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A classical solution for electromagnetic monopoles induced by gravitational (global) monopoles in the
presence of a (four-dimensional) Kalb-Ramond axion field is found. The magnetic charge of such a
solution is induced by a nonzero Kalb-Ramond field strength, prevalent in string theory. Bounds from the
current run of the LHC experiments are used to constrain the parameters of the model. Because the
production mechanism depends on the details of the model and its ultraviolet completion, such bounds,
presently, are only indicative.
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I. INTRODUCTION

The existence of magnetic monopoles has been a key
question for nearly a century. The current experiments at
the LHC, including MoEDAL (which is designed specifi-
cally to search for magnetic monopoles and other highly
ionizing particles), have started to provide interesting new
bounds for the mass [1] of such messengers of new physics.
Consequently it is timely to examine new ways that
monopoles may manifest themselves and the possibility
for their detection by MoEDAL and other LHC experi-
ments. We show the novel and surprising possibility that, in
four-dimensional space-time, gravitation in the presence of
Maxwell and Kalb-Ramond axion fields (the latter being
the dual of the field strength of a spin-1 antisymmetric
tensor field in the massless gravitational multiplet of string
theories [2,3]) can lead to a magnetic monopole with
strength determined by the Kalb-Ramond charge.
In the 1873 work of Maxwell, magnetic monopoles did

not appear in the magnetic Gauss’s law since nature has
electric monopoles but no magnetic monopoles. This
asymmetry has puzzled physicists as far back as P. Curie.
Indeed, the formulation of electromagnetism in terms of a
nonsingular 4-vector potential Aμ requires the magnetic
induction B⃗ to be divergence free and no monopole is
allowed. Dirac [4] showed that amonopole is possiblewith a
singular gauge potential. He considered the magnetic field
froma solenoid in the limit of an arbitrarily thin semi-infinite
solenoid. In this limit the vanishingly small solenoid became
theDirac string. Such a string cannot be detected through the
Aharonov-Bohm effect once the magnetic charge g and the
electric charge g satisfy (in natural units) eg ¼ n

2
where n is a

positive integer. The end of the solenoid becomes the
monopole. The energy of the monopole is not finite.
A major paradigm shift in the theory of monopoles was

initiated independently by ’t Hooft and Polyakov [5]. They
considered a model due to Georgi and Glashow [6] which is
a field theory with spontaneously broken gauge symmetry.

The non-Abelian gauge group of the Georgi-Glashow
model is SUð2Þ. This gauge symmetry is spontaneously
broken down to the Uð1Þ gauge group of electromagnetism
by using a scalar field in the adjoint representation.
Monopole solutions with finite energy and quantized
magnetic charges were found.
The paradigm of large extra dimensions [7] implied the

possibility of a lower Planck scale for gravitational physics,
even as low as a few TeV, and so, in principle, gravitational
effects may become observable at the LHC (which is
already in its RUN II phase, operating at collision energies
of 13 TeV in the center of mass frame). In particular micro-
black holes could be produced and decay rapidly. So far,
however, there is no current evidence to support this
scenario. Nevertheless, from a theoretical point of view,
and for future collider or cosmic searches, a relatively low
Planck scale opens up a plethora of possibilities, e.g., in the
field of black holes and other space-time defects such as
self-gravitating magnetic monopoles.
The magnetic monopoles discussed by ’t Hooft and

Polyakov arise in gauge theories in the absence of gravity.
Global gravitational (nonmagnetic) monopoles have been
found as classical solutions of a coupled system of gravity
and a self-interacting scalar field in the adjoint representa-
tion of a global O(3) group, but in the absence of a gauge
field [8]. The global monopole is a solution for the
gravitational field similar to a Schwarzschild black hole
with an asymptotic space-timewhich isMinkowski but with
a deficit angle. A necessary condition for a gravitational
monopole to behave also as a magnetic monopole configu-
ration is to couple covariantly a local Uð1Þ gauge field
strength to gravity. Calculations show that this is not a
sufficient condition to determine whether a magnetic
monopole is induced. Since in our model the scalar field
is not related to electroweak symmetry breaking, on phe-
nomenological grounds the symmetry breaking parameter
can be chosen to allow amonopolewith a mass accessible to
the LHC, without the need to invoke large extra dimensions.
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In some (closed) string theories [3], a 2-form gauge field,
the spin-1 Kalb-Ramond (KR) gauge field, appears in the
massless spectrum. It is well known that, for the bosonic
gravitational part of low-energy string effective actions, the
Kalb-Ramond field strength, which the string effective
actions depend upon, on account of the Kalb-Ramond
gauge invariance, can be thought of as providing a source
of torsion [2]. Recently [9], in string-inspired effective
theories, we have considered some cosmological implica-
tions of a dual formulation of a time-dependent four-
dimensional Kalb-Ramond field, in connection with the
generation of matter-antimatter asymmetry in the Universe.
In four space-time dimensions, the dual of the Kalb-
Ramond field strength is a pseudoscalar axionlike field.
This formulation will be used here.
We will investigate the role of static configurations of the

(dual of the) Kalb-Ramond field strength in inducing
monopole solutions with a nontrivial magnetic charge.
Our effective field theory contains the gravitational metric
tensor, a triplet of scalar fields in the adjoint representation
of the Oð3Þ group [necessary for the spontaneous breaking
of the Oð3Þ symmetry], a local Uð1Þ 2-form, the electro-
magnetic field strength, and a (static) 3-form, the Kalb-
Ramond field strength. It is also necessary to introduce into
the model an additional Oð3Þ-singlet scalar field, which is
stabilized to a constant value. In the context of string
theory, this is the dilaton (spin-0 part of the gravitational
massless string multiplet), and in principle its stabilization
could be guaranteed by an appropriate (string-loop
induced) dilaton potential. However, one may imagine
phenomenological scenarios independent of string theory,
in which this extra scalar is ultraheavy, is stabilized by its
own potential, and is coupled only gravitationally to the
other scalar and gauge fields of the model. For this model
there is a solution whereby the magnetic charge of the
monopole is determined by the strength of the Kalb-
Ramond field.1 As we shall show below, within the context
of string theory, it is the dilaton equation of motion that
provides the link between the electromagnetic and the
Kalb-Ramond field strengths. This link leads to the con-
nection between the magnetic and the “Kalb-Ramond
torsion” charges.

Since our treatment is inspired by both the ’t Hooft-
Polyakov (HP) monopole solution [5] and the (self-
gravitating) nonmagnetic global monopole of [8], we will
briefly review the main features of these solutions in Sec. II.
This will be followed in Sec. III by an introduction of the
Lagrangian for our model, a derivation of the coupled
classical equations of the model, and an asymptotic
analysis of the equations of the model for small and large
(radial) distances from the monopole center. We shall
demonstrate analytically the existence of magnetic monop-
ole solutions in these two regimes; we estimate the
monopole mass, which agrees in order of magnitude with
the nonmagnetic global monopole of [8]. The concluding
Sec. IV discusses the phenomenology of the magnetic
monopole solution, and makes some conjectural remarks
on the possibility of its production and detection at
the LHC.

II. THE ’T HOOFT–POLYAKOV AND
GLOBAL MONOPOLE SOLUTIONS

We will review the basic features of the HP [5] and
global monopole [8] solutions, which are relevant for our
model. We commence with the original HP monopole
within the context of an SUð2Þ spontaneously broken
gauge theory with adjoint “Higgs” triplet fields. Such
solutions can be generalized to grand unified theory
(GUT) groups, such as SUð5Þ, leading to realistic particle
phenomenology, and providing GUT monopoles with
masses near the GUT scale (∼1014–1015 GeV). Such
cosmic monopoles are expected to have been diluted by
inflation.

A. The ’t Hooft–Polyakov SUð2Þ monopole

The fields in the HP SUð2Þ-gauge-theory model [5] are a
scalar field ϕaðt; x⃗Þ and gauge field Aa

μðt; x⃗Þ where
að¼ 1; 2; 3Þ is an SUð2Þ index. The Lagrangian density
Lðt; x⃗Þ is

Lðt; x⃗Þ ¼ −
1

4
Fa
μνFaμν þ 1

2
ðDμϕ

aÞðDμϕaÞ

−
1

4
λðϕaϕa − η2Þ2: ð2:1Þ

The field tensor Fa
μν is

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gϵabcAb

μAc
ν ð2:2Þ

where ϵabc is the antisymmetric Levi-Cività symbol; Dμϕ
a

is defined by

Dμϕ
a ¼ ∂μϕ

a þ gϵabcAb
μϕ

c ð2:3Þ

1It has been shown in [10] that the structure of the global
(nonmagnetic) monopole [8] remains intact in the presence of the
Kalb-Ramond field. Our model differs by the inclusion of aUð1Þ-
gauge field, antisymmetric tensor degrees of freedom and a
singlet scalar field; the nontrivial Kalb-Ramond field strength
determines the magnetic charge of the monopole. In simple
string-theory sigma models with just lowest-order graviton and
antisymmetric tensor fields, the Kalb-Ramond field strength can
be absorbed as torsion inside a generalized scalar curvature.
However in the presence of other fields this is not the case; so, in
four space-time dimensions, we consider the Kalb-Ramond field
to be a massless axionlike field, and the gravitational part of our
Lagrangian is kept torsion free.
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and is the covariant derivative. The model parameters are g,
λ > 0 and η. (The covariant derivative of Fa

μν is defined in
an analogous fashion.) The equations of motion that follow
from L are

DμFaμν ¼ gϵabcðDνϕbÞϕc ð2:4Þ

and

DμDμϕa ¼ −λðϕbϕbÞϕa þ λη2ϕa: ð2:5Þ

The Ansatz used for a static solution of (2.4) and (2.5) [in
the gauge Aa

0ðx⃗Þ ¼ 0� is

ϕaðx⃗Þ ¼ δia

�
xi

r

�
FðrÞ ð2:6Þ

and

Aa
i ðx⃗Þ ¼ ϵaij

�
xj

r

�
WðrÞ ð2:7Þ

where a, i, j ¼ 1, 2, 3 and r ¼ jx⃗j. Furthermore the
boundary conditions adopted are

FðrÞ → η and WðrÞ → 1=gr ð2:8Þ

as r → ∞. ’t Hooft and Polyakov found that

grWðrÞ ¼ 1 −
rgη

sinh ðgηrÞ and grFðrÞ ∼ rgη
tanh ðgηrÞ − 1:

ð2:9Þ

The electromagnetic field tensor fμν is defined to be [5]

fμν ¼ ϕ̂aFa
μν −

1

g
ϵabcϕ̂aDμϕ̂

bDνϕ̂
c ð2:10Þ

where ϕ̂a ¼ ϕa=jϕ⃗j and jϕ⃗j ¼ ðP3
a¼1 ϕ

aϕaÞ1=2. The mag-
netic induction, determined by Bk ¼ 1

2
ϵkijfij, has an

asymptotic behavior

B⃗ðx⃗Þ → x⃗=gr3 ð2:11Þ

as r → ∞ which corresponds to a magnetic monopole of
strength 1=g. Moreover, as r → ∞, where ϕa → η xa

r (2.8),
one can show that [11]

1

2
ϵμνρσ∂νfρσ ¼ 1

2g
ϵμνρσϵabc∂νϕ̂a∂ρϕ̂b∂σϕ̂c ≡ kμ

g
ð2:12Þ

where kμ is a topological current. The topological charge
Q ¼ R

d3xk0 is quantized to be an integer n and the
monopole charge is n=g. The HP monopole has n ¼ 1.

It should be noted that fμν does not satisfy the Bianchi
identity.2

B. The (self-gravitating) Oð3Þ global monopole solution

The scalar fields in theOð3Þ global monopole solution of
Barriola and Vilenkin [8] (BV) also form a triplet χa, a ¼ 1,
2, 3, which parametrizes the spontaneous breaking of a
global Oð3Þ symmetry down to a global Uð1Þ, by means of
an appropriate potential, in which the scalar field triplet
acquires a nontrivial vacuum expectation value η. Moreover
the model was embedded into Einstein gravity. The
Lagrangian of the model is given by

L ¼ ð−gÞ1=2
�
1

2
∂μχ

a∂μχa −
λ

4
ðχaχa − η2Þ2 − R

�
ð2:14Þ

where gμν is the (four-space-time dimensional) metric
tensor, g ¼ detðgμνÞ its determinant and R is the Ricci
scalar for gμν.

3

As a result of the Goldstone theorem, such monopoles
have massless Goldstone fields associated with them,
which have energy densities that scale like 1=r2 with the

2To be precise, following [11] one can construct a version fregμν

of the ’t Hooft electromagnetic tensor which, unlike (2.10), is not
singular at the zeros of the Higgs triplet, and is finite everywhere,

Fa
μν ¼ fregμν

ϕa

η
⇒ fregμν ¼ ϕa

η
Fa
μν

¼ ∂μAν − ∂νAμ þ
1

η3g
ϵabcϕ

a∂μϕ
b∂νϕ

c;

ϕaϕa ¼ η2: ð2:13Þ

The presence of thevector potentialAμ stems from the fact [11] that
a general solution of the equation Dμϕ

a ¼ 0 for ϕaϕa ¼ η2 reads
Aa
μ¼ 1

η2gϵabcϕ
b∂μϕ

cþ1
ηϕ

aAμ, withAμ an arbitrary 4-vector, which
can be identified with the electromagnetic potential Aem

μ , since for
ϕaϕa ¼ η2, the solution yields Aμ¼Aa

μ
ϕa

η . Upon substituting the
above Ansatz for Aa

μ in the expression for the non-Abelian [SUð2Þ
group] field strength Fa

μν¼∂μAa
ν−∂νAa

μþgϵabcAb
μAc

ν, one obtains
the structure (2.13) for fregμν . Both definitions, (2.10) and (2.13),
coincide at the spatial boundary r → ∞. In the topologically trivial
sector, where the ϕ-dependent terms on the right-hand side of the
definition of fregμν in (2.13) vanish, one obtains the standard
expression for the “electromagnetic” field strength fregμν in terms
of regular gauge potentials and the Bianchi identity is satisfied.
However, in the presence of monopoles, one obtains a violation of
the Bianchi identity for the dual of fregμν , as given in (2.12) above.
Equivalently, the latter result may be understood as a consequence
of the fact that, in the presence of monopoles, the electromagnetic
tensor can be formally expressed in terms of singular potentials at
the monopole center, r → 0, using a construction outlined by
Halpern [12], which we shall adopt in this work.

3Our conventions and definitions [13,14] throughout this work
are ðþ;−;−;−Þ for the signature of themetric, the Riemann tensor
is defined as Rλ

μνσ ¼ ∂νΓλ
μσ þΓρ

μσΓλ
ρν− ðν↔ σÞ, and the Ricci

tensor and scalar are given by Rνα ¼Rλ
νλα and R¼ gμνRμν

respectively.
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radial distance from the monopole core. This results in a
linear divergence of the monopole total energy density (that
is mass), which is a characteristic feature of such solutions,
in a way similar to the linearly divergent energy of a cosmic
string. In the original work of [8] only estimates of the total
monopole mass have been given by considering the
solution in the exterior of the monopole core, whose size
in flat space-time has been estimated to be of order
δ ∼ λ−1=2η−1, leading to a heuristic mass estimate of order
Mcore ∼ δ3λη4 ¼ λ−1η. The presence of themonopole curves
the space-time exterior, and these estimates have to be
rethought. However, the main argument in [8] was that
gravitational effects are weak for η ≪ MP, the Planck mass;
this is certainly the case of interest for η of order of a fewTeV,
the case of relevance to new physics searches at LHC. In this
sense, BV argued that the flat space-time estimates for the
core mass might still be valid, as an order of magnitude
estimate. Outside the monopole core, BV used an approxi-
mate asymptotic analysis of the Einstein equations,

Rμν −
1

2
gμνR ¼ 8πGNT

χ
μν ð2:15Þ

where Tχ
μν is the matter stress tensor derived from the

Lagrangian (2.14), and the equations of motion for the
scalar fields χa,a ¼ 1, 2, 3. The scalar field configuration for
a global monopole is [8]

χa ¼ ηfðrÞ x
a

r
; a ¼ 1; 2; 3; ð2:16Þ

where xa are spatial Cartesian coordinates, r ¼ ffiffiffiffiffiffiffiffiffi
xaxa

p
is the

radial distance, and fðrÞ → 1 for r ≫ δ. So at such large
distances, the amplitude squared of the scalar field triplet
approaches the square of the vacuum expectation value η,
χaχa → η2. The reader should note the similarity between
the expression (2.16) and corresponding one for the HP
monopole (2.6).
As a result of the symmetry breaking, the space-time, for

r ≫ δ, differs from the standard Schwarzschild metric
corresponding to a massive object with massMcore (assum-
ing that all the mass of the monopole is concentrated in the
core’s interior):

ds2 ¼
�
1 − 8πGNη

2 −
2GNMcore

r

�
dt2

−
dr2

1 − 8πGNη
2 − 2GNMcore

r

þ r2ðdθ2 þ sin2θdϕ2Þ; r ≫ δ; ð2:17Þ
where ðr; θ;ϕÞ are spherical polar coordinates. The
Schwarzschild metric is obtained in the unbroken phase
(η → 0). In the asymptotic limit r → ∞, upon appropriate
rescaling of the time t → ð1 − 8πGNη

2Þ−1=2t0, and radial
coordinate r, r → ð1 − 8πGNη

2Þ1=2r0, the space-time (2.17)
becomes a Minkowski space-time with a conical deficit
solid angle ΔΩ ¼ 8πGNη

2:

ds2 ¼ dt02 − dr02

− ð1 − 8πGNη
2Þr02ðdθ2 þ sin2θdϕ2Þ; r ≫ δ:

ð2:18Þ

The space-time (2.18) is not flat, since the scalar curvature
behaves as R ∝ 16πGNη

2=r2. The presence of such a
monopole-induced deficit solid angle can have important
physical consequences for scattering processes in such
space-times: the scattering amplitude in the forward direc-
tion is very large [15] in angular regions of order of the
deficit angle (or equivalently the squared ratio of the
monopole mass to the Planck mass).
After the initial work of [8], a debate has taken place

regarding the stability of the configuration [16], which is still
ongoing;we shall comment on this debate briefly at the endof
our article. Subsequent to the work of [8] more detailed
analysis of the gravitational backreaction effects of such
defects has been performed, by requiring a matching of the
solutions of the nonlinear coupled systemof gravitational and
matter equations at the core radius; thus the core size is
determined dynamically, rather than heuristically from flat
space arguments as in thework of [8]. Indeed, in [17], the core
radius rc ¼ 2λ−1=2η−1 for the self-gravitating solution was
found by matching an exterior Schwarzschild-like metric

ds2 ¼
�
1 − 8πGNη

2 −
2GNM

r

�
dt2

−
�
1 − 8πGNη

2 −
2GNM

r

�
−1
dr2 − r2dΩ2;

to an interior local de Sitter metric

ds2 ¼ ð1 −H2r2Þdt2 − ð1 −H2r2Þ−1dr2 − r2dΩ2

whereM denotes themonopolemass andH2 ¼ 8πGNλη
4

12
the de

Sitter parameter. Here η denotes a quantity with dimension of
mass. Unfortunately such a matching yields a negative mass
for the monopole, M ∼ −6πλ−1=2η < 0.4 The interpretation
of this sign in [17] is based on the repulsive nature of gravity
induced by the vacuum-energy H2 provided by the global
monopole. Moreover it has been argued [17] that this
interpretation is consistent with the monopole being an entity
with complicated structure rather than an elementary

4The motivation for using such a matching comes from the
observation that, at the origin (r → 0), the Higgs potential for the
scalars leads to a cosmological constant ∝ η4, since any “matter”
scalar fields go to zero. However, if a black hole or other
geometric singularity is present as r → 0, as in our case of the
induced Reissner-Nordström geometry due to the antisymmetric
tensor and electromagnetic fields (to be discussed below), the
space-time is different for small r (r → 0). The argument leading
to negative mass would then not hold.
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particlelike excitation. Such a construction with negative
mass would not be of relevance to collider physics.5

As compared to the model for the global monopole, our
model (see Sec. III) includes additional fields, which allow
for a positive mass solution, albeit from a “bag model”
standpoint. Our model contains the (nongauged) scalar
field triplet χa of the global monopole model, an Abelian
Uð1Þ gauge field of electromagnetism with Maxwell tensor
fμν, an extra Oð3Þ-singlet scalar field and the tensor Hμνρ

[the field strength of a 2-form Bμν, the antisymmetric tensor
(Kalb-Ramond) field of spin 1]. The Maxwell tensor fμν
has a structure similar to (2.10); however, in our case, as we
shall discuss later, the first term on the right-hand side of
(2.10) is absent, since we do not have SUð2Þ gauge fields.
The second term will involve the scalar triplet field χa, as
well as the Oð3Þ-singlet scalar field (either a constant
dilaton or an ultraheavy scalar), stabilized to a constant
value (e.g., the minimum value of a scalar potential).

III. THE MODEL AND ITS BACKGROUND

In this section we discuss our model for the magnetic
monopole and the analytic form of its asymptotic solutions,
for large and small distances from themonopole core.Wewill
first describe the Lagrangian of the model, which may be
viewed either as purely phenomenological or as inspired by
the bosonic sector of closed string theories upon compacti-
fication to four large target-space-timedimensions. TheKalb-
Ramond antisymmetric tensor field strength will determine
the magnetic charge of the monopole solution [2]. In four
dimensions theKalb-Ramond field is equivalent to amassless
pseudoscalar (gravitational axionlike) field bðxÞ [19].

A. A model for a self-gravitating global monopole
with Kalb-Ramond torsion

Our model is given by the effective four-dimensional
Lagrangian density L involving the graviton gμν; the anti-
symmetric Kalb-Ramond field Bμν; the electromagnetic
field tensor fμν; a real scalar field Φ, whose origin and
importance will be discussed in detail below; and the triplet
Higgs-like scalar χa. The latter is associated with the
spontaneous breaking of a global Oð3Þ group down to a
global Oð2Þ. The Goldstone theorem implies the existence
of massless Goldstone bosons in such a case, which will be
neutral under the StandardModel group.Aswe shall discuss
later, our monopole solutions are expected [8] to lose energy

and annihilate (with their antimonopoles) through such
Goldstone radiation. The Lagrangian density reads

L ¼ ð−gÞ1=2
�
1

2
∂μχ

a∂μχa −
λ

4
ðχaχa − η2Þ2 − R

þ 1

2
∂μΦ∂μΦ − VðΦÞ − 1

12
e−2γΦHρμνHϱμν

−
1

4
e−γΦfμνfμν

�
ð3:1Þ

where γ is a real constant; g ¼ detðgμνÞ; R is the Ricci scalar
for gμν; and the antisymmetric tensor field strength Hρμν ¼
∂ ½ρBμν�, where the brackets ½…� denote total antisymmetriza-
tion of the respective indices. The quantity η > 0 plays the role
of the vacuum expectation value of the Higgs field in the
broken symmetryphase.Weshall assume that a singulargauge
fieldAμ (up to a gauge transformation)may be associatedwith
fμν, on using a construction outlined by Halpern [12].
In the case of string-inspired models [2,3], the constant

γ ¼ 1. In such a case Φ is the dilaton field of the massless
string multiplet, and VðΦÞ is a dilaton potential, possibly
generated by string loops—the dilaton potential is absent at
tree level in string theory. In addition to string theory, we
shall also consider another version of the model, in which
γ ¼ 0. In such a case the field Φ may be a superheavy real
scalar field that is stabilized by its potential VðΦÞ to be
some constant value. We also assume that, once the scalar
field (or dilaton) is stabilized, its potential vanishes (similar
to the case of a Higgs-like potential), so there are no
contributions to the stress tensor. We shall see that the
presence of the extra scalar degree of freedom in either case
is essential for the association of the “Kalb-Ramond torsion
charge” with the magnetic charge of the monopole. Notice
that in our model the χa-matter in the Einstein frame is
assumed to be decoupled from the dilaton6 or heavy scalar.

5A classification of the space-times arising from a self-
gravitating global monopole solution of the type considered in
[8] and in [17], i.e., in field theories with only a triplet of Higgs-
type scalar fields and Ricci scalar curvature, has been given in
[18], where it was argued that, upon requiring regularity at the
center of the monopole, but otherwise independently of the shape
of the Higgs potential, the metric can contain at most one horizon,
and, in case there is a horizon, the global space-time structure is
that of a de Sitter space-time.

6In the context of string theory effective actions, this can be
achieved as follows: one starts, in the σ-model frame for the scalar
triple effective action, which has the formZ

d4e−Φ
ffiffiffiffiffiffiffiffiffi
−GS

p �
� � � þ 1

2
∂μχa∂μχ

a −
1

4
~λðΦÞλðχaχa − η2Þ2

�
;

where � � � denotes the rest of the fields; ~λðΦÞ is an appropriate
function of the dilaton, to be determined; and eΦ=2 is the string
coupling in our normalization. The above form of the action is a
standard one in a tree-level string theory model, propagating on a
closed spherical world sheet, with the overall factor e−Φ indicating
precisely the appropriate power of the (inverse) string coupling
pertinent to this genus two world-sheet surface; GS denotes the
determinant of the σ-model-framemetric of the space-timewhich is
related to theEinstein-framemetric, gμν, byGS

μν ¼ eϕgμν. Passing to
the Einstein frame and choosing the function ~λðΦÞ ¼ e−Φ defines
the scalar sector self-interaction in such a way that the self-coupling
is strong for weak string couplings, and we obtain the decoupling of
the scalar-triplet-χ sector from the dilaton in (3.1).
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Let us first proceed with the γ ¼ 1 (string) case. The
Lagrangian (3.1) is in the Einstein frame [3,19], where the
Einstein-Hilbert curvature term R in the action is canoni-
cally normalized. Leaving aside, for the moment, the
dilaton equation of motion, the equations of motion for
the remaining fields are deduced from (3.1):

gνβχa;νβ þ
1ffiffiffiffiffiffi−gp ∂νð

ffiffiffiffiffiffi
−g

p
gνβÞχa;β ¼ −λðχbχb − η2Þχa; ð3:2Þ

∇κðe−2γΦHκβγÞ ¼ 0; ð3:3Þ

∇λðe−γΦfλκÞ ¼ 0; ð3:4Þ

and

Gμν ¼ gNΘμν ð3:5Þ
where Gμϱ is the Einstein tensor, Θμν is the energy-
momentum tensor and

gN ¼ 8πGN; ð3:6Þ

where GN ¼ 1=M2
P is Newton’s constant, with MP the

Planck mass. These equations are supplemented with the
Bianchi identity for the Kalb-Ramond field strength,
stemming from its definition:

ϵμνλρ∂ρHμνλ ¼ 0: ð3:7Þ

Furthermore in four dimensions the Kalb-Ramond field
strength is dual to a pseudoscalar (“axion”-like) field b7:

Hμνλ ¼ e2Φϵμνλσ∂σb; ð3:8Þ

where

~ϵμνρσ ¼
ffiffiffiffiffiffi
−g

p
ϵμνρσ; ð3:9Þ

is the flat space-time Levi-Cività symbol, ϵμνρσ is the
covariant Levi-Cività tensor density, with ~ϵμνρσ ~ϵ0123 ¼
þ1 etc. (and also ϵμνρσ ¼ ffiffiffiffiffiffi−gp

~ϵμνρσ). The form (3.8) for the
field strength satisfies (3.3) automatically, taking into
account that the gravitational covariant derivative is defined
in terms of the usual symmetric Christoffel symbol.
It is important to note that in our approach we shall

concentrate on the dual theory, where the physical degree of
freedom for the Kalb-Ramond field is the axion bðxÞ,

defined in (3.8).8 In the context of the dual theory, when
one considers the dilaton equations of motion from the
Lagrangian (3.1) with γ ¼ 1, one has to take into account the
nontrivial variation δHμνρ=δΦ ¼ 2Hμνρ ¼ 2e2Φϵμνρσ∂σb.
With this in mind, it is then straightforward to see that
the dilaton equation ofmotion obtained from the Lagrangian
(3.1) implies

e2Φ∂μb∂μbþ1

4
e−Φfμνfμν−

δVðΦÞ
δΦ

þOð∂ΦÞ¼ 0; ð3:11Þ

where we did not write explicitly the terms involving ∂μΦ,
since we will be interested in situations in which the dilaton
is stabilized to a constant valueΦ ¼ Φ0, whichmay occur at
the minimum of its potential when

∂VðΦÞ
∂Φ

				
Φ¼Φ0

¼ 0; with VðΦ0Þ ¼ 0: ð3:12Þ

Thus, for a constant dilaton, the case of interest, the dilaton
equation (3.11) implies a constraint on the Kalb-Ramond
and Maxwell field strengths. This constraint will be at the
heart of our considerations later on in the article, when we
link the Kalb-Ramond torsion charge with the magnetic
charge of the electromagnetic monopole.
In the limiting nonstringy case γ ¼ 0, we may ensure the

stabilization of the heavy scalar field to a constant value

7In string theories [3], the field strength Hμνρ, in the presence
of gauge fields Aμ, is no longer given only by the curl of Bμν but
contains additional parts proportional to the Chern-Simons
3-form A ∧ F. Such terms lead to higher derivative terms in
the string effective action, and are ignored in our model. Their
inclusion for Abelian gauge fields could lead to additional
interesting electromagnetic effects [20], which, however, are
not of interest to us here.

8In a Feynman path-integral formulation, the dual theory for
the Lagrangian (3.1) (in a Minkowski-signature space-time) is
obtained [9,21] by implementing the Bianchi constraint (3.7) via a
path-integral δ-function, represented using a Lagrange multiplier
field bðxÞ. The dual theory is obtained on integrating out the field
Hμνρ in the path integral. In the language of differential forms, the
latter constraint reads d�S ¼ 0, where S ¼ ⋆H is the dual form of
the Kalb-Ramond field strength H: Sd ¼ 1

3!
ϵabcdHabc. Imposing

this constraint on the full quantum theory is equivalent to imposing
an exact conservation of the “Kalb-Ramond-torsion charge”
Q ¼ R �S ¼ 0. We then have in a path integral

Z ∝
Z

DS exp

�
i
Z

3e−2Φ

4gN
S ∧ ⋆S

�
δðd⋆SÞ

¼
Z

DSDb exp

�
i
Z

3e−2Φ

4gN
S ∧ ⋆Sþ

�
3

2gN

�
1=2

bd⋆S
�

∝
Z

Db exp

�
−i

Z
1

2
e2Φdb ∧ ⋆db

�
; ð3:10Þ

where the various proportionality factors represent appropriate
normalizations of the various forms, and we work with a
dimensionful field bðxÞ with mass dimension 1; above we wrote
explicitly only the part of the quantum path integral of the
Lagrangian (3.1) that involves the (dual of the) Kalb-Ramond
field S, which is relevant for our discussion here. The “non-
propagating” S field has been integrated out completely, on
implementing the Bianchi constraint (3.7), and on partially
integrating the second term in the argument of the exponential
in the middle equation of (3.10). We note the change in sign of the
kinetic term of b as compared with that of S, and the different
scalingswith the dilatonΦ between these two terms. This results in
a path integral over the pertinent Lagrange multiplier field b and
leads to the equations of motion (3.11).
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Φ ¼ Φ0 by imposing again (3.12); however in this limiting
case the constraint (3.11) between the Kalb-Ramond field
strength and the Maxwell tensor is not imposed.
Nevertheless, even in this case, we shall see that an appro-
priate modification of the Maxwell tensor in the spirit of
(2.10), involving theHμνρ field and the heavy scalarΦ, can be
constructed which remarkably still solves Maxwell’s equa-
tion (3.4) forΦ ¼ Φ0 ¼ constant.Wenext proceed to solving
Eqs. (3.2), (3.3), (3.4) and (3.11) [with the condition (3.12)].

B. Solution of the model equations: Ansätze

We will consider static solutions of Eqs. (3.2), (3.3),
(3.4), (3.5), and (3.7) by making the Ansätze

gμν ¼

0
BBBB@

BðrÞ
−AðrÞ

−r2

−r2sin2θ

1
CCCCA ð3:13Þ

and

fμν ¼

0
BBB@

0 0 0 0

0 0 0 0

0 0 0 2r sin θWðrÞ
0 0 −2r sin θWðrÞ 0

1
CCCA: ð3:14Þ

This Ansatz for fμν is compatible with the Ansatz for fμν in
the HP solution and satisfies (3.4). The associated magnetic
field has only a radial component, which in contravariant
form reads

Br ¼ ϵrθϕfθϕ ¼ 1ffiffiffiffiffiffi−gp ηrθϕfθϕ ¼ 2ffiffiffiffiffiffiffi
AB

p WðrÞ
r

; ð3:15Þ

where ηrθϕ ¼ þ1, etc. is the 3-space totally antisymmetric
symbol, and we took into account Eq. (3.13). The electric
field is zero.
The Ansatz for the scalar field is

χa ¼ ηfðrÞ x
a

r
: ð3:16Þ

The Ansätze in (3.13) and (3.16) are those for the
gravitational monopole. Since in addition we have the
electromagnetic and Kalb-Ramond tensors, we can inves-
tigate whether the gravitational monopole induces a mag-
netic monopole from the enlarged set of equations.
On using the Ansätze in the Einstein equation (3.5), we

obtain

−AðrÞ þ A2ðrÞ þ rA0ðrÞ
gNA2ðrÞ

¼ 2W2ðrÞ þ 1

4
b02ðrÞ r2

AðrÞ þ
η2

2

�
2f2ðrÞ þ f02ðrÞr2

AðrÞ
�

þ λ

4
η4ðf2ðrÞ − 1Þ2r2; ð3:17Þ

BðrÞ − AðrÞBðrÞ þ rB0ðrÞ
gNBðrÞ

¼ −2AðrÞW2ðrÞ þ 1

4
b02ðrÞr2 þ 1

2
η2r2f02ðrÞ

− η2AðrÞf2ðrÞ − λ

4
η4AðrÞðf2ðrÞ − 1Þ2r2; ð3:18Þ

and

r
4gN

�
2
A0ðrÞ
AðrÞ þ

rB02ðrÞ
B2ðrÞ þ rA0ðrÞB0ðrÞ

AðrÞBðrÞ

− 2

�
B0ðrÞ
BðrÞ þ

rB00ðrÞ
BðrÞ

��

¼ −2W2ðrÞAðrÞ þ 1

4
r2b02ðrÞ þ r2η2

2
f02ðrÞ

þ λη4

4
AðrÞr2ðf2ðrÞ − 1Þ2; ð3:19Þ

where prime indicates derivative with respect to r.
Furthermore (3.2) leads to

f00ðrÞ
AðrÞ −

1

2AðrÞ
�
A0ðrÞ
AðrÞ −

B0ðrÞ
BðrÞ −

4

r

�
f0ðrÞ − 2fðrÞ

r2

¼ λη2ðf2ðrÞ − 1ÞfðrÞ: ð3:20Þ
The last remaining equation, derived from (3.7), is

d
dr

0
@

ffiffiffiffiffiffiffiffiffi
BðrÞ
AðrÞ

s
r2
db
dr

1
A ¼ 0: ð3:21Þ

Its solution is

b0ðrÞ ¼ ς

r2

ffiffiffiffiffiffiffiffiffi
AðrÞ
BðrÞ

s
ð3:22Þ

where ς is a constant of integration which measures the
strength of the Kalb-Ramond field strength.
It is necessary to be aware of units of variables and so we

recast the equations in terms of dimensionless variables:

W→
Wffiffiffiffiffiffi
gN

p ; r→
ffiffiffiffiffiffi
gN

p
r; b→

bffiffiffiffiffiffi
gN

p ; η→
ηffiffiffiffiffiffi
gN

p :

ð3:23Þ

The equations satisfied by these rescaled variables are the
same as (3.17), (3.18) and (3.19) but with gN replaced by 1.

C. Analytical solution of the model equations:
Asymptotic analysis

Equations (3.17), (3.18), (3.19), and (3.20) will be
solved in two asymptotic regions, the near field (r → 0)
and far field (r → ∞). The existence of the full interpolat-
ing solution then is assumed and based on continuity in
space. Approximate interpolating solutions will be dis-
cussed in a subsequent paper. In both regions, to leading
order, we will require
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BðrÞ≃ A−1ðrÞ; ð3:24Þ
which is certainly required for the far field (Newtonian) limit.
However, as we shall show, the presence of a nontrivial
antisymmetric tensor field strength (3.22) and of the scalar
triplet field with nontrivial vacuum expectation value η imply
(next-to-leading order) modifications in (3.24), which are
crucial for the consistencyof the solutions. Inparticular, aswe
shall discuss below, for the small r (r → 0) region, we find

BðrÞAðrÞ ¼ 1þOðr2Þ; r → 0; ð3:25Þ
while for the large r → ∞ region we have

BðrÞAðrÞ ¼ 1þO
�
1

r2

�
; r → ∞: ð3:26Þ

Working in units with gN ¼ 1, the necessity of such devia-
tions in both regions can be seen by manipulating Eqs. (3.17)
and (3.18) to rewrite them as

1 −
1

A
þ rA0ðrÞ

A2ðrÞ ¼ 2W2ðrÞ þ 1

4
b02ðrÞ r2

AðrÞ

þ η2

2

�
2f2ðrÞ þ f02ðrÞr2

AðrÞ
�

þ λ

4
η4ðf2ðrÞ − 1Þ2r2 ð3:27Þ

and

1 −
1

A
−
rB0ðrÞ
AB

¼ 2W2ðrÞ − 1

4
b02ðrÞ r2

AðrÞ

þ η2

2

�
2f2ðrÞ − f02ðrÞr2

AðrÞ
�

þ λ

4
η4ðf2ðrÞ − 1Þ2r2: ð3:28Þ

If (3.24) were to hold exactly, then onewould have A0
A ¼ − B0

B ,
which would make the left-hand sides of (3.27) and (3.28)
identical and, on subtracting the equations, it would yield

0 ¼ r2

A

�
1

2
ðb0Þ2 þ η2ðf0Þ2

�
: ð3:29Þ

As we shall discuss below, for small r → 0 one has
B ∼ p0=r2, p0 > 0 a constant, and f0 ¼ f0 ¼ constant
[cf. (3.34)]; if (3.29) had been valid then we would have
ς ¼ f0 ¼ 0. For large r, the Ansatz we take for the function
fðrÞ [cf. (3.61), (3.63) for r → ∞] makes the contributions of
the f0-terms in (3.27) and (3.28) subleading in the region
r → ∞, as compared to the rest of the terms. Ignoring such
terms and subtracting the latter two equations leads to ς ¼ 0.
The leading-order assumption (3.24) is used in many

nontrivial black hole solutions, e.g., for the Reisser-
Nordström (RN) black hole solution in the presence of
electromagnetic fields (corresponding to magnetic charges
in our case) where the metric is [22]

ds2 ¼ Δdt2 − Δ−1dr2 − r2dΩ2 ð3:30Þ
with dΩ2 the metric on a 2-sphere, Δ ¼ 1 − 2GNM

r þ GNμ
2

r2 , μ
the magnetic charge and M the mass of the black hole.
Consequently the assumption of BðrÞ ¼ A−1ðrÞ for r → 0
or r → ∞, which we adopt in this work, is a relevant one.9

The RN black hole is not singular at the horizons, the

9In [23], an exact spherically symmetric solution in a Kalb-
Ramond background, but in the absence of scalar and gauge fields,
has been foundwith a naked singularity, which—in our notation—
amounts to B ¼ 1 and A ¼ 1

1− α
r2
, that is

AB≃ −
r2

α
; as r → 0; ð3:31Þ

while A → 1, B ¼ 1 as r → ∞. This solution corresponds to a
special case in which one of the integration constants c1 ¼ 0
(cf. [23]). To understand this we notice that, on subtracting (3.27)
and (3.28), we obtain

ðABÞ0
AB

¼ r

�
1

2
ðb0Þ2 þ η2ðf0Þ2

�
: ð3:32Þ

The right-hand side of this equation depends on the form of A and
B [cf. (3.20) and (3.22)]. The case of [23], for which the behavior
(3.31) is valid near the origin, does not have scalar or gauge fields;
hence, in such a case, f ¼ 0 exactly in (3.32). Equation (3.22) is
still valid in that case, as it follows from the Bianchi identity (3.7)
for static b fields. Setting B ¼ 1 and f ¼ 0 in (3.32), and using
(3.22), we easily arrive at an equation for AðrÞ:

d
dr

ð−1=AÞ ¼ ς2

2r3
⇒ A ¼ 1

1þ ς2

4r2

; ð3:33Þ

upon imposing asymptotic Minkowski flatness for the metric as
r → ∞. The rest of the gravitational equations are also satisfied
with this Ansatz for the metric. This solution is the exact
solution of [23] with α ¼ −ς2=4. (For imaginary ς the solution
corresponds to a wormhole [23] with a throat radius ς=2. The
alert reader should notice that there is a sign difference in the
Kalb-Ramond field strength term between the action of [23]
and ours (3.1), which leads in our case to the naked singularity
being associated with a positive energy real Kalb-Ramond
pseudoscalar field b, while the wormhole solution corresponds
to a negative energy purely imaginary b. In this respect, our
formalism and results agree with those in the literature on real
(Kalb-Ramond and ordinary) axion fields [2,3,14,24–26]; see
discussion below.) However, in the presence of gauge and
scalar fields it can be shown that the solution (3.33) with B ¼ 1
no longer leads to a valid solution in the presence of nontrivial
electromagnetic fields if f ¼ f0r as r → 0 for the scalars is
adopted, as in our work. (The scalar-field behavior for the HP
monopole [5] is similar.) This follows immediately from (3.20),
which in the limit r → 0 yields ς → 0. In this article, we
concentrate on modified solutions which, both near the origin
and asymptotically, exhibit the approximate behavior (3.24)
[specifically (3.25) for r → 0, (3.26) for r → ∞]; the modified
solution perturbs the RN solution by terms proportional to the
Kalb-Ramond torsion charge ς. In this case, it can be readily
seen that, on using (3.41) with ϵðrÞ ¼ Oðr2Þ, r → 0, Eq. (3.32)
yields (3.45). It is possible that other solutions are found, with
different behaviors of the scalar and gauge fields, in which the
Kalb-Ramond field behaves as in [23]. To understand and
classify in general the solutions near r ¼ 0 would be facilitated
by a numerical study, which we postpone for the future.
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apparent singularities being coordinate artifacts.10 In our
case, in view of the corrections (3.25), (3.26), we obtain
deformed RN-type solutions, but the shielding of the
curvature singularities at r ¼ 0 by horizons (i.e., absence
of naked singularities) holds for sufficiently large mass
compared to the charge. [In our case of small masses the
naked singularities can still be shielded; see discussion in
Sec. III D, following Eq. (3.75).]
Because of the use of scaled dimensionless variables,

when r is of Oð1Þ the physical r is order of the Planck
length. At this scale, the classical equations that we have
restricted ourselves to here cannot be expected to be valid
because of quantum gravity corrections; hence, in principle,
in order to be able to estimate the magnetic energy of our
monopole, one should put the effective Planck length as a
lower distance cutoff. However, if the classical equations
determining our monopole mass are to be trusted, then any
estimate on the mass based on them should be independent
of the short distance cutoff. As we shall see in Sec. III D,
this is precisely the case for the monopole mass which
depends only on the infrared (large distance) regime, with
vanishing contributions from the r → 0 regime [on esti-
mating the leading asymptotic behavior for r → 0 and
r → ∞ of the stress tensor of the theory [cf. (3.68) below]
by using expressions obtained from our classical solutions].

1. Small r analysis

Asymptotically, for small r, let us write BðrÞ ∼ pðrÞ
r2 and

assume that

fðrÞ ∼ f0r; ð3:34Þ

[which is consistent with the scalar field equation of motion
(3.20) in the limit r → 0 and is similar to the r dependence
found in the construction of the HP monopole [5] ]. From
(3.17) and (3.19) we deduce that

1−
p00ðrÞ
2

¼ 1

2
λη4r2ðf20r2− 1Þ2þ ς2

2pðrÞþ η2f20ðr2þpðrÞÞ:

ð3:35Þ

We cannot solve this equation without approximation; on
the right-hand side of (3.35), in the denominator of the term

proportional to ς2, we consider pðrÞ to be approximately a
nonzero constant p0 which leads to the equation

1 −
p00ðrÞ
2

¼ 1

2
λη4r2ðf20r2 − 1Þ2 þ ς2

2p0

þ η2f20ðr2 þ pðrÞÞ:

ð3:36Þ

The general solution of (3.36) is

pðrÞ ¼ c2 sin ð
ffiffiffi
2

p
f0ηrÞ þ c1 cos ð

ffiffiffi
2

p
f0ηrÞ þ

Z
2f40η

4p0

;

Z ¼ η2ð−ς2f20 − 90f20λp0r2 þ 4f20p0 þ 12λp0Þ
þ η4ð15f40λp0r4 − 12f20λp0r2 − 2f40p0r2 þ λp0Þ
þ η6ðf60λp0ð−r6Þ þ 2f40λp0r4 − f20λp0r2Þ þ 90λp0

ð3:37Þ
where c1 and c2 are constants of integration. Since η
is small (on assuming that the symmetry breaking scale
is much smaller than the Planck scale), pðrÞ is well
approximated by a constant near r ¼ 0. Hence,11 upon
making the leading-order approximation BðrÞ≃ A−1ðrÞ,
we find

BðrÞ ¼ p0

r2
; for r → 0: ð3:40Þ

We keep this expression for BðrÞ and now proceed to find
the next-to-leading order corrections in the product AB
which are induced by the presence of the antisymmetric
tensor and the nontrivial vacuum expectation value of the
scalar fields (i.e., the global monopole). Let us assume that,
for small r → 0,

AðrÞBðrÞ ¼ 1þ ϵðrÞ ð3:41Þ

where ϵðrÞ → 0 as r → 0. This implies

10In Maxwell-Einstein systems the effects of ordinary axion
fields (which differ from those associated with our 3-form Hμνρ)
have been discussed in [24], with the conclusion that the axion
charge, which we identify with −ς [see discussion below;
Eq. (3.67)], contributes to the charge terms in a metric pertaining
to a RN black hole; in string theories with antisymmetric
tensor fields present, there are rotating black hole solutions
of Kerr-Newmann-Reissner-Nordström type [25]; charged
nonrotating black hole solutions are present in string-inspired
models with dilaton, gauge and Kalb-Ramond axion fields
present, but without scalar triplet fields χ⃗, associated with the
global monopole [26].

11In fact, on assuming (3.24) it is easily seen that (3.20) can be
written as

d
dr

ðf0r2BÞ ¼ 2f þ λη2ðf2 − 1Þfr2 ð3:38Þ

which can be readily integrated to yield

B¼ c0
f0r2

þ 1

f0r2

Z
d~r½2fð~rÞþ λη2ðfð~rÞ2−1Þfð~rÞ~r2�; ð3:39Þ

where c0 is an integration constant. Upon assuming fðrÞ ∼ f0r
for r → 0, the small r behavior deduced from (3.39) is consistent
with (3.40), obtained from our small r analysis, upon fixing the
constants p0 ¼ c0=f0. However, for large r, although (3.24) is
assumed, and one might have surmised that (3.39) would still be
valid, this is not the case: f ≃ 1 − α1

r2 , with α1 a constant, which
implies that as r → ∞, f0 → 0 (and that f0r2 ∼ r−1). Hence the
derivation of (3.39) entails an implicit division by zero, which is
an inappropriate operation.
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A0

A
¼ −

B0

B
þ ϵ0ðrÞ
1þ ϵðrÞ : ð3:42Þ

Upon substituting (3.40), (3.34) and (3.42) into the Einstein
equations (3.27) and (3.28), and subtracting them, we
obtain, for small r, to leading order,

rϵ0

1þ ϵ

1

A
¼ ς2

2p0

þ f20η
2p0

1þ ϵ
: ð3:43Þ

Upon assuming ϵðrÞ ¼ Oðr2Þ, we seek consistent solutions
in the region r → 0. In this case, the denominator of the
second term on the right-hand side of (3.43) can be
approximated by unity, which on account of (3.41), yields

ϵ0

ð1þ ϵÞ2 ¼ −
d
dr

�
1

1þ ϵ

�
¼

�
ς2

2p2
0

þ f20η
2

�
r ð3:44Þ

which can be integrated to give

ϵðrÞ ¼ 1

1 − ð ς2

4p2
0

þ η2f2
0

2
Þr2

− 1

¼
�

ς2

4p2
0

þ η2f20
2

�
r2 þ � � � ; r → 0; ð3:45Þ

upon imposing the requirement that ϵð0Þ ¼ 0.
Although we have used so far the leading-order approxi-

mation (3.40) forB (as r → 0), when dealingwith Eq. (3.27)
we should make use of the complete Reissner-Nordström
expression

B ¼ 1 −
2M
r

þ p0

r2
ð3:46Þ

with M the monopole mass. Indeed, upon using (3.46),
(3.41), (3.42) and (3.44), as r → 0, we obtain

1 −
B

1þ ϵ
− r

B0

1þ ϵ
þ rϵ0

ð1þ ϵÞ2
≃ 1 − Bþ Bϵ − rB0 þ rB0ϵþ rϵ0Bð1 − 2ϵÞ þ � � �

¼ p0

r2
þ ς2

4p0

þ f20η
2p0 þ � � �

¼ 2W2 þ ς2

4p0

þ f20η
2p0; ð3:47Þ

where the � � � indicate subleading terms that go to zero as
r → 0. M is undetermined since the mass terms cancel
altogether; the ς2- and η2f20-dependent terms also cancel,
leaving to leading order (as r → 0) the relation

W2ðrÞ ∼ p0

2r2
; r ≪ 1: ð3:48Þ

One can easily see that the above results, (3.41) and
(3.44)–(3.48), are also consistent with the third Einstein
equation (3.19) in the region r → 0. Thus, the constant
p0 > 0 cannot be determined in this asymptotic analysis,
and the only relation that emerges is (3.48), which was
to be expected from the Reissner-Nordström character
of the metric.
However, as we shall presently see, the “charge” dis-

tortion part of the space-time metric function B (3.46) (i.e.,
the term p0=r2) comes exclusively from the torsion field,

p0 ∝ ς2; ð3:49Þ

so that the magnetic charge g ∝ ς [cf. (3.15) and (3.76),
(3.77) below]. (The normalization factors will be fixed, as
we shall see, once we embed the model in a string theory
framework.) To this end, for the case γ ¼ 0, we define fμν,
which is a solution of (3.4), as follows:

fμν ¼ −Habcϕ
a∂μϕ

b∂νϕ
c: ð3:50Þ

The fields ϕa, a ¼ 0, 1, 2, 3, are a tetrad of the scalar fields,
with ϕ0 ¼ constant, and ϕaða ¼ 1; 2; 3Þ identified with the
triplet χa (3.16), normalized in such a way that ϕa maps
the SO(3) internal group onto the sphere S3 of the 3-space.
The fourth member ϕ0 of the tetrad is identified with (some
function of) the superheavy scalar field Φ appearing in the
Lagrangian (3.1), which is assumed to be stabilized to a
constant value at an appropriate minimum of its potential
(3.12). Using (3.8), (3.9), and the fact that the triplet (3.16)
defines a S3-spatial coordinate set ðηfðrÞ; θ;ϕÞ which
maps the SO(3) internal space to the 3-space, one has
for the nontrivial θϕ component of the electromagnetic
tensor (3.50)

fθϕ ¼ ϕ0

A
b0r2 sin θ ¼ ϕ0ς sin θ: ð3:51Þ

[In the last equality we have made use of the exact solution
(3.22), a consequence of the Bianchi identity for Hμνρ.]
Comparing with (3.14) we thus obtain

WðrÞ ¼ ϕ0

ς

2r
ð3:52Þ

for all r. This is consistent since the solution of the
Maxwell’s equations for the electromagnetic field (3.4)
is independent of the explicit form of the function WðrÞ.
Equation (3.52) is also consistent with (3.49). In view of
(3.52) and (3.15), the induced magnetic monopole flux is
controlled by the Kalb-Ramond field strength parameter ς;
i.e., a vanishing or constant Kalb-Ramond axion field leads
to the absence of the magnetic monopole.
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We now remark that in the context of the string-inspired
low-energy Lagrangian (3.1) with γ ¼ 1, we may arrive at a
similar conclusion and moreover we can fix the propor-
tionality coefficient ϕ0 in (3.52). Indeed, to this end we first
note that, on using (3.12), (3.22), as well as the fact that the
spatial part of the Maxwell tensor 1

4
fijfij ¼ 1

2
ðBrÞ2A, with

Br the radial (and, in our case, the only nontrivial)
component of the magnetic field (3.15), the dilaton equa-
tion (3.11) yields the constraint (for constant dilaton
Φ ¼ Φ0, which without loss of generality we can take to
be Φ0 ¼ 0)

ς2

r4
1

B
¼ 1

2
ðBrÞ2A ⇒ Br ¼

ffiffiffi
2

p 1ffiffiffiffiffiffiffi
AB

p ς

r2
: ð3:53Þ

The reader should notice that Eq. (3.53) is valid for all r.
On taking into account (3.25), i.e., that to leading order

as r → 0 one has AB ∼ 1, we see that (3.53) implies a
singularity structure (as r → 0) for the radial component of
the magnetic field of magnetic monopole type [4],

Br ≃ ffiffiffi
2

p ς

r2
¼ g

r2
; ð3:54Þ

with a magnetic charge g being given by

g ¼
ffiffiffi
2

p
ς; ð3:55Þ

thus fixing the proportionality coefficient in (3.49) to

p0 ¼ 2ς2: ð3:56Þ

Thus, from (3.48) we have

WðrÞ ¼ ς

r
: ð3:57Þ

We will now examine (3.20) to investigate the consis-
tency of our assumption that fðrÞ ∼ f0r. On substituting
the expression (3.40) for BðrÞ in a linearized form of (3.20),
we obtain

f00ðrÞ ¼ 2 − λη2r2

p0

fðrÞ: ð3:58Þ

These equations can be solved in terms of parabolic
cylinder functions which are analytic in the neighborhood
of r ¼ 0. A solution exists which (for small r) is propor-
tional to rþ r3

3p0
and so we have consistent Ansätze.

2. Large r analysis

For large r, since we expect the Newtonian limit to hold,
we will consider the Ansätze

AðrÞBðrÞ ¼ 1þ ϵ0
r2
; ϵ0 ∈ R; and

BðrÞ ∼ 1þ β1 þ
β2
r
þ β3

r2
; r → ∞; ð3:59Þ

which imply

A0

A
¼ −

B0

B
−
2ϵ0
r3

; r → ∞: ð3:60Þ

Also the asymptotic Ansatz

fðrÞ ¼ 1 −
α1
r2

þ δðrÞ; ð3:61Þ

where α1 is a constant, solves the scalar field equation (3.2).
From (3.20), on considering the leading order in 1

r, we
find α1 ¼ 1

λη2
. From (3.17) and the leading behavior in 1

r we

have the requirement that β1 ¼ −η2 which gives the deficit
angle already noted by the authors of Ref. [8] (using a
different argument). This also matches the leading behavior
in (3.18). Ignoring, for the moment, the 1=r2 corrections on
the right-hand side of the AB product in (3.59), we observe
that the equation linear in δðrÞ that is derived from (3.20) is

ð1 − η2Þ d2

dr2
δðrÞ þ 2

r
ð1 − η2Þ d

dr
δðrÞ − 2λη2δðrÞ ¼ 0:

ð3:62Þ

This has a decaying solution

δðrÞ ¼
exp ð−η

ffiffiffiffiffiffiffi
2λ

1−η2

q
rÞ

r
; ð3:63Þ

and so δðrÞ in (3.61) is exponentially small and can be
ignored.
On subtracting (3.28) from (3.27), and taking into account

(3.59) and (3.60), we readily obtain, to leading order in
r → ∞,

ϵ0 ¼ −
ς2

4ð1 − η2Þ2 : ð3:64Þ

Upon adding (3.27) and (3.28) we can determineW2 in the
large r region:

W2ðrÞ≃ 1

2r2

�
β3 þ

1

λ

�
: ð3:65Þ

From large r analysis, this solution, together with (3.64), is
also consistent with the third Einstein equation (3.19).
The asymptotic analysis for r → ∞ does not determine

the constant β3. However, from (3.57), which is valid for all
r, we are led to identify
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β3 þ
1

λ
¼ 2ς2; ð3:66Þ

where on the right-hand side we have used (3.56).
We remark that, in view of (3.22), and that asymptoti-

cally (for r → ∞) we have AB≃ 1, B ¼ 1 − η2 [cf. (3.59),
(3.64)], the leading behavior, for asymptotically large radial
distance (r → ∞), of the radial component of the magnetic
field is still given by (3.54). On the other hand, the
asymptotic behavior for r → ∞ of the axion field b is

bðrÞ≃ −
ς

r
þ � � � ; r → ∞; ð3:67Þ

where we used the shift symmetry in the action (3.1),
b → bþ c0, with c0 a constant, to impose the boundary
condition bð∞Þ ¼ 0. Thus −ς plays the role of an “axion”
charge. In this sense the fact that ς2 contributes to the
“charge” term in the metric function B (3.59) is consistent
with the findings of [24]. However, ourmodel andmonopole
solution are quite different from those of [24]. Moreover, in
our case, asymptotically for large r, there is the deficit η2 in
the metric function B due to the presence of the global
monopole.
Secondly, for very large coupling λ → ∞, which is of

phenomenological relevance as it enforces the scalar
triplet field to take on its classical vacuum expectation
value, the 1=λ terms on the left-hand side of (3.66) can be
ignored. In this case, the metric function B is given by the
Reissner-Nordström form ([22]) for both small and
large r.
Finally, we remark that the 1=r term in B in (3.59)

corresponds to the contributions from the monopole mass,
and has a coefficient β2 which cannot be determined in our
asymptotic analysis up toOð1=r3Þ. From the expected large
r asymptotic RN form (3.30) of the metric tensor, one can
identify β2 ¼ −2M, where M is the monopole mass [8].
An estimate of the monopole mass is given in the next
subsection.

D. An estimate of the magnetic monopole mass

To make an estimate of the monopole mass, we shall
use the analytic form of the solution in the two asymptotic
regimes of small and large (radial) distances from the
monopole center. The monopole mass is concentrated in
the core region whose size we will estimate following
arguments similar to those in Ref. [8]. The total energy
[i.e., (rest) mass M] is given by the integral over the
3-space of the time-time component of the stress energy
tensor:

M ¼
Z ffiffiffiffiffiffi

−g
p

d3x

�
2W2

Br2
þ ðb0Þ2

4BA
þ η2

�
f2

Br2
þ ðf0Þ2

2BA

�

þ λη4

4B
ðf2 − 1Þ2

�
: ð3:68Þ

From the metric (3.13), and the property (3.24),
we observe that the integration measure

ffiffiffiffiffiffi−gp
d3x ¼

r2 sin θdrdθdϕ in spherical polar coordinates assumes its
flat space-time form. Taking into account the small-r form
of the various functions appearing in (3.68), we obtain that,
for r → 0, the corresponding contributions to the integral
are vanishing to leading order. However, for r → ∞, there is
a linearly divergent contribution in r coming from the third
term of the integrand on the right-hand side of (3.68), which
is the dominant contribution to the integral. We have
assumed that the interpolating functions of the various
terms are nonsingular in the nonasymptotic regions. Using a
spatial infrared cutoff L, we estimate the mass of the
monopole to be

M ∼ 4π
η2

1 − η2

Z
L

0

dr ∼ 4πη2L; ð3:69Þ

for η ≪ 1 [or in terms of the dimensionful quantities (3.23)
η ≪ MPl, where MPl is the reduced Planck mass]; this
estimate is consistent phenomenologically (see below).
Physically, and following the logic in Ref. [8], whose
authors discuss self-gravitating global monopoles in the
absence of both electromagnetic fields and (Kalb-Ramond)
torsion, we may assume that the mass of the monopole is
concentrated in its core, whose size isL, and outside this the
scalar field configuration approaches its constant vacuum
expectation value, that is f ∼ 1.
It has been estimated in [8] that the core size is of order

λ−1=2η−1 in flat space. If we replace L by the core size in
(3.69), then we obtain M ∼ 4πλ−1=2η (the same order for
the mass of the monopole given in [8]). For small ηð≪ 1Þ,
gravity is expected not to change significantly the structure
of the monopole at small distances.
However, in our case we see from (3.61) that the above

estimate for the core size is not correct, in the sense that at
such distances f ≃ 0 and the approximation that f ≃ 1 at
large r is not valid. For a consistent picture, Lmust be such
that L ≫ ffiffiffiffiffi

α1
p ¼ λ−1=2η−1, so that f ≃ 1. It is sufficient to

take the size of the core to be

L ¼ ξλ−1=2η−1 ð3:70Þ
with ξ ¼ Oð10Þ, say.
In such a case, from (3.69) we obtain the following order

of magnitude estimate of the monopole mass,

M ∼ 4πξλ−1=2η; ξ ¼ Oð10Þ; ð3:71Þ
with λ and η phenomenological parameters to be con-
strained by experiment. We will attempt to estimate the
order of the parameter ξ by assuming that the main
contribution to the integral (3.68) comes from a thin shell
of radius R ∼ L ≫ 1, and of thickness ΔL ¼ ð1 − αÞL,
0 < α < 1; we then find for η ≪ 1 and large λ that
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M ∼
Z
shellthicknessð1-αÞL

ffiffiffiffiffiffi
−g

p
d3x

�
2W2

Br2
þ ðb0Þ2

4BA

þ η2
�
f2

Br2
þ ðf0Þ2

2BA

�
þ λη4

4B
ðf2 − 1Þ2

�

≃ 1

α
ð1 − αÞ

�
9πς2 þ 4π

λ

�
1

L
þ 4πη2ð1 − αÞL; ð3:72Þ

which we assume here. In arriving at the above result we
have used (3.57), (3.22), and the asymptotic behavior for
large r: f2 − 1≃ − 2

λη2r2 and AB≃ 1. For λ ≫ 1 assumed

here, which ensures that the scalar fields χa approach their
vacuum expectation values, the right-hand side of (3.72) is
practically independent of the coupling λ.12 The core radius
Lc then is estimated by minimizing M as given in (3.72)
with respect to L, which yields

Lc ¼
3

2

ffiffiffi
1

α

r
jςj
η
: ð3:73Þ

Comparing with (3.70), this estimate yields ξ ¼ 3
2

ffiffi
λ
α

q
,

which can be arranged to be of Oð10Þ. This yields an
estimate of the monopole mass

M ∼ 12π

ffiffiffi
1

α

r
ð1 − αÞjςjη; > 0: ð3:74Þ

The important point to notice is that the mass is propor-
tional to the Kalb-Ramond field strength (“torsion charge”)
ς and independent of λ (in leading order for large λ). Within
our phenomenological effective theory, ξ (equivalently α)
cannot be completely determined without a full interpolat-
ing solution.
Before proceeding further we would like to make some

comments regarding the nature of the mass in (3.74) which
is positive, in contrast to the discussion in [17]; thus our
monopole is an ordinary particle and can be produced at a
collider such as the LHC. This case has to be contrasted
with the solution of [17] which, as mentioned in Sec. II, is
associated with a matching (at the core radius) of an
exterior Schwarzschild-like metric to an interior local de
Sitter metric. Such a construction leads to a negative mass
for the monopole, as we have discussed, which is not of
relevance to collider physics, although there may be some
cosmological interest.
However in our case, with ς ≠ 0, the space-time at the

origin r → 0 (3.40) is not of de Sitter type but rather of

Reissner-Nordström type (3.30) with B scaling like 1=r2

(3.40), owing to ς being nonzero [see (3.22)]. In our
analysis we assumed that the entirety of the mass of the
monopole is enclosed inside the core radius Lc (3.73),
which implies a sort of bag model. It is important to notice
that in the limit ς → 0, the core radius (3.73) Lc → 0;
hence, at least from our current asymptotic analysis, that
leads to the above results, there seems to be no smooth limit
connecting our global-monopole solution (with Kalb-
Ramond axion charge ς and positive mass proportional
to the absolute value jςj), to the solution of [17] with
negative mass. Hence, it seems that our solution here
represents a novel kind of a global monopole with Kalb-
Ramond axion charge ς ≠ 0. However, given that the r → 0
behavior of the mass function (3.68) is regular at the origin,
one needs a full numerical solution connecting the r → 0
and r → ∞ regimes, before definite conclusions are made.
In this sense, one cannot exclude the possibility that, in the
case of a sufficiently small ζ [compared to other dimen-
sionless parameters in the model, such as η (in units of
Planck mass)], so that for all practical purposes ς → 0, one
recovers the negative mass instability of [17] and the
corresponding de Sitter space-time inside the horizon of
that solution [17]. If this were the case, then one would face
the possibility of having a critical minimum value of ς for
our bag model with positive mass to represent the charged
self-gravitating global monopole. These are important
issues that we postpone for future work. However, for
our string-inspired Kalb-Ramond charged monopole sol-
ution, we should remark that, for ς ≠ 0, the Dirac quan-
tization condition (to be discussed in the next section)
points towards large values of ς; hence a small ς ≠ 0 regime
is excluded on such grounds.
Since we have assumed that η ≪ 1, the mass of the

monopole is much smaller than the Planck scale. In such a
case there are no Reissner-Nordström horizons, defined by
the vanishing of the metric function B, i.e.,

1 −
2M
r

þ 2ς2

r2
¼ 0; ⇒ rð�Þ ¼ M

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2ς2

M2

s �
;

ð3:75Þ

existence of horizons would require that M ≥
ffiffiffi
2

p
ς which

is incompatible with (3.74), since α ¼ Oð1Þ and η ≪ MP.
This means that a black hole and the corresponding
horizons cannot form in our case, but the naked singularity
at r → 0 is still shielded inside the core radius, which
essentially separates an outer region in space, where the
scalar field is locked into its vacuum expectation value,
from an inner region where symmetry breaking is not
complete, and in fact the field f vanishes at the center
r ¼ 0. On the other hand, the asymptotic form (3.59) for
large but finite r is of Reissner-Nordström type ([22]). As
we have already mentioned, the 1=r term corresponds to the

12In fact, the 1=λ corrections on the right-hand side of (3.72)
are absent if one defines the shell radius L as the one signifying a
region of space outside of which one substitutes the value f ¼ 1
for the scalar field configuration (i.e., the fields are replaced by
their vacuum expectation values). The difference in the estimate
of the core size from the approach based on (3.72) is then
negligible for λ ≫ 1.
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contributions from the monopole mass, and has a coef-
ficient β2 which cannot be determined in our asymptotic
analysis up to Oð1=r3Þ, but could be related to the
monopole mass. These are crucial features of the solution
ensuring a positive mass (3.71) for the monopole. The 1=r2

deviations (3.59), (3.66) from the Schwarzschild form
occur due to the Kalb-Ramond axionlike field and the
interactions of the Higgs field. This evasion of Birkhoff’s
theorem is permitted because in the exterior of the
monopole core the space-time is not that of the vacuum,
being characterized by nonzero gauge and axion fields that
contribute to the magnetic charge contribution of the
Reissner-Nordström solution ([22]).

E. Magnetic charge quantization and discrete
Kalb-Ramond field strength

An important property of our magnetic monopole
solution is the quantization of its magnetic charge. (We
shall restrict ourselves to the case of very strong self-
interactions among the scalar fields λ → ∞.) As we have
discussed above, from the form ofWðrÞ given in (3.57), we
deduce the following form of the (radial) magnetic field
(3.15) for r → ∞ (where AB ∼ 1 to leading order):

B ¼
ffiffiffi
2

p
ς
r
r3
: ð3:76Þ

This has the same “Coulomb-like” form B ¼ g r
r3 of the

standard Dirac monopole magnetic field [4] with “magnetic
charge” g given by [cf. (3.55)]

g ¼
ffiffiffi
2

p
ς: ð3:77Þ

The magnetic charge is proportional to the Kalb-Ramond
field strength. Since the latter can be positive or negative,
the charge can be positive or negative, which implies the
existence of both monopoles and antimonopoles.
Topological quantization of the magnetic charge (ς in our

case) found in the standard ’t Hooft–Polyakov monopole
solution [5] does not follow from the H-dependent modi-
fication of the electromagnetic tensor (3.50). This is
because the latter is four-dimensional in the internal space:
there is a tetrad of scalar fields ϕa, a ¼ 0, 1, 2, 3 (3.50),
which does not provide a mapping of an internal SO(3)
sphere onto a spatial S2 sphere. This is consistent with the
fact that the Ansatz (3.50), which was considered for the
case γ ¼ 0 in the action (3.1), has an arbitrary constant
normalization factor, which, in contrast to the case γ ≠ 0,
can only be fixed if one requires matching with the
solutions for the γ ≠ 0 case; in particular γ ¼ 1 corresponds
to string theory effective actions, as discussed in detail in
Sec. III A. This constant factor would accompany the
coefficient ς in the magnetic charge (3.77), and, although
Dirac’s quantization condition for the latter would occur,
this would have no implications for a discretization of ς.

The quantization of ς can only come in the γ ¼ 1 string-
inspired case from the standard Dirac argument [4], which
considers the gauge transformations of the quantum rela-
tivistic wave function ψ (for r → ∞) of an electron field
(with electric charge e) in the presence of the Dirac-string
singular vector potential AðrÞ for the monopole magnetic
field B (with B ¼ ∇ ×A). Explicitly, requiring the single-
valuedness of the wave function under the appropriate
(singular) gauge transformations yields the Dirac quanti-
zation rule

jgej ¼ n
2
; n ∈ Zþ∪f0g: ð3:78Þ

From (3.77), we obtain the discretization of the Kalb-
Ramond field strength

ςe ¼ n

2
ffiffiffi
2

p ; n ∈ Zþ∪f0g: ð3:79Þ

The discreteness of the Kalb-Ramond field strength in the
presence of a magnetic monopole is a novel feature of our
solution.13

We should also note that the antisymmetric-
tensor monopole solutions of [27] differ from ours in
several ways. Firstly, those monopoles are considered in
D-dimensional Minkowski space-time (D ¼ nþ 3, n ≥ 2 a
positive integer). Secondly, as a result of appropriately
fixing the antisymmetric tensor gauge symmetry, and
taking the B-field to be time independent, the static field
strength Hμ1…μnþ1

¼ ∂ ½μ1Bμ2…μnþ1� can be considered as a
form in a D − 1 Euclidean space, which can be patched
appropriately in the presence of an antisymmetric-tensor
monopole singularity at the spatial origin, leading to the
quantization of the H-charge. By contrast, in our solution,
the nonzero components of the Kalb-Ramond field strength
read, for the asymptotic regions r → 0 or r → ∞,

H0θϕ ¼ ϵ0θϕr∂rb ∼ ς sin θ; ð3:80Þ

corresponding to a time-dependent B-field in those regions
of the form

Bμν ¼

0
BBB@

0 0 0 0

0 0 0 0

0 0 0 ςt sin θ

0 0 −ςt sin θ 0

1
CCCA ð3:81Þ

13We should point out that discrete Kalb-Ramond field
strengths may also arise in certain bosonic σ-models where
the target space-time is a group manifold [19], and the corre-
sponding field strength is proportional to the level of the
associated Kac-Moody algebra. Such models perhaps might
provide a framework for embedding our solution in an ultra-
violet-complete model of string theory.
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with t the time. The field strength (3.80) is regular as r → 0,
in contrast to the solutions of Ref. [27], where theH-charge
quantization was a consequence of monopoles in the
antisymmetric tensor field, with singular behavior of the
H-field strength as r → 0.

IV. DISCUSSION: CONSTRAINING THE MODEL
BY EXPERIMENT

We have outlined how Kalb-Ramond axion fields could
generate a magnetic monopole. There is spontaneous
symmetry breaking of a global internal symmetry which
is essential for producing a self-gravitating global monop-
ole with a deficit angle. In the limit λ → ∞ the scalar fields
have no propagating degrees of freedom and are confined to
classical values that interpolate between the two expect-
ation values that minimize the potential, that is between
zero and η. Without nonzero Kalb-Ramond field strengths
(“torsion”), we showed that no magnetic monopole charge
is induced by the global monopole [in the limit of large λ
but there are Oð1=λÞ contributions of course]. Because
nonsingular Abelian gauge fields are incompatible with
magnetic monopoles, we have worked directly with the
electromagnetic field tensor and have not required the
Abelian Bianchi identity. Nevertheless, formally, we can
use a singular vector potential to represent the magnetic
field, which has the Coulomb-like form of the standard
Dirac monopole. Following the argument of Dirac the latter
is quantized in terms of the fundamental electric charge.
The existence of the magnetic charge (3.77) implies high

ionization, while the smallness of the monopole mass
(3.71) (as compared to the Planck scale) makes our
magnetic monopole model falsifiable in the current round
of the LHC [1]. The scalars χa (3.16) in the model do not
represent the Standard Model Higgs, but elementary
defects (or composites of heavy fermions) associated with
a spontaneous breaking of O(3) symmetry [8]. The phe-
nomenological parameters λ and the vacuum expectation
value η, as well as the core size parameter ξ, can be
constrained by experiments, if one accepts the loose
definition of the core in (3.70) which leads to (3.71);
the core dimension is some large distance (compared to the
Planck length) such that, for distances larger than this, the
solution for the scalar field configuration is f ≃ 1 [up to
terms of Oðξ−1λ−1=2η−1Þ].
It is important to note that large λ self-interaction

couplings affect significantly the probability for producing
monopole-antimonopole pairs [8],

P ∝ e−ðconstÞM2=F ∝ e−const
0=λ; ð4:1Þ

where F ∼ η2 is the attractive force between a monopole
and an antimonopole due to the linear divergent energy. In
fact this can be understood by estimating the form factor in
the cross section for such processes. Indeed, from (3.70)
and (3.71) one may estimate the ratio of the core size

Rcore ¼ L to the Compton wavelength λCompt ¼ 1=M of
the monopole as

Rcore

λCompt
∼ 4πξ2λ−1 ¼ M2

4πη2
: ð4:2Þ

For largemonopolesRcore > λCompt, and thereforeweak self-
interaction couplings λ ≪ 4πξ2 ¼ Oð103Þ for ξ ¼ Oð10Þ, a
semiclassical situation is reached where the form factor has
an exponential suppression [28] e−4Rcore=λCompt . This is in
agreement with the estimate in [8] for the production
probability P of monopole-antimonopole pairs (4.1).
Consequently, for small λ < 1 the production probability
P appears to be negligibly small. For large λ ≫ 1, however,
which is the case of interest here, P is expected to be large,
and thus of relevance to collider (including LHC) phenom-
enology (although strong coupling can complicate analyti-
cal calculations). On the other hand, once a monopole/
antimonopole pair is produced, energy losses to Goldstone
fields associatedwith the breaking of theO(3) symmetry, at a
rate of order η2 [8], are probably expected, which must
be taken into account when considering the relevant
phenomenology. We also have in our model photons and
Kalb-Ramond fields which couple to the monopoles gravi-
tationally and complicate the situation.
In the present article we note that from the current

bounds on the (scalar) monopole mass at the LHC [1], we
obtain from (3.74) for the lowest magnetic charge

6π

ffiffiffiffiffiffi
1

2α

r
ð1 − αÞη ≥ 420 GeV

×

�
for spin 0; ς ¼ 1

2
ffiffiffi
2

p ; λ ≫ 1; η ≪ MP; α ¼ Oð1Þ
�
;

ð4:3Þ
with higher bounds for higher magnetic charges. However
we should exercise great caution in applying the above limits
to our model. These bounds have been derived based on
perturbative Drell-Yan processes [1], from the decay of
virtual photons into monopole-antimonopole pairs. In the
presence of strong magnetic charges, such bounds are not
strictly valid. Moreover, in our model, the production
mechanism of the global monopoles from Standard
Model particle collisions needs to be carefully evaluated.
In an effective field theory framework [9,21], the derivative
of the Kalb-Ramond axion field ∂μb couples to the axial
fermion current ψ̄ iγ

μγ5ψ i, where i runs over fermion species
of the Standard Model (SM), but the scalars couple only
gravitationally to the SM fields (unless they are composites
of heavy fermions which may couple to SM fields through
loops).Hence the actual productionmechanismof the global
monopole solution at colliders, such as the LHC, and their
detection need to be examined carefully. We stress once
again that the monopole production is certainly expected to
be strongly suppressed unless λ is large, which is our case.
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Before closing we would like to make two important
additional remarks. Given that our monopole mass is of
order TeV, and thus much smaller than the Planck massMP,
gravitational collapse to a black hole is not expected. Indeed,
it is known in general [29] that to form anAbelian black hole
of Arnowitt-Deser-Misner (ADM) massMBH and magnetic
charge g, one needs to satisfy the condition

MBH ≥
gffiffiffiffiffiffiffiffiffiffiffiffi

4πGN
p :

Since in our monopole caseM ∼ ηg [cf. (3.74)], in order to
have a collapse one would need η ≥ MP

2
ffiffi
π

p , which is not the

case, as η is assumed in our model to be of order TeV.
Moreover, we did not comment here on the stability of our

monopole configurations. Although topologically nontri-
vial, indicating stability on generic grounds, there is never-
theless an ongoing debate [16] on the stability of global
monopoles of [8], which may be subject to a sort of angular
collapse. As stressed by Achucarro and Urrestilla in [16], in
the case of a global monopole, the energy barrier between
the monopole and the vacuum is finite, despite the existence
of a conserved topological charge, and this feature is
independent of the details of the scalar potential. But the

issue of decay of such configurations, e.g., due to thermal
fluctuation instabilities, remained inconclusive. Several
extensions of the original model have been suggested in
the literature [16]. The extension may involve more scalars,
perhaps, for instance, gauged ones in addition to the global
χa fields [30]. We shall not discuss such issues further here.
In our case, the presence of the Kalb-Ramond antisym-

metric tensor and gauge fields, which leads to real magnetic
monopoles, makes the model different from others in the
literature. The stability of the monopoles deserves further
studies. Even if there are instabilities, the collider produc-
tion of unstable monopoles would lead to novel exper-
imental signatures from the decay of such objects to
Goldstone bosons and other particles. There are also, of
course, many other interesting questions which we have
mentioned and hope to address in the future.

ACKNOWLEDGMENTS

We thank Malcolm Fairbairn, Jim Pinfold and fellow
members of the MoEDAL Collaboration for discussions
and their interest in this work. This work is supported in
part by the U.K. Science and Technology Facilities Council
(STFC) via Grant No. ST/L000326/1.

[1] G. Aad et al. (ATLAS Collaboration), Search for magnetic
monopoles and stable particles with high electric charges in
8 TeV pp collisions with the ATLAS detector, Phys. Rev. D
93, 052009 (2016); B. Acharya et al. (MoEDAL Collabo-
ration), Search for magnetic monopoles with the MoEDAL
prototype trapping detector in 8 TeV proton-proton colli-
sions at the LHC, J. High Energy Phys. 08 (2016) 067.

[2] D. J. Gross and J. H. Sloan, The quartic effective action for
the heterotic string, Nucl. Phys. B291, 41 (1987); R. R.
Metsaev and A. A. Tseytlin, Order alpha-prime (two loop)
equivalence of the string equations of motion and the sigma
model Weyl invariance conditions: Dependence on the
dilaton and the antisymmetric tensor, Nucl. Phys. B293,
385 (1987). See also R. T. Hammond, Torsion gravity, Rep.
Prog. Phys. 65, 599 (2002), and references therein.

[3] J. Polchinski, String Theory (Cambridge University
Press, Cambridge, England, 2007), Vols. 1 and 2,
ISBN: 9780511252273 (eBook), 9780521672276 (Print),
9780521633031 (Print); ISBN: 9780511252280 (eBook),
9780521633048 (Print), 9780521672283 (Print).

[4] P. A. M. Dirac, The theory of magnetic poles, Phys. Rev. 74,
817 (1948); The monopole concept, Int. J. Theor. Phys. 17,
235 (1978).

[5] G. ’t Hooft, Magnetic monopoles in unified gauge theories,
Nucl. Phys. B79, 276 (1974); A. M. Polyakov, Pis’ma Zh.
Eksp. Teor. Fiz. 20, 430 (1974) [Particle spectrum in the
quantum field theory, JETP Lett. 20, 194 (1974)].

[6] H. Georgi and S. L. Glashow, Unity of All Elementary
Particle Forces, Phys. Rev. Lett. 32, 438 (1974).

[7] N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, The
hierarchy problem and new dimensions at a millimeter, Phys.
Lett. B 429, 263 (1998); I. Antoniadis, N. Arkani-Hamed,
S. Dimopoulos, and G. R. Dvali, New dimensions at a
millimeter to a Fermi and superstrings at a TeV, Phys. Lett.
B 436, 257 (1998); L. Randall and R. Sundrum, A Large
Mass Hierarchy from a Small Extra Dimension, Phys. Rev.
Lett. 83, 3370 (1999).

[8] M. Barriola and A. Vilenkin, Gravitational Field of a Global
Monopole, Phys. Rev. Lett. 63, 341 (1989).

[9] M. de Cesare, N. E. Mavromatos, and S. Sarkar, On the
possibility of tree-level leptogenesis from Kalb-Ramond
torsion background, Eur. Phys. J. C 75, 514 (2015).

[10] F. Rahaman, S. Sur, and K. Gayen, A study of a global
monopole in Kalb-Ramond background, Phys. Scr. 69, 78
(2004).

[11] E. Corrigan, D. I. Olive, D. B. Fairlie, and J. Nuyts,
Magnetic monopoles in SU(3) gauge theories, Nucl. Phys.
B106, 475 (1976); P. Goddard and D. I. Olive, New
developments in the theory of magnetic monopoles, Rep.
Prog. Phys. 41, 1357 (1978).See also Y. M. Shnir,Magnetic
Monopoles (Springer, Berlin, Germany, 2005), in particular
Sec. V.1.4.

[12] M. B. Halpern, Field strength and dual variable formulations
of gauge theory, Phys. Rev. D 19, 517 (1979).

NICK E. MAVROMATOS and SARBEN SARKAR PHYSICAL REVIEW D 95, 104025 (2017)

104025-16

https://doi.org/10.1103/PhysRevD.93.052009
https://doi.org/10.1103/PhysRevD.93.052009
https://doi.org/10.1007/JHEP08(2016)067
https://doi.org/10.1016/0550-3213(87)90465-2
https://doi.org/10.1016/0550-3213(87)90077-0
https://doi.org/10.1016/0550-3213(87)90077-0
https://doi.org/10.1088/0034-4885/65/5/201
https://doi.org/10.1088/0034-4885/65/5/201
https://doi.org/10.1103/PhysRev.74.817
https://doi.org/10.1103/PhysRev.74.817
https://doi.org/10.1007/BF00672870
https://doi.org/10.1007/BF00672870
https://doi.org/10.1016/0550-3213(74)90486-6
https://doi.org/10.1103/PhysRevLett.32.438
https://doi.org/10.1016/S0370-2693(98)00466-3
https://doi.org/10.1016/S0370-2693(98)00466-3
https://doi.org/10.1016/S0370-2693(98)00860-0
https://doi.org/10.1016/S0370-2693(98)00860-0
https://doi.org/10.1103/PhysRevLett.83.3370
https://doi.org/10.1103/PhysRevLett.83.3370
https://doi.org/10.1103/PhysRevLett.63.341
https://doi.org/10.1140/epjc/s10052-015-3731-z
https://doi.org/10.1238/Physica.Regular.069a00077
https://doi.org/10.1238/Physica.Regular.069a00077
https://doi.org/10.1016/0550-3213(76)90391-6
https://doi.org/10.1016/0550-3213(76)90391-6
https://doi.org/10.1088/0034-4885/41/9/001
https://doi.org/10.1088/0034-4885/41/9/001
https://doi.org/10.1103/PhysRevD.19.517


[13] M. Gasperini, Theory of Gravitational Interactions
(Springer, Italy, 2013).

[14] M. Gasperini, Elements of String Cosmology (Cambridge
University Press, Cambridge, England, 2007).

[15] P. O. Mazur and J. Papavassiliou, Gravitational scattering on
a global monopole, Phys. Rev. D 44, 1317 (1991); H. Ren,
Fermions in a global monopole background, Phys. Lett. B
325, 149 (1994); E. R. Bezerra de Mello and C. Furtado,
The nonrelativistic scattering problem by a global monop-
ole, Phys. Rev. D 56, 1345 (1997); A. A. Roderigues
Sobreira and E. R. Bezerra de Mello, The classical and
quantum analysis of a charged particle on the space-time
produced by a global monopole, Grav. Cosmol. 5, 177
(1999).

[16] A. S. Goldhaber, Collapse of a Global Monopole, Phys.
Rev. Lett. 63, 2158 (1989). In the original suggestion of
Goldhaber that global monopoles are not stable against
“angular collapse,” there is an ongoing debate on this issue;
for a partial list of references see S. H. Rhie and D. P.
Bennett, Global Monopoles Do Not “Collapse,” Phys. Rev.
Lett. 67, 1173 (1991); L. Perivolaropoulos, Instabilities and
interactions of global topological defects, Nucl. Phys. B375,
665 (1992); G. W. Gibbons, M. E. Ortiz, F. Ruiz Ruiz, and
T. M. Samols, Semilocal strings and monopoles, Nucl. Phys.
B385, 127 (1992); M. Hindmarsh, Semilocal topological
defects, Nucl. Phys. B392, 461 (1993); G. Arreaga, I. Cho,
and J. Guven, Stability of selfgravitating magnetic monop-
oles, Phys. Rev. D 62, 043520 (2000); A. Achucarro and J.
Urrestilla, The (In)stability of Global Monopoles Revisited,
Phys. Rev. Lett. 85, 3091 (2000); R. Gregory and C. Santos,
Space-time structure of the global vortex, Classical Quan-
tum Gravity 20, 21 (2003); E. R. Bezerra de Mello, Reply to
comment on “Gravitating magnetic monopole in the global
monopole space-time,” Phys. Rev. D 68, 088702 (2003);
S. B. Gudnason and J. Evslin, Global monopoles of
charge 2, Phys. Rev. D 92, 045044 (2015).

[17] D. Harari and C. Lousto, Repulsive gravitational effects of
global monopoles, Phys. Rev. D 42, 2626 (1990).

[18] K. A. Bronnikov, B. E. Meierovich, and E. R. Podolyak, Zh.
Eksp. Teor. Fiz. 122, 459 (2002) [Global monopole in
general relativity, J. Exp. Theor. Phys. 95, 392 (2002)].

[19] I. Antoniadis, C. Bachas, J. R. Ellis, and D. V. Nanopoulos,
Cosmological string theories and discrete inflation, Phys.
Lett. B 211, 393 (1988).

[20] P. Das, P. Jain, and S. Mukherji, Cosmic birefringence
within the framework of heterotic string theory, Int. J. Mod.
Phys. A 16, 4011 (2001); S. Kar, P. Majumdar, S. SenGupta,
and A. Sinha, Does a Kalb-Ramond field make space-time
optically active?, Eur. Phys. J. C 23, 357 (2002); D. Maity,
S. SenGupta, and S. Sur, Observable signals in a string

inspired axion-dilaton background and Randall-Sundrum
scenario, Phys. Rev. D 72, 066012 (2005); J. Alexandre,
N. E. Mavromatos, and D. Tanner, Non-perturbative time-
dependent string backgrounds and axion-induced optical
activity, Phys. Rev. D 78, 066001 (2008); Antisymmetric-
tensor and electromagnetic effects in an alpha-prime-
non-perturbative four-dimensional string cosmology, New
J. Phys. 10, 033033 (2008).

[21] M. J. Duncan, N. Kaloper, and K. A. Olive, Axion hair and
dynamical torsion from anomalies, Nucl. Phys. B387, 215
(1992).

[22] S. M. Caroll, Spacetime and Geometry (Addison-Wesley,
Reading, MA, 2004); C. Misner, K. Thorne, and J. Wheeler,
Gravitation (Freeman, San Francisco, 1973).

[23] S. SenGupta and S. Sur, Spherically symmetric solutions of
gravitational field equations in Kalb-Ramond background,
Phys. Lett. B 521, 350 (2001).

[24] K. M. Lee and E. J. Weinberg, Charge black holes with
scalar hair, Phys. Rev. D 44, 3159 (1991).

[25] A. Sen, Rotating Charged Black Hole Solution in Heterotic
String Theory, Phys. Rev. Lett. 69, 1006 (1992).

[26] See for instance S. Sur, S. Das, and S. SenGupta, Charged
black holes in generalized dilaton-axion gravity, J. High
Energy Phys. 10 (2005) 064; T. Ghosh and S. SenGupta,
Tunneling across dilaton-axion black holes, Phys. Lett. B
678, 112 (2009); Tunneling across dilaton coupled black
holes in anti de Sitter spacetime, Phys. Lett. B 696, 167
(2011) and references therein.

[27] R. Savit, Topological Excitations in U(1) Invariant Theories,
Phys. Rev. Lett. 39, 55 (1977); P. Orland, Instantons and
disorder in antisymmetric tensor gauge fields, Nucl. Phys.
B205, 107 (1982); R. I. Nepomechie, Magnetic monopoles
from antisymmetric tensor gauge fields, Phys. Rev. D 31,
1921 (1985).

[28] A. K. Drukier and S. Nussinov, Monopole Pair Creation in
Energetic Collisions: Is It Possible?, Phys. Rev. Lett. 49,
102 (1982).

[29] G.W. Gibbons, Selfgravitating magnetic monopoles, global
monopoles and black holes, Lect. Notes Phys. 383, 110
(1991), and references therein.See also K. M. Lee, V. P.
Nair, and E. J. Weinberg, Black holes in magnetic monop-
oles, Phys. Rev. D 45, 2751 (1992); J. Spinelly, E. R.
Bezerra de Mello, and U. De Freitas, Gravitating magnetic
monopole in the global monopole space-time, Phys. Rev. D
66, 024018 (2002); E. R. Bezerra de Mello, Y. Brihaye, and
B. Hartmann, Interaction of global and local monopoles,
Phys. Rev. D 67, 045015 (2003).

[30] A. Achucarro, B. Hartmann, and J. Urrestilla, Exotic
composites: The decay of deficit angles in global-local
monopoles, J. High Energy Phys. 07 (2005) 006.

MAGNETIC MONOPOLES FROM GLOBAL MONOPOLES IN … PHYSICAL REVIEW D 95, 104025 (2017)

104025-17

https://doi.org/10.1103/PhysRevD.44.1317
https://doi.org/10.1016/0370-2693(94)90085-X
https://doi.org/10.1016/0370-2693(94)90085-X
https://doi.org/10.1103/PhysRevD.56.1345
https://doi.org/10.1103/PhysRevLett.63.2158
https://doi.org/10.1103/PhysRevLett.63.2158
https://doi.org/10.1103/PhysRevLett.67.1173
https://doi.org/10.1103/PhysRevLett.67.1173
https://doi.org/10.1016/0550-3213(92)90115-R
https://doi.org/10.1016/0550-3213(92)90115-R
https://doi.org/10.1016/0550-3213(92)90097-U
https://doi.org/10.1016/0550-3213(92)90097-U
https://doi.org/10.1016/0550-3213(93)90681-E
https://doi.org/10.1103/PhysRevD.62.043520
https://doi.org/10.1103/PhysRevLett.85.3091
https://doi.org/10.1088/0264-9381/20/1/302
https://doi.org/10.1088/0264-9381/20/1/302
https://doi.org/10.1103/PhysRevD.68.088702
https://doi.org/10.1103/PhysRevD.92.045044
https://doi.org/10.1103/PhysRevD.42.2626
https://doi.org/10.1134/1.1513811
https://doi.org/10.1016/0370-2693(88)91882-5
https://doi.org/10.1016/0370-2693(88)91882-5
https://doi.org/10.1142/S0217751X01004840
https://doi.org/10.1142/S0217751X01004840
https://doi.org/10.1007/s100520100872
https://doi.org/10.1103/PhysRevD.72.066012
https://doi.org/10.1103/PhysRevD.78.066001
https://doi.org/10.1088/1367-2630/10/3/033033
https://doi.org/10.1088/1367-2630/10/3/033033
https://doi.org/10.1016/0550-3213(92)90052-D
https://doi.org/10.1016/0550-3213(92)90052-D
https://doi.org/10.1016/S0370-2693(01)01238-2
https://doi.org/10.1103/PhysRevD.44.3159
https://doi.org/10.1103/PhysRevLett.69.1006
https://doi.org/10.1088/1126-6708/2005/10/064
https://doi.org/10.1088/1126-6708/2005/10/064
https://doi.org/10.1016/j.physletb.2009.05.063
https://doi.org/10.1016/j.physletb.2009.05.063
https://doi.org/10.1016/j.physletb.2010.12.016
https://doi.org/10.1016/j.physletb.2010.12.016
https://doi.org/10.1103/PhysRevLett.39.55
https://doi.org/10.1016/0550-3213(82)90468-0
https://doi.org/10.1016/0550-3213(82)90468-0
https://doi.org/10.1103/PhysRevD.31.1921
https://doi.org/10.1103/PhysRevD.31.1921
https://doi.org/10.1103/PhysRevLett.49.102
https://doi.org/10.1103/PhysRevLett.49.102
https://doi.org/10.1007/3-540-54293-0
https://doi.org/10.1007/3-540-54293-0
https://doi.org/10.1103/PhysRevD.45.2751
https://doi.org/10.1103/PhysRevD.66.024018
https://doi.org/10.1103/PhysRevD.66.024018
https://doi.org/10.1103/PhysRevD.67.045015
https://doi.org/10.1088/1126-6708/2005/07/006

