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We present the first surrogate model for gravitational waveforms from the coalescence of precessing
binary black holes. We call this surrogate model NRSur4d2s. Our methodology significantly extends
recently introduced reduced-order and surrogate modeling techniques, and is capable of directly modeling
numerical relativity waveforms without introducing phenomenological assumptions or approximations to
general relativity. Motivated by GW150914, LIGO’s first detection of gravitational waves from merging
black holes, the model is built from a set of 276 numerical relativity (NR) simulations with mass ratios
q < 2, dimensionless spin magnitudes up to 0.8, and the restriction that the initial spin of the smaller black
hole lies along the axis of orbital angular momentum. It produces waveforms which begin ~30
gravitational wave cycles before merger and continue through ringdown, and which contain the effects
of precession as well as all £ € {2,3} spin-weighted spherical-harmonic modes. We perform cross-
validation studies to compare the model to NR waveforms not used to build the model and find a better
agreement within the parameter range of the model than other, state-of-the-art precessing waveform
models, with typical mismatches of 1073. We also construct a frequency domain surrogate model (called
NRSur4d2s_FDROM) which can be evaluated in 50 ms and is suitable for performing parameter estimation
studies on gravitational wave detections similar to GW150914.
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I. INTRODUCTION

With two confident detections of gravitational waves
(GWs) from binary black hole (BBH) systems [1,2], an
exciting era of gravitational wave astronomy has begun.
Once a signal has been detected, the masses and spins of the
black holes (BHs), and their uncertainties, can be deter-
mined by comparing the signal to waveforms predicted by
general relativity (GR) [3]. Similarly, by comparing the
signal to predictions, tests of GR can now be performed
in the regime of strong-field dynamics with relativistic
velocities [4].

Parameter estimation and tests of GR typically require
the computation of predicted gravitational waveforms for a
large set of different source parameters (e.g. black hole
masses and spins). A typical Bayesian parameter estimation
analysis, for example, evaluates millions of waveforms [5].
Therefore, in order to obtain reliable results on realistic
time scales, the GW model must be fast to evaluate.
Additionally, the waveform model must be accurate not
only during the weak-field perturbative binary inspiral, but
also in the strong-field, large-velocity regime. Otherwise the
model may introduce biases in parameter estimation and
inaccuracies in tests of GR. Waveform accuracy will become
increasingly important in future GW measurements, because
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higher signal-to-noise-ratio detections are anticipated as
detector technology improves.

Numerical relativity (NR) is now in a sufficiently mature
state that there are a number of codes [6—12] capable of
accurately simulating the late inspiral, merger and ring-
down of a BBH system, and the resulting GWs, even for
somewhat extreme spins [13,14] and high mass ratios
[15,16]. While the resulting waveforms are quite accurate,
the simulations can take weeks or months, thereby pre-
cluding them from being directly used in most data analysis
studies. Therefore, data analysis studies currently use
approximate NR-tuned waveform models that are fast to
evaluate [17-24].

For the analysis of GW150914 [3,25], the first GW
detection by Advanced LIGO [26], waveform models built
within the effective-one-body (EOB) [22-24,27-29] and
the phenomenological (Phenom) [19-21] frameworks were
used [3,25]. All models necessarily introduce some sys-
tematic error, however small, which are often quantified
either by comparing to NR simulations directly [20,30-33]
or by performing parameter estimation with many different
waveform models and monitoring the discrepancies. In the
case of GW150914, the systematic error for the black hole
masses was estimated to be smaller than the statistical
uncertainty. However, estimating a model’s systematic
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error in this way is complicated by the fact that the
waveform models make similar simplifications. For exam-
ple, the models ignore spin-weighted spherical-harmonic
(SWSH) modes with # > 2, which may be significant since
the signal’s power is dominated by the late inspiral and
merger. Recent studies continue to investigate this system-
atic parameter estimation bias through the use of newer
waveform models including additional physics [25] and by
comparing to NR waveforms [33].

In this paper, we use a surrogate model, which we call
NRSur4d2s, to compute waveforms approaching the accu-
racy of NR simulations. A surrogate model [29,34-36] is a
way to substantially accelerate the evaluation of a slower
but accurate waveform model (in our case, NR), while
largely retaining the accuracy of the original model. This is
done by through an expensive offline stage, where we
perform many accurate NR simulations for different input
parameter values and subsequently build and validate the
surrogate model on this set of simulations. The waveforms
from these simulations are then “interpolated” in parameter
space in an inexpensive online stage. The resulting model
can be used in place of performing additional NR simu-
lations. Surrogates can be used to accelerate other analyti-
cal models and have been used to successfully speed up
nonspinning EOB models with multiple SWSH modes [35]
and spin-aligned EOB models that include only the £ = 2
modes [29,36]. Most recently, surrogates have been used to
speed up nonspinning BBH waveforms from NR simu-
lations including 40 SWSH modes [34].

The surrogate model we develop here is based on NR
simulations using the Spectral Einstein Code (SpEC)
[8,37-42]. It extends previous NR surrogate models [34]
to include precessing binaries. The number of NR simu-
lations required to build a surrogate model increases with
parameter space size, and NR simulations become more
expensive as the mass ratio and spin magnitudes grow. To
reduce the computational cost, we restrict to a subspace of
the full precessing parameter space. The initial spin
direction of the smaller black hole is restricted to be
parallel to the orbital angular momentum. We also restrict
the mass ratio of the black holes to 1 < ¢ <2 and the
dimensionless spin magnitudes to be at most 0.8. The
duration of each NRSur4d2s waveform is equal to that of
the NR simulations, which begin 4500M before merger,
corresponding to ~30 gravitational wave cycles.

It has been shown that waveforms from precessing
systems closely resemble waveforms from nonprecessing
systems when viewed in a suitable noninertial, coprecess-
ing frame [43,44]. We use this relationship to simplify the
construction of the surrogate model by decomposing each
precessing waveform into a simpler waveform measured in
a coprecessing frame [45-47], plus a time-dependent
rotation that characterizes the precession. Additional sim-
plification is achieved by further decomposing each wave-
form into a set of functions that are slowly varying in
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parameter space and thus easier to model (cf. Fig. 6). The
model is evaluated by “interpolating” these slowly varying
functions to a desired point in parameter space, and then
using the interpolated functions to reconstruct the wave-
form in the inertial source frame of the binary.

The NRSur4d2s surrogate model just described produces
a waveform in the time domain and takes approximately
1 second to evaluate. While this is much faster than
computing a waveform using NR, it is still too slow for
many applications; furthermore many LIGO analyses
are more easily performed in the frequency domain rather
than the time domain. Therefore, we build a second
surrogate model in the frequency domain, called
NRSur4d2s_FDROM, wusing NRSur4d2s as input.
NRSur4d2s_FDROM does not employ complicated
decompositions of its input waveforms, so it requires
significantly more waveforms to build (an offline cost),
but because of its simplicity it is significantly faster and can
be evaluated in about 50 ms.

We compute errors in both our time-domain and fre-
quency-domain surrogate models by comparing the result-
ing waveforms with selected NR waveforms that were not
used to build the models; see Sec. VI for details. While
these errors are larger than the numerical truncation error of
the underlying NR simulations, we find that the agreement
between NR and our surrogate models is better than that
between NR and other precessing waveform models. The
accuracy of the surrogate models could be further improved
by incorporating additional NR waveforms.

Section II describes the surrogate modeling methods that
have been used previously, and our modifications to them
for this work. The NR simulations, as well as their
parameters and waveforms, are described in Sec. IIL
Section IV describes how the NR waveforms are decom-
posed into simple pieces, and surrogate models for each
piece are built in Sec. V. The errors of NRSur4d2s are
analyzed and compared to other waveform models in
Sec. VI. Section VII describes the construction of
NRSur4d2s_ FDROM from NRSur4d2s, which reduces
the computational cost by over an order of magnitude
without sacrificing accuracy. Finally, Sec. VIII summarizes
this work and discusses potential modifications and
improvements.

II. SURROGATE MODELING METHODS

Compared to previous work [29,34-36,48-50], which
focused on surrogates of analytical waveform models or on
surrogates of simpler NR waveforms, surrogate models of
precessing NR waveforms pose a number of new, unique
challenges. First, the complicated waveform morphologies
characteristic of precessing systems [51,52] suggest that a
substantially larger training set may be necessary for
these systems than for simpler cases considered previously.
On the other hand, NR waveforms require the solution
of computationally intensive time-dependent partial
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differential equations; current hardware and binary black
hole evolution codes are capable of producing only roughly
O(1,000) simulations in about a year.

In this section we outline our method for the construction
of precessing NR waveform surrogates, briefly summariz-
ing existing techniques while focusing on solutions to the
new challenges. A dimensionless, complex gravitational-
wave strain’

h(t,0,$;4) = h(1,0,;4) = ih, (1,0,$;4) (1)

can be expressed in terms of its two fundamental polar-
izations h, and h,. Here, ¢ denotes time, 6 and ¢ are the
polar and azimuthal angles for the direction of gravitational
wave propagation away from the source, and A is a set of
parameters that characterize the waveform. For concrete-
ness, the parameters A we will use in Sec. V will be the
initial mass ratio and spin vectors of the black holes, but the
discussion in this section applies to a general set of
parameters. Gravitational waveforms considered in this
paper are parametrized through their dependence on the
initial data, and we shall focus on the five-dimensional
subspace described in Sec. 111 D.

When numerically generating a waveform by solving
partial differential equations, one solves an initial-boundary
value problem for a fixed A, thereby generating a waveform
on a dense temporal grid. In this paper we seek to build an
accurate and fast-to-evaluate surrogate gravitational-wave
strain model hg(z,0,¢;A) by numerically solving the
Einstein equations for judicious choices of A. Surrogate
evaluations require only simple function evaluations,
matrix-vector products and coordinate transformations.
In Sec. VII we also build a frequency-domain surrogate
model, using our time-domain surrogate model as input
data, with the purpose of accelerating the evaluation of
model waveforms. Evaluation of the frequency-domain
model is about 20 times faster than the corresponding time-
domain surrogate. Except for Sec. VII our discussion will
focus exclusively on time-domain surrogates.

The complex gravitational-wave strain can be written in
terms of SWSHs _,Y,, (6. ¢) via

00 4
h(t,0.:3) = > > W™(5:2) 5 4,(0.4),  (2)

=2 m=—¢

where the sum includes all SWSH modes h“"(t;4). In
many data analysis applications, however, one often
requires only the most dominant SWSH modes. The
NRSur4d2s surrogate model will include all # < 3 modes,

'More precisely, we work with the distance-independent
dimensionless strain Rh/M, where R is the distance from the
binary’s center-of-mass and M is the total Christodoulou mass
[53] measured after the initial burst of junk radiation [54] has
passed. In this paper we choose units so that ¢ = G = 1.
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while our assessment of the model’s error will compare to
NR waveforms with all # < 5 modes. Including modes in
the NR waveforms which are not included in our model
ensures our error studies are sensitive to the effect of
neglecting higher order modes. We find that including
¢ =4 and £ = 5 modes in our model does not significantly
reduce the surrogate errors, but it increases the evaluation
cost of the model. As seen in Table III, however, neglecting
all # = 3 modes would significantly increase the surrogate
errors, which is why we include 7 <3 modes. Other
models with which we compare have £ = 2 modes only.
When comparing two waveforms with different available
modes, missing modes are simply treated as being zero.

A. The basic surrogate modeling approach

1. Problem statement

Our surrogate modeling methods build on those outlined
in [35], which we briefly describe here. Consider a physical
system parametrized by A € 7, where 7 is a compact
region in the space of possible parameters. We seek quick-
to-evaluate time-dependent functions X(#;4) that describe
this system for times 7 € [f,in, fmax)- In our case, A will be
the black hole masses and spins for a single BBH system,
and 7 will extend to some maximum spin magnitude and
maximum mass ratio for which we choose to compute NR
waveforms. The functions X(7;4) will be obtained from
decomposing h¢™(t; 1) as described in Sec. IV, but here we
discuss building a surrogate model for a single such
function.

We already have a slow method of generating X(z; 1), so
we seek a faster surrogate model, denoted as X(t;4),
which approximates X(z;4). The surrogate model X¢(#;4),
whose construction is summarized in this section culmi-
nating in Eq. (13), is built to achieve small approximation
errors || X(-;A) — Xg(-;A)]. In our case, the slow method is
performing a NR simulation, extracting h’"(t;1), and
decomposing it to obtain X(#;4). A solution X(#;4) for
a fixed A is represented as a single (dotted red) vertical line
in Fig. 1, which diagramatically represents the surro-
gate model.

2. Discovering representative binary configurations

The first steps in building a surrogate model are to
determine a finite set of greedy parameters

An NR simulation is then performed at each greedy
parameter, yielding the greedy solutions {X(#;A;)}Y .
shown as vertical dotted red lines in Fig. 1.

One strategy (described in more detail in [35]) to find the
greedy parameters begins by evaluating the slow method on
a densely sampled training set, 7 s C 7. This training set
is input to a greedy algorithm (hence the name greedy
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FIG. 1. A schematic of the method for building a surrogate
model for a function X(#;4). The red dotted lines show X(¢)
evaluated at a selected set of greedy parameters A; used to build a
linear basis, and the blue dots show the associated empirical
nodes in time from which Xg(#;4) can be reconstructed by
interpolation with high accuracy. The blue lines indicate fits for
X(t;A) as a function of 4 at each of the empirical time nodes. The
cyan dot shows a generic parameter A, that is not in the set of
greedy parameters. To compute X(#;4), each fit is evaluated at
A (the yellow diamonds), and then the empirical interpolant is
used to construct Xg(#;4y) at arbitrary times (the dotted
black line).

parameters) that works as follows. First, the greedy
algorithm is initialized by arbitrarily selecting the first
few greedy parameters which are sometimes called the
algorithm’s seed.’To select the next greedy parameter The
set of greedy parameters is then extended iteratively by first
building an orthonormal linear basis B, = {e'(r)}",
spanning the n current greedy solutions, such that

n

X(1:A)) = " ci(A))ei(n). 3)

i=1

The aim of the greedy algorithm is to extend this basis such
that the approximation

n

X(£4)~ Y ci(A)el(n).

i=1

A€ T (4)

is as accurate as possible and where the coefficient ¢;(A) is
the inner product of X (#; 1) with e'(). Coefficients found in
this way define an orthogonal projection of the function

The final set of greedy parameters selected by the greedy
algorithm will depend on that choice of seed. However, the
number and distribution of greedy parameters is expected to be
robust to the choice of seed [55,56].

PHYSICAL REVIEW D 95, 104023 (2017)

X(t;4) onto the span of the basis. We compute the
projection errors

for each A € T 15, and the next greedy parameter A, is
chosen to be the one yielding the largest projection error.
The next basis vector ¢"*!(¢) is then obtained by ortho-
normalizing X(7; A, () against B,, and the basis set is
extended as B, ,; = B, U {e"!(¢)}. The algorithm termi-
nates once the basis achieves an accuracy requirement
En(A) < e, for some predetermined error tolerance €, over
the whole training set. With a dense enough training set and
assuming X varies smoothly over 7, the projection errors
outside of the training set will be only mildly larger than e.
This method unfortunately requires evaluating the slow
method on each point in the (large) training set, so we make
modifications as described in Secs. II B and III B.

3. Temporal compression

We have built a linear basis By which can represent
X(t;A) for any A € 7 using Eq. (4), up to some small
projection error. This reduces the problem of determining
X(t; 4) to determining the basis coefficients {c;(4)}Y_,. The
most straightforward method of doing so would be to fit or
interpolate the basis coefficients ¢; over the parameter
space 7 as is done in [29,36]. We have more intuition for
the behavior over 7 of the solutions X (T';-) evaluated at a
fixed time 7" than we do for the basis coefficients. We will
therefore pursue an empirical interpolation approach,
described in detail in [35], which enables us to avoid
fitting the basis coefficients.

An empirical interpolant makes use of the orthogonal
linear basis By = {e'(#)}, such that the errors given by
Eq. (5) are small, so Eq. (4) continues to provide a good
approximation despite using a different method to compute
the coefficients. During the construction of the empirical
interpolant, N empirical time nodes {Tj}?’:1 will be used.
An algorithm to find these special time nodes will be
described later on.

We denote an N-node empirical interpolant of a function
f(2) by Iy[f](?). A conceptually helpful way to think of the
empirical interpolant is that Iy [f](7) lies in the span of By,
passes through f(7;) at time T ;, and is nearly as accurate as
the orthogonal projection. To construct the interpolant, we
expand it in terms of unknown coefficients c;,

IN[fI() =) eiel(0). (6)

We then write a linear system of equations
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Zciei(Tj) =f(T;), Jj=L1L..N (7)

and we solve this system for all the coefficients c;. A good
choice of empirical time nodes will ensure that the matrix
Vi =€ (T;) is well-conditioned, thereby allowing an
accurate solution

c; = (V) f(T)). (8)

We can then substitute the coefficients back into Eq. (6) to
obtain

Iy[f(r) = izN;(V‘l),-,-f(Tj)e"(t)- ©)
If we then define
bl(1) = g(V“)ije"(t), (10)
we obtain
Inlf1() = ;f(Tj)bj(t)~ (11)

Here b)(t) is computed before evaluating the surrogate, so
evaluating the empirical interpolant amounts to a matrix
multiplication.

If f(¢) lies in the span of By, then Iy[f](t) = f(¢) for all
times ¢. Otherwise, there will be some interpolation error. In
practice, the empirical time nodes are constructed itera-
tively using bases B, for n =1,...,N. If [, is the nth
iteration of the interpolant, then the nth empirical time node
T, is chosen to be the time ¢ yielding the largest
interpolation error when interpolating e"(z) using the
previous interpolant /,_;. The iteration begins with the
initial interpolant chosen to be I,[f](z) = 0 for all f.

Note that since the empirical interpolant is linear and V is
well-conditioned, if f(¢) has a deviation from the span of
By of order ¢, then the empirical interpolation error will
also be of order €. Since our basis By is constructed such
that the projection errors of X(#; 4) onto By are small for all
A€ T, we can use the empirical interpolant /y[X](7) to
obtain X(#; A) for all times ¢ given the empirical node values
{X(T;;4) ?/:1- The remaining step is then to approximate
the N functions

X;(A) = X(T;;7) (12)

by fitting the available data {X(T;;A):A € G} over the
parameter space 7. We call these parametric fits, and
denote the fitted approximation for X;(4) by X ;s(4). The
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parametric fits are represented by the blue horizontal lines
in Fig. 1. The explicit form of our surrogate model for X is
then given by

Xs(t:0) = 3 X;s(A)bI(1). (13)

J=1

B. Modifications to the basic surrogate
modeling approach

A drawback of the algorithm presented in Sec. II A, and
of many previous surrogate modeling efforts, is the
assumption that the original slow model can be evaluated
an arbitrary number of times to build a dense training set.
Because of the significant computational expense, this is
not feasible for waveforms found by numerically solving
the Einstein equations. We can neither build NR surrogate
models from dense training data nor can we assess the
surrogate’s quality at arbitrarily many randomly chosen
validation points. In previous work that used computation-
ally inexpensive waveform models [35], thousands of
nonspinning waveforms comprised the training set, yet
the final surrogate required only a very small subset of
greedy parameters G. If we could have predicted G in
advance then dense training sets would not be required.

Since we cannot evaluate an arbitrarily large number of
NR waveforms, we instead first construct a temporary mock
surrogate using a simpler waveform model that is both fast
to evaluate and is defined in the training region of interest.
In this paper, for the purpose of discovering the most
relevant parameter values, we build a mock surrogate using
the precessing TaylorT4 post-Newtonian (PN) waveform
model as implemented in GWFrames [57,58]. We deter-
mine the PN greedy parameters G* using a training set
containing many thousands of these PN waveforms, as
described in Sec. IIIB. If we then assume that the
distribution of parameters selected using PN waveforms
roughly mimics the distribution we would have obtained
had NR waveforms been available, then GPN should be a
suitable set of greedy parameters for building a NR
surrogate. This was found to work well for the nonspinning
surrogates of Ref. [59] and, as judged by our validation
studies, continues to remain applicable to the precessing
waveforms considered here. Instead of PN, we could have
used a different analytical waveform model [19-24,27-29]
that contains merger and ringdown. However, these other
models either omit # = 3 modes, omit precession, or yield
waveforms that do not vary smoothly as a function of 4. We
find that these other considerations outweigh the inclusion
of merger and ringdown.

This entire process just described is shown in the first
stage of the surrogate workflow diagram (Fig. 2) as the
“PN-sampler”. Once the points G*N have been selected,
the corresponding NR waveforms are generated, and the
surrogate building proceeds as in Fig. 2. We emphasize
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PN-sampler Greedy parameters {Ai}ﬁ\;l
Secs. [IIB,III B] 3 See Fig. 4
Y &
SpEC Solver T

Sec. 111 C

Accurate surrogate?

Y

{h(t; M) }ils

Y

*’& Bad parameter values
RY
AN

See Sec. VI

Build Surrogate

Alignment
See Sec. 111D,

Decompose Data
See Fig. 6

Approximate Data
See Sec. V

hs (t; )\)

FIG.2. Surrogate workflow. A greedy “PN-sampler” selects the most informative parameter values {A;}Y for a fixed parametric and
temporal range. For each selected value A;, SpEC generates a gravitational waveform. A surrogate model building algorithm (cf. Fig. 1)
is applied to a set of suitably aligned and decomposed (cf. Fig. 6) numerical relativity waveforms thereby producing a trial surrogate. A
handful of validation tests are performed to assess the surrogate’s quality. If the surrogate performs poorly for some parameter values,
one could produce additional numerical relativity waveforms near those values and rebuild a more accurate surrogate.

that no PN waveforms are used to build the resulting
NRSur4d2s surrogate; the PN model is used only to find the
greedy parameters G = G*N.

While the PN waveforms are much cheaper to evaluate
than NR waveforms, building a dense training set remains
costly for high dimensional parameter spaces. In Ref. [59],
it was found that an accurate basis can be achieved using
small, sparse training sets if each iteration i of the greedy
algorithm uses an independent randomly sampled training
set 7. We extend this methodology by also including in
our training sets a fixed set of parameters 7y on the
boundary of 7 (for example, the maximum mass ratio
allowed in 7). This is motivated by the fact that the
boundary of 7 carries significant weight both when
building a linear basis and when performing parametric
fits. At the ith greedy iteration, we then have

Tig=TyUTh (14)

as our training set of parameters at which we evaluate PN
waveforms.

Another issue with the standard greedy algorithm is that
it considers only a single function X. For modeling wave-
forms, we will decompose each waveform A“"(t;1) into
many such functions, which we call waveform data pieces
(cf. Sec. IV). Rather than generate a separate set of greedy
parameters G4V for each X, we construct a single set of
greedy parameters G'V that can be used for all waveform
data pieces X. We do so by replacing the projection errors
for a single waveform data piece given in Eq. (5) with a
single error including contributions from all waveform data

pieces. This will be described explicitly in Sec. III B after
the waveform decomposition and error measures have been
introduced.

The standard greedy algorithm guarantees that the basis
yields small projection errors given by Eq. (5). Therefore, if
we have perfect parametric fits [so that X;5(4) = X;(4) for
all A € 7] then the surrogate model X given by Eq. (13)
will agree with X in the sense that the L? norm of Xg(#;4) —
X(t;A) will be small for all A € 7. There is, however, no
corresponding guarantee that the greedy points are suffi-
cient for producing accurate parametric fits X ;5. In the one-
dimensional models built in Refs. [34,35], the parametric
fits performed well using the samples produced from the
standard greedy algorithm. As the dimensionality of the
parameter space increases, the number of greedy param-
eters required for an accurate basis grows slowly [60], but
the number of samples required for accurate parametric fits
can grow rapidly. We therefore anticipate that the standard
greedy algorithm alone may lead to underresolved para-
metric fits in problems with high dimensionality.

We overcome this problem by first performing a greedy
algorithm to obtain greedy parameters G§" that ensure
small basis projection errors, and then performing a second
greedy algorithm, seeded with GEN, that produces the final
set of PN greedy parameters G*N. In each iteration of the
second greedy algorithm, a mock PN surrogate is con-
structed from PN waveforms evaluated at the current set of
greedy parameters, including the parametric fits at each
empirical node. To select the next greedy parameter in this
second greedy algorithm, for each A € 7%y we compute
an error between a PN waveform evaluated at A and the
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mock-PN surrogate evaluation at A. Since the basis is
already accurate and in general A will not have already been
selected as a greedy parameter, this procedure selects points
for which the parametric fits are underresolved.

C. Handling noise in the NR waveforms

The presence of numerical noise in the input NR
waveforms complicates the construction of surrogates.
The situation is simpler when building a surrogate of a
waveform model that is mostly noise-free, such as post-
Newtonian or EOB models that require the solution of
ordinary differential equations (which can be evaluated to
almost arbitrary accuracy) but not partial differential
equations. For example, Ref. [35] demonstrates in their
Fig. 15 that EOB surrogates can be made to have arbitrarily
small errors, and Refs. [29,36] use interpolation across the
parameter space without needing to avoid potential pitfalls
such as overfitting the noise. We do not expect this to be the
case for numerical relativity waveforms which are beset by
numerous error sources, some of which cannot be made
arbitrarily small with current computing technology.

Systematic as well as numerical errors can influence the
quality of the NR waveform. For example, when attempting
to model noneccentric binaries, the NR simulations will
always have some small but nonzero orbital eccentricity. In
this paper we will mostly focus on numerical truncation
error. This is typically the dominant source of error in SpEC
waveforms [61], and the other sources of error are expected
to be significantly smaller than truncation error and smaller
than the surrogate error (see Fig. 3 of Ref. [34]). The
numerical error can be quantified through standard con-
vergence tests [61]. Following Ref. [34], we will (i) char-
acterize SpEC waveform error across the parameter space
and, if necessary, remove poorly resolved waveforms
(Sec. IVE) (ii)) avoid overfitting the noise sources
(Appendix A), and (iii) set surrogate accuracy goals based
on our answer to the first question. In future work it would
be interesting to study the impact of other noise sources.

D. Decomposing NR waveforms into
simpler components

The detailed time dependence of an NR waveform is
generally too complicated to model directly with an
acceptable degree of accuracy. Instead, each NR waveform
is decomposed into waveform data pieces (cf. Sec. IV),
which are simpler, more slowly varying functions that can
be modeled more easily. A surrogate model is then built for
each waveform data piece (cf Sec. V), and then these
models are recombined to produce a full surrogate wave-
form. This process is shown in the “surrogate build” step
shown in Fig. 2.

Selecting the waveform data pieces is a critically
important step. For example, in nonspinning [34,35] and
spin-aligned [29,36] surrogate models, the waveform data
pieces are either the real and imaginary parts of the SWSH
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modes, h™, or the amplitude and phase decompositions of
these modes A, and ¢,,,, where h’™ = A, exp (—=is,, ).
The idea is that it is easier to model every A,,, and ¢,
which are smooth and slowly varying functions of time,
than it is to directly model the complicated waveform
h(t,0,¢;4), Eq. (2).

Because of the complexity of precessing waveforms, we
have needed to pursue a somewhat more complicated
decomposition scheme than in the nonprecessing case.
Figure 6 summarizes the decomposition scheme used here.
Briefly, each waveform is transformed into a coordinate
frame in which the binary is not precessing [45-47,57,62];
specifically, we use the minimal-rotation coprecessing
frame of Boyle [47]. The waveform modes in this frame
have a simpler structure than their inertial frame counter-
parts. Additional simplifications occur by applying further
transformations (described in detail in Sec. IV) to the
coprecessing-frame waveform modes. The result of these
steps is a set of waveform data pieces. If X(#,4) is a single
waveform data piece, then for that piece we build a
surrogate Xg(7,4) ~ X(z,4). Here X can stand for any of
the decomposed waveform data pieces depicted as cyan
ellipses in Fig. 6, for example A%, ¢, @, etc. The full
NRSurd4d2s surrogate waveform model is defined by the
individual data piece surrogates, Xs(#,4), and the inverse
transformations required to move back up the data decom-
position diagram (Fig. 6) and reconstruct the waveform
from all of the Xg(z,4).

E. Tools for surrogate model validation

Here we describe a useful framework for assessing the
surrogate’s predictive quality when only a limited number
of waveforms are available. This is a different setting from
the EOB surrogates of [29,36] where out-of-sample vali-
dation studies could be performed at arbitrarily many
parameter values. The primary tool we shall use is
cross-validation [63], which was also used in [34].
Cross-validation happens after the surrogate is built and
determines whether or not more SpEC waveforms are
needed to improve the accuracy of the model (see Fig. 2).

We consider the case where our full data set is composed
of N SpEC waveforms. From the full data set, we select
nonintersecting sets of trial and verification waveforms
with sizes N, and N, such that N, + N, < N. In the cross-
validation step, a new trial surrogate is built solely from N,
trial waveforms. The remaining N, verification waveforms
serve as an exact and independent error measure of the trial
surrogate’s prediction. The key assumption, which we
believe to be true in practice, is that the surrogate built
from all N waveforms will have an accuracy similar to the
trial surrogates, if not better. Indeed, each step of the
surrogate building algorithm will be more accurate so long
as parametric overfitting is kept under control. Hence, the
trial surrogate’s error should serve as a useful estimate of
the error associated with the full surrogate built from all N
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waveforms. We note, however, that when /N, is small or the
surrogate error is dominated by some systematic source of
error, the improved accuracy when including all N wave-
forms may not be enough to overcome the variance in the
accuracy of the parametric fits seen in Fig. 5. In that case
the full surrogate error may in fact be slightly larger than a
trial surrogate error.

Two variants of cross-validation are considered. Random
cross-validation proceeds by selecting the verification
waveform set randomly. When N, =1 this is known as
the leave-one-out strategy. In Ref. [34], all possible
leave-one-out studies were performed. In our case, N is
sufficiently large and surrogate-building is sufficiently
expensive that we opt to choose N, = 10. We can perform
many resamplings of the validation subset to infer an error
profile across the parameter space.

Deterministic cross-validation proceeds by selecting the
verification waveforms according to a rule. For example,
the greedy bases are already ranked according to a “‘most
important” criterion. We select the first N, greedy wave-
forms for our validation set. These should contribute most
heavily to the surrogate’s overall predictive ability, while
the last N, verification ones are quite dissimilar from the
trial waveforms due to the greedy selection process. We fix
N, to have a consistent test of our trial surrogates and vary
N < N — N, to estimate how the surrogate errors depend
on N.

F. Waveform error measurements

This subsection summarizes the most commonly used
tools to compare waveforms. A typical scenario is to quantify
differences between waveforms, for example to compare a
waveform model to NR waveforms or to estimate the
numerical truncation error associated with an NR waveform.

Let h(,0,¢;A,) and h,(t,0,¢;A,) denote waveforms
from two different models (or two NR simulations with
different numerical resolution) potentially evaluated at
different parameter values A; and A,. We assume the
waveforms are already aligned according to the procedure
of Sec. III D. Decomposing these waveforms into SWSHs
we compute a time-dependent error

sh(t) = |>_|she™ (1), (15)

£.m
from the individual mode differences
ShO™ (1) = h{™ (1 41) = h5™ (13 42). (16)

We use the time-domain inner product

(a,b), = % /, ™ (e)b (1), (17)

min
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between any complex functions of time a and b, where
T = tmax — Imin and * denotes complex conjugation. The
associated norm ||a||*> = (a, a), can be used to compute
mean-squared errors, and we compute the full time-domain
waveform error

(0 = [ (0.0, :0) - 0.3 a2 (18)

= llsn’m? (19)

‘m

1 tmax
= / Sh(t)*dt (20)
T/,

min

as a sum over individual mode errors ||6h%""||. We note that
we do not perform any time or phase shifts to minimize this
error. Since waveforms with different mass ratios and spins
will have different norms, the error we will use most often
is defined as

1 6h?
Elhy, hy] = EW (21)

where £ is taken to be the more trusted waveform (usually
the highest resolution NR waveform). The factor of 1/2 is
motivated in Appendix C and makes &£ similar to a
weighted average over the sphere of overlap errors between
hy(t,0,¢;4,) and h,(t, 0, ; A,), where the overlap error is
1 — O with

O = <h17 h2> (22)

Vi hy)(hy by

We note, however, that while the overlap error vanishes if
h; and h, are identical up to a constant factor, £ does not
and vanishes only when #4; and &, are identical. This is
important as a different normalization will lead to a bias
when measuring the distance to the source of a gravita-
tional wave.

Overlap errors are often computed in the frequency
domain with a noise-weighted inner product [64]

fou @(f)b*
) = e [~ 20

where S,(f) is the noise power spectral density of a
gravitational wave detector and tildes are used to represent
a Fourier transform. We define the mismatch as the overlap
error, 1 — O, minimized over one or more extrinsic param-
eters such as an overall time shift.

df. (23
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III. POPULATING THE SET OF NR WAVEFORMS

A. Parameter space

Noneccentric BBH systems are parametrized by the
mass ratio ¢ = m;/m, > 1 as well as the two dimension-
less BH spin vectors 7}, ¥>. The total mass M = m; + m,
scales out of the problem and can be used to restore
appropriate dimensions to times and distances. Because the
spin vectors precess and are therefore time-dependent, to
use them as parameters one must specify them at a
particular time or frequency. We choose to specify param-
eters at a reference time of 7y = 7. — 4500M, where 7,c,¢
is the time at which the quadrature sum of the waveform
modes,

A(t) = DI (@)2, (24)

£.m

reaches its maximum value.

We restrict to a 5D subspace of the parameter space
where y, is aligned with the Newtonian orbital angular
momentum L at the reference time (in practice the NR
simulations give us small misalignments but ignore them;
see Sec. lILE). Let 6, and ¢, be the polar and azimuthal
angles of j at the reference time. Then our five parameters
are ¢, |71|, x5, 6,, and ¢, (see Fig. 3). While NR
simulations can be done for nearly extremal spins [13]
and large mass ratios [15], they are computationally
expensive and so we restrict to [y;| < 0.8, [¢5| < 0.8 and
g < 2. These bounds were also motivated by the parameters
of GW150914, which was close to equal mass and did not
show strong evidence of large spin magnitudes [3].

To further simplify the surrogate, we attempted to reduce
the parameter subspace from 5D to 4D by restricting
¢, = 0. While this can be done for analytic waveforms
(PN, EOB, etc.), it is problematic for NR waveforms. This
is because it is not possible to accurately predict the amount
of time between the start of an NR simulation and the peak
of Ay (7), without having carried out the simulation.
Therefore, it is not possible to precisely set initial con-
ditions of the simulation so that ¢, = 0 at the reference
time. Therefore, our NR simulations actually cover a 5D

L

X2

FIG. 3. Diagram of the 4 spin components in the 5D parameter
subspace. We attempt to obtain ¢, = 0 at 7, = 4500M before
peak amplitude, but in practice the NR simulations have arbitrary
values of ¢, .

>
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and not a 4D subspace of the parameter space, and we must
include ¢, as one parameter. Since we nevertheless attempt
to obtain ¢, =0 when choosing the NR initial data
parameters, the actual distribution of ¢, is highly correlated
with other parameters. Since we do not have full coverage
of this 5D parameter space, we avoid including the extra
dimension ¢, in the NRSur4d2s surrogate model by using
an analytic approximation for the ¢, dependence of the
model, as described in Sec. IV D. The surrogate model can
then predict waveforms for parameters in the 5D subspace,
but the ¢, dimension is entirely described by the analytic
approximation.

B. Selection of greedy parameters

We use ¢, = 0 while determining the greedy parameters
G = {A;}, and we use PN waveforms to identify the most
relevant and distinct points in parameter space as outlined
in Secs. Il A and 11 B. We first seed G with the parameter
space corner cases: ¢ € {1,2}, |y4| € {0,0.8},6, € {0, 7}
and x5 € {-0.8,0.8}. As described in Eq. (14), we
compute training sets 7hg = 7 U T4 consisting of a
set of boundary parameters 7  as well as a set of randomly-
sampled parameters 7 that is resampled at each greedy
iteration i. For 7, we use a set of 216 points where two
components of A take on one of their extremal values and
the other two are one of three intermediate (nonboundary)
values. This results in features that can be seen in Fig. 4,
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— o dTwie,e
T}; Q.B L ) e
AN e 5. 0 o0
0.0 obe ¢ ®®
(b.@ e®,0 0,0 || 00 0 0.0
— oo 0 B0 Feo c50 0
><,\j:’ 'I.:!, e_o‘.&
> S BFe “e e
Q.Q eeo'e '@ o oo o0
] g2 o s ][8
RSN BT A !
— | X H L | g L
= Of g o sow 8 e 4
< P'a.’!‘ t«_r:»'d rt«bf‘
4 [ ] ? o g;!.
Q 9
N [ege @ ege |[ awe 0w [0 @ 0 0] —
0(? ;f. -45.0 S ouln || 6 %t & o= ru .
New Q.Q o® . e o0 (lo "% olle ey
Q{O 8°,80 9 %g'e e Be |0 ¥Le%g e oo o0 o
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FIG. 4. A “triangle plot” showing all possible two-dimensional
projections and one-dimensional histograms of the greedy
parameters G selected by the procedure of Sec. III B. These
are the parameters used for the numerical relativity simulations.
Made using the Python package corner.py [65].
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where the two boundary values and three intermediate
values occur frequently. For example, because some 2D
projections of these special points are selected multiple
times, they appear as darker points around the boundary of
some of the subplots in Fig. 4. In addition, subplots
involving ¢, show an uneven distribution of stripes that
occur at these special points. For 7%, we randomly sample
each parameter component uniformly in its range.

Next, we add parameters to G using an initial greedy
algorithm that uses basis projection errors to select greedy
parameters. Given a point A as a candidate that might be
added to G, we compute a PN waveform /4 corresponding
to A, we decompose h into waveform data pieces (see
Sec. IV), and we project each waveform data piece onto
their respective bases. Then we recombine the projected
waveform data pieces to produce a waveform /,,,;. We then
compute an error E[h, hy] using Eq. (21). The point in

*s with the largest such error is the next point added to G.
This method is different than that of [59], in which
projection errors of each waveform data piece were
computed separately, and then these errors were combined
in a weighted sum with coefficients determined by hand.
Our new method avoids the need to determine these
coefficients, and automatically ensures that the most
significant waveform data pieces are resolved accurately.
We use this initial greedy algorithm until the error is
& <1073, At this point, the number of greedy points is
approximately |G| = 30. Thus we have built a linear basis
for each waveform data piece. For each iteration of this
initial greedy algorithm, we choose the number of ran-
domly sampled parameters to be |7k | = 10 + 2|G’|, where
|G'| is the number of greedy parameters at the start of the
ith iteration.

Finally, we add parameters to G using a second greedy
algorithm that uses surrogate errors to select greedy
parameters. At each iteration i, we construct a new trial
PN waveform surrogate (as described in Appendix E),
using the greedy parameters G, and then for each point
A € Ty, we evaluate this surrogate and compare it to the
corresponding PN waveform by computing £. The param-
eter A that maximizes this error is used as the next greedy
parameter and is added to G. This error includes the errors
in the parametric fits for each empirical node of all
waveform data pieces; the parametric fits are shown as
blue lines in Fig. 1 and are described in detail in Sec. VB
and Appendixes A and E. For this step, we use
|T%| = 6/G|. The maximum errors found in each iteration
of this second greedy algorithm are shown in Fig. 5 as a
function of |G|. The noise is due to the random resampling
of the training set, as well as the possibility of the
parametric fits becoming worse by adding a data point.
Because the parametric fits are restricted to a particular
order, the surrogate error in Fig. 5 does not go below 1073,
In principle one can reduce this error floor by increasing the
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FIG. 5. Maximum surrogate errors found during the second

greedy algorithm (see Sec. III B) for determining A; using trial
PN surrogates. The noise is due to the random resampling, as well
as the possibility of the parameter space fits becoming worse by
adding a data point. The finite order of the fits leads to an error
floor of 1073, so we keep and perform NR simulations for only
the first 300 greedy parameters.

order of the fits, but here we simply keep only the first 300
greedy parameters. We perform NR simulations for these
300 parameters, except for those parameters that can be
obtained from other parameters by symmetry, for example
by exchanging the black hole labels. These symmetry
considerations reduce the number of simulations to 276.

C. Numerical relativity simulations

To build our time-domain model, we use the 276 NR
waveforms computed by the SXS collaboration with the
SpEC described in Ref. [61]. Each NR simulation is
performed at three different numerical resolutions, labeled
“Levl”, “Lev2”, and “Lev3”, in order of increasing
resolution; Levi has an adaptive-mesh-refinement (AMR)
error tolerance that is a factor of 4 smaller than Levi — 1.
For each resolution, the waveform is extracted at multiple
finite radii from the source, and then the waveform is
extrapolated to future null infinity [66]. The extrapolation is
done using an Nth order polynomial in 1/r, where r is a
radial coordinate. To estimate errors in extrapolation, we
perform extrapolation with several values of N [66].
Similarly, to estimate numerical truncation error, we
compare simulations that are identical except for resolution
[61]. However, for building surrogates, we always use the
highest available resolution (Lev3) simulations, and use the
N = 2 extrapolated waveforms. The simulations begin at a
time of ~5000M before merger where M = m; + m, and
m; are the Christodoulou masses of each black hole. We
ignore the small eccentricities present in the simulations,
which have a median of 0.00029 and a maximum of
0.00085 for the highest resolution simulations. The masses
we use are those measured after the initial burst of junk
radiation [54] leaves the computational domain.
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The BH spin vectors are measured on the apparent
horizons of the BHs during the evolution of the NR
simulation. The spin directions are therefore gauge-
dependent. The potential concern is that when the surrogate
model is evaluated, the spin directions must be provided
with the gauge used to build the model, so that the spin
directions obtained in gravitational wave parameter esti-
mation can be interpreted correctly. However, it has been
found that the time-dependent spin and orbital angular
momentum vectors in the damped harmonic gauge used by
SpEC agree very well with the corresponding vectors in PN
theory [67]. Therefore, this is of no more concern than the
interpretation of spin directions with PN-based gravita-
tional wave models.

For the purposes of surrogate modeling, we need to
associate each gravitational waveform with a single value
of the parameter vector 4, even though some of the
parameters (in particular the spin directions) are time-
dependent. To do this, we measure the parameters at some
fiducial time. To define this time, we (arbitrarily) equate the
time coordinate of the simulation with the time coordinate
of the waveform at future null infinity, offset so that the
beginning of the simulation and the beginning of the NR
waveform correspond to the same coordinate 7. We then set
t =0 at the peak amplitude of the waveform, and we
measure A at a fiducial value of 7y, = —4500M. We
emphasize that there is no unique way to map coordinates
in the near zone to coordinates at infinity. However,
choosing a different map changes nothing in the surrogate
model other than the time at which A is measured. Because
the spin directions change only on the precession time scale
and not the orbital time scale, any other choice that
measures 4 at a time near the beginning of the simulation
should yield similar results.

As described above, we selected the first 300 points in
parameter space chosen by the PN greedy algorithms, and
we reduced this number to 276 points after removing
configurations that were equivalent because of symmetries.
We therefore performed 276 NR simulations. However, the
total number of NR waveforms represented by these 276
simulations is greater than 276 if we use symmetry to
restore additional configurations. For example, for equal
mass cases with 6, € {0, 7}, exchanging the two black
holes yields another configuration in the parameter sub-
space. For each of these cases, we produce the additional
configuration by relabeling the black holes and rotating the
coordinates by 180 degrees in the orbital plane; this results
in a total of 288 NR waveforms. In addition, configurations
with [7;| =0 are invariant under changes in 6,, so we
might add additional such configurations that differ only in
0,. In principle, we could add an arbitrary number of such
configurations, but it is unclear how many to add. Also, ||
is never exactly zero for NR simulations, so we have an
unambiguous choice of 6, for each simulation. We
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therefore choose not to restore these additional configura-
tions, so we are left with a total of 288 NR waveforms.

D. Waveform alignment

Our surrogate model is built assuming that the waveform
has peak amplitude at # = 0, and that the parameters A
(mass ratio and spin vectors) are measured at some fixed
time t =1, which we choose to be 7, =—4500M.
Furthermore, our surrogate model assumes a coordinate
system in the source frame such that at ¢ = ¢, black hole 1
lies along the positive X axis, black hole 2 lies along the
negative X axis, and the instantaneous Newtonian orbital
angular momentum lies along the positive Z axis.

Ideally, all of the input NR waveforms used in the
surrogate should also have peak amplitude at ¢+ = 0, and
each simulation’s black holes should have the same
orientation vector 7 at t = f;, where 7 is a unit vector
pointing from the large black hole to the small black hole.
However, when setting up an NR simulation, the time
between the beginning of the simulation until merger is
a priori unknown and depends on the mass ratio and the
black hole spins. Furthermore, the orientation 7 of the black
holes, and the mass and spin parameters, are chosen at the
beginning of the simulation, which (because the merger
time is a priori unknown) is not at a fixed time before
merger. Therefore, for each of our 276 NR waveforms the
peak amplitude occurs at a different time, and the ori-
entation of the black holes with respect to the coordinates
does not agree at any given time relative to the time of peak
amplitude. Therefore, it is necessary to align all the NR
waveforms by time-shifting them so that the maximum
amplitude occurs at t = 0, rotating the coordinates so that
the black holes are oriented in the same way at t = ¢(, and
then remeasuring the mass and spin parameters at t = .

To align the waveforms, we shift them in time such that
the peak of the total waveform amplitude as given in
Eq. (24) occurs at t = 0. We then use a cubic spline to
interpolate the real and imaginary parts of the waveform
onto a uniformly spaced time series with dr = 0.1M. Next,
we rotate the waveforms to align the orientation of the
binary at 7y = —4500M in two steps: first we perform an
approximate rotation using the black hole trajectories, and
then we perform a small correction using only the wave-
form. For the initial approximate rotation, we use the
horizon trajectory to align the Newtonian orbital angular
momentum with Z and rotate about Z such that black hole 1
lies along the positive X axis. We then use the waveform
modes to perform an additional rotation, aligning the
principal eigenvector of the angular momentum operator
[47] with 2 and equating the phases of 4>? and h>~? at
t = ty. The first coarse alignment was used since the second
alignment is ambiguous—we can change the sign of the
principal eigenvector and/or rotate by an additional z about
Z, which we resolve by choosing the smallest of the
rotations, since the waveform is already nearly aligned.
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We perform identical rotations on the spin directions and
then measure them at 7.

E. Postalignment parametrization

While the initial orbital parameters were chosen using
PN approximations such that y,(f,) o 2 after this align-
ment, in practice we obtain small misalignments leading to
orthogonal components of ¥, less than 0.016 in magnitude.
We ignore these spin components, leading to a 5D
parameter space:

(i) ¢ =7+ €[0.9999,2.0005]

(i) |ri] €0,0.801]

(iii) 0, = cos™ (X)) € [0.7]
(iv) ¢, = arctan2(y}(10). x}(to)) € (-7.7]
v) x5(ty) € [-0.8,0.800006]

as shown in Fig. 3. We will often omit the time dependence
of the last parameter and simply write y3.

IV. WAVEFORM DECOMPOSITION

This section describes how each input NR waveform is
decomposed into a set of “waveform data pieces”, which

{nm)
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are simple functions that can be modeled easily and can be
recombined to produce the original waveform. This decom-
position was outlined briefly in Sec. I D, and a flowchart of
this process is shown in Fig. 6.

We write each input waveform as a set of modes
H = {h"™(t)}, with t € [tyin, tmax)- Here fmin and fyay
are chosen to be the same for all waveforms and are
selected in the following way: Recall that each waveform is
time-shifted so that the maximum amplitude occurs at

t = 0; this means that each time-shifted finite-length NR
begin
i

waveform H; has a different beginning time ¢ and a

different ending time 2™, We choose fy;, = max;(1’°¢") +
150M and f,,,,, = min,(#"%). The value 150M is chosen to
remove the worst of the “junk radiation” [54] that results
from the failure of NR initial data to precisely describe a
quasiequilibrium inspiral. Although the surrogate output
will cover only the smaller time interval [t,, t, = 70M], we
use waveforms over the larger time interval [f,,, fnax] i
order to mitigate edge effects that can occur in later steps in
the decomposition process (filtering and Hilbert trans-
forms, described below). Selected modes of H are shown
in Fig. 7.

Ttire, Eq. 47 Ty, Eq. (31)

Ve
) G X T

DS

Eqgs. (48,49)

: (=)
(outéx =0). Ba. ()

Y

Y v

Hilbert Transform of Z, H(Z)

Y

Y
A(H(Z))) \ ou=p(H(Z) GH(qsx =0), Sec. IVD

D(t;X) - D(to; \)

FIG. 6. Waveform decomposition schematic. A series of decompositions are applied to a set of NR waveform modes {#“"} yielding
easier-to-approximate waveform data pieces (shown as cyan ellipses) for which we ultimately fit. Two types of objects are shown: time
series data as an ellipse and operators/maps as rectangles. A red outlining border identifies an object which uses a modeling
approximation which will not go away with additional NR waveforms. These decomposition errors are quantified and shown to be
smaller than other sources of error in Sec. VI. An additional source of error that will not converge away with more NR waveforms results
from the assumption that each data piece transform in a simplistic way with changes of ¢,.
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T T T T T

rh/M

FIG. 7. Waveform modes in the inertial frame for SXS:
BBH:0338 with ¢ =2, |y;| =0.8, 8, = 1.505, ¢, = —1.041
and y5 = 0.8. For precessing systems, all £ = 2 modes contain
significant power in the inertial frame. The NR waveform is
aligned to have the canonical orientation at t = #.

A. Transforming to a coprecessing frame

The first step in the waveform decomposition is trans-
forming to a rotating coordinate frame in which the binary
is not precessing. Thus the original waveform is described
by a (much simpler) waveform in this coprecessing frame,
plus functions that describe the time-dependent rotation.
We transform® H to the minimally-rotating coprecessing
frame of Ref. [47], and thereby obtain the waveform modes
H = {h"™(1)} in this frame, as well as a time-dependent
unit quaternion ¢(¢) that describes the rotation of the frame.
Throughout this section we will use a tilde, i.e., iz'f’m(t), to
denote a time-domain waveform mode in the coprecessing
frame, as opposed to the Fourier transform of a waveform
mode. Selected modes of H are shown in Fig. 8. We denote
this transformation by

Tc: H- (I:I, q), (25)

where the “C” stands for the coprecessing frame. If we also
define a different transformation

To: (H.,q) > H (26)

that takes an arbitrary waveform H’(¢) and rotates it by an
arbitrary unit quaternion ¢(7), then 7'y, is the left inverse of
Tc, thatis, To(Tc(H)) = H. However, an arbitrary wave-
form H'(¢) and an arbitrary unit quaternion ¢(¢) do not
necessarily represent the decomposition of any inertial-
frame waveform H into a coprecessing frame. Therefore,
for arbitrary H'(t) and ¢(r) we have in general
Tc(To(H', q)) # (H', q). This property will be important
in Sec. IV B below.

3Throughout this work we use GWFrames [57,58] to enact our
transformations.
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FIG. 8. Waveform modes in the coprecessing frame for SXS:
BBH:0338. The mode power hierarchy is now the same as for a
nonprecessing waveform, with the (2, £2) modes dominating,
but small effects of precession are still present in the mode
amplitudes and phases. The amplitudes of the (2,42) modes
have small nearly opposite oscillations.

The unit quaternion ¢(#) has four components shown as
solid lines in Fig. 9. However, the minimally rotating
coprecessing frame constrains ¢(¢) so as to minimize the
magnitude of the frame’s instantaneous angular velocity
(the “minimal rotation condition”) [47]. This condition,
combined with the unit norm, imply that ¢(¢) has only two
independent components.

Therefore, we will further decompose ¢(7) into these two
independent components, so that we have only two
functions to model in order to describe the rotation. To
do this, consider first the relative instantaneous rotation of
the frame

dq(t) = g7 ()q(t + dt) = 1 +2a(t)dt + O(dr?).  (27)

1.0F 1.0
0.5E J0.5
0.0k — L= N 0.0

: 0.02
0.001F 0.01
0.000F 0.00

_0_0015_ -0.01

E L 1 ol —-0.02

—4000 —2000 0
t/M

FIG. 9. Top: Quaternion ¢ representing the time-dependent
rotation from the coprecessing frame to the inertial frame (solid
lines) and the filtered quaternion ¢, _g;; (dashed lines) for SXS:
BBH:0338. Bottom: Differences between the filtered and un-
filtered quaternions. This difference results in an error when
reconstructing the waveform in the inertial frame, contributing to
a “decomposition” error in the surrogate model.
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The minimal rotation condition says that w, = O(d?),
while @, and @, are O(1), so in the limit dr — 0 we find
that @(7) has only two independent components. The
precession angular frequency ,(t) = |@(t)| describes
the velocity of the path on the unit sphere traced out by
the z-axis of the coprecessing frame.

We approximate dg(t) using finite differences,

5q(t) = g7 (1)q(t + 6t) = s(t) + tu(r),  (28)

where the scalar component s(z) is 1 + O(8¢%). Thus, for a
given 67, Eq. (28) defines u(z) in terms of ¢(¢), and
furthermore, u(z) approaches 1d(r) as 5t — 0. We find
that if we use 5 = 0.1M, the u(z) we obtain is sufficiently
close to this limit that the error we make is negligible
compared to other errors; this error is included in the
decomposition error discussed in Sec. VI. Finally, instead
of using i(¢) directly as independent components of ¢(z),
we define @, = |i(r)| and

@,(t) = 5tZ&)p(r) (29)

pa(t) = arg(u(1) + iuy(1)). (30)

The length of the path on the unit sphere traced out by the
z-axis of the coprecessing frame is given by ¢,(¢). In a
frame instantaneously aligned with the coprecessing frame,
@4 is the phase of the projection of #(¢) into the xy-plane.

We have thus decomposed the quaternion ¢(#) into two
functions ¢, (¢) and ¢,(t). These are the two functions we
will model in constructing the surrogate. We denote this
transformation by

T, q= (@p,0q) (31)

To perform the inverse transformation, that is, to com-
pute ¢(¢) from ¢, and @,, we compute

(pp(t + dt) - (pp(t)

(1) = P (2)
(1) = 20, (1) cos(pa(1) (3)
(1) = 200, (1) sin (1) 34)

u,(f) =0 (35)
s(1) = /1= @, (0302 (36)
Ba(t) = s(t) + F(1). @)

We include the (6¢)? term in Eq. (36) so that the recon-
structed ¢(7) has unit norm. Because we assume §g, = 0,
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the g we compute in Eq. (37) is not exactly the 6q we
started with in Eq. (28); however, the error we make is only
O(st). Given ¢(t) and 6g, we can then compute g(t + 5t)
using

q(t+ 6t) = q(1)5q(1), (38)

which results in an O(8#%) error in g(t + &t). Because we
have ¢(ty) = 1 at the alignment time 7, we can use the
recurrence relation Eq. (38) to construct ¢(¢) at all times,

given ¢, (1) and @,(1).

B. A “filtered” coprecessing frame

The quaternion ¢(r) representing the coprecessing frame
oscillates mostly on the slow precession time scale, which
makes it easier to model. However, it also has small
oscillations on the much faster orbital time scale, as shown
by the purple curve in the bottom plot of Fig. 10. These
oscillations are due to the nutation of the rotation axis of the
coprecessing frame, relative to the inertial frame. These
small oscillations can make it more difficult to fit ¢, across
parameter space. Since the effect of the nutation on the
inertial frame waveform is small, we filter out the nutation
in the coprecessing frame. We use a Gaussian filter with a
width of 7 radians of the orbital phase, which is computed
from the angular velocity of the waveform as described in
[68]. Near the edges of the domain, we truncate the filter on
both sides to keep the filter centered. Specifically, if the
(monotonic) orbital phase is given by ¢ (f), then we can
invert the relationship to find #(¢,y). For a given time 7
with corresponding orbital phase ¢* = @, (7) we then
compute

e TR e Jerrpreerre e
1.0— from Qu, - s = 1.0
SN E 3 -
S- 0.5 from @ = ]
F E —-0.5
0.0% e L S R 15 pefeer ]
[ ] 115
50— from Quin - s 3 ]
~ f b 3
S [— from Q ] 510
OF . 45
E } } {3 b
0.2 B 305
0.0F - =0.0
—028 3 T5-0s
—-4000 —-2000 0 -500 50
t/M

FIG. 10. Phases ¢, (top) and ¢, (middle) for SXS:BBH:0338.
These phases represent the total amount of precession and the
instantaneous direction of precession respectively. Shown are
phases computed from the unfiltered coprecessing quaternion
(thick orange lines) and the filtered quaternion (thin black lines).
The orbital time scale oscillation in ¢, is suppressed after
filtering. Bottom: Differences between the filtered and unfiltered
phases.
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Pmin = (porb(tmin) (39)
Pmax = §0orb(tmax) (40)

A(p = min(47r, |(0* - ¢min|v |§0* - (pmax|) (41)

pL=¢" £ Ap (42)
6lo) e |-(* 27| (43)
0. G(p)d
Ginie—n(7) = = }1{2;(22;);(;) Y (44)
. Ginit—ite(T)
am(7) = | Zinit—sire (7)] ' (43)

This filtered frame corresponding to ¢g, is no longer
minimally rotating, but we can compute

H' ., Guin st = Te(To(H. g5y)) (46)

and use the frame corresponding to ¢, _g;, Which is
minimally rotating and has much less nutation than the
frame corresponding to g. The components of the filtered
quaternion ¢;, _s;; are shown in Fig. 9 as dashed lines. We
use H , and not H , as the filtered coprecessing waveform,
because H’ is not as slowly varying as H and is therefore
slightly more difficult to fit. We have verified that the error
in the final model caused by choosing H instead of H' is
small compared to other errors. Note that even if we choose
H', introducing a filter produces some information loss, and
therefore results in some error in the final surrogate model.
This decomposition error is discussed in Sec. VI and is
plotted in Figs. 12 and 13. We thus denote the filtering
transformation by

Trn: (H.q) = (H, quin - (47)

Applying T, t0 Gpin g1 Tesults in less oscillatory behavior
in ¢, than when T, is applied to g, as seen in Fig. 10. When
evaluating the surrogate and reconstructing the inertial
frame waveform, we do not attempt to invert 7, which
contributes to the decomposition errors shown in Fig. 13.

C. Decomposition of coprecessing-frame waveforms

Once we have computed waveform modes 4°" (1) in the
coprecessing frame, we decompose each of these modes
(except for the m = 0 modes, which are discussed sepa-
rately below) into an amplitude and a phase. However,
these amplitudes and phases are difficult to model because
they contain oscillations on the orbital time scale. These
oscillations are due to asymmetries of waveforms from
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precessing systems and cannot be completely removed with
a different choice of frame [62]. Figure 8 shows an example
of these oscillations. To better model the amplitudes and

phases of h”"™ (1), we seek to further decompose them into
simpler slowly varying functions. To do this, first note that
the amplitudes of h**(¢) and h*7%(¢) shown in Fig. 8
oscillate in opposite directions. The same is true for the
phases, although it is not apparent in the figure, and it is
also true for some (but not all) higher-order modes. This
motivates the use of symmetric and antisymmetric ampli-
tudes and phases

AL (1) = %(Iﬁf’m(t)I = [h7"(1)]) (48)

(@(h"" (1)) £ o(h"™"(1)))  (49)

N[ =

oL (1) =
for m >0 where @(x(t)) = arg(x(¢)). The symmetric
amplitude A2*%(7) and the antisymmetric phase @2+2(7)
contain almost no oscillations and are slowly varying, so
we use these as waveform data pieces. However, the
antisymmetric amplitude A%*2(¢) and the symmetric phase
> (1) of the (2,+2) mode are small oscillatory real
functions, so to model them we taper each of these
functions in the intervals [t o] and [f7, ] with a
Planck window [69] and take a Hilbert transform, thereby
producing an amplitude and phase for each of these
functions; these amplitudes and phases are slowly varying,
so we use these as our waveform data pieces.

For subdominant modes, we treat ¢’," differently than
for the (2,+2) modes. We model ¢’ directly instead of
using a Hilbert transform, because for these modes the
Hilbert transform does not improve the model’s accuracy.
Fortunately, errors in goi’m for £ > 2 contribute very little to
the overall error of the final model waveform, as seen in
Table III below.

An additional difficulty is that subdominant modes can
vanish at certain points in parameter space, and this makes
phases ill-defined. Consider a system with ¢ = 1, |;| = 0,
and some y5. For y5 = 0, the (2,1) mode vanishes. For
small 5 # 0, switching the sign of y5 will switch the sign
of the (2,1) mode, meaning that the phase of the (2,1) mode
has a discontinuity of 7 as y5 passes through 0. We wish to
avoid such discontinuities when building surrogate models.
In this particular example, the discontinuity can be avoided
by defining the amplitude of the (2,1) mode to be negative
and the phase to be increased by 7z when x5 < 0.

Now consider the general case with arbitrary y;. At the
alignment time ¢,, the orbits of all NR waveforms are
aligned. Because of this, at time 7, the phase of a given
(Z, m) mode with m > 0 and even will be approximately
equal for all NR waveforms, i.e. for all choices of
parameters. Similarly, at time #, the phase of a given
(£, m) mode with m odd will either be approximately equal
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FIG. 11. For the real-valued oscillatory components X such as

Im[#*°], we perform a Hilbert transform to obtain a complex
signal H(X) and extract an amplitude and phase. The dashed
green line shows the imaginary part of H(X).

or will differ by approximately z for all choices of param-
eters. Therefore at 7, the phases of each nonvanishing (¢, m)
mode, for all choices of parameters, are clustered around
either one or two values, depending on the mode.
Furthermore, when the phases of a given (£, m) mode are
clustered around two values instead of one, the clusters are
separated by z and the phases of the corresponding (£, —m)
mode are also clustered around two values and not one.
For modes (#,m) with phases that are clustered around
one value, there is no discontinuity in phase as a function
of parameters, and nothing more needs to be done. But for
modes (£, m) with phases clustered around two values, we
remove the discontinuity. To do this, we arbitrarily
choose one of the two values as the reference phase q)g’m,
and then compute the initial phase deviations Sp*" =
("™ (1)) — @™ |. Whenever 8" + 8¢~ > 1 we
take the amplitudes of the (¢, £m) modes to be negative
and increase the phases of these modes by z. This causes the
initial phase of either the +m or —m mode to be > 7, so we
subtract 2z from that phase. These transformations preserve
the complex waveform mode h*™ but transform Ai’m —
—A7"™ and %" — @™ + x, leaving ¢/ unmodified.

Now we discuss modes 2”°(r), with m = 0. As seen in
Fig. 11, the (2,0) mode has a nonoscillatory real part during
the inspiral, while the imaginary part is small but oscil-
latory. The (3,0) mode is similar, with the roles of the real
and imaginary parts reversed. Therefore, we do not
decompose izf‘o(t) according to Egs. (48) and (49).
Instead, we model the nonoscillatory component directly,
and we take a Hilbert transform of the oscillatory compo-
nent to obtain an amplitude and phase, after tapering that
component in the intervals [f,,,. fo] and [t fyax].

The decomposition of the NR waveforms is summarized
in Fig. 6. The NR waveforms begin at the top of the
diagram and are processed going downwards. Each blue
end point represents one of the slowly varying waveform
data pieces that we fit as a function of parameters A at each
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of the empirical time nodes. To evaluate the surrogate, the
fits and empirical interpolants are evaluated for each of the
blue end points, and the waveform is reconstructed by
going upwards in the diagram and undoing each decom-
position, eventually yielding h%"(z).

D. Removing the dependence on ¢,

As discussed in Sec. III A, we attempt to start all NR
simulations so that at the reference time ¢ = #, we have
¢, = 0, where ¢, is the azimuthal angle of the spin of the
larger black hole, as shown in Fig. 3. However, in practice
we obtain NR simulations with nonzero values of ¢, at
t = ty. In this section we describe how we analytically
approximate the dependence of the waveform on ¢,. The
surrogate model is then built assuming ¢, =0, so that
when the surrogate model predicts waveforms with ¢, # 0,
the ¢, dependence is described fully by this analytical
approximation. For an orbit-averaged PN waveform of any
order that is decomposed into waveform data pieces as
described above, it turns out that one can show from the
equations (e.g. as written in [67]) that none of the waveform
data pieces depend on the parameter ¢, except for the phase
¢,4(t). This phase has a particularly simple dependence,

@4(t; 2, py) = @a(:4,0) + ¢, (50)

where 4 describes all of the parameters except ¢,. So we
will make the approximation that Eq. (50) applies not only
to orbit-averaged PN waveforms, but also to NR wave-
forms lying within the 5D parameter space. In addition, we
find empirically for NR waveforms that the phases of the
Hilbert transforms of A" and (pi’m also obey Eq. (50), but
with the opposite sign on the last term.

Therefore, given a point A in 5D parameter space, we first
decompose hng(#;4) into waveform data pieces, and we
then subtract ¢, from ¢, and add ¢, to the phases of the

Hilbert transforms of A2 and ¢™. We then consider the
waveform data pieces as functions of only the four
parameters (¢, |x|, x5, and 6,), and we build a 4D model
of each of these waveform data pieces. When evaluating the
surrogate model waveform at a point A in the full 5D
parameter space, we first evaluate the 4D surrogate model
expressions for the waveform data pieces at the parameters
(4, 1], x5, and 6,), we add ¢, to ¢4, and we subtract ¢,

from the phases of the Hilbert transforms of A2 and (pi‘m.
Then we combine the waveform data pieces to yield the
model waveform hg, (#;4).

To verify how well this procedure removes the depend-
ence on ¢,, we performed additional SpEC simulations
with parameters identical to cases SXS:BBH:0346
and SXS:BBH:0346 but with different values of ¢,. We
then analytically remove the ¢, dependence from all
these waveforms, as described above, thereby generating
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FIG. 12. Top: waveform differences Sh(t) investigating the
removal of the ¢, dependence on the waveform. Each colored
band includes waveforms compared to SXS:BBH:0346 and SXS:
BBH:0346 for several different values of ¢, . Before making any
adjustment, the errors (¢, differences) are large. After adjusting,
the errors (¢, adjusted) are comparable to resolution errors during
the inspiral but grow large at merger. The decomposition errors
are negligible. Bottom: differences in ¢>2. Our analytic approxi-
mation to remove the effect of ¢, on the waveform does not affect

@*?, but here we see that the orbital phase at merger can vary by
nearly a radian for different values of (/Jx, which is the most
significant contribution to the ¢, adjusted errors in the top figure.

¢, = 0 versions of these waveforms, which we compare
with each other. The agreement (or lack thereof) of these
¢, = 0 waveforms is a measure of the effectiveness of our
analytical procedure for removing the ¢, dependence. We
find that while the dependence on ¢, is removed well
during the inspiral, >?(¢) varies by nearly a radian during
the merger as we vary ¢,, which leads to errors significantly
larger than the SpEC resolution errors as shown in Fig. 12.
Incidentally, we note that for two waveforms for which ¢,
originally differs by =z, the corresponding ¢, = 0 wave-
forms are nearly identical. Before removing ¢,, the largest
difference in the waveforms used in this test is £ = 0.0285,
while after removing ¢,, the largest difference is
& =0.00684. While our ¢,-removal procedure success-
fully accounts for most of the effect of ¢,, the error
associated with this procedure is larger than the median
surrogate error (see Fig. 13 and Sec. VI) and indicates this
approximation could be the dominant source of error in the
surrogate model.

E. Handling undefined phases

Our waveform decomposition scheme results in many
phases, which become undefined when their correspond-
ing amplitudes vanish. For example, ¢, is undefined
for nonprecessing systems, as are the phases of the
Hilbert transforms of nutating quantities. Additionally,
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FIG. 13. Histograms of time domain waveform errors &

relevant to the surrogate. Equal areas under the curves correspond
to equal numbers of cases, and the curves are normalized such
that the total area under each curve when integrated over log ()
is 1. Solid black: the resolution error comparing the highest and
second highest resolution NR waveforms. Dotted brown: the
error intrinsic to the surrogate’s waveform decomposition. Filter-
ing out nutation in the quaternions and neglecting the small but
nonzero dq, due to discrete time sampling leads to errors in the
reconstructed waveforms. These errors are nearly zero for non-
precessing cases, and even for precessing cases they are smaller
than the resolution errors. Thin solid blue: the errors when the full
surrogate attempts to reproduce the set of waveforms from which
it was built. Dashed purple: the errors when trial surrogates
attempt to reproduce NR waveforms that were omitted during the
surrogate construction.

the amplitudes of subdominant modes in the coprecessing
frame can briefly become 0, making the corresponding
(pim quantities undefined. Since the NR waveforms contain
numerical noise, in practice the phases become poorly
resolved when the corresponding amplitude becomes
comparable to the noise level.

When decomposing each NR waveform into waveform
data pieces, if one of the amplitudes A(7) falls below some
threshold at any time ¢ before the merger, then the
corresponding phase ¢(7) is omitted from the model for
that NR waveform. This means that when building empiri-
cal interpolants or fitting across parameter space at empiri-
cal nodes, we use fewer than our entire set of 288
waveforms to fit that particular ¢(). The thresholds are
described in Table L.

V. BUILDING A SURROGATE MODEL
FROM DECOMPOSED WAVEFORMS

We have decomposed each NR waveform into many
functions X (#;4) that are smoothly varying as a function of
parameters A. Here, X represents one of the many decom-
posed waveform data pieces such as ¢, or Ai’z. Note that
while different waveform data pieces X will have different
linear basis sizes, empirical time nodes, empirical inter-
polants, and parameter space fits, we will not always label
the explicit X dependence of these quantities. For each X
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TABLE I. Tolerances (Tol.) used to omit poorly resolved phases.
Other than the tolerance for ¢;, which is based on the amount of in-
plane spin, the tolerances are based on the minimum value of some
amplitude before ¢t = 0. If a tolerance is not listed for a particular
phase parameter, for example (pi‘z, then that phase parameter is
always included in the surrogate. The columns N pass and N reject
describe the number of waveforms for which a phase is included in
the surrogate, and the number for which it is not. Note that we have
a total of 288 waveforms but only 276 NR simulations, because a
few of the NR simulations allow us to compute waveforms for more
than one set of parameters because of symmetry considerations
(cf. Sec. I C).

Data Quantity used Tol. N pass N reject
Pa 71| sin(6,) 103 192 96
@[H[A2Y]] |H[A2?]]] 1076 192 96
olH[p??)] H )| 107 169 119
2! A2 1074 260 28
P! A% o0 0 288
p[H[A®']] |[H[AZ1]] 3x107° 97 191
o[H[m[F*]]  |H[Im[R*]  2x107° 190 98
9 A3 1073 210 78
p[H[A23]] |H[A>3]]] 3x107% 166 122
p[H[A>?]] |H[A>]]] 107 140 148
9! A3 1074 137 151
[H[A>Y]] |[H[A3]| 2x107% 135 153
p[H[Im[*))]  [H[Im[*?])] 2% 107 86 202

we have several NR solutions with different parameters
{X(t;4):4 € G*} where G¥ € G = {A;}Y,. We note that
the only reason we might not have G* = G is due to
omitting cases with undefined phases discussed in Sec. IV
E. The next step is to model each of those functions X with
its own surrogate model X¢ by building an empirical
interpolant and fitting the empirical nodes across the
parameter space 7 . The surrogate model for the waveform

h5™(1;4) will then evaluate Xg(t;4) for each waveform
data piece, from which the inertial frame waveform modes
{h5™(£;4)} will be reconstructed. These stages are dis-
cussed below.

A. Empirical interpolation

For each waveform data piece X, we build an empirical
interpolant using the available solutions {X(7;4):4 € GX}.
Here we address modifications to the standard empirical
interpolation method discussed in Sec. IT A.

We require an orthonormal basis B spanning the space of
solutions {X(#;4) :4 € T }. While the standard method is to
use a reduced basis that was previously constructed when
determining the greedy parameters G, in our case we used
PN waveforms to find the greedy parameters and have not
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TABLE 1II. Projection error RMS tolerances for each basis.
Unlisted quantities have a default tolerance of 0.003 for ampli-
tudes and 0.03 for phases.

Data Tol Data Tol Data  Tol Data Tol
®p 0.005 ¢33 10.0  @[H[AZ?]] 03 2% 0.15
Py 0.03 o3 100  g[H[AZ']] 1.0 21 1.0
p[H[R*®] 05 ¢3! 100 ¢[H[A3?] 10.0 >3 0.3
p[H[R*O] 05 A32 0001  @[H[A2?]] 10.0  ¢>* 03
|H[p>?]| 015  A2! 0.001  g[H[A3]] 1.0 ¢3! 10
p[H[p>?]] 100 432 0.0003

yet built a basis for NR solutions of X. Greedy and singular
value decomposition (SVD) algorithms have been used
within the gravitational wave surrogate modeling commu-
nity [29,34-36] and will both provide an accurate basis
provided any X(#,4) can be accurately approximated in the
span of {X(#,A):4 € G*}. A short discussion, including
advantages and disadvantages of SVD and greedy algo-
rithms in the context of surrogate waveform modeling, is
given in Appendix B. Despite using a greedy sampling
strategy to identify the set of greedy parameters, we use a
SVD basis for the NR solutions, primarily for its ability to
average out uncorrelated noise sources (see Appendix B).

We truncate the orthonormal basis and use the first n
singular values and vectors such that all projection errors
are below the tolerances given in Table II. We note that n
will be different for different waveform data pieces. We
then proceed according to Sec. I A, finding empirical time
nodes {7;}}_, and building an empirical interpolant 7,,. If
we are given X at the empirical nodes T;, we can now
determine

Xs(5:4) = 1,[X5](2) (51)

for all times 7 € [tins fmax)-

B. Parametric fits

The next step is to model the dependence on A of the
waveform data pieces at the empirical nodes

X;(A) = X(T;:4). (52)

We build an approximate model for X; denoted by X ;s by
fitting it to the available data {X;(4):1 € G*}. We do so
using a forward-stepwise least-squares fit [70] described in
Appendix A, using products of univariate basis functions in
q, |x1], 0, and x5 as the fit features. For each fit, the number
of fit coefficients is determined through a cross validation
study using 50 trials, each of which uses N, = 5 randomly
chosen validation points. The number of fit coefficients
used is the one minimizing the sum in quadrature over the
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error in each trial, which is the maximum fit residual for the
validation points.

C. Complete surrogate waveform model
in inertial coordinates

Given parameters As = (g, Iﬂ?l|’9x’¢x’ X5), we extract
A=(q.1%1].6,.x5) and evaluate the fits and empirical
interpolants of each waveform data piece X, obtaining

Xs(t:0) = 3" Xs(p (1), (53)
=1

We then obtain the inertial frame waveform h5™(r) by

combining the waveform data pieces and flowing upwards
in Fig. 6. Explicitly,

0(1) =T, (pa(t:4) + ¢. 9, (1:4)) (54)

91" (1) = g(H(TI*))(5:4) = (55)

Th*(1) = A(H(Zh**))(1:4) cos(g7°(1))  (56)

n0(1) = RI*(t;4) + iZh*(r) (57)

o’ (1) = p(H(RI)(5:2) - ¢, (58)

,le&O(t) _ A(H(RilBO))(t’A‘) COS((p;’é()(l‘)) (59)

w(t) = RIPO(1) +iZh°(1; 2) (60)
@ (1) = 7" (4) £ @l (4),  m>0  (61)
ACEM() = ASM(2) £ AT (54), m>0  (62)
RO () = ACER () cos(g (), m> 0 (63)

{n'm(n)}y = To({h""(1)}. Q(1)). (64)

where we have included the dependence on A explicitly for
surrogate evaluations of waveform data pieces Xg. The full
NRSur4d2s surrogate evaluation producing all 2 < ¢ <4
modes for an array of times between f,;, and f,,, with
spacing 6t = 0.1 takes ~1s on a single modern processor.
Roughly half of this time is spent computing the trans-
formation 7', from the coprecessing frame to the inertial
frame, Eq. (26).

VI. ASSESSING THE MODEL ERRORS

A. Time domain errors

To determine how well the output of the NRSurdd2s
surrogate matches a NR waveform with the same param-
eters, we compute
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TABLE III. Maximum and median errors when attempting to
reproduce the set of NR waveforms when a single waveform data
piece is replaced X with its surrogate evaluation Xg and the
waveforms are reconstructed. This can be compared with &9,
which is the maximum error when replacing X with O (or the
identity quaternion when X = ¢) instead of with Xg. When
X =0 we replace no waveform data piece, but there is still
decomposition error due to the lack of # >3 modes in the
surrogate waveforms, filtering, and neglecting ¢,. Note that the
errors for 2™ include replacing both the (#,m) and (£, —m)
coprecessing modes. Some components X (such as X = 1)
have &% ~ €9, indicating the error associated with replacing X
with 0 is similar to or smaller than the decomposition errors. g*?
is the biggest source of error in the surrogate, although ¢, also
contributes significantly.

gOX g?ax g;r(ledian X 59( g?ax

X gl;;edian
@ 0.0006 0.0006 0.0003 q
h

0.2450 0.0089 0.0004

0.5 0.0521 0.0014 @, 0.2450 0.0095 0.0004
0.5 0.0478 0.0013 @, 0.4171 0.0008 0.0003
%0 0.0006 0.0006 0.0003 H2E2 04999 0.0461 0.0011
2D 0.0044 0.0016 0.0004 A%? 04999 0.0007 0.0003
70 0.0006 0.0006 0.0003 A%? 0.0018 0.0010 0.0003
B> 0.0006 0.0006 0.0003 4’12 0.0027 0.0049 0.0004
R>+2 0.0008 0.0007 0.0003 p*?* 0.9959 0.0446 0.0009
B33 0.0043 0.0020 0.0004

=

1 6h (65)

g[hNRv hSur] = E ||hNR| 2

where hng and kg, are the NR and surrogate waveforms,
and 6h is given by Eq. (19). This quantifies the surrogate
error as a whole at one point in parameter space. For NR
waveforms that were used to build the surrogate, we call
Eq. (65) the training error. For NR waveforms that were
not used to build the surrogate, but are used to test the
accuracy of the surrogate model versus NR, we call
Eq. (65) the validation error. Because we decompose each
waveform into a set of slowly varying functions that are
modeled independently (i.e., the waveform data pieces of
Sec. IV), it is useful to consider the contribution to the
surrogate error that arises from modeling a single waveform
data piece. If X denotes the waveform data piece in
question, then we compute this error contribution by
decomposing the NR waveform hyg into waveform data
pieces, we replace the NR version of X with the surrogate
model for X while leaving all waveform data pieces other
than X untouched, and we recombine the waveform data
pieces, thus producing a waveform we call hy. The error
contribution from X is then £y = E[hng, hx|. Values of &y
for various waveform data pieces X are listed in Table III.
Note that if we decompose hyg into waveform data pieces
and then recompose the waveform data pieces, we do not
recover hyg exactly, but instead we get a different
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FIG. 14. Parameter dependence of the error &[h, hg] when
reproducing the set of NR waveforms with the surrogate.
Diagonal: For each parameter plot, the black dots label the
(parameter value, E[h, hg]) pairs. Off diagonal: For each pair of
parameters, we show the 2D projection of parameters as in Fig. 4
while varying the color and size of the point based on the error
E[h, hs]. Points are placed in order of increasing error, to ensure
the small yellow points with large errors are visible. Larger spin
magnitudes, especially for precessing spin configurations, corre-
late with larger errors.

waveform hg because there is error associated with the
decomposition. This error, £y = E[hng, hg), is also shown
in Table III.

A first test is to verify that the NRSur4d2s surrogate can
reproduce the set of NR waveforms from which it was built.
The errors for those parameters are shown as the solid blue
curve in Fig. 13. These errors are significantly larger than
the NR resolution errors (cyan curve), which compare the
highest and second highest NR resolutions. This indicates
either that including additional NR waveforms when
building the surrogate model would reduce the training
error, or that the error is dominated by approximations
made when building the model, such as the analytic
treatment of ¢,. The median training error is 0.00136,
and in Sec. IV D we found that our approximation for the
waveform’s dependence on ¢, resulted in errors up to
0.00684, indicating the model errors could be dominated by
the error in this approximation. While the maximum
training error is 0.05212, we only investigated the depend-
ence on ¢, for three cases and only for a few values of ¢,.
The parametric dependence of the training errors is
illustrated in Fig. 14. Perhaps unsurprisingly, the largest
errors occur at larger mass ratios and spin magnitudes, and
for precessing spin directions.
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FIG. 15. Errors £y showing the error contribution of a single
surrogate component X.

To test the interpolation accuracy of the surrogate, we
perform a cross-validation study. For each of ten trials, we
randomly select N, = 10 waveforms which we call vali-
dation waveforms, and we build a trial surrogate using the
remaining N, = N — N, waveforms. The trial surrogate is
evaluated at the N, validation parameters, and the results
are compared to the validation NR waveforms. These
validation errors are shown as the purple dashed curve
in Fig. 13. The validation errors are quite similar to the
training errors, indicating we are not overfitting the data.

The maximum and median values of the training errors
Eyx are listed in Table III. The decomposition errors &g, also
shown as the dotted brown curve in Fig. 13, are similar or
smaller to the NR resolution errors and are therefore

negligible. All component errors £y include the decom-

position errors by construction, and we see that X = h*""

leads to negligible errors except for the (2,2), (2,1) and (3,3)
modes. The (2,2) mode is the dominant contribution to the
error, and its error is dominated by the error in ¢>2. The
precession phase ¢, is the dominant precession error and is
the next most significant contribution to the total error in 4.
Figure 15 shows histograms of the dominant sources of
error, and Fig. 16 shows the time-dependent errors of these
components for the case with the largest training error.
We have constructed the surrogate models and computed
£ assuming zero orbital eccentricity. However, it is not
possible to construct NR simulations with exactly zero
eccentricity, and the simulations used to build the surrogate
have eccentricities of up to 0.00085. To estimate the effect
that the eccentricity of the NR waveforms has on our
surrogate, we repeated two of our NR simulations changing
nothing except the eccentricity. The errors we found are
listed in Table IV. The largest eccentricities in these
additional simulations are several times larger than the
maximum eccentricity in the NR simulations used to build
the surrogate, yet the resulting waveform errors are smaller
than the surrogate errors and comparable to the NR
resolution errors. This suggests that the small eccentricities

104023-20



SURROGATE MODEL OF GRAVITATIONAL WAVEFORMS ...

10%

107
102
103k

rh/M

af
10 E Aot

107°F§ — h e ]
E — Decomposition

10—6;_.:

“Z2000 =3000 -2000 —1000 0
t/M

FIG. 16. Error contributions 5h(f) of those waveform data
pieces X that have the largest error &[h, hx| for a selected
simulation: ID 79. To compute the error, the NR waveform is
decomposed into the surrogate components, and component X is
replaced with its surrogate evaluation. The waveform is then
reconstructed, and 6h(t) is computed from Eq. (16). The solid
black curve is given by Eq. (24). The dashed curve is the error in
@p, which is the dominant error in modeling the precession, and
the dominant error source during the inspiral. The dotted curve is
the error in a quantity similar to twice the orbital phase and
becomes the dominant error source during the merger and
ringdown. The contribution from errors in the other waveform
data pieces is smaller, as shown in Table III.

present in the NR waveforms used to build the surrogate are
negligible compared to the NR resolution errors.

B. Frequency-domain comparisons

In this section we compute mismatches in the frequency
domain between surrogate waveforms and NR waveforms.
To ascertain the significance of these mismatches, we also
compute mismatches between two NR waveforms with the
same parameters but different resolutions. For comparison,
we also compute mismatches between NR waveforms and
the phenomenological inspiral-merger-ringdown waveform
model IMRPhenomPv2 (which follows the procedure
outlined in [19] with IMRPhenomD [20] as the aligned-
spin model) and between the effective-one-body model
SEOBNRvV3 [23], both of which include the effects of
precession.

TABLE IV. Errors E[hy, he.| where hy is the waveform from a
reference case used to build the surrogate and /... is a waveform
from a NR simulation with nearly identical parameters but with a
larger eccentricity (Ecc.). For SXS:BBH:0534, A has an eccen-
tricity of 0.000027, and for SXS:BBH:0534, h, has an eccen-
tricity of 0.000055.

Reference Case Ecc. &

SXS:BBH:0534 0.000375 0.000007
SXS:BBH:0534 0.002272 0.000162
SXS:BBH:0546 0.000316 0.000004
SXS:BBH:0546 0.000381 0.000005
SXS:BBH:0546 0.002389 0.000106
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We minimize the frequency domain mismatches over
time and polarization angle shifts analytically as described
in Appendix D and also minimize them over orbital phase
shifts numerically. When we compare two waveforms, we
choose one waveform as the reference waveform with fixed
parameters and optimize over the parameters of the other
waveform. When comparing two NR waveforms, the
reference waveform is the one with the highest resolution;
when comparing NR with some model waveform, the NR
waveform is chosen as the reference.

The SEOBNRvV3 and IMRPhenomPv2 waveforms are
generated with the lalsimulation package [71]. Each
SEOBNRvV3 waveform is generated in the time domain;
the spin directions are specified at the start of the waveform,
which is determined by specifying a minimum frequency.
We ensure the spin directions are consistent with those of
the NR waveforms by varying the minimum frequency in
order to obtain a waveform with a peak amplitude occurring
4500M after its initial time. The IMRPhenomPv2 wave-
forms are generated in the frequency domain, and the spin
directions are specified at a reference frequency f,.; that
can be freely chosen. For IMRPhenomPv2 it is not
straightforward to determine f,.; such that the spin direc-
tions are specified at a time of 4500M before the peak
amplitude. Therefore, we instead choose f,.; differently:
we minimize the mismatches by varying f ., with an initial
guess of twice the initial orbital frequency of the NR
waveform.

To transform the time domain waveforms into the
frequency domain, we first taper them using Planck
windows [69], rolling on for ¢ € [ty, to + 1000M] and
rolling off for ¢ € [SOM,70M] where 1y = —4500M is
the time at which the parameters are measured, and
t =0 is the time of peak waveform amplitude. We then
pad them with zeros and compute the frequency domain
waveforms via the fast Fourier transform (FFT). For the
reference NR waveform, we obtain 30 random samples of
the direction of gravitational wave propagation (6, ¢) from
a distribution uniform in cos # and in ¢, and we uniformly
sample the polarization angle y between [0, z] to obtain

hy, (1) = hy (1) cos(Ry) + h,(t) sin(2y).  (66)

For the nonreference waveform, we use the same param-
eters except we add an additional initial azimuthal rotation
angle ¢, a polarization angle v, and a time offset, and we
optimize over these three new parameters to yield a
minimum mismatch. Because the waveform models do
not intrinsically depend on the total mass, we first use a flat
noise curve to evaluate the overlap integrals; this provides a
raw comparison between models. We evaluate Eq. (23)
with f.., being twice the orbital frequency of the NR
waveform at t = —3500M.

The mismatches using a flat noise curve are shown in the
top panel of Fig. 17. We find that both the IMRPhenomPv?2
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FIG. 17. Mismatches, computed using a flat noise curve, versus
the highest resolution NR waveforms. Histograms are normalized
to show the error fraction per log-mismatch, such that the area
under each curve is the same. A sufficient but not necessary
condition for a mismatch to have a negligible effect is that the
signal-to-noise ratio (SNR) lies below the limiting SNR p, =
1/+/2Mismatch given on the top axis [72]. Top: All modes
available to each waveform model are included, and the NR
waveforms use all Z < 5 modes. Middle: All coprecessing-frame
modes other than (2,+2) are set to zero in all waveforms.
Bottom: All coprecessing-frame modes other than (2,+1) and
(2,42) are set to zero in all waveforms. These restricted mode
studies are done to compare more directly with IMRPhenomPv2
and SEOBNRv3, which retain the coprecessing-frame modes of
the middle and bottom panels respectively.

(green dot-dashed curve) and SEOBNRvV3 (solid curve)
models have median mismatches of ~1072 with the NR
waveforms. The mismatches between our surrogate model
and the NR waveforms are given by the “training” (solid
blue) and ““validation” (dashed purple) curves and have
median mismatches of ~10~3 with the NR waveforms; see
Sec. VI A for a discussion of training and validation errors.
Finally, NR waveforms of different resolution have median
mismatches (solid black curve) of ~107>. In the middle and
bottom panels, we repeat this study while restricting which
coprecessing-frame modes are used. IMRPhenomPv?2 con-
tains only the (2,£2) modes, while SEOBNRvV3 also
contains the (2,41) modes. Obtaining larger mismatches
in the top panel when comparing against all NR modes
indicates these waveform models would benefit from
additional modes. We find that our surrogate performs
roughly an order of magnitude better than the other
waveform models in its range of validity, but still has
mismatches 2 orders of magnitude larger than the intrinsic
resolution error of the NR waveforms. This suggests that
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FIG. 18. Median (lower curves, circles) and 95th percentile
(upper curves, triangles) mismatches for various total masses M
using the advanced LIGO design sensitivity. The median NR
resolution mismatches are all below 2 x 107, The “surrogate”
mismatches shown here are “validation” errors described in
Sec. VIA.

the surrogate could be improved with additional waveforms
and/or improved model choices. However, we also note that
neither IMRPhenomPv2 nor SEOBNRvV3 have been cali-
brated to precessing NR simulations.

Since a realistic noise curve will affect mismatches, we
also compute mismatches for total masses M between
20 M, and 320 M using the advanced LIGO design
sensitivity [73]. In Fig. 18, the lower and upper curves for
each waveform model denote the median mismatch and
95th percentile mismatch. We note that for M < 114,
some NR and surrogate waveforms begin at f,;, > 10 Hz
and the noise-weighted inner products will not cover the
whole advanced LIGO design sensitivity band. The surro-
gate model errors increase with total mass, indicating a
larger amount of error in the merger phase and less error in
the inspiral phase. Note that our largest systematic source
of error, the approximate treatment of the waveform’s
dependence on the angle ¢,, is much larger during the
merger than during the inspiral, as discussed in Sec. IV D
and plotted in Fig. 12. This error source arises from our
attempt to model a 5D parameter space with a 4D surrogate
model, so it will not be relevant for a full 7D surrogate
model. Even with this error, our surrogate model performs
better than the other waveform models up to 320 M
within the surrogate parameter space.

To determine if the discrepancy between the surrogate
errors and NR resolution errors is due to an insufficient
number of NR waveforms in the surrogate, we study how
the errors depend on the number of waveforms used to
build the surrogate. We construct trial surrogates using the
first Nyin NR waveforms for Ny, € [30,200]; for vali-
dating the surrogate, we use the N — 200 waveforms that
are not used to build any of these trial surrogates. By using
the same N — 200 validation waveforms for all choices of
N ain» We ensure that any changes in the error distribution
resulting from changes in N, are due to changes in the
surrogate model and not in the set of validation waveforms.
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building a surrogate using the first N waveforms and a validation
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The validation errors, shown in Fig. 19, decrease quite
slowly with additional waveforms when N, > 100,
suggesting that the number of NR waveforms would have
to increase dramatically to have a noticeable affect on the
predictive ability of the surrogate.

C. Representing arbitrary spin directions

One of the limitations of the NRSur4d2s surrogate model
is that it only produces waveforms for binaries with a
restricted spin direction on the smaller black hole.
However, it is possible to make use of effective spin
parameters to create a parameter mapping

f: (q’flv)?a) - )?model (67)

from the 7D space of binaries with arbitrary spin directions
to a lower-dimensional parameter subspace [17,18,74]. The
use of a model with such a parameter space mapping in
gravitational wave source parameter estimation leads to
equivalence classes

{(q.21.02) : F(q.21.72) = Xmodel }» (68)

where multiple values of the 7D parameters map to the
same lower-dimensional parameter vector Xpogqe. FOr
parameter estimation, all members of the equivalence class
have the same likelihood, so distinguishing parameters
within one equivalence class can be done only using
knowledge of the prior.

Here we investigate several possible mappings from the
full 7D parameter space to the 5D subspace covered by the
NRSur4d2s surrogate model, and we investigate the accu-
racy of these mappings using three SpEC simulations with
parameters outside the 5D subspace. In our case, Xoqe 18
the vector (q.y7.x5) at t = ty. To construct a parameter
space mapping from (q, 1, ¥») 0 Xjodel» We use the values
of 7, and y, at t = 1, to form an effective spin j.¢, and then
CONSEIUCt Xoqe; USING yope instead of y). This preserves the
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values of ¢ and x5, while reducing the other five spin
components to three.

The most simple mapping would be to ignore the x and y
components of j, at t = f, and take

T = 7. (69)

A second possibility would be to use a similar parameter

mapping as is used in IMRPhenomP [19] with an effective
precessing spin y, [74] and take

O[S
) o

i* = argmaxB; |77, (72)
i=12

B~ .

X = B A Tai (73)

where 7 is the part of 7; orthogonal to the Newtonian
orbital angular momentum, which is (y7,x?,0) at 7 = .
This mapping uses the in-plane spin components of
whichever spin contributes the most to precession at
leading PN order, scaled appropriately and placed on the
heavier black hole. This mapping is particularly effective
when the in-plane spins of the smaller BH are negligible,
i.e., for high mass ratios, and for long duration GWs.
However, it has also been shown to prove sufficient for
binaries similar to GW150914 [3,25].

In our case, we have a couple precession cycles at most,
and we might consider adding the effects of the in-plane
components of the two spins. A further motivation to add
the spins is that for nearly equal masses, the precession
rates of the two spins will be nearly equal [51,75]. When
adding the dimensionless spins, we can either do so directly

N - 1.
i =a+ ?ﬁ (74)

or again using the leading order PN contribution to
precession

TABLE V. Parameters for three additional SpEC simulations
with unrestricted spin directions. The spins are measured at
t= lo.

SSX:BBH:ID ¢ bz A

0607 1.5 (0.067,—0.199,0.212) (0.139, —0.374,0.202)
0608 1.7 (0.053, —0.085,0.001) (0.494,0.337,0.113)
0609 1.9 (0.094, —0.145,0.099) (—0.398,0.576,0.001)
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. By
=7 +B—2x%- (75)
1

We do a brief investigation of the quality of these
parameter space mappings using three additional SpEC
simulations. The waveforms are aligned as described in
Sec. III D, and their parameters at t = f, are measured and
listed in Table V. For each case and each parameter space
mapping, we compute the mapped parameters and compare
the surrogate evaluation with the mapped parameters to the
NR waveform. The time-dependent waveform errors are
shown in Fig. 20 and &£ values as well as mismatches are
given in Table VI. ~0.01, which is larger than the median
surrogate errors but well within the possible range of

TABLE VI. Errors between the three NR waveforms and the
surrogate evaluation for a given parameter space mapping.
Mismatches are optimized over time, polarization angle and
orbital phase shifts. For each mapping, the largest error is in bold.

& Median mismatch
Map 0607 0608 0609 0607 0608 0609

Drop [Eq. (69)] 0.016 0.007 0.008 0.0054 0.0026 0.0031
Add [Eq. (74)] 0.007 0.009 0.013 0.0046 0.0051 0.0076
PN [Eq. (75)] 0.008 0.019 0.021 0.0041 0.0075 0.0109
Xp [Eq. (73)] 0.014 0.018 0.044 0.0050 0.0074 0.0161
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surrogate errors, so we cannot rule out that these errors
are dominated by surrogate error. The “drop” parameter
space mapping performs reasonably well since the cases
investigated are far enough away from equal mass that the
spin of the smaller black hole has a small effect on the
waveform.

VII. BUILDING THE FREQUENCY
DOMAIN SURROGATE

Evaluating the NRSurd4d2s surrogate takes ~1ls on a
single modern processor. Evaluating all coprecessing
modes takes ~0.21s, evaluating the frame quaternions
q(t) takes ~0.38s and is dominated by evaluating
Eq. (38) sequentially for all times, and rotating the modes
into the inertial frame with the transformation 7', takes
~0.41s. Gravitational wave parameter estimation is typi-
cally done using Markov-chain Monte Carlo simulations
[5] and can require O(10%) waveform evaluations; this
motivates us to build a faster surrogate model. We also wish
the faster surrogate model to be in the frequency domain,
where most parameter estimation is currently done.
Accelerated frequency-domain surrogates have been built
in 3D [29,36] using cubic tensor-spline interpolation of the
waveform amplitudes and phases at some sparsely sampled
frequency points.

To build the frequency-domain NRSur4d2s_FDROM
surrogate, we first choose a uniformly spaced grid of
N=N,x..Xx N){; points in our 5D parameter space

and evaluate the NRSur4d2s surrogate model at each point
on the grid. We taper the waveforms with Planck windows
[69], rolling on for t € [-4500M, —3500M| and rolling off
for t € [50M, 70M]. We then pad the waveform modes with
zeros and perform a fast Fourier transform to obtain the

frequency domain modes i”"™(f). We then downsample
the frequency domain waveforms to a nonuniformly spaced
set of frequencies, which are chosen to be the same for all
waveforms and to be uniformly spaced in gravitational-
wave phase for an equal-mass zero-spin binary. This
significantly reduces the cost of evaluating the model, with

a negligible loss in accuracy. For each mode h”"(f), we
build an empirical interpolant in frequency using all N
waveforms, and we keep the first 100 basis vectors. At
each empirical frequency node, we fit the real and
imaginary parts of each mode across parameter space using
a cubic tensor-product spline; we use “not-a-knot” boun-
dary conditions that have a constant third derivative
across the first and last knots [76]. Finding the spline
coefficients involves solving a sparse linear system of size
(Ng+2) x ... x (N +2), for which we used Suitesparse
[77,78] and/or SuperLU DIST [79,80]. The advantage of
using a spline is that the evaluation cost is nearly inde-
pendent of the grid size N, and requires only 4973
coefficients and basis functions to be evaluated.
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TABLE VII. Grid sizes for tensor-spline interpolation in the
frequency-domain surrogate. The size in each dimension is
chosen such that surrogates for 1D slices in all dimensions have
comparable interpolation errors.

Grid label N, Niy,| Ny, Ny, Ny
5 5 4 7 4 6
6 6 4 8 4 7
7 7 5 9 4 8
8 8 6 1 4 9
9 9 6 13 5 1
10 10 7 14 6 12
1 1 8 15 7 14
12 12 9 17 8 16
13 13 10 19 9 19

Implementing the NRSur4d2s_FDROM surrogate model
in both ¢ and PYTHON, we find it takes 50 ms to evaluate a
single waveform in either case. Empirical interpolation
accounts for roughly 10% of the cost, and the remaining
90% comes from to the 2400 spline evaluations.
Assembling the waveform at a desired sky direction from
the modes and interpolating onto the desired frequencies
have negligible cost.

To ensure that the empirical interpolants and parameter
space splines are sufficiently accurate, we construct many
frequency-domain surrogates for increasingly large param-
eter space grids. We monitor the differences between the
frequency domain surrogate waveforms and the FFT of the
tapered NRSur4d2s waveforms, and we demand that these
differences decrease with increasing grid size. We use a
different number of grid points in each parameter-space
dimension, since the waveforms vary more in some
dimensions than others. To determine the number of grid
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FIG. 21. Cumulative error distributions of the frequency

domain NRSur4d2s_FDROM surrogate waveforms compared
to the time domain NRSur4d2s surrogate waveforms transformed
to the frequency domain, evaluated for randomly chosen uni-
formly distributed parameters. The curves indicate the fraction of
errors at least as large as the indicated error. The NRSur4d2s_F-
DROM output converges to the FFT of the NRSur4d2s output as
the grid size is increased.
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points to use, we construct frequency-domain surrogates
for 1D slices of the parameter space, where the other
parameters are fixed at a single intermediate value. We then
arbitrarily choose a value of N, the number of grid points
covering the dimension of mass ratio, and we determine the
maximum error of the 1D surrogate in which only the mass
ratio g is varied. Call this error E,. Then we find the
number of points N, | for which the 1D surrogate for |y, |
has an error of approximately £, and similarly for the other
parameters. The resulting grid sizes are listed in Table VII.
In Fig. 21, we see that the errors converge as the grid size
increases.

VIII. DISCUSSION

We have built the first NR surrogate model of BBH
waveforms that covers a multidimensional portion of the
BBH parameter space. This extends the work in [34], where
a one-dimensional (i.e. zero spin) NR surrogate served as a
proof of principle that surrogate models of NR waveforms
can be made highly accurate. The nonspinning surrogate
model is inappropriate for use in GW parameter estimation,
as neglecting all spin effects could lead to large parameter
biases. Extending the parameter space to include both
aligned spin components and one precessing component
makes the new model presented here the first NR surrogate
suitable for gravitational wave parameter estimation. While
two of the in-plane spin components are still neglected by
the NRSur4d2s surrogate model, IMRPhenomPv2 neglects
similar information but obtains parameters for GW150914
that are compatible with those obtained using SEOBNRV3,
which includes all spin components [25]. We note, how-
ever, that for edge-on systems otherwise similar to
GW150914 IMRPhenomPv2 can obtain biased parameter
estimates [33].

To reduce computational cost, the simulations used to
build the NRSur4d2s surrogate were restricted to mass
ratios ¢ < 2 and spin magnitudes |y;| < 0.8. This limits the
range of GW events for which the surrogate model could be
used. GW 150914 is within this range, while the mass ratio
posterior of GW151226 extends well beyond ¢ = 2.
Ultimately, a NR surrogate model covering the fully
precessing 7D parameter space up to large mass ratios
and spin magnitudes will be needed.

Use of the NRSur4d2s surrogate is also limited by the
length (i.e. number of orbits) of the waveforms used to
build it. GW151226 enters the sensitive LIGO band
approximately 55 cycles before merger [2], while the
NRSur4d2s surrogate produces waveforms with between
30 and 40 cycles before merger. Since these waveforms are
tapered before building the faster NRSur4d2s_FDROM
surrogate, the latter includes only 25 to 35 cycles before
merger. There are a few ways to build an NR surrogate with
longer waveforms, so that the surrogate is applicable to GW
events of lower total mass. First, one could build a surrogate
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model using longer NR waveforms. A less computational
expensive option would be to hybridize [81-84] the NR
waveforms with PN or EOB waveforms before building a
surrogate model. A final option would be to use a time
domain surrogate which produces waveforms of moderate
length as done here, to hybridize the surrogate output with
PN or EOB waveforms before transforming them into the
frequency domain, and finally to build a frequency domain
surrogate for the hybrid waveforms.

Phenomenological and semianalytic waveform modeling
approaches have already led to precessing waveform
models suitable for GW parameter estimation from a large
class of GW events. These models have an underlying
structure, and are calibrated by tuning a set of numerical
coefficients such that the model waveforms have good
agreement with NR waveforms. NR surrogate models
provide an independent approach. NR surrogate models
make no assumptions about the waveform structure,
although knowledge of the waveform structure may lead
to a better decomposition and smaller errors for a given
number of input NR waveforms. We find our NRSur4d2s
surrogate model to have better agreement with NR wave-
forms than other leading waveform models within the range
of validity of the surrogate, although we again note that
these other models have not been calibrated to precessing
NR simulations. As gravitational wave detector sensitivities
improve, this increased waveform accuracy will become
important for unbiased measurements of the parameters
from the loudest GW events, as well as when making
astrophysical statements using many GW events.

Since we have not performed Cauchy characteristic
extraction [85-88], but instead have extracted waveforms
from the simulations at a series of finite radii and then
extrapolated them to infinite radius [66], the (2,0) modes of
the numerical waveforms in the coprecessing frame may
not be accurate [89]. In particular, we do not see the
expected gravitational wave memory in the real part of the
(2,0) mode [90,91]. This should lead to negligible errors for
most LIGO purposes, since the memory signal is low
frequency and has very little contribution within the LIGO
band. However, NRSur4d2s would not be suitable to detect
a memory signal with a method requiring templates that
include memory. A direct measurement of the memory
signal using the method proposed in [92], however, could
make use of waveforms from NRSur4d2s, as they have the
(2,£1) and (3,43) modes in the coprecessing frame
necessary to determine the sign of the memory.

The errors in the NRSur4d2s surrogate are significantly
larger than the resolution of the NR waveforms used in its
construction. An incomplete treatment of the spin angle ¢,
(see Fig. 3) is one large source of error, and a complete 7D
NR surrogate model would not suffer from this issue.
Aligning the rotation of the waveforms (see Sec. III D)
closer to merger might reduce the errors, since ¢>? at the
empirical nodes would have less variation across parameter
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space. Since the parameters of the NR simulations were
chosen such that y, is aligned with the orbital angular
momentum 4500M before merger, it would be nontrivial to
build a surrogate model from these NR waveforms if the
rotation alignment were performed at some other time. This
is another issue which will be resolved by including all
seven dimensions of parameter space.

Incorporating additional NR waveforms into the
NRSur4d2s surrogate should also reduce the surrogate
errors, although Fig. 19 indicates that with the current
surrogate choices a very large number of additional NR
waveforms would be needed for a significant reduction.
Alternative methods of fitting empirical nodes could also
help. The training and validation errors in Figs. 17 and 13
are nearly identical, while in [34] the validation errors were
roughly a factor of 2 larger than the training errors. This
suggests we may be under fitting the data and could use
tighter parameter space fit tolerances.

In addition to model cross-validation, there is a variety of
informative diagnostics we could monitor to diagnose
sources of surrogate error. Failing to meet one of these
diagnostics would indicate an unexpected source of surro-
gate error that could be improved:

(1) Decay of the temporal basis error. Smooth models
are expected to have an exponentially decaying basis
projection error and empirical interpolation error.
Numerical noise in the NR waveforms means the
exponential decay will not continue to arbitrarily
small errors, but if the error curves do not display a
region of exponential decay there is reason to
suspect the basis is not accurate enough.

(i1) Decay of the parametric fitting error. It is known
that expanding (with orthogonal projection) a
smooth function with polynomials results in an
exponentially decaying approximation error. We
believe the waveform data pieces evaluated at
empirical nodes can be described by a smooth
function plus (relatively small) noise. Thus, just
as in the case of the basis projection error, the fitting
error is expected to decay exponentially before the
noise sources dominate the approximation. This can
be seen in Fig. 22, where the exponential decay only
lasts for approximately ten coefficients before noise
sources cause the validation errors to flatten and then
slowly rise.

(iii) Robustness to noise. We could build surrogates from
waveforms with different NR resolutions. In our
case, since the surrogate errors are larger than the
NR resolution errors, we expect to obtain a surrogate
of comparable quality using slightly lower resolu-
tion NR waveforms. If we use really low resolution
NR waveforms, we would expect the surrogate
errors to rise accordingly. In other cases where we
do achieve surrogate errors similar to the NR
resolution errors, comparing surrogates built from
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NR waveforms of different resolutions should yield
similar differences to comparing the NR waveforms
themselves.

(iv) Residual structure. We could examine the parametric
fit residuals and cross-validation residuals as a
function of parameters. If the surrogate model
captures the dominant features of NR waveforms
then these residuals should appear random. From
Fig. 14 we see that the largest errors occur at large
values of [y)| and for intermediate values of 6,
where precession has the largest effect. This indicates
additional highly precessing NR simulations may
help significantly in reducing the surrogate errors.
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APPENDIX A: FORWARD-STEPWISE
GREEDY FIT ALGORITHM

Here we describe in more detail the algorithm we
use in Sec. VB used to fit the waveform data pieces
evaluated at the empirical time nodes. Given N numerical
relativity simulations at parameters Ay = {li}ﬁ.\’: , Where

=(q.r1].0,.45) = (41,22, 2%, 2*), we obtain each wave-
form data piece X = {X(#;4;)}Y,. Evaluating the surro-
gate model requires predicting X,,(A) = X(T,,;4) for each
empirical time node 7', and for AZANg. Denoting the model
prediction as X,,5(4), we need not restrict to an interpo-
lation scheme where X,,5(4;) = X,,(4;) because the data
contain numerical noise. Instead, we use linear fits such that

mS ZCBl

for some set of basis functions {B'},

(A1)
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For simplicity, we choose all multivariate basis functions
to be products of one-dimensional basis functions; that is,
we choose B' € {B”} where

d
=87 .

I=1

(A2)

Here d = 4 is the dimension of the parameter space, d =
(a',...,a?) labels which univariate basis functions enter
the product, and we choose

(i) Bi(q) = Ti(2¢ -3)

(i) Bi(lil) = ()

(i) B4(6,) = cos(k0,)

(v) Bi(5) = Ti(5%),
where the T, are Chebyshev polynomials of the first kind.
We restrict the maximum order of the basis functions so
that o < kL, where k., = (5.6,6,4). We also restrict
a® < a? to ensure 0, does not affect the surrogate output
when [y,| = 0.

The above choices are made for all waveform data pieces
X except for X = ¢,,. If the waveform data piece is ¢, we
do the same as above except we instead choose

B(6,) = sin((k + 1)8,), (A3)
and we restrict 1 < a?> <6 and allow all 0 <@’ < 6. We
treat ¢, differently because the amount of precession is
approximately proportional to the spin component orthogo-
nal to the orbital angular momentum, while other wave-
form data pieces depend more strongly on the parallel
component.

The above choices yield 1008 possible basis functions
(1512 for ¢,,), which is more than N < 300, so we will use
only a subset of the possible basis functions. We determine
elements B' € {B?} of this subset in a greedy manner with
a forward-stepwise least-squares fit [70]. We proceed by
iteratively updating two quantities: r;, which is the jth fit
residual at the nth iteration, and b“", which is the
orthogonal component of the basis function B? at the
nth iteration evaluated at parameters A;. For the zeroth
iteration we begin with

(A4)
(AS)

At the nth iteration, we compute the inner product of the
residuals with the basis functions

d” Z n ba n

(A6)
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We then select the next most relevant basis function as the
one with the largest magnitude inner product with the
residuals

(A7)

a’, = argmax|d?|
a

and choose B" = B%. We compute the new residuals by
subtracting the projection onto the newly chosen basis
function

r;-‘H = - d;f;bfi’"

(A8)

and also orthogonalize the basis functions with respect to
the new basis function

e (A9)
et = "prb", (A10)

J

We continue until we have performed m < N iterations. We
can then perform a least-squares fit using the m selected
basis functions to find the coefficients c;. In practice this is
done during the greedy iteration by keeping track of the

matrix of transformations relating B%(;) and bf’” as well

as the coefficients d,'?

This procedure does not indicate which value of m (the
number of fit coefficients) to use. Using N fit coefficients
would be overfitting the data and setting individual fit
tolerances by hand for each empirical node of each data
component would be time consuming and error prone. So
instead, we repeat the above procedure for different values
of m, we perform cross-validation studies on the resulting
fits, we find the value of m that leads to the smallest
validation errors (call this value m*), and we choose
m = m*. For each trial k =1, ..., K =50 of this cross-
validation procedure, we randomly divide the N data points
into N, = 5 validation points and N, = N — N, training
points. Using only the training data, we perform the above
greedy forward-stepwise fitting procedure. For values of
m € [0, N,], we obtain a least-squares fit with m coeffi-
cients using the training data and evaluate the fit residuals

r;-"‘k for the validation data. We choose

KN
m* = argmin E max ()2,
=

m k=1

(Al1)

We use the maximum over j because we seek to minimize
the largest fit residuals, and we sum in quadrature over k
rather than maximize to account for cases where data points
with large errors or corner cases are selected as validation
points, which can lead to large fit residuals. The depend-
ence of the residuals on m for one case is shown in Fig. 22.
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FIG. 22. Fit residuals for the second empirical node of @22 at
t = —806.5M. Blue dashed: The maximum fit residual using all
data. Thin grey lines: Maximum validation residual for individual
trials. Thick black line: The root mean square (rms) of the
validation residuals for K = 50 trials. It takes its minimum value
at m = 30, which determines the number of fit coefficients to use

for this node in the model. Red: The rms of the training residuals
for K = 50 trials.

APPENDIX B: COMPARING REDUCED
BASIS CONSTRUCTIONS

We compare two commonly used methods to generate a
reduced basis in gravitational waveform reduced-order
modeling. The first uses a singular value decomposition
(SVD) of a data set whose output consists of a set of basis
vectors ranked by their ‘“singular values”, which are
eigenvalues when the input data is square. The SVD
reduced basis follows by truncating the output basis beyond
a selected singular value. The resulting basis is accurate up
to that singular value as measured in a root-mean-square
norm. The second method uses a greedy algorithm, which
is iterative and nested, to expose the most relevant elements
of the input (or training) data set [93,94]. The greedy
algorithm selects the element with the largest current
projection error (as measured by a specified norm),
orthonormalizes the selected element with respect to the
current basis, and adds this orthonormalized element to the
set of basis vectors. In practice, one uses an iterated,
modified Gram-Schmidt process [95] for orthonormaliza-
tion, which is robust to the accumulation of numerical
round-off effects from subtraction until very large basis
sizes. The algorithm ends when the largest projection error
is below a specified tolerance; it also ends if a previously
selected training data element is selected again, which, if it
were allowed to occur, would introduce a linearly depen-
dent element to the basis. The output includes a (greedy)
reduced basis and a set of parameters or labels that indicate
the most relevant elements of the training data from which
the basis is built.

Both SVD and greedy methods output a reduced basis
that accurately represents the training data to the requested
singular value or tolerance. The output of the SVD
algorithm depends only on the training data. The greedy
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algorithm, on the other hand, begins by choosing one of the
training data elements as the first basis vector, so its output
depends also on that choice. How that choice is made is
often arbitrary and may depend on the application. For
example, one may seed the greedy algorithm with an
arbitrary element from the training set or choose the
element that has the largest absolute value or norm.
However, it has been shown that the choice of seed is
largely irrelevant as the greedy algorithm seeks to minimize
the maximum projection error across the entire training set,
no matter what the seed. The resulting variations in the size
of the greedy reduced basis due to arbitrary seed choices are
marginal and typically span a few percent about the mean
size [55,56,96].

Practical implementations of the SVD algorithm can be
found rather easily because of its broad use across many
disciplines. Therefore, building an SVD reduced basis for a
training set of waveforms is as straightforward as calling
the appropriate programmed function. However, if the
training data contains N waveforms with L time or
frequency samples then the SVD algorithm is O(N?L),
which can be intensive in both time and physical memory.
For this reason, the authors in [97] divide the full training
space into narrow strips in one direction of the parameter
space. Dividing the training space into smaller subsets
results in a direct product of reduced bases, one basis for
each subset. Unfortunately, the total number of the basis
elements tends to be larger than if one had performed a
SVD on the full training data (if it can be done).
Consequently, the reduction of the data is not maximized.

One often has considerable flexibility in designing a
greedy algorithm for a specific application. If the training
set remains fixed throughout the course of the greedy
algorithm (see [59] for an example where this is not the
case) then each iteration step can be performed in constant
time so that the totality scales as O(nN) if n is the number
of reduced basis elements needed to reach the specified
tolerance. Typically, n << N so that greedy algorithms tend
to terminate more quickly than an application of SVD on
the same training data, though there is some additional
influence from implementation details. The greedy algo-
rithm can be parallelized to break up the computation of
expensive integrals across different processes [98]. In
addition, the size and memory requirements of a very
large training set pose little problem for greedy algorithms.
The training space can be divided into subsets so that a
reduced basis is built for each with a tolerance up to
numerical round-off as measured in the L., norm (to have
pointwise accuracy for the data). Then, one may apply a
second greedy algorithm on the full training data by using
instead the basis data on each subset to represent the
original data of each subset. In this way, one can generate
a reduced basis that spans all the subsets and maximizes
the reduction of the full training set [99]. Combining this
two-step greedy algorithm with the parallelization of the
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projection integrals discussed above provides a viable and
practical strategy for building a reduced basis for training
sets of virtually any size. Another strategy is to randomly
repopulate the training set at each iteration of the greedy
algorithm [59,100]. This approach requires that the training
data can be generated at will for any parameter values but
also avoids storing prohibitively large amounts of data at
any step in the greedy algorithm.

Finally, greedy algorithms allow one to use any measure
for determining the projection errors. This includes choos-
ing among L,, L, and L,, error norms or any combination
thereof. In addition, computing the integrals for projecting
the training data onto the basis can be achieved with any
quadrature rule one wishes. However, implementations of
the SVD algorithm are restricted to the L, measure, and the
reduced basis will depend on how the training data is
sampled in time or frequency.

Let us next investigate a toy problem to facilitate a
comparison of the outputs of a basic greedy algorithm and
SVD. We consider a function

X(t;2) = sin(Ar) + 1072 sin(104z) + 10719(z),  (B1)
where 7 € [0, 10] with a parameter A € [1,20]. There is a
relatively high frequency component with an amplitude of
107>, The quantity &(¢) is a random variable drawn from a
normal distribution with zero mean and variance of one.
This stochastic term has an amplitude of only 1071°.

Our training set will consist of N = 1000 uniformly
spaced values of A. Figure 23 shows training data for the
smallest and largest parameter values considered here. We
sample the function in (B1) at 10,000 uniformly spaced
times.

We construct three reduced bases. The first is built from
an SVD on the training data. The second uses a greedy
algorithm to generate a reduced basis and a corresponding
set of parameters; here we use the L, norm to measure the
difference between each training set element and its
projection onto the basis. The third is built in the same
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FIG. 23. Plots of X(r;1) for our toy problem evaluated at the

smallest and largest values of A in the training set.
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FIG. 24. Maximum projection errors of all three reduced bases
(see text for a description) versus the size of the basis.

greedy manner as the second but uses the L, norm to
measure the projection error. Recall that the L, error
constitutes a kind of average as it involves an integration
in time whereas the L., error measures the largest, point-
wise, absolute difference and is thus more stringent.
Figure 24 shows the maximum projection errors, as
measured with their respective norms, associated with
these three methods as a function of the size of the basis.
The absolute tolerance on the greedy algorithm bases is
10~ while the smallest singular value kept is 107'#
relative to the largest. We observe three plateaus for each
of the cases, which can be attributed to each algorithm
trying to resolve the features at the O(1), O(1073), and
O(10719) scales in the data; see (B1). In fact, none of the
algorithms are able to completely resolve the very low-
amplitude stochastic features until the training set has been
exhausted and all data has been used to build the reduced
bases. Notice that the error curve is somewhat noisy for the
L, case while the other two are smooth. Also, the
maximum projection error for the L, case ends at about
10~7 due to a parameter being selected a second time.
Figure 25 shows the projection errors (as measured in the
L, norm) onto each of the three reduced bases for test data
generated by randomly selecting 1000 values of A in the
training interval [1, 20]. The errors for “Greedy, L.~ and
“SVD” lie nearly on top of each other while those for
“Greedy, L,” are relatively large because the effective
greedy algorithm tolerance for this basis is only 1077 as
discussed above. In all cases, the small-amplitude stochas-
tic noise in the data prevents the projection errors of the test
data from being less than a few times 107'%; see (B1).
Finally, the SVD method is able to produce a reduced
basis with elements that smooth many uncorrelated features
manifest in the training data. Such smoothing is useful for
surrogate model building because the resulting basis
elements tend to exhibit smoother variation in time or
frequency; this translates into smoother variations across
parameters, thereby yielding more accurate fits for the
parametric variation at the empirical interpolation nodes.
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FIG. 25. Projection errors, measured in the L, norm for the

three reduced bases described in the text, computed for test data
generated from 1000 randomly selected parameters A in [1, 20].
The corresponding colored lines indicate the smallest projection
errors on the training sets shown in Fig. 24. The errors for
“Greedy, L.~ and “SVD” lie nearly on top of each other.
However, the maximum projection error implied by SVD (purple
line) underestimates the true errors (dots) by an order of
magnitude.

The reduced bases produced by greedy methods tend to not
to share this smoothing ability of the SVD method.

To demonstrate SVD’s smoothing abilities, we replace
the function in (B1) with a smooth oscillating term plus a
stochastic term with amplitude of 10% of the first so that
the noise is visible to the naked eye,

X(t;4) = sin(4r) + 0.1&(2). (B2)
We build three reduced bases on the corresponding training
sets (with the same ¢ and A intervals and samples) using the
same methods as before. Figure 26 shows the tenth basis
element as a function of 7 for each of the three reduced basis
building strategies. The two bases built from a greedy
method exhibit the noise found in the training data.
However, the SVD basis element in the bottom panel
reveals a smooth function with very low amplitude noise,
much lower than appears in the training data amplitudes.

In the case of the NRSur4d2s surrogate discussed here,
note that data from each of the NR simulations contains
spurious oscillations on the orbital time scale; these
oscillations are caused by residual orbital eccentricity
and by nutation effects that we have not filtered out
(Sec. IV B), and because these oscillations are uncorrelated
from one simulation to another, they appear as stochastic
noise. To smooth this noise, we therefore use the SVD
method to obtain basis vectors for empirical interpolation
when building NRSur4d2s (Sec. VA). This smoothing
significantly improves the accuracy of our fits of the
waveform quantities at the empirical interpolation nodes.
However, note also that for NRSur4d2s we use the greedy
method to expose the BBH parameters for performing
expensive NR simulations (Sec. III). Therefore, we use the
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FIG. 26. The tenth basis element as a function of ¢ from the
three reduced bases elements described in the text. The training
data used is given by the parametrized function in (B2) and
exhibits relatively large amplitude fluctuations. Whereas the top
two plots show significant noise in the basis element, the SVD
method smooths away, almost completely, the uncorrelated
stochastic features to generate a basis element that is smooth
in 1.

benefits of both the greedy and SVD methods in building
NRSur4d2s.

APPENDIX C: MOTIVATING THE USE OF &

A commonly used measure of the difference between
waveforms h,(f,0,,¢;4;) and hy(t,60,, 3 4,) is the
overlap error

<hl7 h2>
(hy. i) (hy by

where (-,-) is often chosen to be the frequency domain
noise-weighted inner product [64]

© a(f)b*

Here S,(f) is the power spectral density of noise in a
gravitational wave detector and tildes are used to represent
a Fourier transform.

If we use a flat (frequency-independent) power spectral
density, we may instead perform the integration in the time
domain and use

1-0=1-

(C1)

df. (C2)
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(a,b), = Re / ™ ()b (1)dt

min

(C3)

to obtain the same overlap error. While a completely flat
power spectral density is unphysical, the design sensitivity
of aLLIGO [101] varies only by a factor of ~2 between
50 Hz and 1000 Hz. Putting rigorous limits on weighted
frequency domain errors based on unweighted time domain
errors is not straightforward [72,102], but the time domain
errors are computationally cheap to compute, useful for
quantifying time domain waveform models, and (like NR
waveforms and our surrogate model NRSur4d2s) indepen-
dent of the total binary mass M.

We can relate the time domain overlap error to 6h by
performing a weighted average over the sphere and using

/ a(0.9)b*(0.4)dQ =Y a""bIm (C4)
- ‘m

s
due to the orthonomality of the SWSHs. Using
la||? = (a,a),, we have
1
2 Zm||2
o = _llon“; (C5)

1
= fAz 17y (2.0, Ay) — ho (1,6, b3 ) |2dQ (C6)

1

= [l + Il - 20 a2 €

T

where in the last line we have omitted arguments to /; and
hy If ||y (2,0, 5 A1) ||, = ||h2(2, 6, $; 4,)||, for all O, ¢ then
we would have

o _2[pw@.)(1-00.9)de o
> el 12 [ w(0, p)dQ :
where  w(6,¢) = ||hi(1,0,$;4;)||>. Denoting ||h]> =

S smllR™|2, this motivates the use of the relative error
measure
1 on?
E== (C9)
2| 1?

as it is similar to a sphere-weighted average of overlap
errors, where the weighting emphasizes directions with a
larger amount of gravitational wave emission. We note,
however, that while the overlap error vanishes if 4, and h,
are identical except for normalization, £ does not and
vanishes only when h; and h, are identical. This is
important as a different normalization will lead to a bias
when measuring the distance to the source of a gravita-
tional wave.
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APPENDIX D: MISMATCHES OPTIMIZED
OVER TIME AND POLARIZATION SHIFTS

Given gravitational waveform polarization signals /4, ()
and h,(t), each gravitational wave detector in a detector
network will observe a linear combination of A (¢) and
h, () depending on their orientation with respect to the
direction of propagation and polarization axes. For the
purposes of building gravitational wave models, we are
interested in the best case scenario when both polarizations
are measured. Including “blind spots” in the detector
network could lead to artificially large relative errors, so
we assume a network of two detectors where one measures
h.(t) and the other measures &, (¢). Given model predic-
tions A (r) and h%(r) for the two polarizations, we
compute the two-detector overlap

<h+7 h’$> + <h><7 h?<1>
V(g hy) + (ho o)) (R RT) + (B2 RE))

with a real inner product given by

(a.5) = Ref(a. b)] o1)
_ (a0
b= [ g 4 .

As in Eq. (23), a tilde denotes a frequency domain signal,
which is computed by using an FFT after tapering the ends
of the time domain signal. In this case, the complex inner
product (-, ) is integrated over the negative and positive
frequency intervals [_fmax’ _fmin] and [fminvfmax] for
some positive f;, and f... Note that for any two real
functions a(¢) and b(t), we have

a(=f)b"(=f) = @(Hv* () (D3)
and so (a, b) is real.
Defining complex gravitational wave signals
h(1) = h. (1) = i, (1) (D4)
R (1) = HE(r) = i (o), (DS)

we can compute a complex overlap

I (VY
Vs B) (™ B
(hy hY) + (ho BY) + i(Chy, ) — (hy, BY))
V) + (o i) (R ) + (R RE))

Since the time domain polarization signals are all real, we
have

PHYSICAL REVIEW D 95, 104023 (2017)
O = Re|O¢]. (D6)

A polarization angle shift of y and time shift of ¢ in the
model waveform results in the transformations

(1) — k(1) = h™(t + 5t)e*V, (D7)

() = i (f) = 1" (f)e?v e, (D8)
where h7 is the transformed model waveform. The overlap
of the signal waveform with the transformed model wave-
form is then

O(y,6t) =Re i) e
(h.h)c (R I ) ¢
=2iy
=Re ¢

WO ) g |
V(e Sa(1f1)

The above integral can be evaluated efficiently for many
values of ot using an FFT. We can then compute the
mismatch

mismatch = 1 — maxO(y, &t) (D9)
ot

w0

by taking the absolute value of the complex overlap for
each ot to maximize over y, and taking the maximum over
all available values of 6t. In practice, the true maximum
over 6t will lie between available samples, so we fit the
overlap peak to a quadratic function in ot using the largest
overlap sample and the neighboring value on either side.
We also pad with zeros before taking the FFT to obtain a
finer sampling in ot.

APPENDIX E: POST-NEWTONIAN SURROGATE
WAVEFORM DECOMPOSITION

The second greedy algorithm described in Sec. III B
makes use of surrogate models of post-Newtonian (PN)
waveforms. At each greedy step, a new PN surrogate model
is built from PN waveforms evaluated at the currently
known greedy parameters G. This surrogate is evaluated for
each training point A € T and the surrogate waveform is
compared to the actual PN waveform. Here, we describe the
differences between how the PN surrogates were built
compared to the NR surrogate NRSur4d2s described in the
main body.

PN waveforms do not contain a merger phase, so we
cannot use the peak amplitude to align the waveforms in
time. We instead choose ¢t = 0 to correspond to an orbital
angular frequency of 0.09. This frequency is computed
from the waveform [68]. We choose t,;, = —5000M,
ty = —4500M, t; = —100M, and t,,, = 0. The PN wave-
forms used to build the PN surrogate then have domain
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t € [-5000M, 0], and the PN surrogate waveforms have
domain 7 € [-4500M, —100M]. The parameters of the PN
waveforms are given at ¢ = ty. The rotation alignment at
t = t, is the same as for the NR waveforms, described in
Sec. I D.

The waveform decomposition used for the PN surrogates
was slightly different from the one described in Sec. IV. We
limited the PN waveforms to contain only the £ = 2 modes
(with all five values of m). Additionally, since we were able
to obtain the desired values of ¢, at 1 =1, with PN
waveforms, there was no need to make any transformations
related to ¢, .

The number of coefficients used in the parametric fits of
the empirical nodes was determined differently for PN
surrogates than for NRSur4d2s. Instead of the cross-
validation method described in Appendix A, coefficients
were added until the fit residuals fell below a specified

PHYSICAL REVIEW D 95, 104023 (2017)

TABLE VIII. Fit tolerance for the empirical node parametric
fits of PN surrogates. Fit coefficients were added until the
maximum fit residual fell below the tolerance. A tolerance of
0.001 was used for unlisted waveform data pieces.

Data Tol. Data Tol. Data Tol. Data Tol.
®p 0.01 "y 0.1 p>? 0.01 p>' 0.1
@[H[X]] 0.1 |H[p2?]] 0.0001 |H[p2']| 0.0001

tolerance, given in Table VIII. To prevent overfitting, the
number of fit coefficients was also limited to be at most
75% of the number of data points used in the fit. The basis
functions in |y, | used for the fits were also different, with
B5(|r1]) = Tx(2.5]y,| — 1). For the PN surrogates, we did
not make the restriction a® < a? so 6, affected the PN
surrogate output when || = 0.
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