þ

Kμν
α ¼ −

1

2
ðTμν

α − Tνμ
α − Tα

μνÞ: ð17Þ

By introducing another tensor

Sαμν ¼
1

2
ðKμν

α þ δμαTβν
β − δναTβμ

βÞ; ð18Þ

we can define the torsion scalar as

T ≡ Tα
μνSαμν: ð19Þ

The action for fðT;T Þ gravity takes the following
form [28]

S ¼ 1

16πG

Z
efðT; T Þd4xþ

Z
eLmd4x; ð20Þ

where fðT; T Þ is an arbitrary function of the torsion scalar
T and the trace T of the matter stress-energy tensor. On the
variation with respect to the vierbein that leads to the field
equations, a question that should be noted is how to deal
with the variation of the trace of the energy-momentum
tensor δT . This question has been met in theories with T
included in the action, including fðR; T Þ theory [29,32]
and fðT; T Þ theory [28]. With the discussion in the last
subsection, we can reexamine this question now.
From Eq. (3) and Eq. (6), the variation of ϵ is

δϵ ¼ −
1

2
ðϵþ pÞðgαβ − uαuβÞδgαβ: ð21Þ

Using (1), (6), and (21), one can express the variation
of T as

δT ¼ δð3p − ϵÞ

¼
�
3
dp
dρ

ρ

ϵþ p
− 1

�
δϵ

¼
�
1 − 3

dp
dρ

ρ

ϵþ p

�
ðT α

β þ ϵδαβÞeβAδeAα : ð22Þ

The field equations then read as

feAα þ
4

e
fT∂βðeSσαβeAσÞ þ 4SσαβeAσ∂βfT

þ 4fTSρασTρ
σβeAβ þ fT

�
1 − 3

dp
dρ

ρ

ϵþ p

�
ϵeAα

¼
�
fT

�
3
dp
dρ

ρ

ϵþ p
− 1

�
þ 16πG

�
T α

βeAβ; ð23Þ

where fT and fT denote derivatives with respect to torsion
scalar T and the trace of Tμν, respectively.
In contrast to fðT; T Þ theory in previous papers [28,41–

43], this is the new derivation of fðT;T Þ theory with δT
reconsidered, since we have taken Lm ¼ ϵðρÞ but not
Lm ¼ −p. The crucial difference lies in the different choice
of the matter Lagrangian Lm. The derivation of the field
equations in the references mentioned above depends on
the assumption that Lm ¼ −p. And the same assumption
is used in works on fðR; T Þ gravity (see [32]). However,
from the discussion in Sec. IIA and also in Refs. [30,40],
Lm ¼ ϵðρÞ would be a more reasonable choice. This is
what leads to the difference between the field equations (23)
that we got and the ones in the literature.
Since fðTÞ theories are known to violate local Lorentz

invariance [44,45], particular choices of tetrad are impor-
tant to get viable models in fðTÞ cosmology, as has been
noticed in Ref. [46]. For a flat FRW metric in Cartesian
coordinates,
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ds2 ¼ dt2 − aðtÞ2ðdxiÞ2; ð24Þ
where aðtÞ is the scale factor, the diagonal tetrad eAμ ¼
diagð1; a; a; aÞ is a good choice to get viable models [46].
The torsion scalar is T ¼ −6H2, where H ¼ _a=a is the
Hubble parameter. Then the equations of motion (23) give
rise to the modified Friedmann equations

fTH2 ¼ −
4

3
πGϵ −

1

12
f ð25Þ

and

4 _HfT ¼
�
fT

�
3
∂p
∂ϵ −1

�
þ16πG

�
ðϵþpÞ−3H _fT; ð26Þ

which are consequently different from those in previous
references for fðT; T Þ theory. It is easy to confirm the
energy conservation (8) from Eq. (25) and Eq. (26).

III. CARDASSIAN UNIVERSE
FROM f ðT;T Þ THEORY

A. The action of Cardassian models from f ðT;T Þ theory
In Ref. [26], we studied the cosmology of gravity with

the Lagrangian in the forms of L ∝ −T þ α
ffiffiffiffiffiffiffi
−T

p þ
fðT;LmÞ and L ∝ −T þ βT−1 þ fðT;LmÞ. In the first
form, the square root term is easy to prove as null, so α
is actually a free parameter, and hence the correction of this
term will not affect the local gravity tests. Similar to
Ref. [26], here we choose

fðT; T Þ ¼ −T þ α
ffiffiffiffiffiffiffi
−T

p
þ gðT Þ: ð27Þ

For dust matter, the pressure is p ¼ 0. Then from (5) we
have ϵðρÞ ¼ ρ, and Eq. (25) reduces to

H2 ¼ 8πG
3

ρþ 1

6
gðT Þ; ð28Þ

where T ¼ −ρ for dust matter, and ρ ∝ a−3 from Eq. (8).
It is obvious that Eq. (28) is the very equation for Cardassian
models and it is easy to find the forms of fðT; T Þ
corresponding to specific Cardassian models. Here,
we examine three Cardassian models. The units 8πG ¼ 1
is used hereinafter. For the original Cardassian model
(OC) [1],

H2 ¼ ρ

3

�
1þ

�
ρ

ρc

�
n−1

�
; ð29Þ

where ρc is the critical energy density at which the two terms
of Eq. (29) are equal and we have

gðT Þ ¼ 2ρ

�
ρ

ρc

�
n−1

¼ 2

ρn−1c
ð−T Þn: ð30Þ

For the modified polytropic Cardassian model (MPC) [6]

H2 ¼ ρ

3

�
1þ

�
ρ

ρc

�
qðn−1Þ�1=q

; ð31Þ

we have

gðT Þ ¼ 2ρ

��
1þ

�
ρ

ρc

�
qðn−1Þ�1=q

− 1

�

¼ 2T
�
1 −

�
1þ

�
T
ρc

�
qðn−1Þ�1=q�

; ð32Þ

and for the exponential Cardassian model (EC) [47]

H2 ¼ ρ

3
exp

��
ρ

ρc

�
−n
�
; ð33Þ

we have

gðT Þ ¼ 2ρ

�
exp

��
ρ

ρc

�
−n
�
− 1

�

¼ 2T
�
1 − exp

��
−T
ρc

�
−n
��

: ð34Þ

Therefore, we claim that we find the possible origin of
Cardassian models from fðT; T Þ theory.

B. f ðT;T Þ-generalized Cardassian models

Alternatively, inspired by the Lagrangian with the term
βT−1 considered in Ref. [26], if we replace the α

ffiffiffiffiffiffiffi
−T

p
term

in Eq. (27) with

−
3λ2H4

0

T
; ð35Þ

we can obtain the fðT; T Þ-generalized Cardassian models.
For generalized OC (Model I), the modified FRW equation
reads

E2 −
λ2

4
E−2 ¼ Ω0ð1þ zÞ3 þ Ωxð1þ zÞ3n: ð36Þ

Here EðzÞ ¼ HðzÞ
H0

, H0 is the Hubble parameter, Ω0 ≡
ρ0
3H2

0

¼ Ωm0 þΩb0, where Ωm0 and Ωb0 correspond to dark

matter and baryons respectively, and

Ωx ¼ 1 −
λ2

4
−Ω0: ð37Þ

For the generalized MPC (Model II), the modified FRW
equation reads
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E2 −
λ2

4
E−2

¼ fΩq
0ð1þ zÞ3q þ ½ðΩx þ Ω0Þq − Ωq

0�ð1þ zÞ3qng1=q;
ð38Þ

and for the generalized EC (Model III), the modified FRW
equation reads

E2 −
λ2

4
E−2

¼ Ω0ð1þ zÞ3 exp
�
ð1þ zÞ−3n ln

�
Ωx þΩ0

Ω0

��
: ð39Þ

In all the cases, the modified FRW equations can be
expressed unifiably as

E2 ¼ 1

2

�
ϕðzÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2ðzÞ þ λ2

q �
; ð40Þ

where ϕðzÞ is the right hand side of Eqs. (36), (38), or (39).

C. Observational Constraints

In this subsection, using the observational data of SNeIa,
CMB, and BAO, we give constraints and the best fit
parameters of each model. For SNeIa data, we use the
joint light-curve analysis (JLA) sample, which contains 740
spectroscopically confirmed type Ia supernovae with high
quality light curves. The distance estimator in this analysis
assumes that supernovae with identical colors, shapes, and
galactic environments have, on average, the same intrinsic

luminosity for all redshifts. This hypothesis is quantified by
a linear model, yielding a standardized distance modulus
[48,49]

μobs ¼ mB − ðMB − A · sþ B · Cþ P · ΔMÞ; ð41Þ

where mB is the observed peak magnitude in rest-frame B
band, and MB; s; C are the absolute magnitude, stretch,
and color measures, which are specific to the light-curve
fitter employed, and PðM� > 1010 M⊙Þ is the probability
that the supernova occurred in a high-stellar-mass host
galaxy. The stretch, color, and host-mass coefficients
(A; B;ΔM, respectively) are nuisance parameters that
should be constrained along with other cosmological
parameters.
The CMB temperature power spectrum is sensitive to

the matter density, and it also precisely measures the
angular diameter distance θ� at the last-scattering surface.
We use the Planck measurement of the CMB temperature
fluctuations and the WMAP measurement of the large-
scale fluctuations of the CMB polarization. This CMB
data are often denoted by “PlanckþWP”. The geomet-
rical constraints inferred from this data set are the present
values of baryon densityΩb0h2, dark matterΩm0h2, and θ�
[26], where h is given by H0 ¼ 100h km s−1Mpc−1.
The BAO measurement provides a standard ruler to

probe the angular diameter distance versus the redshift
relation by performing a spherical average of their scale
measurements, see Ref. [50]. We use the measurement of
the BAO scale from Refs. [51–53].
In Table I, we present the best-fit parameters by using the

data of CMBþ BAOþ JLA, and also quote their 1σ

TABLE I. Best fitting parameters for all the models.

Cosmological Models

Parameters OC Model I MPC Model II EC Model III ΛCDM

Ωm0 0.255þ0.009
−0.010 0.255þ0.010

−0.010 0.256þ0.011
−0.009 0.256þ0.011

−0.011 0.254þ0.010
−0.010 0.251þ0.010

−0.009 0.257þ0.009
−0.009

n −0.022þ0.052
−0.054 −0.014þ0.062

−0.055 0.166þ0.088
−0.098 0.377þ0.102

−0.123 0.720þ0.039
−0.035 0.639þ0.073

−0.079 −

q − − 1.387þ0.257
−0.222 1.768þ0.449

−0.397 − − −

λ − 0.283þ0.242
−0.246 − 0.915þ0.278

−0.345 − 1.237þ0.151
−0.208 −

H0 68.46þ1.232
−1.197 68.46þ1.213

−1.239 68.55þ1.227
−1.318 68.55þ1.379

−1.285 68.02þ1.320
−1.241 68.77þ1.299

−1.389 67.98þ0.736
−0.737

Ωb0h2 0.0221� 0.0003 0.0221� 0.0003 0.0220� 0.0003 0.0220� 0.0003 0.0222� 0.0003 0.0221� 0.0003 0.0221� 0.0002

A 0.141þ0.007
−0.006 0.141þ0.007

−0.006 0.140þ0.006
−0.007 0.141þ0.007

−0.007 0.142þ0.006
−0.007 0.1420.007−0.006 0.141þ0.007

−0.006

B 3.103þ0.083
−0.079 3.103þ0.088

−0.085 3.101þ0.082
−0.087 3.101þ0.078

−0.085 3.112þ0.079
−0.079 3.112þ0.086

−0.083 3.100þ0.082
−0.086

MB −19.10þ0.031
−0.031 −19.10þ0.031

−0.032 −19.09þ0.032
−0.032 −19.09þ0.038

−0.035 −19.14þ0.031
−0.033 −19.11þ0.035

−0.036 −19.11þ0.026
−0.026

ΔM −0.070þ0.022
−0.025 −0.070þ0.022

−0.024 −0.070þ0.022
−0.021 −0.070þ0.023

−0.022 −0.069þ0.022
−0.022 −0.069þ0.023

−0.021 −0.070þ0.023
0.023

χ2min=d:o:f: 683.908=738 683.907=737 683.616=737 683.590=736 688.767=738 685.693=737 684.131=739
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bounds from the approximate Fisher information matrix.
We also examine the constraints on parameters from the 1σ
to the 3σ confidence levels for each model and Figs. 1–3 are
the illustrations of the constraints on Ωm0 and n for Models
I, II, and III, respectively.

IV. CONCLUSION AND DISCUSSION

Using the result of the Lagrangian of a barotropic fluid
given inRef. [40], we rederive fðT; T Þ gravity, obtaining the
modified Friedmann equations. We find the connection
between fðT; T Þ gravity and the Cardassian universe. For
dustmatter, themodified Friedmann equations from fðT; T Þ
theory can correspond to those of theCardassianmodels, and
thus, a possible origin of theCardassian universe is given.We
present theLagrangians of the originalCardassianmodel, the
modified polytropic Cardassian model, and the exponential
Cardassian model from fðT; T Þ theory. Furthermore, we get
generalized Cardassian models by adding an additional term
to the correspondingLagrangians offðT; T Þ theory that lead
to the three Cardassian models mentioned above. Using the
data of CMBþ BAOþ JLA, we get the fitting results of the
cosmological parameters and give constraints of model
parameters for all of these models.
As one of the candidates for explaining the acceleration

of the universe, Cardassian models have advantages in that
the universe can be flat and yet consist of only matter and
radiation, both of which satisfy the conservation laws.
However, there is not a satisfactory answer in the literature
for the origin of the Cardassian models. In our new
derivation of fðT; T Þ theory, the usual energy conservation
still holds, which is necessary for Cardassian models. The
conclusion that we have given a possible origin of the
Cardassian universe from fðT; T Þ gravity is thus consis-
tent. The connection we have found between the two
theories is interesting and will be good in seeking the
explanation of the accelerated expansion of the universe.

FIG. 2. Constraints on Ωm0 and n from the 1σ to the 3σ
confidence levels by using JLA SNe Iaþ CMBþ BAO for
model II, while other parameters take their best fitting values.

FIG. 3. Constraints on Ωm0 and n from the 1σ to the 3σ
confidence levels by using JLA SNe Iaþ CMBþ BAO for
model III, while other parameters take their best fitting values.

FIG. 1. Constraints on Ωm0 and n from the 1σ to the 3σ
confidence levels by using JLA SNe Iaþ CMBþ BAO for
model I, while other parameters take their best fitting values.
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