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Starting from the generalized pp waves that are exact vacuum solutions of general relativity with a
cosmological constant, we construct a new family of exact vacuum solutions of Poincaré gauge theory, the
generalized pp waves with torsion. The ansatz for torsion is chosen in accordance with the wave nature of
the solutions. For a subfamily of these solutions, the metric is dynamically determined by the torsion.
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I. INTRODUCTION

The principle of gauge symmetry was born in the work
of Weyl [1], where he obtained the electromagnetic field by
assuming local Uð1Þ invariance of the Dirac Lagrangian.
Three decades later, the Poincaré gauge theory (PGT) was
formulated by Kibble and Sciama [2]; it is nowadays a
well-established gauge approach to gravity, representing a
natural extension of general relativity (GR) to the gauge
theory of the Poincaré group [3,4]. Basic dynamical
variables in PGT are the tetrad field bi and the Lorentz
connection ωij ¼ −ωji (1-forms), and the associated field
strengths are the torsion Ti ¼ dbi þ ωi

k ∧ bk and the
curvature Rij ¼ dωij þ ωi

k ∧ ωkj (2-forms). By construc-
tion, PGT is characterized by a Riemann-Cartan geometry
of spacetime, and its physical content is directly related to
the existence of mass and spin as basic characteristics of
matter at the microscopic level. An up-to-date status of
PGT can be found in a recent reader with reprints and
comments [5].
General PGT Lagrangian LG is at most quadratic in the

field strengths. The number of independent (parity invari-
ant) terms in LG is nine, which makes the corresponding
dynamical structure rather complicated. As is well known
from the studies of GR, exact solutions have an essential
role in revealing and understanding basic features of the
gravitational dynamics [6–9]. This is also true for PGT,
where exact solutions allow us, among other things, to
study the interplay between dynamical and geometric
aspects of torsion [5].
In the context of GR, one of the best known families of

exact solutions is the family of pp waves: it describes
plane-fronted waves with parallel rays propagating on the
Minkowski background M4; see, for instance, Ehlers and
Kundt [6]. There is an important generalization of this
family, consisting of the exact vacuum solutions of GRwith
a cosmological constant (GRΛ) such that for Λ → 0, they
reduce to the pp waves in M4. We will refer to this family
as the generalized pp waves, or just ppΛ waves for short.

In contrast to the pp waves in M4, the wave surfaces
of the ppΛ waves have constant curvature proportional to
Λ. The family of the ppΛ waves belongs to a more general
family, known as the Kundt class of type N, labeled
KNðΛÞ. Details on the KNðΛÞ spacetimes can be found
in the monograph by Griffiths and Podolský [9]; see also
Refs. [10–12]. In this paper, we start from the Riemannian
ppΛ waves in GRΛ and construct a new family of the ppΛ
waves with torsion, representing a new class of exact
vacuum solutions of PGT. The torsion is introduced relying
on the approach used in our previous paper [13]. The
present work is motivated by earlier studies of the exact
wave solutions in PGT [14], and is regarded as a comple-
ment to them.
The paper is organized as follows. In Sec. II, we give a

short account of the Riemannian ppΛ waves, including the
relevant geometric and dynamical aspects, as a basis for
their extension to ppΛ waves with torsion. In Sec. III, we
first introduce an ansatz for the new, Riemann-Cartan (RC)
connection, the structure of which complies with the wave
nature of a RC spacetime. The ansatz is parametrized by a
specific 1-form K living on the wave surface, and the
related torsion has only one, tensorial irreducible compo-
nent. Then, we use the PGT field equations to show that the
dynamical content of K is described by two torsion modes
with the spin-parity values JP ¼ 2þ and 2−. In Sec. IV, we
find solutions for both the metric functionH and the torsion
function K, in the spin-2þ sector and for λ > 0; < 0 and
¼ 0. It is shown that K has a decisive influence on the
solution forH, and consequently, on the resulting metric. In
Sec. V, we shortly discuss solutions in the spin-2− sector,
which are found to be much less interesting. Section VI
concludes the exposition with a few remarks on some
issues not covered in the main text, and the Appendices are
devoted to certain technical details.
Our conventions are as follows. The latin indices

ði; j;…Þ refer to the local Lorentz (co)frame and run
over (0, 1, 2, 3), bi is the tetrad (1-form), and hi is the
dual basis (frame), such that hibk ¼ δik. The volume 4-form
is ϵ̂ ¼ b0 ∧ b1 ∧ b2 ∧ b3, the Hodge dual of a form α is
⋆α, with ⋆1 ¼ ϵ̂, and the totally antisymmetric tensor is
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defined by ⋆ðbi ∧ bj ∧ bk ∧ bmÞ ¼ εijkm and normalized
to ε0123 ¼ þ1. The exterior product of forms is implicit,
except in Appendix B.

II. RIEMANNIAN ppΛ WAVES

In this section, we give an overview of Riemannian ppΛ
waves using the tetrad formalism [15], necessary for the
transition to PGT.

A. Geometry

The family of ppΛ waves is a specific subclass of the
Kundt spacetimes KNðΛÞ, labeled by KNðλÞ½α¼ 1;β¼ 0�;
for the full classification of the KNðΛÞ spacetimes, see
Refs. [9,10]. In suitable local coordinates xμ ¼ ðu; v; y; zÞ
(see Appendix A), the metric of the ppΛ waves can be
written as

ds2 ¼ 2

�
q
p

�
2

duðSduþ dvÞ − 1

p2
ðdy2 þ dz2Þ; ð2:1aÞ

where

p ¼ 1þ λ

4
ðy2 þ z2Þ; q ¼ 1 −

λ

4
ðy2 þ z2Þ;

S ¼ −
λ

2
v2 þ p

2q
Hðu; y; zÞ; ð2:1bÞ

with λ being a suitably normalized cosmological constant,
and the unknown metric function H is to be determined
by the field equations. The coordinate v is an affine
parameter along the null geodesics xμ ¼ xμðvÞ, and u is
retarded time such that u ¼ const are the spacelike
surfaces parametrized by xα ¼ ðy; zÞ. Since the null
vector ξ ¼ ξðuÞ∂v is orthogonal to these surfaces, they
are regarded as wave surfaces, and ξ is the null direction
(ray) of the wave propagation. The vector ξ is not
covariantly constant, and consequently, the wave rays
are not parallel and the wave surfaces are not flat. For
λ → 0, the metric (2.1) reduces to the metric of pp waves
on the M4 background, which explains the term gener-
alized pp waves, or ppΛ waves.
Next, we choose the tetrad field (coframe) in the form

b0 ≔ du; b1 ≔
�
q
p

�
2

ðSduþ dvÞ;

b2 ≔
1

p
dy; b3 ≔

1

p
dz; ð2:2aÞ

so that ds2 ¼ ηijbi ⊗ bj, where ηij is the half-null
Minkowski metric:

ηij ¼

0
BBB@

0 1 0 0

1 0 0 0

0 0 −1 0

0 0 0 −1

1
CCCA:

The corresponding dual frame hi is given by

h0 ¼ ∂u − S∂v; h1 ¼
�
p
q

�
2∂v;

h2 ¼ p∂y; h3 ¼ p∂z: ð2:2bÞ

For the coordinates xα ¼ ðy; zÞ on the wave surface, we
have

xc ¼ bcαxα ¼
1

p
ðy; zÞ; ∂c ¼ hcα∂α ¼ pð∂y; ∂zÞ;

where c ¼ 2, 3.
Starting from the general formula for the Riemannian

connection 1-form,

ωij ≔ −
1

2

�
hi⌋dbj − hj⌋dbi − ðhi⌋hj⌋dbkÞbk

�
;

one can find its explicit form; for i < j, it reads

ω01 ¼ λvb0−
1

q
ðλyb2þ λzb3Þ; ω02 ¼ λy

q
b0; ω03 ¼ λz

q
b0;

ω12 ¼ λy
q
b1 −

q2

p
∂ySb0; ω13 ¼ λz

q
b1−

q2

p
∂zSb0;

ω23 ¼ 1

2
ðλzb2 − λyb3Þ: ð2:3aÞ

Introducing the notation i ¼ ðA; aÞ, where A ¼ 0, 1 and
a ¼ ð2; 3Þ, one can rewrite ωij in a more compact form:

ω01 ¼ λvb1 −
2

qp
ðbc∂cpÞ;

ωAc ¼ −
2

qp
bA∂cpþ kA

q2

p2
b0∂cS;

ω23 ¼ −
1

p
ðb2∂3p − b3∂2pÞ; ð2:3bÞ

where ki ¼ ð0; 1; 0; 0Þ is a null propagation vector, k2 ¼ 0.
The above connection defines the Riemannian curvature

Rij ¼ dωij þ ωi
mω

mj; for i < j, it is given by

Rij ¼
�
−λb1bc þ k1b0Qc; for ði; jÞ ¼ ð1; cÞ
−λbibj; otherwise;

ð2:4aÞ

where Qc is a 1-form introduced by Obukhov [15],
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Qc ¼ −∇
��

q
p

�
2

hc⌋dS

�
þ
�
q
p

�
3

hc⌋

�
d

�
p
q

�
∧ dS

�
;

and d ¼ dxα∂α is the exterior derivative on the wave
surface. In more details

Q2 ¼ q
2p

½2qp∂yySþ ðq − 4Þλy∂yS − qλz∂zS�b2

þ q
2
½2q∂yzS − λz∂yS − λy∂zS�b3;

Q3 ¼ q
2p

½2qp∂zzSþ ðq − 4Þλz∂zS − qλy∂yS�b3

þ q
2
½2q∂yzS − λz∂yS − λy∂zS�b2:

As a consequence, Rij can be represented more
compactly as

Rij ¼ −λbibj þ 2b0k½iQj�: ð2:4bÞ

The Ricci 1-form Rici ≔ hm⌋Ricmi is given by

Rici ¼ −3λbi þ b0kiQ;

Q ¼ hc⌋Qc ¼ qp
2

�
∂yyH þ ∂zzH þ 2λ

p2
H

�
; ð2:5Þ

and the scalar curvature R ≔ hi⌋Rici reads

R ¼ −12λ: ð2:6Þ

B. Dynamics

1. ppΛ waves in GRΛ

Starting with the action I0 ¼ −
R
d4xða0Rþ 2Λ0Þ, one

can derive the GRΛ field equations in vacuum,

2a0Gn
i − 2Λ0δ

n
i ¼ 0; ð2:7aÞ

where Gn
i is the Einstein tensor. The trace and the traceless

piece of these equations read

Λ0 ¼ 3a0λ; Rici −
1

4
Rbi ≡ b0kiQ ¼ 0: ð2:7bÞ

As a consequence, the metric function H must obey

∂yyH þ ∂zzH þ 2λ

p2
H ¼ 0: ð2:8Þ

There is a simple solution of these equations,

Hc ¼
1

p
ðAðuÞqþ BαxαÞfðuÞ; ð2:9Þ

for which Qa vanishes. This solution is trivial (or pure
gauge), since the associated curvature takes the background

form, Rij ¼ −λbibj; moreover, it is conformally flat, since
its Weyl curvature vanishes. The nontrivial vacuum sol-
utions are characterized by Q ¼ 0, but Qc ≠ 0; their
general form can be found in [10].

2. ppΛ waves in PGT

To better understand the relation between GRΛ and PGT,
it is interesting to examine whether ppΛ waves satisfying
the GRΛ field equations in vacuum are also a vacuum
solution of PGT. It turns out that a more general version of
the problem has been already solved by Obukhov [4].
Studying the PGT field equations for torsion-free configu-
rations, he proved the following important theorem:
T1. In the absence of matter, any solution of GRΛ is a
torsion-free solution of PGT.
It is interesting to note that the inverse statement, that any
torsion-free vacuum solution of PGT is also a vacuum
solution of GRΛ, is also true, except for three specific
choices of the PGT coupling constants.

III. ppΛ WAVES WITH TORSION

In this section, we extend the ppΛ waves that are
vacuum solutions of GRΛ to a new family of the exact
vacuum solutions of PGT, characterized by the existence of
torsion.

A. Ansatz

The main step in constructing the ppΛ waves with
torsion is to find an ansatz for torsion that is compatible
with the wave nature of the solutions. This is achieved by
introducing torsion at the level of connection.
Looking at the Riemannian connection (2.3), one can

notice that its radiation piece appears only in the ω1c

components:

ðω1cÞR ¼ q2

p2
ðhcα∂αSÞb0:

This motivates us to construct a new connection by
applying the rule

∂αS → ∂αSþ Kα; Kα ¼ Kαðu; y; zÞ; ð3:1aÞ

where Kα is the component of the 1-form K ¼ Kαdxα on
the wave surface. Thus, the new form of ðωijÞR reads

ðωicÞR ≔ ki
q2

p2
hcαð∂αSþ KαÞb0; ð3:1bÞ

whereas all the other nonradiation pieces retain their
Riemannian form (2.3).
The geometric content of the new connection is found by

calculating the torsion:
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Ti ¼ ∇bi þ ωi
mbm ¼ ki

q2

p
b0ðb2Ky þ b3KzÞ

¼ ki
q2

p2
b0bcKc: ð3:2Þ

The only nonvanishing irreducible piece of Ti is ð1ÞTi.
The new connection modifies also the curvature, so that

its radiation piece becomes

ðR1cÞR ¼ k1b0Ωc; Ωc ≔ Qc þ Θc; ð3:3aÞ

where the term Θc that represents the contribution of
torsion is given by

Θ2 ¼ q
2p

½ð2qp∂yKy − pKyλy − qKzλzÞb2

þ ð−2qp∂zKy þ pKyλz − qKzλyÞb3�;
Θ3 ¼ q

2p
½ð2qp∂zKz − pKzλz − qKyλyÞb3

þ ð−2qp∂yKz þ pKzλy − qKyλzÞb2�:

The covariant form of the curvature reads

Rij ¼ −λbibj þ 2b0k½iΩj�; ð3:3bÞ

and the Ricci curvature takes the form

Rici ¼ −3λbi þ b0kiΩ; Ω ≔ hc⌋Ωc ¼ Qþ Θ: ð3:3cÞ

The torsion has no influence on the scalar curvature:

R ¼ −12λ: ð3:3dÞ

Thus, our ansatz defines a RC geometry of spacetime.

B. PGT field equations

Having adopted the ansatz for torsion defined in
Eq. (3.1), we now wish to find explicit form of the PGT
field equations and use them to determine dynamical
content of our ansatz.
As shown in Appendices B and C, the field equations

depend on the structure of the irreducible components of
the field strengths. For torsion, we already know that the
only nonvanishing irreducible component is ð1ÞTi ¼ Ti,
defined in Eq. (3.2). As for the curvature, we note that our
ansatz yields X ¼ 0 and bmRicm ¼ 0, where X is defined in
(B2b). Then, the irreducible decomposition of the curvature
implies (see Appendix B)

ð3ÞRij ¼ 0; ð5ÞRij ¼ 0; ð3:4Þ

whereas the remaining pieces ðnÞRij are defined by their
nonvanishing components as

ð2ÞR1c ¼ 1

2
⋆ðΨ1bcÞ; ð4ÞR1c ¼ 1

2
ðΦ1bcÞ;

ð6ÞRij ¼ −λbibj; ð1ÞR1c ¼ b0
�
ΩðceÞ −

1

2
ηceΩ

�
be;

ð3:5aÞ

where the 1-forms Φi and Ψi are given by

Φi ¼ kib0ðQþ ΘÞ; Θ ¼ qp

�
∂y

�
q
p
Ky

�
þ ∂z

�
q
p
Kz

��
;

Ψi ¼ Xi ¼ −kib0Σ; Σ ¼ qp

�
∂z

�
q
p
Ky

�
− ∂y

�
q
p
Kz

��
:

ð3:5bÞ

Having found ð1ÞTi and ðnÞRij, we apply the procedure
described in Appendix C to obtain the following form of
the two PGT field Eqs. (C3):

ð1STÞ Λ0 ¼ 3a0λ; a1Θ − A0ðQþ ΘÞ ¼ 0; ð3:6aÞ

ð2NDÞ − ðb2 þ b1Þð∇Ψ1Þb2 − ðb4 þ b1Þð∇Φ1Þb3 − 2ða0 − A1ÞT1b3 ¼ 0;

−ðb2 þ b1Þð∇Ψ1Þb3 þ ðb4 þ b1Þð∇Φ1Þb2 þ 2ða0 − A1ÞT1b2 ¼ 0; ð3:6bÞ

where A0 ¼ a0 þ ðb4 þ b6Þλ and A1 ¼ a1 − ðb6 − b1Þλ [16].
Leaving (1ST) as is, (2ND) can be given a more clear structure as follows:
(i) use (1ST) to express Φ1 ¼ b0ðQþ ΘÞ in the form Φ1 ¼ ða1=A0Þb0Θ;
(ii) multiply (2ND) by A0=q.

As a result, the previous two components of (2ND) transform into

A0ðb2 þ b1Þ∂zðpΣ=qÞ þ a1ðb4 þ b1Þ∂yðpΘ=qÞ þ 2A0ðA1 − a0Þðq=pÞKy ¼ 0; ð3:7aÞ

−A0ðb2 þ b1Þ∂yðpΣ=qÞ þ a1ðb4 þ b1Þ∂zðpΘ=qÞ þ 2A0ðA1 − a0Þðq=pÞKz ¼ 0: ð3:7bÞ
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Then, calculating ∂yð3.7aÞ þ ∂zð3.7bÞ and ∂zð3.7aÞ −∂yð3.7bÞ yields the final form of (2ND):

ð∂yy þ ∂zzÞðpΘ=qÞ −m2
2þ

1

p2
ðpΘ=qÞ ¼ 0;

m2
2þ ≔

2A0ða0 − A1Þ
a1ðb1 þ b4Þ

; ð3:8aÞ

ð∂yy þ ∂zzÞðpΣ=qÞ −m2
2−

1

p2
ðpΣ=qÞ ¼ 0;

m2
2− ≔

2ða0 − A1Þ
b1 þ b2

: ð3:8bÞ

The parameters m2
2� have a simple physical interpretation.

In the limit λ → 0, they represent masses of the spin-2�
torsion modes with respect to the M4 background [17],

m̄2
2þ ¼ 2a0ða0 − a1Þ

a1ðb1 þ b4Þ
; m̄2

2− ¼ 2ða0 − a1Þ
b1 þ b2

;

whereas for finite λ,m2
2� are associated to the torsion modes

with respect to the (anti)de Sitter [(A)dS] background.
In M4, the physical torsion modes are required to satisfy

the conditions of no ghosts (positive energy) and no
tachyons (positive m2) [17,18]. However, for spin-2þ
and spin-2− modes, the requirements for the absence of
ghosts, given by the conditions b1 þ b2 < 0 and
b1 þ b4 > 0, do not allow for both m2 to be positive.
Hence, only one of the two modes can exist as a
propagating mode (with finite mass), whereas the other
one must be “frozen” (infinite mass). Although these
conditions refer to the M4 background, we assume their
validity also for the (A)dS background, in order to have a
smooth limit when λ → 0.
One should note that the two spin-2 sectors have quite

different dynamical structures.
(i) In the spin-2− sector, the infinite mass of the spin-2þ

mode implies Θ ¼ 0, whereupon (1ST) yields
Q ¼ 0, which is exactly the GRΛ field equation
for metric. Thus, the existence of torsion has no
influence on the metric.

(ii) In the spin-2þ sector, the infinite mass of the spin-2−

mode implies Σ ¼ 0, whereas (1ST) yields that Q is
proportional to Θ, with Θ ≠ 0. Thus, the torsion
functionΘ has a decisive dynamical influence on the
form of the metric.

In the next section, we focus our attention on the spin-2þ
sector, where the metric appears to be a genuine dynamical
effect of PGT.

IV. SOLUTIONS IN THE SPIN-2+ SECTOR

In this section, we first find solutions of Eq. (3.8a) for the
spin-2þ mode V ¼ ðp=qÞΘ, and then use that V to find
the metric function H and the torsion functions Kα, the

quantities that completely define the geometry of the ppΛ
waves with torsion.

A. Solutions for V = ðp=qÞΘ
The field equation for the spin-2þ sector can be written

in a slightly simpler form as

ð∂yy þ ∂zzÞV −
m2

p2
V ¼ 0; ð4:1Þ

where V ¼ ðp=qÞΘ and m2 ¼ m2
2þ . We have seen in

Appendix A that local coordinates ðy; zÞ are well defined
in the region where p and q do not vanish, which is an
open disk of finite radius, y2 þ z2 < 4jλj−1. Since (4.1)
is a differential equation with circular symmetry, it is
convenient to introduce polar coordinates, y ¼ ρ cosφ;
z ¼ ρ sinφ, in which Eq. (4.1) takes the form

� ∂2

∂ρ2 þ
1

ρ

∂
∂ρþ

1

ρ2
∂2

∂φ2

�
V −

m2

p2
V ¼ 0: ð4:2aÞ

Looking for a solution of V in the form of a Fourier
expansion,

V ¼
X∞
n¼0

VnðρÞðcneinφ þ c̄ne−inφÞ;

we obtain

V 00
n þ

1

ρ
V 0
n −

�
n2

ρ2
þm2

p2

�
Vn ¼ 0; ð4:2bÞ

where prime denotes d=dρ.

1. λ=4 ≡ l− 2 > 0

Let us first consider solutions of the dS type, using a
convenient notation:

x ¼ ρ

l
; μ ¼ ml; ξ ¼ 1

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

q 	
:

The general solutions of (4.2b) for n ¼ 0 and n > 0 are
given by

V0 ¼ c1ð1þ x2Þ1−ξ2F1ð1 − ξ; 1 − ξ; 2ð1 − ξÞ;−j1þ x2jÞ
þ c2ð1þ x2Þξ2F1ðξ; ξ; 2ξ;−j1þ x2jÞ; ð4:3aÞ

Vn ¼ c1ðx2Þn=2ð1þ x2Þξ2F1ðξ; ξþ n; 1þ n;−x2Þ
þ c2ðx2Þ−n=2ð1þ x2Þξ2F1ðξ; ξ − n; 1 − n;−x2Þ;

ð4:3bÞ

where cn ¼ cnðuÞðn ¼ 1; 2Þ and 2F1ða; b; c; zÞ is the
hypergeometric function [19].
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2. λ=4 ≡ −l−2 < 2

In the AdS sector, using

ξ̄ ¼ 1

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2

q 	
;

the solutions for n ¼ 0 and n > 0 take the following forms:

V0 ¼ c1ð1 − x2Þ1−ξ̄2F1ð1 − ξ̄; 1 − ξ̄; 2ð1 − ξ̄Þ; j1 − x2jÞ
þ c2ð1 − x2Þξ̄2F1ðξ̄; ξ̄; 2ξ̄; j1 − x2jÞ; ð4:4aÞ

Vn ¼ c1ðx2Þn=2ðx2 − 1Þξ̄2F1ðξ̄; ξ̄þ n; 1þ n; x2Þ
þ c2ðx2Þ−n=2ðx2 − 1Þξ̄2F1ðξ̄; ξ̄ − n; 1 − n; x2Þ:

ð4:4bÞ

These solutions are essentially an analytic continuation by
l → il of those in Eq. (4.3).

3. λ= 0

The general solution of Eq. (4.2b) has the form

Vn ¼ c1Jnð−imρÞ þ c2Ynð−imρÞ; n ¼ 0; 1; 2;…

ð4:5Þ
where Jn and Yn are Bessel functions of the first and second
kind, respectively.

B. Solutions for the metric function H

For a given Θ, the first PGT field equation
A0Q ¼ ða1 − A0ÞΘ, with Q defined in (2.5), represents a
differential equation for the metric function H:

ð∂yy þ ∂zzÞH þ 2λ

p2
H ¼ 2ða1 − A0Þ

A0

1

p2
V: ð4:6Þ

This is a second order, linear nonhomogeneous differential
equation, and its general solution can be written as

H ¼ Hh þHp;

where Hh is the general solution of the homogeneous
equation, and Hp a particular solution of (4.6). By
comparing Eq. (4.6) to Eq. (4.1), one finds a simple
particular solution for H:

Hp ¼ σV; σ ¼ 2ða1 − A0Þ
ð2λþm2ÞA0

: ð4:7aÞ

On the other hand, Hh coincides with the general vacuum
solution of GRΛ; see (2.8). Since our idea is to focus on the
genuine torsion effect on the metric, we chooseHh ¼ 0 and
adopt Hp as the most interesting PGT solution for the
metric function H. Thus, we have

Hn ¼ σVn: ð4:7bÞ

C. Solutions for the torsion functions Kα

In the spin-2þ sector, the torsion functions Kα can be
determined from Eq. (3.7), combined with the condition
Σ ¼ 0:

∂yV þm2
q
p
Ky ¼ 0; ∂zV þm2

q
p
Kz ¼ 0: ð4:8Þ

Going over to polar coordinates,

Ky ¼ Kρ cosφ −
Kφ

ρ
sinφ; Kz ¼ Kρ sinφþ Kφ

ρ
cosφ;

the previous equations are transformed into

Kρ ¼ −
1

m2

p
q
∂ρV; Kφ ¼ −

1

m2

p
q
∂φV; ð4:9aÞ

or equivalently, in terms of the Fourier modes,

Kρn ¼ −
1

m2

p
q
∂ρVn; Kφn ¼ −

1

m2

p
q
nVn; ð4:9bÞ

whereKφ ¼ P∞
n¼1ðdneinφ þ d̄ne−inφÞwith dn ¼ −icn, and

similarly for Kρ.

D. Graphical illustrations

Here, we illustrate graphical forms of two specific
solutions by giving plots of their metric functions H and
the typical torsion component T1

02,

H ¼ σV;

T1
02 ¼

q2

p2
K2 ¼

q2

p
Ky ¼ −

1

m2
qð∂ρV cosφ− ρ−1Kφ sinφÞ:

ð4:10Þ

For λ ≠ 0, it is convenient to use the units in which l ¼ 1.
In the dS sector (Fig. 1), the zero modes of both H and

T1
02ðφ ¼ 0Þ are regular functions with a clear-cut wavelike

behavior in the region 0 < x < 1. The plots correspond to
the ppΛ geometry for fixed u, and as u increases, the

0.2 0.4 0.6 0.8 1.0
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0.5
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02

FIG. 1. The plots of a solution in the sector λ > 0, in units
l ¼ 1, for n ¼ 0; μ ¼ 100; c1 ¼ 1; c2 ¼ 0; σ ¼ 1. Left: H0.
Right: T1

02ðφ ¼ 0Þ.
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pictures change. In the AdS sector (Fig. 2), the solution is
singular at x ¼ 1, or equivalently at p ¼ 0, and it does not
have a typical wavelike shape. For a discussion of the
singularity at p ¼ 0, see Ref. [11]. We also examined a zero
mode solution (n ¼ 0) in theM4 sector (λ ¼ 0); its shape is
similar to what we have in Fig. 2, but it remains finite
at x ¼ 1.

V. SOLUTIONS IN THE SPIN-2− SECTOR

As we noted at the end of Sec. III, the spin-2− sector is
characterized by Θ ¼ 0 and, as a consequence of (1ST), by
Q ¼ 0. Equation (3.8b) for Σ reads

ð∂yy þ ∂zzÞU −
m2

p2
U ¼ 0; ð5:1Þ

where U ¼ ðp=qÞΣ and m2 ¼ m2
2− . Clearly, the solutions

for U coincide with the solutions for V ¼ ðp=qÞΘ in
Sec. IVA. Furthermore, the metric function H, defined
by Q ¼ 0, has the GRΛ form, and the solutions for the
torsion functions Kα follow from the two equations

∂yU þm2
q
p
Ky ¼ 0; ∂zU þm2

q
p
Kz ¼ 0; ð5:2Þ

the counterparts of those in (4.8).
The fact that the metric of the spin-2− sector is

independent of torsion makes this sector, in general, much
less interesting. There is, however, one solution in this
sector that should be mentioned: it is the solution with
H ¼ 0 for which the metric takes the ðAÞdS=M4 form, and
the complete dynamics is carried solely by the torsion. We
skip discussing details of this case, as they can be easily
reconstructed from the results given in the previous section,
following the procedure outlined above.

VI. CONCLUDING REMARKS

In this paper, we found a new family of the exact vacuum
solutions of PGT, the family of the ppΛ waves with torsion.
Here, we wish to clarify a few issues that have not been
properly covered in the main text.
The essential step in our construction is the ansatz for the

RC connection (3.1), which modifies only the radiation

piece of the corresponding Riemannian connection (2.3). A
characteristic feature of the resulting solution is the
presence of the null vector ki ¼ ð0; 1; 0; 0Þ in the spacetime
geometry. The vector field ki∂i ¼ ðp=qÞ2∂v is orthogonal
to the spatial surfaces u ¼ const, and is interpreted as the
propagation vector of the ppΛ wavewith torsion. Is such an
interpretation justifiable?
Although gravitational waves belong to one of the

best known families of exact solutions in GRΛ, a unique
covariant criterion for their precise identification is still
missing. One of the early criteria of this type was
formulated by Lichnerowicz, based on an analogy with
methods used to determine electromagnetic radiation;
see Zakharov [7]. This criterion can be formulated as a
requirement that the radiation piece of the curvature,
Sij ¼ Rij þ λbibj, satisfies the radiation conditions:

kiSij ¼ 0; εijknkjSkn ¼ 0: ð6:1aÞ

However, when applied to a RC geometry, the
Lichnerowicz criterion can be naturally extended to include
the torsion 2-form:

kiTi ¼ 0; εijmnkmTn ¼ 0: ð6:1bÞ

A direct calculation based on the expressions (3.2) and
(3.3b) shows that both sets of the radiation conditions are
satisfied. This result gives a strong support to interpreting
the ppΛ waves with torsion as proper wave solutions
of PGT.
Looking at the explicit solutions for the ppΛ waves with

torsion, one should note that, in general, the hypergeo-
metric function 2F1ða; b; c; xÞ is singular at x ¼ 1 ðρ ¼ lÞ
[19]; moreover, local coordinates we are using are singular
at both x ¼ 1 and x ¼ 0 (Appendix A). To test the nature of
these singularities, we calculated the following torsion and
curvature invariants:

Ti ∧ ⋆Ti ¼ 0;

R ¼ −12λ; Rij⋆Ri;j ¼ 12λ2ϵ̂;

Rij
klRkl

mnRmn
ij ¼ −48λ3; ð6:2Þ

the fourth order invariant is 96λ4, and so on. All these
invariants are well behaved at x ¼ 1, 0, which might be a
signal that the singularities in question are just the
coordinate singularities. However, according to Wald
[20], the geometric singularities are not always visible in
the field strength invariants. This issue deserves further
clarification.
If the curvature Rij is replaced by its radiation piece Sij,

all the invariants in (6.2) are found to vanish. According to
Bell’s second criterion [7], we have here another result that
supports the wave interpretation of our ppΛ solutions.
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FIG. 2. The plots of a solution in the sector λ < 0, in units
l ¼ 1, for n ¼ 0; μ ¼ ffiffiffi

8
p

; c1 ¼ 0.1; c2 ¼ 0. Left: H0. Right:
T1

02ðφ ¼ 0Þ.
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In GRΛ, the ppΛ waves are algebraically special sol-
utions of Petrov type N; this property can be formulated as
an algebraic condition on the Weyl curvature:Wijmnkm ¼ 0

[9,21]. However, one cannot use the same criterion for
classifying the solutions of PGT, since Wijmn is not an
irreducible part of the RC curvature. The problem can be
overcome by replacing Wijmn with ð1ÞRijmn, which is a
genuine PGT generalization of Wijmn [4]. Using the
expression for ð1ÞRijmn from Eq. (3.5), one can directly
prove the relation

ð1ÞRijmnkm ¼ 0; ð6:3Þ

which is a natural PGT generalization of the Riemannian
condition. The condition (6.3) can be considered as a well-
founded criterion for a family of PGT solutions to be of
type N.
Finally, we wish to stress that a subfamily of the

solutions in the spin-2þ sector reveals an unexpected
dynamical aspect of torsion. Namely, although torsion is
introduced by a minor modification of the Riemannian
connection [see (3.1)], the metric function H in (4.7) is
determined solely by the torsion, and consequently, the
related metric is a genuine dynamical effect of PGT. More
detailed information could be obtained by analyzing the
motion of test particles/fields in the RC spacetimes asso-
ciated to the ppΛ waves with torsion.
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APPENDIX A: ON HYPERBOLIC GEOMETRIES

(A)dS space can be simply represented as a 4D hyper-
boloid H4 embedded in a 5D Minkowski space M5 with
metric ηMN ¼ ðþ;−;−;−; σÞ,

H4∶ X2
0 − X2

1 − X2
2 − X2

3 − σX2
5 ¼ −σl2; ðA1aÞ

where σ ¼ þ1 for a dS space and σ ¼ −1 for an AdS space
[9,23]. The metric on H4 reads

ds2 ¼ dX2
0 − dX2

1 − dX2
2 − dX2

3 − σdX2
5; ðA1bÞ

and its scalar curvature is R ¼ −12σ=l2. The group of
isometries of the dS/AdS spaces is SOð1; 4Þ=SOð2; 3Þ, and
the corresponding topologies are R × S3 for the dS space,
and S1 × R3 for the AdS space (or R4 for its universal
covering).
Going now back to the generalized ppwave metric (2.1),

we note that in the limitH ¼ 0, it describes the background
(A)dS geometry:

ds2 ¼ 2

�
q
p

�
2

duð−2Λv2duþ dvÞ − 1

p2
ðdy2 þ dz2Þ;

p ¼ 1þ Λðy2 þ z2Þ; q ¼ 1 − Λðy2 þ z2Þ: ðA2Þ

As we shall see below, Λ is related to l by 4σΛ ¼ 1=l2;
moreover, Λ > 0 for dS and Λ < 0 for AdS. The two forms
of the metric associated to the hyperboloidH4 are related to
each other by a coordinate transformation [11],

X0 ¼
q
2p

ðuþ vþ Λu2vÞ; u ¼ 2σl
X5 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−σðX2

0 − X2
1 − σX2

5Þ
q

X0 − X1

;

X1 ¼
q
2p

ðu − vþ Λu2vÞ; v ¼ X0 − X1

4l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−σðX2

0 − X2
1 − σX2

5Þ
q ;

X2 ¼
y
p
; X3 ¼

z
p
; y ¼ 2lX2

lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − σðX2

2 þ X2
3Þ

p ;

X5 ¼
1

2
ffiffiffiffiffiffi
σΛ

p q
p
ð1þ 2ΛuvÞ; z ¼ 2lX3

lþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − σðX2

2 þ X2
3Þ

p : ðA3Þ

Indeed, the coordinates XM in M4 describe the hyperboloid H4,

ðX2
0 − X2

1 − σX2
5Þ − X2

2 − X2
3 ¼ −

1

4Λ
q2

p2
−

1

p2
ðy2 þ z2Þ ¼ −

1

4Λ
¼ −σl2;

and the corresponding metric (A1b), followed by the rescaling v → 2v, coincides with (A2).

M. BLAGOJEVIĆ and B. CVETKOVIĆ PHYSICAL REVIEW D 95, 104018 (2017)

104018-8



Since local coordinates xμ ¼ ðu; v; x; yÞ are introduced
by the parametrization (A3), they are well defined for

X2
0 − X2

1 − σX2
5 ¼ −

1

4Λ
q2

p2
> 0:

The limiting value q ¼ 0 is not allowed, as it represents the
singularity of the local coordinate system ðu; v; y; zÞ; this
singularity is visible only for Λ > 0. The same conclusion
follows from the fact that the determinant of the metric (A2)
vanishes for q ¼ 0. Furthermore, an inspection of Eq. (A3)
reveals the existence of another singularity, located at
p ¼ 0; it is visible only for Λ < 0. Thus, local coordinates
ðu; v; y; zÞ are restricted to the region where q and/or p do
not vanish: y2 þ z2 ≤ jΛj−1. More on the geometric inter-
pretation of these singularities can be found in Ref. [11].

APPENDIX B: IRREDUCIBLE DECOMPOSITION
OF THE FIELD STRENGTHS

We present here formulas for the irreducible decom-
position of the PGT field strengths in a 4D Riemann-Cartan
spacetime [4,24].
The torsion 2-form has three irreducible pieces:

ð2ÞTi ¼ 1

3
bi ∧ ðhm⌋TmÞ;

ð3ÞTi ¼ 1

3
hi⌋ðTm ∧ bmÞ;

ð1ÞTi ¼ Ti − ð2ÞTi − ð3ÞTi: ðB1Þ
The RC curvature 2-form can be decomposed into six
irreducible pieces:

ð2ÞRij ¼ �ðb½i ∧ Ψj�Þ; ð4ÞRij ¼ b½i ∧ Φj�;

ð3ÞRij ¼ 1

12
X�ðbi ∧ bjÞ; ð6ÞRij ¼ 1

12
Fbi ∧ bj;

ð5ÞRij ¼ 1

2
b½i ∧ hj�⌋ðbm ∧ FmÞ; ð1ÞRij ¼ Rij −

X6
a¼2

ðaÞRij;

ðB2aÞ
where

Fi ≔ hm⌋Rmi ¼ Rici; F ≔ hi⌋Fi ¼ R;

Xi ≔ �ðRik ∧ bkÞ; X ≔ hi⌋Xi; ðB2bÞ
and

Φi ≔ Fi −
1

4
biF −

1

2
hi⌋ðbm ∧ FmÞ;

Ψi ≔ Xi −
1

4
biX −

1

2
hi⌋ðbm ∧ XmÞ: ðB2cÞ

The above formulas differ from those in Refs. [4,24] in
two minor details: the definitions of Fi and Xi are taken

with an additional minus sign, but at the same time, the
overall signs of all the irreducible curvature parts are also
changed.

APPENDIX C: CALCULATING THE PGT
FIELD EQUATIONS

The gravitational dynamics of PGT is determined
by a Lagrangian LG ¼ LGðbi; Ti; RijÞ (4-form), which is
assumed to be at most quadratic in the field strengths
(quadratic PGT) and parity invariant [24]. The form of LG
can be conveniently represented as

LG ¼ −⋆ða0Rþ 2ΛÞ þ 1

2
TiHi þ

1

4
RijH0

ij; ðC1Þ

where Hi ≔ ∂LG=∂Ti (the covariant momentum) and H0
ij

define the quadratic terms in LG:

Hi ¼ 2
X3
n¼1

⋆ðanðnÞTiÞ; H0
ij ≔ 2

X6
n¼1

⋆ðbnðnÞRijÞ:

ðC2aÞ

Varying LG with respect to bi and ωij yields the PGT field
equations in vacuum. After introducing the complete
covariant momentum Hij ≔ ∂LG=∂Rij by

Hij ¼ −2a0⋆ðbibjÞ þH0
ij; ðC2bÞ

these equations can be written in a compact form as [4,24]

ð1STÞ ∇Hi þ Ei ¼ 0;

ð2NDÞ ∇Hij þ Eij ¼ 0; ðC3Þ

where Ei and Eij are the gravitational energy-momentum
and spin currents:

Ei ≔ hi⌋LG − ðhi⌋TmÞHm −
1

2
ðhi⌋RmnÞHmn;

Eij ≔ −ðbiHj − bjHiÞ: ðC4Þ

The above procedure is used in Sec. III B to find the
explicit form of the PGT field equations for the ppΛ waves
with torsion, with the result displayed in Eqs. (3.6), (3.7),
and (3.8). To simplify calculation of the term ∇⋆ð1ÞRij in
∇Hij, we used the identity

1

2
∇⋆Rij ¼ ∇⋆ð2ÞRij þ∇⋆ð4ÞRij; ðC5Þ

that follows from the Bianchi identity ∇Rij ¼ 0 and the
double duality properties of the irreducible parts of the
curvature.
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