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Within the framework of general relativity, we investigate the tidal acceleration of astrophysical jets
relative to the central collapsed configuration (“Kerr source”). To simplify matters, we neglect
electromagnetic forces throughout; however, these must be included in a complete analysis. The rest
frame of the Kerr source is locally defined via the set of hypothetical static observers in the spacetime
exterior to the source. Relative to such a fiducial observer fixed on the rotation axis of the Kerr source, jet
particles are tidally accelerated to almost the speed of light if their outflow speed is above a certain
threshold, given roughly by one-half of the Newtonian escape velocity at the location of the reference
observer; otherwise, the particles reach a certain height, reverse direction and fall back toward the
gravitational source.
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I. INTRODUCTION

Recent observational data regarding extragalactic jets in
M 87 (NGC 4486) and other active galactic nuclei (AGNs)
have indicated that, relative to the central engine which is
believed to be a rotating supermassive black hole with an
accretion disk, jet acceleration occurs away from the black
hole to Lorentz gamma factors that are much greater than
unity [1–4]. The data are based on the electromagnetic
radiation emitted by highly energetic particles propagating
in the magnetic field that helps collimate the jets. These
charged particles are subject to electromagnetic as well as
gravitational forces. The dynamics of jets would naturally
involve both magnetohydrodynamics (MHD) and relativ-
istic gravity [5,6]. We concentrate here on the purely
gravitational effects of the central collapsed configuration.
In particular, we calculate the contribution of relativistic
tidal accelerations to the Lorentz factor of the particles in
the outflow away from the central source. The universality
of the gravitational interaction implies that our results are
independent of the particles’ electric charges.
Imagine a small spherical fluid body either falling

radially into, or going away from, a central massive object.
In either case the body tends to be elongated along the
radial direction due to gravitational tidal effects. Within the
context of Einstein’s theory of gravitation, such tidal effects
have been the subject of a number of previous investiga-
tions in connection with astrophysical jets—see [7–9] and
the references cited therein. In [7–9], the tidal motions of
free test particles were studied relative to a fiducial plasma
clump in the jet, which was itself considered free as all
MHD forces were neglected for the sake of simplicity. Such
considerations revealed that particles with relative speeds
below a terminal speed c=

ffiffiffi
2

p
≈ 0.7c accelerate toward this

speed, while particles with speeds above it decelerate
toward it [7–9]. The theoretical approach that was adopted
in those treatments was relevant to observational studies of
the speeds of jets in galactic microquasars [10,11]. In the
present work, however, the tidal motion is relative to a
fiducial observer that is at rest with respect to the central
source, as the observational studies indeed refer to the rest
frame of the gravitational source [1–4]. This circumstance
is, therefore, treated here in detail, as it had not been
previously investigated. To simplify our analysis, we
neglect MHD and plasma effects that must be included
in a complete treatment.
The particles in the jet are affected by the gravitational

field of the central engine, which could be characterized by
its mass, angular momentum, quadrupole and higher
moments. To simplify matters, in the present investigation
we consider only the mass M > 0 and angular momentum
J ¼ Mac > 0 of the central source. That is, we will
henceforth assume the central engine to be a Kerr source
characterized by two independent parameters M and J. To
interpret the observational data relative to the Kerr source
within the framework of general relativity (GR), one must
set up the ensemble of static observers in the exterior Kerr
spacetime. Though at rest, these reference observers are
accelerated in GR. This congruence defines locally within
GR the rest frame of the gravitational source. We are
particularly interested in static observers along the rotation
axis of the exterior Kerr spacetime, since it is generally
assumed that jets move along the rotation axis of the central
collapsed configuration. Moreover, in GR, observables
must be spacetime scalars. A natural invariant way to
describe the motion of free particles in the jet relative to a
nearby static reference observer involves the establishment
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of a Fermi normal coordinate system [12] in the neighbor-
hood of the static observer and the investigation of geodesic
motion in this invariantly defined Fermi coordinate system.
The striking feature of high-energy bipolar jets in AGNs

and microquasars is that matter is repulsed in opposite
directions away from the strong gravitational attraction of
the central collapsed configuration. The physical processes
that are responsible for such repulsion must involve in an
essential way plasma effects as well as effects stemming
from general relativity (GR). To bring out the role of
relativistic gravity in a deeper way, exact solutions of GR
have been investigated which contain cosmic jets, namely,
mathematical constructs that exhibit strong similarities with
astrophysical jets [13–17]. It is important to incorporate
such ideas into the theory of astrophysical jets [18–22]. The
present work is a further contribution in this general
direction.
The Kerr metric written in Boyer-Lindquist coordinates

ðt; r; θ;ϕÞ is given by [23]

−ds2 ¼ gαβdxαdxβ

¼ −dt2 þ Σ
Δ
dr2 þ Σdθ2 þ ðr2 þ a2Þsin2θdϕ2

þ 2Mr
Σ

ðdt − asin2θdϕÞ2; ð1Þ

where

Σ ¼ r2 þ a2cos2θ; Δ ¼ r2 − 2Mrþ a2: ð2Þ

If the specific angular momentum of the source
a ¼ J=ðMcÞ is such that a ≤ M, then the source is a
Kerr black hole. We use units such that G ¼ c ¼ 1, unless
specified otherwise. Greek indices run from 0 to 3, while
Latin indices run from 1 to 3. The signature of the
spacetime metric is þ2.

II. STATIC OBSERVERS AND ADAPTED FRAMES

Observational data for AGNs refer to the rest frame of
the “central engine.” We consider the family of static
observers in the spacetime exterior to the gravitational
source to represent this rest frame locally. More specifi-
cally, the purpose of this section is to study static observers
in the exterior Kerr spacetime with nonrotating spatial
frames along their world lines.

A. Static observers

Any test family of observers is characterized by a unit
timelike 4-velocity field uμ whose integral curves are the
world lines of the observers. The static observers in the
exterior Kerr spacetime follow the integral curves of
the (stationary) Killing vector field ∂t, namely,

uμ ¼ dxμ

dτ
; u ¼

�
Σ

Σ − 2Mr

�
1=2∂t: ð3Þ

Only positive square roots are considered throughout.
Moreover, τ is the proper time along the path,

τ ¼
�
Σ − 2Mr

Σ

�
1=2

t; ð4Þ

where we have assumed that τ ¼ 0 at t ¼ 0. The natural
orthonormal tetrad frame eμα̂ of these observers is given
by [24]

e0̂ ¼ u; e1̂ ¼
�
Δ
Σ

�
1=2∂r; e2̂ ¼

�
1

Σ

�
1=2∂θ;

e3̂ ¼
−2Mr sin θ

½ΔΣðΣ − 2MrÞ�1=2 ∂t þ
�
Σ − 2Mr

ΔΣ

�
1=2 1

sin θ
∂ϕ;

ð5Þ

where the tetrad axes are primarily along the Boyer-
Lindquist coordinate directions. The static observers form
a congruence of accelerated, nonexpanding and locally
rotating world lines. The lack of expansion of the con-
gruence is due to the alignment of its 4-velocity vector field
with the timelike Killing direction.
It is straightforward to check that the 4-acceleration of

the static observers is given by

Aμ ¼ Deμ0̂
dτ

¼ Γμ
αβe

α
0̂e

β
0̂; ð6Þ

where Γμ
αβ are the connection coefficients for the Kerr

spacetime in Boyer-Lindquist coordinates. Thus,

A¼M
ffiffiffiffi
Δ

p ðr2−a2cos2θÞ
Σ3=2ðΔ−a2sin2θÞ e1̂ −

2Mra2 sinθ cosθ

Σ3=2ðΔ−a2sin2θÞe2̂: ð7Þ

This acceleration, due to forces that are not gravitational in
origin, is necessary to keep the reference observer static and
prevent it from falling into the source.

B. Fermi-Walker frame

The next step involves the establishment of a Fermi-
Walker transported spatial frame along the world line of
each static observer. Let Sμ be a vector that is Fermi-Walker
transported along eμ0̂; then,

dSμ

dτ
þ Γμ

αβe
α
0̂S

β ¼ ðA · SÞeμ0̂ − ðe0̂ · SÞAμ: ð8Þ

Let us assume that S is orthogonal to the world line, i.e.
e0̂ · S ¼ 0. Moreover, it proves useful to express S in terms
of the natural spatial frame eμâ; hence,
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Sμ ¼ sâeμâ: ð9Þ

We now write Eq. (8) in terms of sâ and obtain, after some
algebra,

ds1̂

dt
¼ Maðr2 − a2cos2θÞ sin θ

Σ2ðΣ − 2MrÞ s3̂; ð10Þ

ds2̂

dt
¼ −

2Mar
ffiffiffiffi
Δ

p
cos θ

Σ2ðΣ − 2MrÞ s3̂; ð11Þ

ds3̂

dt
¼ Ma

Σ2ðΣ − 2MrÞ ½−ðr
2 − a2cos2θÞ sin θs1̂

þ 2r
ffiffiffiffi
Δ

p
cos θs2̂�: ð12Þ

It proves convenient to define an angle α and a precession
frequency β > 0 such that

cos α ¼ 2r
ffiffiffiffi
Δ

p
cos θ

½4r2Δcos2θ þ ðr2 − a2cos2θÞ2sin2θ�1=2 ;

sin α ¼ ðr2 − a2cos2θÞ sin θ
½4r2Δcos2θ þ ðr2 − a2cos2θÞ2sin2θ�1=2 ð13Þ

and

β ¼ Ma
Σ2

�
4r2Δcos2θ þ ðr2 − a2cos2θÞ2sin2θ

Σ − 2Mr

�
1=2

: ð14Þ

We note that α has the same range as the polar angle θ; that
is, α∶0 → π when θ∶0 → π. Equations (10)–(12) can now
be expressed as

dsî

dt
¼ ϵî ĵ k̂Ωĵsk̂; ð15Þ

where

Ωμ ¼ Ωâeμâ ¼ βðcos αeμ1̂ þ sin αeμ2̂Þ ð16Þ
is the precession vector. On the basis of these results, we
can straightforwardly construct a locally nonrotating spatial
frame λμâ along eμ0̂. For instance, let λ

μ
1̂ be the unit vector

along Ωμ; then, λμ2̂ and λμ3̂ are unit vectors in the plane
orthogonal to λμ1̂ and precess with frequency β about λμ1̂.
More explicitly, consider first the orthonormal spatial frame
Eμ

â,

E1̂ ¼ cos αe1̂ þ sin αe2̂;

E2̂ ¼ − sin αe1̂ þ cos αe2̂;

E3̂ ¼ e3̂: ð17Þ
Then the Fermi-Walker triad λμâ is obtained from Eμ

â by a
simple rotation about Eμ

1̂ with an angle of βt,

λ1̂ ¼ E1̂;

λ2̂ ¼ cosðβtÞE2̂ þ sinðβtÞE3̂;

λ3̂ ¼ − sinðβtÞE2̂ þ cosðβtÞE3̂: ð18Þ

This completes the construction of the nonrotating tetrad
frame λμα̂, where λμ0̂ ¼ eμ0̂ along the world line of a static
observer in the exterior Kerr spacetime.
Appendix A is devoted to the construction of a geodesic

(Fermi) coordinate system along the locally nonrotating
tetrad frame λμα̂ in the neighborhood of the corresponding
static observer. Henceforth, we consider the motion of free
test particles in this Fermi normal coordinate system.

III. GEODESIC MOTION IN FERMI
COORDINATES

Using the Fermi-Walker transported frame λμα̂ðτÞ along
the world line of the reference observer, a Fermi normal
coordinate system Xμ ¼ ðT;XÞ can be established in its
neighborhood—see Appendix A. This system makes it
possible to provide an invariant description of the motion of
the test particles relative to the fiducial observer that
occupies the origin of the spatial Fermi coordinates and
locally represents the rest frame of the gravitational source.
For simplicity we neglect plasma effects in this work;

therefore, a test particle follows a geodesic path that can be
expressed in Fermi coordinates as

d2Xμ

ds2
þ ~Γμ

αβ
dXα

ds
dXβ

ds
¼ 0: ð19Þ

The free test particle has 4-velocity Uμ,

Uμ ≔
dXμ

ds
¼ Γð1;VÞ; ð20Þ

where UμUμ ¼ −1 implies that the Lorentz factor Γ is
given by

Γ ¼ 1

ð−~g00 − 2~g0iVi − ~gijViVjÞ1=2 : ð21Þ

In the immediate neighborhood of the reference observer,
the space is Euclidean and the Fermi velocity V of the test
particle must satisfy the condition that jVj ≤ 1 at X ¼ 0.
Separating Eq. (19) into its temporal and spatial com-

ponents, it is straightforward to obtain the reduced geodesic
equation [7]:

d2Xi

dT2
þ ð ~Γi

αβ − ~Γ0
αβViÞ dX

α

dT
dXβ

dT
¼ 0: ð22Þ

A detailed discussion of motion in the Fermi coordinate
system is contained in Refs. [7–9]. For instance, as
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described in Ref. [7], Eq. (22) can also be obtained via the
isoenergetic reduction procedure from Eq. (19).
Inserting the expressions for the Christoffel symbols in

Fermi coordinates ~Γμ
αβ given in Appendix A, we find that

Eq. (22) can be written as

d2Xi

dT2
þ Ai þ ð ~R0i0l þ AiAlÞXl −

dAl

dT
XlVi

− 2 ~R0lijVjXl − 2½Aj þ ð ~R0j0l − AjAlÞXl�ViVj

−
2

3
ð ~Rijkl þ ~R0jklViÞXlVjVk þOðjXj2Þ ¼ 0: ð23Þ

Moreover, since the motion is timelike, we have

1

Γ2
¼ ð1þ AiXiÞ2 − V2 þ ~R0i0jXiXj þ 4

3
~R0jikViXjXk

þ 1

3
~RikjlViVjXkXl þOðjXj3Þ > 0; ð24Þ

where V2 ¼ δijViVj. It is useful to define Vi ≔ δijVj, so
that V2 ¼ ViVi.

IV. MOTION ALONG THE JET

Let us now specialize these general results to motion
along the jet direction. Imagine a reference observer at rest
along the rotation axis of a Kerr source and focus on the
motion of free test particles relative to the reference
observer along the positive jet direction. To this end, we
must limit Eqs. (23) and (24) to motion along one spatial
direction, so that the only nonzero components of X and V
are X1 and V1, respectively, since the Boyer-Lindquist
polar angle vanishes along the positive jet direction
(θ ¼ 0). Furthermore, as explained in detail in Appendix
B, it turns out that

A1 ¼
Mðr2 − a2Þ

ðr2 þ a2Þ3=2Δ1=2 ;

~R0101 ¼ −
2Mrðr2 − 3a2Þ
ðr2 þ a2Þ3 ; ð25Þ

where r is the fixed Boyer-Lindquist radial coordinate that
here represents the location of the reference observer on the
rotation axis of the central source. The acceleration and
curvature terms in Eq. (25) only depend upon the square of
the magnitude of the specific angular momentum of the
source and not on its directionality. Since A1 is independent
of time T, Eqs. (23) and (24) reduce to

d2X1

dT2
þ ðA1 þ ~R0101X1Þð1 − 2V2

1Þ þ A2
1X

1ð1þ 2V2
1Þ

þOðjXj2Þ ¼ 0 ð26Þ

and

Γ−2 ¼ ð1þ A1X1Þ2 − V2
1 þ ~R0101ðX1Þ2 þOðjXj3Þ > 0:

ð27Þ

Let us briefly digress here and mention that in the
absence of acceleration A1, Eq. (26) reduces to the
generalized Jacobi equation that has been the subject of
a number of previous investigations—see [7–9] and the
references cited therein. Those studies revealed the exist-
ence of an attractor in the system, namely, motion at the
terminal speed c=

ffiffiffi
2

p
≈ 0.7c [7–9]. However, it turns out

that the nature of the motion changes completely in the
presence of A1. The main purpose of the present work is to
study jet motion when the fiducial observer is accelerated.
An important feature of Eqs. (26) and (27) must be

mentioned here: They remain invariant under the trans-
formation

X1 ↦ −X1; A1 ↦ −A1; ~R0101 ↦ ~R0101: ð28Þ

As discussed in Appendix B, a consequence of Eq. (28) is
that the tidal dynamics of the jet outflow in the northern
hemisphere of the source is precisely the same as for the jet
moving in the southern hemisphere. Henceforth, we will
concentrate on the jet in the northern hemisphere of the
gravitational source.
To proceed, we define constant positive dimensionless

parameters Φ and η such that

Φ ¼ GM
c2r

; η ¼ J
Mcr

¼ a
r
; ð29Þ

where J ¼ Mca is the angular momentum of the gravita-
tional source. Next, we define dimensionless quantities p
and q, so that

A1 ≔
GM
c2r2

p; ~R0101 ≔ −
GM
c2r3

q: ð30Þ

It follows from Eq. (25) that

p ¼ 1 − η2

ð1þ η2Þ3=2ð1 − 2Φþ η2Þ1=2 ;

q ¼ 2
1 − 3η2

ð1þ η2Þ3 : ð31Þ

To express Eqs. (23) and (24) in terms of dimensionless
quantities, let

X1 ≔ rz; T ≔
rffiffiffiffi
Φ

p ζ: ð32Þ

Then,
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V1 ¼
dX1

dT
¼

ffiffiffiffi
Φ

p dz
dζ

; ð33Þ

and we find

d2z
dζ2

þ ðp − qzÞ
�
1 − 2Φ

�
dz
dζ

�
2
�

þΦp2z

�
1þ 2Φ

�
dz
dζ

�
2
�
þOðz2Þ ¼ 0; ð34Þ

Γ−2 ¼ ð1þΦpzÞ2 −Φ
�
dz
dζ

�
2

−Φqz2 þOðz3Þ > 0:

ð35Þ

In the neighborhood of the reference observer, the radius
of curvature of spacetime is

R ∼
rffiffiffiffi
Φ

p ; ð36Þ

therefore, we expect that Eq. (34) describes the motion of
free test particles properly only for

jzj < 1ffiffiffiffi
Φ

p : ð37Þ

Moreover, it is very important to recognize that only the
tidal effects of the central source are represented in the
metric of the Fermi coordinate system. The source of
the gravitational field itself does not appear in this analysis,
since our treatment is restricted to the exterior of the source.
We now turn to the analysis of jet motion in accordance

with Eq. (34).

V. PHASE PLANE ANALYSIS

It is revealing to consider the ordinary differential
Eq. (34) to OðzÞ in the phase plane, where it is viewed
as the first-order system [25],

dz
dζ

¼ v;

dv
dζ

¼ ð−pþ qzÞð1 − 2Φv2Þ −Φp2zð1þ 2Φv2Þ: ð38Þ

This system has a rest point at z ¼ z0, where

z0 ¼
p

q −Φp2
: ð39Þ

That is, system (38) has a simple solution given by z ¼ z0
and v ¼ 0. In most astrophysical contexts, we expect that

Φ ≪ 1; η ≪ 1; ð40Þ

so that p, q=2 and 2z0 are all nearly equal to unity. This
case is considered in the remainder of this section.
We are interested in trajectories of free test particles in

the jet outflow that reach the reference observer at z ¼ 0
and have at this point an initial speed v0,

v0 ≔ vðz ¼ 0Þ; ð41Þ

such that

0 < v0 <
1ffiffiffiffi
Φ

p ; ð42Þ

since the (Fermi) speed of the particle relative to the
reference observer at z ¼ 0, V0 ¼

ffiffiffiffi
Φ

p
v0, must be less

than the speed of light. In particular, we would like to know
if such a test particle is tidally accelerated. If the test
particle is accelerated to the speed of light, then in that limit
it approaches Γ ¼ ∞. If follows from Eq. (35) that to
Oðz2Þ, the Γ ¼ ∞ locus is an ellipse given by

ð1þΦpzÞ2 −Φv2 −Φqz2 ¼ 0: ð43Þ

This equation can be written as

v2

A2
þ ðz − z0Þ2

B2
¼ 1; ð44Þ

where the semimajor axis A and the semiminor axis B of
the ellipse are given by

A¼
�

q
ðq−Φp2ÞΦ

�
1=2

; B¼
�

q
ðq−Φp2Þ2Φ

�
1=2

: ð45Þ

A typical example is shown in Fig. 1. All features of the
phase portrait can be determined by elementary means
because system (38) has a first integral, which is obtained
via a simple observation: the ordinary differential equation
(ODE),

1

2

d
dz

v2 ¼ v
dv
dz

¼ ð−pþ qzÞð1 − 2Φv2Þ
−Φp2zð1þ 2Φv2Þ; ð46Þ

is linear in v2; see Appendix C. For solutions starting with
z ¼ 0 and v0 > 0, there is a critical value of v0, v0 ¼ vta,
below which they reach a maximum z < z0 and, thereafter,
the direction of v is reversed and they fall back toward the
Kerr source. Solutions of this model starting above this
critical value vta and below the value of v0 where the model
is physically relevant (v0 ¼ 1=

ffiffiffiffi
Φ

p
) evolve in forward time

to a point where Γ ¼ ∞ in this approximation; that is, these
solutions reach the ellipse (43).
In Fig. 1, the hyperbolic saddle resides at the rest point

with coordinates ðz0; 0Þ. The solution starting at the critical
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point with coordinates ð0; vtaÞ lies on the stable manifold of
the rest point. The critical velocity vta is given by

v2ta ¼ 2

Z
z0

0

½p − ðq −Φp2Þz�e−4Φpzþ2ΦðqþΦp2Þz2dz; ð47Þ

which can be obtained from Eq. (C9) of Appendix C by
setting vðz0Þ ¼ 0 and defining the corresponding v0 to be
the critical velocity for tidal acceleration vta. It is possible
to develop a series expression for vta, namely,

vta ¼
1ffiffiffi
2

p ð1þΦÞ þOðΦ3=2Þ þOðη2Þ: ð48Þ

We recall from Eq. (33) that the actual (Fermi) velocity is
given by

V ¼
ffiffiffiffi
Φ

p
v; ð49Þ

therefore, the actual critical velocity for tidal acceleration is

Vta ¼
ffiffiffiffi
Φ
2

r
ð1þΦÞ þ � � � : ð50Þ

Thus, to lowest order in the small quantities Φ ≪ 1 and
η ≪ 1, the critical speed for tidal acceleration is one-half of
the Newtonian escape velocity

ffiffiffiffiffiffiffi
2Φ

p
c at the location of the

reference observer.

A. vta < v0 <
1ffiffiffi
Φ

p

If the speed of the free test particle that reaches the
location of the reference observer is above the critical speed
vta, then the particle is tidally accelerated to almost the
speed of light; see Fig. 2.
It is important to note that the axes of the Γ ¼ ∞ ellipse

lie at the boundary of the cylindrical region where Fermi
coordinates are admissible. That is, it follows from
Eqs. (36) and (45) that

rA ∼ rB ∼
rffiffiffiffi
Φ

p ∼R; ð51Þ

so that as the particle is accelerated to Γ ≫ 1, the higher-
order tidal terms that have been thus far neglected (as well
as plasma effects) enter the analysis and mitigate the Γ ¼
∞ singularity, which the test particle never in fact reaches.

B. 0 < v0 < vta
If the speed of the free test particle in the jet outflow is

less than the critical speed for tidal acceleration, the particle

FIG. 2. The behavior of the Lorentz factor Γ is shown versus z
by using the numerical integration of system (38) for Φ ¼ 1=10
and η ¼ 1=20. The initial conditions are z ¼ 0 and v0 ¼ 1;

ffiffiffi
5

p
; 3.

FIG. 1. The phase portrait of ODE (38) is depicted for the case
Φ ¼ 1=10 and η ¼ 1=20. The vertical coordinate axis corre-
sponds to v ≔ dz=dζ. Also shown are the ellipse (43) corre-
sponding to Γ ¼ ∞, the position of the hyperbolic saddle rest
point (z ¼ z0), the critical value of v0 along the vertical axis
(v0 ¼ vta) and the line v ¼ 1=

ffiffiffiffi
Φ

p
. The initial outflow velocity v0

at z ¼ 0 is such that 0 < v0 < 1=
ffiffiffiffi
Φ

p
. The phase trajectory

through the critical point is shown with a thick curve. It is part of
the stable manifold of the saddle point. For v0 > 0, all solutions
starting below the critical value reach a maximum z at a point
where v ¼ 0. All solutions starting above the critical value and
below the horizontal line v ¼ 1=

ffiffiffiffi
Φ

p
eventually meet the ellipse

corresponding to Γ ¼ ∞. The critical value for tidal acceleration
in the outflow, vta ≈ 0.79, corresponds in this case to a Fermi
speed of Vta ≈ 0.25c.
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moves past the reference observer and reaches a maximum
height of z < z0. It then falls back toward the gravitational
source. As it falls, it experiences tidal acceleration away
from the reference observer and toward the source.
According to Fig. 1, the particle would eventually reach
the Γ ¼ ∞ ellipse; however, this conclusion is in any case
illusory, especially since the tidal approach loses its
significance when the particle gets very close to the source.

VI. SPECIAL CASES

The mathematical model under consideration in this
paper is applicable for a wider range of parameter values
than those discussed in Section V. For the sake of
completeness, it is interesting to investigate certain special
cases as well. For instance, if the gravitational source is an
extreme Kerr black hole (M ¼ a), then η ¼ Φ and the
fiducial static observer can in principle occupy positions
along the rotation axis all the way down to just outside
r ¼ M. Therefore, we must have Φ ¼ η < 1 and

p ¼ 1þΦ
ð1þΦ2Þ3=2 ; q ¼ 2

1 − 3Φ2

ð1þΦ2Þ3 : ð52Þ

In this case, z0 increases from 1=2 atΦ ¼ 0 and approaches
∞ as Φ → Φc ≈ 0.43. For Φc < Φ < 1, z0 is negative.
Another possibility involves a rapidly rotating Kerr

source (a ≫ M) with, say, Φ ≪ 1, but η ∼ 1. We note that
q ¼ 0 for η ¼ 1=

ffiffiffi
3

p
and q < 0 for η > 1=

ffiffiffi
3

p
.

When we take such special cases into account, the phase
portrait of system (38) does not remain qualitatively the
same as the parameters Φ and η vary beyond Φ ≪ 1 and
η ≪ 1. Indeed its signature feature, the nature of the rest
point, goes through a bifurcation as the value of q −Φp2

passes through zero. The corresponding bifurcation dia-
gram is presented in Fig. 3. This issue is discussed in detail
in Appendix C; indeed, in this transition a certain effective
potential energy function defined in Appendix C changes
from a potential barrier to a potential well. In the region
marked “Saddle” in Fig. 3, the phase portrait of the barrier
is qualitatively the same as that in Fig. 1. In the region
marked “Center,” the phase portrait of the well is qualita-
tively the same as in Fig. 4.
If the rest point is a center, it resides on the negative z

axis or at the origin. The conic section (43) corresponding

FIG. 3. The bifurcation diagram for the phase portrait of system
(38) with respect to the parameters Φ and η is shown. In this
ðη;ΦÞ plane, the thick curve, which corresponds to the locus of
the event horizon 1 − 2Φþ η2 ¼ 0, is the upper boundary of the
relevant parameter region bounded also by the coordinate axes
and the line η ¼ 1. The line Φ ¼ η is depicted as well as the
bifurcation curve corresponding to q −Φp2 ¼ 0. Below the
lower branch of the latter curve, the phase portrait has a
saddle-type rest point; above the curve it has a center. The upper
branch is also depicted, but lies outside the domain of physical
interest.

FIG. 4. The phase portrait for system (38) where q −Φp2 < 0
is depicted for the rapidly rotating case of Φ ¼ 1=10 and
η ¼ 8=10. The upper branch of the hyperbola corresponding
to Γ ¼ ∞ is also shown. Also, the rest point, the critical point on
the vertical axis, and the critical curve are depicted. The line
v ¼ 1=

ffiffiffiffi
Φ

p
shows the limiting value of v0, while the line z ¼

1=
ffiffiffiffi
Φ

p
indicates the outer boundary of the admissibility of Fermi

coordinates. The critical value for outflow tidal acceleration,
vta ≈ 2.245, corresponds in this case to a (Fermi) speed of
Vta ≈ 0.71c. We note that in this case the outflow tidal accel-
eration is in fact insignificant in comparison to the case presented
in Fig. 1.
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to an infinite Lorentz gamma factor is a hyperbola in this
case. Again the basic scenario for solutions starting at z ¼ 0
and positive v0 is the same: For small v0 below some
critical value, the solutions—which are on periodic orbits
of the first-order system (38)—reach a maximum value of z
at a point where v ¼ 0 and the motion continues with the
sign of v reversed. The evolving Lorentz gamma factor for
solutions starting with v0 above the critical value reaches
infinity in some finite time corresponding to the moment
the phase plane trajectory reaches the upper branch of the
hyperbola. The critical value on the vertical axis is given by
formula (47) with z0 replaced by∞. The latter result can be
proved using the first integral derived in Appendix C—in
fact, the situation is illustrated in Fig. 6. The structure of the
phase portrait in this case can be understood based on the
results presented in Appendix C. In particular, the annulus
of periodic solutions surrounding the center has infinite
extent in the positive direction and finite extent in the
negative direction. Because the annulus has infinite extent
in the positive direction, the critical value vta is indeed
given in this case by Eq. (47) with z0 replaced by ∞.
Let us return briefly to the two physically important

cases involving the extreme Kerr black hole (Φ ¼ η < 1)
and the rapidly rotating Kerr source (Φ ≪ 1, but η ∼ 1). In
the former case, the nature of the phase portrait is
determined by position on the line Φ ¼ η according to
the bifurcation diagram in Fig. 3. For small η, the saddle
case is predicted; for η above the bifurcation curve (at
≈0.43) the center case occurs. In the latter case, the rest
point is a center that resides near the origin as in Fig. 4 and
the critical speed for tidal acceleration is approxi-
mately vta ¼ 2.245.
Suppose we fix the value of Φ such that Φ ≪ 1 and let η

vary from 0 to 1. The question is what happens to the value
of vta? Numerical studies show that well within the saddle
and center regimes in Fig. 3, vta is nearly constant, but
experiences a significant jump in going from the saddle
regime to the center regime. For instance, for Φ ¼ 0.1, vta
jumps from roughly around 0.8 to roughly around 2 when
q −Φp2 goes from positive to negative. This seems to
agree with observational data [11] that there is in effect no
significant correlation between jet activity and the rotation
of the black hole, since for η from 0 toΦ, we are well within
the saddle regime and vta is essentially constant.

VII. DISCUSSION

Imagine a Kerr source with massM, angular momentum
J ¼ Mac and bipolar outflows along its rotation axis. We
are interested in the tidal acceleration of jet particles relative
to the central Kerr source and, for the sake of simplicity, we
concentrate on particles moving out along the positive
direction of the rotation axis. We pick a position r ≫
GM=c2 on the rotation axis away from the Kerr source,
where r is the radial Boyer-Lindquist coordinate. This is the
location of a hypothetical fiducial observer that is at rest in

the exterior Kerr spacetime and provides us with a local
representation of the rest frame of the source. We would
like to know if the outflow particles that reach this point are
tidally accelerated as they move forward. All electromag-
netic forces are neglected in our analysis for the sake of
simplicity. Regarding the rotation of the Kerr source, we
consider two cases: (i) a moderately rotating source with
0 ≤ a ≪ r, which includes the extreme Kerr black hole and
beyond and (ii) a very rapidly rotating Kerr source with
specific angular momentum a ≫ GM=c2 including, say,
a ∼ r. Let V0 be the (Fermi) velocity of a particle that
reaches the point under consideration. In the first case
involving a moderately rotating Kerr source, we find that if
V0 is above a certain threshold, roughly corresponding to
one-half of the Newtonian escape velocity VN

VN ≔
�
2GM
r

�
1=2

; ð53Þ

then the particle can be tidally accelerated to almost the
speed of light. If V0 is below this threshold, then the particle
reaches a maximum height and falls back toward the
gravitational source. For r ¼ 10GM=c2, for instance, the
threshold for tidal acceleration is Vta ≈ c=4. If the inter-
rogation point is instead at r ¼ 200GM=c2, the threshold
for tidal acceleration reduces to Vta ≈ c=20. The threshold
in case (i), i.e. 0 ≤ a ≪ r, is roughly independent of the
rotation of the source. On the other hand, the situation
changes qualitatively for a very rapidly rotating Kerr
source. There is a threshold in this case as well; however,
for V0 above this threshold, the tidal acceleration appears to
be rather insignificant. For r ¼ 10GM=c2, the threshold in
case (ii) is Vta ≈ 0.7c.
Finally, a comment is in order here regarding the fact that

the Lorentz gamma factor can possibly reach infinity in our
limited approximation scheme. This singularity is clearly
unphysical and will disappear in a more complete theory
that includes all higher-order tidal effects. Such a treatment
is beyond the scope of the present work, but exact Fermi
coordinate systems have been constructed in the past to
answer similar questions regarding the generalized Jacobi
equation [9]. The trend of tidal acceleration toward Γ ≫ 1,
illustrated in the present paper, is encouraging, since it is
consistent with the observational data regarding jets in
AGNs. However, a proper comparison of theory with
observation must incorporate this type of approach within
a complete model for jets that includes electromagnetic
effects as well.
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APPENDIX A: FERMI COORDINATES

Consider the world line of an arbitrary reference observer
that is static in the exterior Kerr spacetime. The observer
has proper time τ and carries a nonrotating tetrad frame
λμα̂ðτÞ along its path. At each event x̄μðτÞ along this world
line, we imagine all spacelike geodesic curves that emanate
orthogonally from this event and generate a local hyper-
surface. Let xμ be an event on this hypersurface sufficiently
close to the reference world line such that a unique
spacelike geodesic of proper length σ connects it to
x̄μðτÞ. We assign Fermi coordinates Xμ ¼ ðT; XiÞ to event
xμ, where

T ≔ τ; Xi ≔ σξμðτÞλμ îðτÞ: ðA1Þ

Here, ξμðτÞ, ξμðτÞλμ0̂ðτÞ ¼ 0, is a unit spacelike vector that
is tangent to the unique geodesic connecting x̄μðτÞ to xμ.
That is, ξμðτÞλμ îðτÞ, for i ¼ 1, 2, 3, are the corresponding
direction cosines at proper time τ along the reference world
line. The reference observer is permanently fixed at the
spatial origin of the Fermi coordinate system. To simplify
our notation, we have eliminated hats from the Fermi
coordinate indices in this paper.
The Fermi coordinate system is admissible in a cylin-

drical domain of radius jXj ∼R in the spacetime around
the reference world line. HereR is a certain minimal radius
of curvature of spacetime along x̄μðτÞ.
The spacetime metric in Fermi coordinates is given by

−ds2 ¼ ~gμνdXμdXν, where [26]

~g00 ¼ −1 − 2AiXi − ðAiAj þ ~R0i0jÞXiXj þOðjXj3Þ;
ðA2Þ

~g0i ¼ −
2

3
~R0jikXjXk þOðjXj3Þ; ðA3Þ

~gij ¼ δij −
1

3
~RikjlXkXl þOðjXj3Þ: ðA4Þ

Here,

AiðTÞ ≔ Aμλ
μ
î ðA5Þ

is the local acceleration of the reference observer and

~RαβγδðTÞ ≔ Rμνρσλ
μ
α̂λ

ν
β̂λ

ρ
γ̂λ

σ
δ̂ ðA6Þ

is the projection of the Riemann curvature tensor on the
nonrotating tetrad frame of the reference observer.
It is now straightforward to compute the Christoffel

symbols in Fermi coordinates using Eqs. (A2)–(A4); in
fact, the nonzero components of the connection can be
obtained from [26]

~Γ0
00 ¼

dAi

dT
Xi þOðjXj2Þ;

~Γ0
0i ¼ Ai þ ð ~R0i0j − AiAjÞXj þOðjXj2Þ;

~Γ0
ij ¼

2

3
~R0ðijÞkXk þOðjXj2Þ;

~Γi
00 ¼ Ai þ ð ~R0i0j þ AiAjÞXj þOðjXj2Þ;

~Γi
0j ¼ − ~R0kijXk þOðjXj2Þ;

~Γi
jk ¼ −

2

3
~RiðjkÞlXl þOðjXj2Þ: ðA7Þ

APPENDIX B: ACCELERATION AND
CURVATURE

The gravitational source in our main jet Eqs. (26) and
(27) is represented by the nongravitational acceleration A1

required to keep the reference observer static and the
curvature component ~R0101.
Let us first note that Ai, the projection of the 4-

acceleration on λμ î can be directly calculated using
Eqs. (7), (17) and (18). For θ ¼ 0, α ¼ 0 and the only
nonzero component of the acceleration is then A1 ¼ Aμeμ1̂
given in Eq. (25).
Next, the curvature of Kerr spacetime as measured by

static observers using their natural tetrad system has been
discussed in detail in Appendix B of Ref. [24]. Along the
axis of rotation (θ ¼ 0; π), we find that the tidal matrix is
diagonal such that [24]

R0̂ 1̂ 0̂ 1̂ ¼ −2R0̂ 2̂ 0̂ 2̂ ¼ −2R0̂ 3̂ 0̂ 3̂ ¼ −
2Mrðr2 − 3a2Þ
ðr2 þ a2Þ3 :

ðB1Þ
The nonrotating spatial frame λμ î is related to eμ î by a
simple rotation about the jet direction by Eq. (18). It
follows from the results of Ref. [24] that the same tidal
matrix is obtained using the nonrotating frame; that is,

~R0101 ¼ −2 ~R0202 ¼ −2 ~R0303 ¼ −
2Mrðr2 − 3a2Þ
ðr2 þ a2Þ3 : ðB2Þ

Finally, for the jet in the southern hemisphere of the Kerr
source, we note that θ ¼ π and λμ1̂ ¼ −eμ1̂, so that
A1ðθ ¼ πÞ ¼ −A1ðθ ¼ 0Þ. However, the curvature compo-
nents will remain the same. These facts together with
Eq. (28) are sufficient to demonstrate that the tidal
dynamics of the two jet components are exactly the same.

APPENDIX C: INTEGRATION OF EQ. (34)

Consider Eq. (34) and note that dv=dζ ¼ vdv=dz. Let

χ ¼ 1

2
v2; ðC1Þ
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so that Eq. (34) takes the form

dχ
dz

þ 2ðPzþQÞχ þ ½−ðq −Φp2Þzþ p� ¼ 0; ðC2Þ

where

P ≔ 2ΦðqþΦp2Þ; Q ≔ −2Φp: ðC3Þ

Let ψ be an integrating factor such that

dψ
dz

¼ 2ψðPzþQÞ; ðC4Þ

then, Eq. (C2) can be expressed as

d
dz

ðχψÞ þ ψ ½−ðq −Φp2Þzþ p� ¼ 0: ðC5Þ

From the solution of Eq. (C4),

ψðzÞ ¼ CePz
2þ2Qz; ðC6Þ

where C ≠ 0 is an integration constant, we can find the first
integral of Eq. (C5). That is, integrating both sides of
Eq. (C5) from 0 to z leads to

χðzÞψðzÞ − χð0Þψð0Þ

¼ −C
Z

z

0

ePx
2þ2Qx½−ðq −Φp2Þxþ p�dx: ðC7Þ

Using the initial condition that at z ¼ 0, v ¼ v0, we find

v2ePz
2þ2Qz − v20

¼ −2
Z

z

0

ePx
2þ2Qx½−ðq −Φp2Þxþ p�dx; ðC8Þ

or

v2ðzÞ ¼ e−Pz
2−2Qz

�
v20

− 2

Z
z

0

ePx
2þ2Qx½−ðq −Φp2Þxþ p�dx

�
: ðC9Þ

The integral in this expression can be expressed in terms of
the error function. Finally, the path of the free test particle
in the Fermi coordinate system is given by

ζ ¼
Z

z

0

dx
vðxÞ ; ðC10Þ

assuming that ζ ¼ 0 at z ¼ 0.
It proves useful to define an effective “potential energy”

function VðzÞ,

VðzÞ ¼ 2

Z
z

0

ePx
2þ2Qx½−ðq −Φp2Þxþ p�dx: ðC11Þ

This function vanishes at z ¼ 0, which is the location
of the reference observer, and has an extremum at the rest
point z0 ¼ p=ðq −Φp2Þ when q −Φp2 ≠ 0. It follows

FIG. 5. Plots of Vþ and V0 versus z. For Vþ, the parameters are
Φ ¼ 1=10 and η ¼ 1=20, so that z0 ≈ 0.60 and vta ≈ 0.79,
corresponding to the phase portrait in Fig. 1. The parameters
for V0 are Φ ¼ 1=10 and η ≈ 0.5715.

FIG. 6. Plot of V− versus z. The parameters are Φ ¼ 1=10 and
η ¼ 8=10 so that p ≈ 0.14, q ≈ −0.42, z0 ≈ −0.34 and
v2ta ¼ V−ð∞Þ ≈ 5.04. Note that V−ð−∞Þ ≈ 5.06 > V−ð∞Þ.
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from Eq. (C9) that the motion is confined to the region
where

VðzÞ ≤ v20: ðC12Þ
To study certain general properties of this motion, we
assume the Kerr source is such that Φ ≪ 1 and 0 ≤ η < 1,
so that p > 0. It is then interesting to consider the cases
where q −Φp2 is positive, zero or negative. We denote the
corresponding VðzÞ functions by VþðzÞ, V0ðzÞ and V−ðzÞ,
respectively.
If q −Φp2 > 0, then the rest point z0 ¼ p=ðq −Φp2Þ is

on the positive z axis. For the sake of illustration, we plot in
Fig. 5 the function VþðzÞ, which is a potential barrier, for
Φ ¼ 1=10 and η ¼ 1=20. With this choice of parameters,
z0 ≈ 0.60 and vta ≈ 0.79. This case corresponds to the
phase portrait presented in Fig. 1. A particle moving along
the positive z axis and approaching the reference observer
at z ¼ 0 with initial speed v0, 0 < v20 ≤ v2ta, where
v2ta ¼ Vþðz0Þ, will encounter a turning point; that is, it
will reach some z, 0 < z ≤ z0, reverse direction and fall
back toward the source. On the other hand, if v20 > v2ta,
there is no turning point and the particle can get over the

barrier and accelerate to Γ ¼ ∞. This analysis is consistent
with the phase portrait in Fig. 1 and the fact that vta is given
by Eq. (47).
If q −Φp2 ¼ 0, there is no rest point and V0ðzÞ

increases monotonically with z. We plot V0ðzÞ in Fig. 5
for Φ ¼ 1=10 and η ≈ 0.57. A particle moving along the
positive z axis and approaching the reference observer at
z ¼ 0 will reach some finite z, reverse direction, and fall
back toward the source.
Finally, if q −Φp2 < 0, then the rest point z0 ¼ p=ðq −

Φp2Þ is on the negative z axis. For the sake of illustration,
we plot in Fig. 6 the function V−ðzÞ, which is a potential
well, for Φ ¼ 1=10 and η ¼ 8=10. With this choice of
parameters, V−ð−∞Þ > V−ð∞Þ and v2ta ¼ V−ð∞Þ in this
case, so that z0 ≈ −0.34 and vta ≈ 2.245. This case
corresponds to the phase portrait presented in Fig. 4.
If the initial conditions are such that v20 < v2ta, then
the motion is periodic and the particle oscillates repeat-
edly between the two turning points in the potential well.
If, on the other hand, v20 > v2ta, then the motion is not
confined and the particle can, in principle, accelerate
to Γ ¼ ∞.
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