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We study the constraints coming from the local causality requirement in various 2þ 1 dimensional
dynamical theories of gravity. In topologically massive gravity, with a single parity noninvariant massive
degree of freedom, and in new massive gravity, with two massive spin-2 degrees of freedom, causality and
unitarity are compatible with each other and both require the Newton’s constant to be negative. In their
extensions, such as the Born-Infeld gravity and the minimal massive gravity the situation is similar and
quite different from their higher dimensional counterparts, such as quadratic (e.g., Einstein-Gauss-Bonnet)
or cubic theories, where causality and unitarity are in conflict. We study the problem both in asymptotically
flat and asymptotically anti–de Sitter spaces.

DOI: 10.1103/PhysRevD.95.104016

I. INTRODUCTION

Shapiro’s time-delay argument [1], known as the fourth
test of general relativity (GR), basically says that light
making a round-trip in space takes the least time in the
absence of gravity, that is inMinkowski space. This is true in
GR as can be demonstrated in several ways [2]. But it is not
automatically the case in gravity theories having quadratic
or cubic curvature terms, where causality violation—
ultimately attributed to a Shapiro time advance—was
noticed [3]. Interestingly enough, causality restoration
demands the inclusion of an infinite tower of massive
higher-spin particles with fine-tuned interactions that imply
Reggeization [3–5], an apparently distinctive fingerprint of
perturbative string theory.
Here we explore the status of this problem in 2þ 1

gravity. Naively one might think that the Shapiro time delay
does not play any role in 2þ 1 dimensions, given the
standard lore stating that there are no local gravitational
degrees of freedom.However, there are several metric-based
massive dynamical, locally nontrivial gravity theories in
2þ 1 dimensions that have received quite a lot of attention
in the earlier and recent literature, and we want to scrutinize
on them under the light of causality. Since, of course, the
2þ 1 dimensional scenario is not open to real experiments,
the main question is to understand whether the causality and
unitarity conditions are in contradiction or not. By unitarity,
wemean the absence of ghosts and tachyons in the linearized
excitations about the vacuum of the theory, and by causality
we mean the positivity of the time delay—as opposed to a
time advance—along the line of Shapiro’s argument.

We will only consider the local causality problem and
not get involved with more complicated global causality
issues, as even the four-dimensional GR is also not known
to be immune to them, at least in the presence of matter,
albeit unphysical as is well known in the canonical example
of the Gödel spacetime. For this purpose, it is sufficient to
consider spaces that asymptote to maximally symmetric
backgrounds. We will first consider asymptotically
Minkowski solutions; we will do so in the first part of
the paper. In the second part, we will study the case of
asymptotically anti–de Sitter (AdS) spaces.
In three dimensions, Einstein’s gravity has no local

propagating degrees of freedom, and hence there is no
issue of local causality; global causality issues are dealt
with in [6]. In other words, in pure Einstein’s gravity in
three spacetime dimensions all the solutions are locally
equivalent to Minkowski, de Sitter, or anti–de Sitter space,
depending on whether the cosmological constant is zero,
positive, or negative, respectively. The Riemann curvature
is constant, except for the conical defects associated to the
mass distribution; the theory has no propagating gravitons,
and there is no room for Shapiro time delay whatsoever. In
contrast to three-dimensional general relativity, topologi-
cally massive gravity (TMG) [7] as well as new massive
gravity (NMG) [8] do have local massive propagating
modes, and in these theories the discussion about unitarity
reduces to that of the correct choices for the signs of the
kinetic and mass terms of the linearized excitations.
A priori, as in the case of Einstein-Gauss-Bonnet or cubic
theories in higher dimensions, there is the possibility that
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causality and unitarity are in conflict with each other
leading to a physically troublesome theory or prompting
the conclusion that the theory is at best an effective one. But
in TMG, NMG and their modifications, we will show that
once the sign of the Einstein-Hilbert term in the action is
chosen to be the one required for unitarity—namely, the
opposite to that of the 3þ 1 dimensional case—there is no
conflict with local causality. Reversing the sign of the
Einstein-Hilbert term basically is equivalent to taking the
2þ 1 dimensional Newton’s constant, G, to be negative. It
remains somewhat a puzzle as to why 2þ 1 dimensions is
different in this sense from all the higher dimensional cases.
There are at least twoways to calculate the Shapiro’s time

delay: The usual method is to consider the black hole
solutions and look at the time delay of light in a round-trip in
the presence of the black hole compared to the absence of it.
Another way is to calculate the time delay of a massless
particle moving in the presence of a shock wave [9,10]
created by a high-energy massless particle. The second
method is better suited to the 2þ 1 dimensions in asymp-
totically flat space, since in that case black hole solutions are
not available in TMG and NMG and other massive gravity
theories—except for the case of purely quadratic theories.
After studying the problem in flat space, we will address

the case of negative cosmological constant. In the last part of
the paper, the question we will address is whether the same
phenomenon occurs in asymptotically AdS3; that is, whether
a region of the parameter space exists for which the massive
gravity inAdS3 can be free of ghosts and tachyons and, at the
same time, compatible with local causality. This question is
not redundant since the new scale given by the curvature of
AdS3 introduces differenceswith respect to flat space. In fact,
as we will see, there are two quantitative modifications
suffered by the Shapiro time delay relative to Minkowski
space: On the one hand, the Yukawa type dependence on the
impact parameter found for this kind of process in
Minkowski space suffers a correction in the effective mass
mg, which in AdS3 happens to depend not only on the
graviton mass parameter m but also on the cosmological
constant Λ. On the other hand, the Shapiro time delay gets
multiplied by an overall factor N that is a function of the
Reynolds number mg=

ffiffiffiffiffiffijΛjp
that tends to 1 in the limit

Λ → 0. The latter modification is important since, in prin-
ciple, it means that the sign of the time delay in AdS3 could
depend on the interplay between the two scalesmg and

ffiffiffiffiffiffijΛjp
.

There is another crucial difference between flat and
AdS3 spaces, which is the aforementioned existence of
black holes [11,12]. As we have previously said, in three
dimensions black holes only exist1 in AdS space, and it

turns out that the sign of G that renders the theory free of
ghosts is the opposite to the one that makes the mass
spectrum of the black holes positive definite. This intro-
duces an additional puzzle that, in order to be solved,
demands invoking a kind of superselection argument2 [19],
cf. [20]. For our purpose, this means that in order to
compute the Shapiro time delay in three dimensions it
would not be natural to resort to the black hole geometry
calculation analogous to the one usually employed in four
or more dimensions, since what we actually want to analyze
here is whether the delay is positive for the same sign of the
Einstein-Hilbert action that renders the theory free of ghost-
free. Therefore, the way to address the problem in AdS3
will be, again, by considering a gedankenexperiment
analogous to the one considered in flat space [3]. We will
compute the time delay suffered by a particle moving in the
presence of a shock wave generated by a high-energy
massless particle. Adapting such an experiment to the case
of AdS3 space requires to consider the gravitational wave
solutions found in [21,22] coupled to the particle source.
We will find that a particle interacting with such a shock
wave in AdS3 experiences a time delay that is positive
definite. We will see that this happens both for TMG and
for NMG.
Besides, since the main motivation for considering AdS3

space comes from AdS=CFT [23], raising the question of
the compatibility between unitarity and causality in the
bulk unavoidably leads one to also ask about the unitarity in
the boundary conformal field theory (CFT). As it is well
known, both TMG and NMG suffer from what is known as
the bulk/boundary unitarity clash; that is, the discrepancy
between the sign of the Einstein-Hilbert action that makes
the theory free of ghosts and the one that yields a positive
central charge in the dual CFT. This problem has not been
solved yet, and remains one important issue in AdS3
massive gravity [24]. Nevertheless, an interesting attempt
to solve it has led to the discovery of an interesting new
type of three-dimensional massive model, known as min-
imal massive gravity3 (MMG) [25]. This model consists in
augmenting the TMG field equations with additional
second order terms that, even when they do not give
relevant contributions to the effects we want to investigate
around flat space, do contribute in AdS3 space. Therefore,
we will discuss this more general in the last part of the
paper, showing here that also in MMG the Shapiro time

1More precisely, in three-dimensional massive gravity there
also exist black holes in asymptotically flat and asymptotically de
Sitter spaces [13,14] and in other spaces [15]; however, those
solutions only exist at very special points of the parameter space
where the theories exhibit special properties [16,17].

2Other solutions have been proposed, such as looking for
special values of the parameters and suitable boundary conditions
that make the theory to lose its local degrees of freedom and
enable one to choose the positive sign in the Einstein-Hilbert
action [18].

3It has been recently observed in [24] that MMG in the metric
formulation exhibits a logarithmic mode that can spoil unitarity in
the bulk. The question remains as to whether the definition of the
theory can be supplemented with a specification of asymptotic
boundary conditions that accomplish to decouple the logarithmic
mode and render the theory unitary.
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delay turns out to be positive definite when the MMG
corrections are taken into account.
The layout of the paper is as follows: In the next

section, we warm up by showing in the context of three-
dimensional GR the kind of computations we will use
throughout the work. In Secs. III and IV we study TMG
and NMG cases wherein we discuss the time delay for
null geodesics, for massless scalar fields, massive non-
minimally coupled photons and the gravitons of the
relevant theory. In each section, we also derive some
of the results from the point of view of eikonal scattering
amplitudes. We also briefly discuss the case of Born-
Infeld gravity in three dimensions. In Sec. V we will
extend the analysis to asymptotically AdS3 spacetimes.
After the Conclusions section, we assist the reader with
various Appendixes including conventions and the der-
ivation of the relevant tensor perturbations about the
shock-wave background.

II. GENERAL RELATIVITY WARM-UP
IN 2 + 1 DIMENSIONS

It is a well known fact that 2þ 1 GR is very different
from higher dimensional GR. If we turn off the cosmo-
logical constant, the vacuum field equations imply the
vanishing of every component of the Riemann tensor—
outside sources, space-time is trivially flat. As a conse-
quence, a careful analysis of linearized perturbations
around flat space shows that they can be only pure gauge:
there are no local propagating degrees of freedom.
Nevertheless, we will take GR as a warm-up exercise to
settle the structures and type of computations we shall
make to analyze the causality problem in other theories of
2þ 1 gravity.
Consider in GR a shock-wave ansatz4

ds2 ¼ −dudvþHðu; yÞdu2 þ dy2; ð1Þ

sourced by an energy-momentum tensor Tuu ¼
jpjδðyÞδðuÞ which corresponds to a massless point particle
moving in the þx direction with 3 momentum as
pμ ¼ jpjðδμ0 þ δμxÞ, where u ¼ t − x and v ¼ tþ x are
light-cone coordinates and y is the transverse coordinate.
The Einstein equation for H becomes (we set j8πGj ¼ 1)

∂2
yHðu; yÞ ¼ −2σjpjδðyÞδðuÞ; σ ≔ signG: ð2Þ

The most general solution to this equation is

Hðu; yÞ ¼ −2σjpjδðuÞθðyÞyþ c1ðuÞyþ c2ðuÞ; ð3Þ

where c1ðuÞ and c2ðuÞ are arbitrary and related to the
coordinate transformations which leave the ansatz

invariant. Notice that if we choose c1ðuÞ ¼ 0 and c2ðuÞ ¼
0 we would get a vanishing profile for y < 0 but a
nontrivial one for y > 0. On the opposite hand if we
choose c1ðuÞ ¼ 2jpjδðuÞ and c2ðuÞ ¼ 0 we would get

Hðu; yÞ ¼ 2σjpjδðuÞθð−yÞy; ð4Þ

meaning a vanishing profile for y > 0. Actually, and
consistently with what was explained before, outside the
source, the space is flat everywhere, but, due to the source
we cannot have a single chart to write down the metric in
such a way as to have Cartesian coordinates in both sides of
the profile. Notice that a slightly different shock-wave
profile was found in [26] which agrees with the general
form (3) but with constants c1 and c2 chosen such that the
profile is symmetric under y → −y. The reason we do not
choose such a symmetric solution is that since our main
purpose is to compute the time delay as measured by an
asymptotic observer, we pick c1 and c2 such that for y > 0
we have asymptotically flat and Cartesian coordinates.
In the GR case this means that the profile is trivial
for y > 0 but in more general cases a nontrivial profile
will be found.
Our interest will be to consider in different theories a

particle traversing the shock-wave profile for a fixed value
of the impact parameter y ¼ b > 0. In every case, we will
fix the coordinates of the profile in such a way that for
y → ∞ the coordinates are asymptotically flat and
Cartesian.
In particular, for the present case of GR, this choice

coincides with the profile (4) and trivially, a massless
spinless particle traversing this profile with y ¼ b > 0 will
not experience any delay. While this conclusion is trivial in
GR, in more general theories, we will study the disconti-
nuity of the geodesic of the particle at u ¼ 0 to obtain the
time delay. Notice that not having chosen the symmetric
profile of [26] does not mean that the existence of the delay
depends on which side of the shock wave the test particle
goes through. As mentioned before, space is flat at both
sides of the profile and our choice of c1 and c2 is just a
coordinate choice fixed by our utilitarian reasoning of
working with asymptotically flat and Cartesian coordinates
on one side (y > 0).
Besides the geodesic analysis we will also use scattering

amplitudes to confirm some of the results we obtain for the
delay [27]. Instead of thinking of the experiment as a
massless particle traversing the shock-wave geometry
produced by another particle, we consider the tree-level
2 → 2 scattering amplitude of massless non-self-interacting
gravitating particles in the deflectionless limit ts → 0, which
in the case of GR is given by

Atreeðs; tÞ ¼ −σ
s2

t
; ð5Þ4See Appendix for more details.
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where
ffiffiffi
s

p
is the center-of-mass energy and

ffiffiffiffiffi
−t

p
is the

absolute value of the momentum transfer. The full ampli-
tude in the eikonal approximation will (in many practical
cases) exponentiate in the impact parameter space [28,29].
The phase associated to this exponentiation is proportional
to the Shapiro time delay and it can be computed by Fourier
transforming the tree level result,

δðb;sÞ ¼ 1

2s

Z
dq
2π

eiqbAtreeðs;−q2Þ ¼
σ

4π
s
Z

dq
eiqb

q2
: ð6Þ

This last result diverges for the region of integration close
to forward scattering (zero momentum transfer) while we
would have expected it to be zero in this GR computation.
This is an artifact of the eikonal approximation where the
zero angular momentum mode does not behave well in the
continuous limit in the impact parameter space. We will
take a pragmatic approach on this issue: we choose to
regulate in some reasonable way the Fourier transform of
the amplitude in such a way that the particular integral (6),
corresponding to GR, is zero as expected. In this way, by
using the same prescription in other theories, the result we
obtain is gauged by the GR result.
A useful prescription is therefore to take the q integral

domain to be the real line of the complex q-plane (see
Fig. 1), with an indentation of the line so as to avoid the
point q ¼ 0 leaving the pole out of the contour of
integration; say, q ¼ −iϵ. This prescription reproduces
the result obtained from the geodesic analysis, provided
we choose the gauge c1ðuÞ ¼ 2jpjδðuÞ and c2ðuÞ ¼ 0.
Displacing the pole to q ¼ iϵ, instead, would have corre-
sponded to the choice c1ðuÞ ¼ c2ðuÞ ¼ 0, whereas the
dimensional continuation of the higher dimensional result
corresponds to c1ðuÞ ¼ σjpjδðuÞ and c2ðuÞ ¼ 0, and leads
to a symmetric profile under y → −y.
We shall see later that the above discussed prescription

allows us to compute the correct Shapiro time delay for
scattering scalar massless particles in other theories of 2þ
1 gravity besides GR. A different prescription would
correspond to a choice of boundary conditions that, albeit

perfectly valid, are not suitable for the sake of comparison
with the Shapiro time-delay computation.

III. CAUSALITY IN TMG

The Lagrangian density of TMG [7],

L¼ ffiffiffiffiffiffi
−g

p �
σRþ 1

2μ
ϵμναΓβ

μσ

�
∂νΓσ

αβþ
2

3
Γσ

νλΓλ
αβ

��
; ð7Þ

when coupled to matter, yields the field equations

σGμν þ
1

μ
Cμν ¼ Tμν; ð8Þ

where Gμν ¼ Rμν − ð1=2ÞRgμν is the Einstein tensor and
Cμν ¼ ðϵμρσ= ffiffiffiffiffiffi−gp Þ∇ρðRσν − ð1=4ÞRgσνÞ is the Cotton ten-
sor. The latter is traceless, expressing the conformal
invariance of this particular higher-derivative deformation
of Einstein equations. We have set the Newton’s constant to
unity but allowed a possible sign reversal parameter σ, as
discussed in the previous section, σ2 ¼ 1. The theory is
parity noninvariant and the single helicity-2 excitation
about the flat background has a mass

mg ¼ −σjμj: ð9Þ

Therefore we set σ ¼ −1 for this mode to be nontachyonic.
This choice also ensures the kinetic energy to be positive
(or nonghostlike). Note that μ → −μ is a parity change,
keeping the mass intact but reversing the helicity of the
graviton. Using formulas (A6) and (A8) in Appendix A, the
TMG equations (8), for the null source, reduce to a single
third derivative (carrying the burden of parity violation)
equation,

−
σ

2
∂2
yHðu; yÞ þ 1

2μ
∂3
yHðu; yÞ ¼ jpjδðyÞδðuÞ: ð10Þ

Without loss of generality, let us consider the μ > 0 case.
(The discussion is similar, for the other sign choice without

FIG. 1. Integration contours in the complex q-plane depending upon the sign of the impact parameter b, this prescription
corresponding to the gauge choice c1ðuÞ ¼ 2jpjδðuÞ and c2ðuÞ ¼ 0.
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a change in the physical consequences.) Then the most
general solution is easily found as

Hðu; yÞ ¼ −
2σjpj
mg

δðuÞθðyÞðe−mgy þmgy − 1Þ

þ c1
e−mgy

m2
g

þ c2yþ c3; ð11Þ

with three ci functions depending on the null coordinate u
in an arbitrary way. But these functions can be fixed by
requiring the spacetime to be asymptotically flat. We can
use coordinate transformations to bring the metric to the
Cartesian form in the asymptotic limit. But, one cannot
bring the metric to the Cartesian form for y > 0 and y < 0
with a single transformation [26]. This is a minor technical
issue which we shall avoid and demand that for y → þ∞
the space is given in terms of Cartesian coordinates, but for
y → −∞, it is flat written in non-Cartesian coordinates.
(Namely, a single chart does not cover the whole spacetime
as we discussed for the GR case.) Then for μ > 0, the
gauge-fixed shock wave profile of TMG reads

Hðu; yÞ ¼ −
2σ

mg
jpjδðuÞθðyÞe−mgy

þ 2σ

mg
jpjδðuÞθð−yÞðmgy − 1Þ: ð12Þ

Plugging (12) into (1) yields a flat space to the right of the
particle and a curved one to the left of the particle as the
particle is moving in the þx direction with the speed of
light. For the μ < 0 case, the left and right are interchanged
in the previous sentence, hence the parity-non invariance of
the theory.
Consider a massless, spinless particle traversing this

geometry at an impact parameter y ¼ b > 0. When (12) is
plugged in (1), there is a discontinuity in the u coordinate
which can be removed by defining a new discontinuous
null coordinate as

v≡ vnew −
2σ

mg
jpjθðuÞe−mgb; ð13Þ

which leads to the following time delay for the spinless,
massless particle traversing the wave:

Δv ¼ −
2σjpj
mg

e−mgb: ð14Þ

The physical picture is as follows: as the particle traverses
the u ¼ 0 line, Δv is positive (a time delay) as long as σ is
negative for any value of the impact parameter. Therefore
unitarity and causality are not in conflict in TMG for these
null geodesics. We should note that as the mass of the
graviton goes to infinity, TMG reduces to the pure Einstein

gravity and there is no time delay since there are no
gravitons as we discussed before. It is important to note that
this does not say that there is no interaction between these
moving particles. In fact it is well known that even though
the particles at rest do not interact in pure three-dimensional
Einstein’s gravity, they do interact when one or both of
them start moving. But this interaction is instantaneous [30]
and the problem of causality, if there is, is not a local one
that we explore here but a global one.
Another thing to note is to be careful about the

interpretation of the results in non-Cartesian coordinates.
For example, let us consider the y < 0 region of the shock
wave that we discussed here. We noted that it is not in
Cartesian coordinates, namely the metric function is given
as Hðu; yÞ ¼ cðuÞyþ dðuÞ, which naively yields a time
delay for any finite b, in fact an increasing time delay when
the impact parameter increases, which is simply nonphysi-
cal. But, as noted in the GR part, the same situation holds in
pure Einstein’s gravity. Let us repeat it: setting σRμν ¼ Tμν

ostensibly gives a shock wave for the pure Einstein’s
gravity in the form σHðu; yÞ≃ −2jpjδðuÞθðyÞy. But this
is just flat space in another gauge (coordinates) and so there
is no local gravity and no time delay.

A. Eikonal scattering in TMG

Let us now consider obtaining the same result from the
point of view of scattering amplitudes. Under the same
assumptions as of Sec. II, we compute the scattering
amplitude of two massless scalar particles in TMG. The
scalar field coupling reads

STMG ¼
Z

d3x
� ffiffiffiffiffiffi

−g
p

σRþ 1

2μ
ϵλμνΓρ

λσ

�
∂μΓσ

ρν þ
2

3
Γσ
μαΓα

νρ

�

−
1

2α
kνkν þ

1

2
gμν∂μϕ∂νϕ

�
; ð15Þ

where kν ¼ ∂μð ffiffiffiffiffiffi−gp
gμνÞ. Taking into account that we deal

with an eikonal scattering where the incoming momenta are

p1μ ¼
�
pu;

q2

16pu
;
q
2

�
; p2μ ¼

�
q2

16pv
; pv;−

q
2

�
; ð16Þ

or, in terms of Mandelstam variables, s ¼ −2p1 · p2 ≃
pupv and t≃ −q2, t=s ≪ 1. By using the graviton propa-
gator in the Feynman gauge (α ¼ 1) (C7), we can readily
obtain

Atree ¼ −σ
s2

t
1

ð1 − iσ
μ

ffiffiffiffiffi
−t

p Þ : ð17Þ

When we calculate the phase shift, with the prescription
given in Sec. II, it gives (for b > 0) the same result as the
one obtained by the geodesic analysis.
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B. Scalar particle in a shock wave

The equation for a minimally coupled massless scalar
field

□ϕ ¼ 0; ð18Þ

in the shock wave background reduces to

∂u∂vϕþHðu; yÞ∂2
vϕ −

1

4
∂2
yϕ ¼ 0; ð19Þ

which we have not been able to solve exactly but this is not
needed for our purposes. If we look at this differential
equation near the wave and drop the terms that do not
involve derivatives along the null directions, we end up
with a solvable equation:

∂u∂vϕþHðu; yÞ∂2
vϕ ¼ 0: ð20Þ

After carrying out an integration in the v-coordinate and
dropping the constant term to have zero field in the
asymptotic region, one has

∂uϕþHðu; yÞ∂vϕ ¼ 0: ð21Þ

Now we can use the separation of variables technique to
solve this equation. Assume that the solution is in the form
ϕðu; v; yÞ ¼ UðuÞVðvÞYðyÞ. If we substitute this into (21),
we get

1

Hðu; yÞ
U0ðuÞ
UðuÞ þ

V 0ðvÞ
VðvÞ ¼ 0: ð22Þ

Let pv be the momentum of the scalar field in the v
direction, then

V 0ðvÞ
VðvÞ ¼ −

1

Hðu; yÞ
U0ðuÞ
UðuÞ ¼ ipv: ð23Þ

Finally, the single mode solution reads

ϕðu; v; yÞ ¼ YðyÞUðu0ÞVð0Þeipvðv−
R

u Hðu0;yÞdu0Þ; ð24Þ

from which a wave packet can be obtained by Fourier
transform but this is not needed. We assume that we know
the momentum of the test particle, then we can calculate the
phase it picks up when it crosses the shock wave at an
impact parameter b as

ϕð0þ; v; bÞ ¼ e−ipv

R
0þ
0−

duHðu;bÞϕð0−; v; bÞ
¼ e−ipvΔvϕð0−; v; bÞ; ð25Þ

with Δv given in (14). Therefore, when crossing the wave,
the scalar particle picks up a phase shift akin to the

Aharanov-Bohm phase. This is the same result as (14)
which was computed by the lightlike geodesic analysis.

C. Photon in a TMG shock wave

A minimally coupled photon to the shock wave gives the
same result as the scalar field and the null-geodesic case
that we discussed. To see the potential differences, let us
now consider a 2þ 1 dimensional photon nonminimally
coupled to TMG given by the following action:

S ¼ −
1

4

Z
d3x

ffiffiffiffiffiffi
−g

p ðFμνFμν þ γRμν
ρσFμνFρσÞ; ð26Þ

where the second term, the nonminimal coupling, can be
thought of as being generated after massive particles are
integrated out. So this action defines an effective theory
with γ denoting a coupling constant of L2 dimensions. For
the shock wave background (1), the wave equation for the
photon reduces to

∇σFρσ − γRρ
σμν∇σFμν ¼ 0;

Ruyuy ¼ −
1

2
∂2
yHðu; yÞ: ð27Þ

In components one has

∂uFvy þ ðHðu; yÞ þ γ∂2
yHðu; yÞÞ∂vFvy þ

1

2
∂yFuv ¼ 0:

ð28Þ

Now, let ϵy represent the transverse polarization vector. The
vector potential can be written as Ay ¼ gðu; vÞϵy yielding
the field strength Fvy ¼ ∂vgðu; vÞϵy. With these, the wave
equation becomes similar to (20)

∂u∂vgðu;vÞþðHðu;yÞþγ∂2
yHðu;yÞÞ∂2

vgðu;vÞ¼0: ð29Þ

Therefore, the calculation of Δv is also similar and one
arrives at the expression

Δv ¼ −
2σjpj
mg

ð1þ γm2
gÞe−mgb: ð30Þ

Unlike the scalar particle or the null geodesic case, setting
σ < 0 does not guarantee causality, since, depending on the
sign and magnitude of γm2

g, one can have a time advance
instead of a time delay. This is not surprising because, we
considered a photon that is not minimally coupled to
gravity. It has been known for a long time that nonminimal
coupling, which is a breakdown of strong equivalence
principle, could lead to superluminal motion and possibly
to causality violations [31,32]. For all γ > 0, there is a time
delay but if γ < 0, one must have γm2

g > −1, to have a
time delay.
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D. Graviton in a TMG shock wave

To study the gravitons in the background of the shock
wave, let us now consider the linearization of (8) (for the
case of a vanishing source) about the shock-wave solution
(12) for y > 0 then one gets the linearized field equations as

σδGμν þ
1

μ
δCμν ¼ 0: ð31Þ

Defining the metric functions in the light-cone gauge as

hμνðu; v; yÞ ¼

0
B@

g 0 f

0 0 0

f 0 h

1
CA;

one can compute the six equations which need to be solved
consistently. Some of these equations are complicated and
we delegate them to Appendix B and simply quote the
solution here. To solve these equations, a close scrutiny
reveals that it would be best if one defines new functions as

fðu; v; yÞ≡ e−mgy

Z
v
dv0

Z
v0

sðu; v00Þdv00;

hðu; v; yÞ≡ e−mgy

Z
v
dv0

Z
v0

rðu; v00Þdv00;

gðu; v; yÞ≡ e−mgy

Z
v
dv0

Z
v0

pðu; v00Þdv00; ð32Þ

where sðu; vÞ, rðu; vÞ and pðu; vÞ are functions to be
determined. After plugging these into TMG field equations,
the solution follows as

sðu; vÞ ¼ eipvðv−3
2

R
u Hðu0;yÞdu0Þ;

rðu; vÞ ¼ −
1

mg
∂vsðu; vÞ;

pðu; vÞ ¼ −
�
ipvHðu; yÞ

2mg
−

i
pv

mg

�
sðu; vÞ: ð33Þ

We see that gðu; v; yÞ and hðu; v; yÞ can be written in terms
of fðu; v; yÞ. Again, wave packets of gravitons, having real
profiles instead of the complex ones that we have, can be
constructed from this monochromatic solution, but this is
not needed as we already noted. Calculation of the time
delay follows as before and one has a shift in the graviton’s
phase at it crosses the shock wave as

fð0þ; v; bÞ ¼ e
−3ipv

2

R
0þ
0−

Hðu0;yÞdu0fð0−; v; bÞ
¼ e−ipvΔvfð0−; v; bÞ: ð34Þ

Then, Δv yields

Δv ¼ −
3σjpj
mg

e−mgb; ð35Þ

which is positive for σ < 0. It is refreshing to see that no
new condition, that is not already imposed by unitarity,
comes from the causality in TMG and gravitons get a
time delay.

IV. QUADRATIC GRAVITY

The Lagrangian density of general quadratic gravity,

L ¼ ffiffiffiffiffiffi
−g

p ðσRþ αR2 þ βR2
μν þ LmatterÞ; ð36Þ

has the field equations

σ

�
Rμν−

1

2
gμνR

�
þ2αR

�
Rμν−

1

4
gμνR

�
þð2αþβÞðgμν□−∇μ∇νÞR

þβ□

�
Rμν−

1

2
gμνR

�
þ2β

�
Rμσνρ−

1

4
gμνRσρ

�
Rσρ¼Tμν:

ð37Þ

This theory has a massive spin-2 and a massive spin-0
graviton, with masses about the flat space, respectively
given [33] as

m2
g ¼ −

σ

β
; m2

s ¼
σ

8αþ 3β
: ð38Þ

Canonical analysis shows that one of these massive modes
has to decouple to have a unitary theory. For the massive
spin-2 choice the only possibility is to set

8αþ 3β ¼ 0 ð39Þ

and choose σ < 0 and β > 0. This theory is called the new
massive gravity (NMG) which we shall specify from now
on. For the shock wave ansatz (1), (37) reduces to

−σ∂y
2Hðu; yÞ − β∂y

4Hðu; yÞ ¼ 2jpjδðyÞδðuÞ; ð40Þ

whose asymptotically flat solution is

Hðu; yÞ ¼ −
σjpjδðuÞ

mg
ðe−mgjyj þmgjyjÞ þ c1yþ c2: ð41Þ

Since the theory is parity invariant both the left and the right
regions of the source are curved in sharp contrast to the case
of TMG. By gauge fixing we can choose the constants c1
and c2 in a way that the solution reads

Hðu; yÞ ¼ −
σjpjδðuÞ

mg
e−mgjyj þ 2σjpjδðuÞΘð−yÞy: ð42Þ
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Without going into further detail, calculation of the time
delay yields for b > 0,

△v ¼ −
σjpj
mg

e−mgjbj; ð43Þ

which is positive when σ is negative. Therefore causality
and unitarity in NMG are compatible for null geodesics.
The eikonal scattering amplitude computation in NMG

can be computed by taking into account the corresponding
graviton propagator (C9), which leads to

Atree ¼ −σ
s2

t
1

ð1 − σ q2

m2
g
Þ
: ð44Þ

When calculating the phase shift again the result is in
agreement with the one obtained by the geodesic analysis.

A. Photon in an NMG shock wave

For the nonminimally coupled photon described by (26)
coupled to the NMG shock wave, calculation of the time
delay yields

Δv ¼ −
σjpj
mg

ð1þ γm2
gÞe−mgjbj: ð45Þ

As long as γm2
g > −1 and σ < 0, there is a time delay for

these photons for any b ≠ 0 impact parameter.

B. Graviton in an NMG shock wave

Defining the metric in the light-cone gauge as in the case
of TMG and defining the following functions,

fðu; v; yÞ≡ e−mgy

Z
v
dv0

Z
v0

dv00
Z

v00

sðu; v000Þdv000;

hðu; v; yÞ≡ e−mgy

Z
v
dv0

Z
v0

dv00
Z

v00

rðu; v000Þdv000;

gðu; v; yÞ≡ e−mgy

Z
v
dv0

Z
v0

dv00
Z

v00

pðu; v000Þdv000;

ð46Þ

where sðu; vÞ, rðu; vÞ and pðu; vÞ are the functions to be
determined, one can solve the NMG equations consistently.
In Appendix B we give the equations for the h ¼ 0 case for
the sake of simplicity. The solution reads as

rðu; vÞ ¼ pðu; vÞ ¼ eipvðv−2
R

u Hðu0;yÞdu0Þ;

sðu; vÞ ¼ −
1

mg
∂vrðu; vÞ: ð47Þ

We see that rðu; vÞ and pðu; vÞ can be written in terms of
sðu; vÞ. Then one obtains

fð0þ; v; bÞ ¼ e−2ipv

R
0þ
0−

Hðu0;yÞdu0fð0−; v; bÞ
¼ e−ipvΔvfð0−; v; bÞ: ð48Þ

Then, calculation of Δv yields

Δv ¼ −
2σjpj
mg

e−mgb; ð49Þ

which is positive for σ < 0 and hence NMG gravitons get a
time delay. Then causality and unitarity in NMG are
compatible.

C. Born-Infeld gravity

Causal propagation in Born-Infeld-type actions, be it in
electrodynamics or gravity, is not automatic. Let us con-
sider the special case of Born-Infeld extension of new
massive gravity given by the action [34]

I ¼−4m2

Z
d3x

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−det

�
gþ σ

m2
G

�s
−
�
1−

λ0
2

� ffiffiffiffiffiffi
−g

p
#
;

ð50Þ
where G is the matrix whose components are those of
Einstein tensor Gμν ¼ Rμν − gμνR=2. This theory has the
same spectrum as NMG around the flat and AdS back-
grounds with the added property that it has a unique AdS
vacuum. The field equations are cumbersome, but they are
given in [35] and hence we shall simply use them. For
λ0 ¼ 0, and for the shock-wave ansatz the field equations,
owing to the fact that RμνRμν ¼ 0; Rμ

σRσλRλμ ¼ 0; R ¼ 0,
reduce to those of NMG as

σRμν þ
1

m2
□Rμν ¼

1

2
Tμν; ð51Þ

which simply says that as in the case of NMG, causality and
unitary are not in conflict.

V. ANTI–DE SITTER SPACE

Let us now consider the case of negative cosmological
constant. We will consider in AdS3 an experiment with the
shock waves similar to the one used in flat space. In fact,
our analysis will parallel that of previous sections adapting
it to the case Λ < 0. Let us begin by considering the AdS3
metric written in Poincaré coordinates, namely,

ds2AdS3 ¼
l2

y2
ð−2dudvþ dy2Þ; ð52Þ

with y ∈ R≥0, u ∈ R, v ∈ R. The first step would be
finding the metric produced by a high-energy particle
located at u ¼ 0 and y ¼ y0. To obtain this metric we
consider the Kerr-Schild ansatz
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ds2 ¼ l2

y2
ð−2dudv − Fðu; yÞdu2 þ dy2Þ; ð53Þ

and then source the field equations of the massive gravity
theory with the energy-momentum tensor corresponding to
such a particle. The only nonzero component of this tensor is

Tuu ¼ jpj l
y0

δðuÞδðy − y0Þ: ð54Þ

We will consider first the field equations of TMG. Later,
we will consider other massive theories like NMG
and MMG.

A. Topologically massive gravity

The equations of motion of TMG in absence of sources
take the form (8); namely,

−Gμν þ
1

l2
gμν þ

1

μ
Cμν ¼ 0; ð55Þ

where l ¼ 1=
ffiffiffiffiffiffijΛjp

> 0 is the AdS3 radius. Notice the
minus sign in front of the Einstein tensor, which is
consistent with having chosen σ ¼ −1. This makes (55)
free of ghosts around the AdS3 vacuum.
Field equations (55) are of third order in the metric.

Coupling the energy-momentum tensor (54) to these
equations and considering the ansatz (53) yield

−y
∂3
yF

2lμ
−
y2∂2

yF − y∂yF

2y2
¼ jpj l

y0
δðuÞδðy − y0Þ; ð56Þ

which is the only nontrivial equation to solve. We know
from [21] the solutions for the homogeneous part of this
equation, which would be the solutions to (56) at both sides
of the shock wave. These solutions are

FhðyÞ ¼ c1

�
y
l

�
1−lμ

þ c2

�
y
l

�
2

þ c3; ð57Þ

where c1, c2 and c3 are functions of u but we will suppress
this dependence. The c2 and c3 terms can be removed by a
coordinate transformation [22]. These correspond to the
two pure-gauge modes of three-dimensional gravity. To
obtain the inhomogeneous solution to (56), let us consider
the proposal FpðyÞ ¼ θðy − y0ÞgðyÞ, with gðyÞ being of the
type of (57), and then use matching conditions at y0 to
determine the coefficients ci. Plugging FpðyÞ into (56) and
integrating the resulting equation between a segment y0 − ε
and y0 þ ε and then taking the limit ε → 0 to get rid of the
delta function and its derivatives, and demanding both FðyÞ
and F0ðyÞ to be continuous at y ¼ y0, one finds

g00ðy0Þ ¼ −2μ
�
l
y0

�
2

δðuÞjpj; ð58Þ

where we took g0ðy0Þ ¼ gðy0Þ ¼ 0 for the mentioned
continuity of FðyÞ and F0ðyÞ—the primes denote deriva-
tives with respect to y. Then, the general solution FhðyÞ þ
FpðyÞ takes the form

FðyÞ ¼ l2μ
δðuÞjpj
1 − ðlμÞ2

�
2

�
y
y0

�
1−lμ

− ð1 − lμÞ
�
y
y0

�
2

− ð1þ lμÞ
�
θðy − y0Þ

þ l2μ
δðuÞjpj
1 − ðlμÞ2

�
2c1

�
y
y0

�
1−lμ

þ ð1 − lμÞc2
�
y
y0

�
2

þ ð1þ lμÞc3
�
; ð59Þ

where ci will be determined by imposing the appropriate
boundary conditions.

1. The flat spacetime limit

As a consistency check of (59) one can verify that in the
limit Λ → 0 the result for the shock-wave profile repro-
duces the one for flat space found in our previous sections.
This limit is also useful to gain intuition about how to set
the boundary conditions. To take this limit it is convenient
to define the coordinate

y ¼ lez=l; ð60Þ

with which the AdS3 metric takes the form

ds2 ¼ −2e−2z=ldudvþ dz2; ð61Þ

and then one can take the limit l → ∞ to recover the
Minkowski space. In addition, we have to take into account
that the profile function defined in Sec. III is related to the
new profile function as

−
l2

y2
FðyÞ ¼ HðyÞ: ð62Þ

Therefore, in the limit l → ∞ one obtains

HðzÞ ¼ δðuÞjpj
μ

½2e−μðz−z0Þ − 2þ 2μðz − z0Þ�θðz − z0Þ

þ δðuÞjpj
μ

½2c1e−μðz−z0Þ þ ðc2 þ c3Þ

− lμðc2 − c3Þ − 2μc2ðz − z0Þ�; ð63Þ
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which is consistent with the result for the flat space. This
provides us with a criterion to set the integration constants
in (59). To actually have asymptotically flat space in the
limit l → ∞we should set c1 ¼ 0 and c2 ¼ c3. Then, if we
want to impose exactly the same boundary conditions as in
our flat space analysis (asymptotically flat and Cartesian for
z > z0) we should also set c2 ¼ c3 ¼ 1.

2. Asymptotically AdS3 boundary conditions

Consistently, the same values for c1, c2 and c3 are
obtained by demanding asymptotically AdS3 boundary
conditions for finite l. In fact, one may impose the
Brown-Henneaux (BH) boundary conditions [36], demand-
ing the metric perturbations hμν ¼ gμν − gAdSμν to be of the
following orders at infinity:

huu ≃ huv ≃ hvv ≃ hyy ≃Oð1Þ;
huy ≃ hvy ≃OðyÞ; ð64Þ

whereOðynÞmeans that a given component decays as yn or
faster close to the AdS3 boundary (i.e. around y ¼ 0). To
see this more explicitly, it is convenient to define
new coordinates as r≡ y−1, t≡ l2ðvþ uÞ=2, and
ϕ≡ lðv − uÞ=2, for which the components decay as

htt ≃ htϕ ≃ hϕϕ ≃Oð1Þ: ð65Þ

This means that for the type of perturbations considered in
(53) we have to impose FðyÞ ∼Oðy2Þ. If we assume that
μ > 1=l, to satisfy the BH boundary conditions we have to
set c1 ¼ 0. To fix c2 and c3, we demand to have regular
AdS3 space deep into the bulk (i.e. at y → ∞); this implies
c2 ¼ c3 ¼ 1. The gauge-fixed solution finally reads

FðyÞ ¼ l2μ
δðuÞjpj
1 − ðlμÞ2

�
2

�
y
y0

�
1−lμ

�
θðy − y0Þ

þ l2μ
δðuÞjpj
1 − ðlμÞ2

�
ð1 − lμÞ

�
y
y0

�
2

þ ð1þ lμÞ
�

× θð−ðy − y0ÞÞ; ð66Þ

Notice that for y < y0 the dependence on the y coordinate is
quadratic; however, this is nothing but AdS3 written in
different coordinates.

3. Shapiro time delay in AdS

Let us consider the interaction of a massless particle and
the shock wave in AdS found above. The idea is to verify
whether the shift in the coordinate v suffered by the particle
crossing the wave is positive definite. If so, this would
prevent the particle from experiencing causality problems.
The equation for a massless scalar field in the shock-wave
background is (after again dropping derivatives along the
transverse direction)

∂u∂vϕþ Fðu; yÞ∂2
vϕ ¼ 0: ð67Þ

From here, we obtain the shift in the v coordinate as

Δv ¼
Z

0þ

0−
duFðu; yÞ: ð68Þ

For a particle crossing the shock wave at z > z0, we find

Δv ¼ 2μjpj
μ2 − 1=l2

e−ðμ−1=lÞðz−z0Þ: ð69Þ

This result is sensitive to the sign of the Einstein-Hilbert
term in the action—in fact, there is an implicit factor −σ
multiplying the right-hand side of (69). We have chosen the
minus sign that renders the theory ghost free and this
yields Δv > 0.
Expression (69) can be written as

Δv ¼ 2N
jpj
mg

e−mgðz−z0Þ; ð70Þ

with the effective mass5 mg ¼ μ − 1=l > 0 and
N ¼ μ=ðμþ 1=lÞ > 0. This yields the result (14) in the
limit l → ∞, where mg ¼ μ and N ¼ 1. Therefore, the
positivity of the Shapiro time delay (69) expresses that
unitarity and causality are compatible in TMG.

4. Chiral gravity

A particularly interesting case corresponds to the so-
called chiral point μl ¼ 1, where the effective mass mg

vanishes. At this point of the parameter space, one of the
central charges of the dual boundary theory (say the one of
the left-moving sector, cL) vanishes and this is taken as an
indication that it could correspond to a chiral CFT [18]. The
bulk theory also exhibits peculiar properties at the chiral
point, such as the existence of new sectors of solutions. The
theory defined by the TMG Lagrangian with μl ¼ 1 and
imposing BH boundary conditions is known as chiral
gravity; it does not contain local degrees of freedom
[18] and thus it is compatible with the choice σ ¼ 1. On
the other hand, at μl ¼ 1 the theory admits other kinds of
asymptotically AdS3 boundary conditions [37,38], which
are weakened with respect to BH, yielding logarithmically
decaying modes and do contain local degrees of freedom
and thus demands again σ ¼ −1.
To obtain the solution at the chiral point, we have to take

in (56) the limit μl → 1. To do so, instead of considering
the natural basis fy1−lμ; y2; 1g for the homogeneous

5It is worthwhile not to mistake this effective mass appearing
in Δv for the graviton mass of TMG around AdS3, which is given
by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − 1=l2

p
. A general analysis on the effective mass of

nonlinear gravitational waves in AdS3 in the full theory, con-
sisting of TMG coupled to NMG, has been done in Ref. [21].
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solution FhðyÞ, let us take the basis fðy1−lμ − 1Þ=
ð1 − lμÞ; y2; 1g. The latter is convenient as it makes
explicit that in the limit lμ → 1 the modes of FhðyÞ are
flogðyÞ; y2; 1g. If we naively take in (56) the limit μl → 1
we find

FðyÞ ¼ δðuÞjpj
μ

�
log

�
y
y0

�
−
1

2

��
y
y0

�
2

− 1

��
θðy − y0Þ

þ δðuÞjpj
μ

�
c1 log

�
y
y0

�
þ c2

�
y
y0

�
2

þ c3

�
: ð71Þ

As said above, at this point there are two sets of
boundary conditions that we can demand: Imposing the
BH boundary conditions amounts to decouple the ∼ logðyÞ
modes, that is c1 ¼ 0. The coefficients c2 and c3 are in
principle undetermined because they are related to the
choice of coordinates; we gauge fix them by removing the
quadratic and constant terms for y > y0. We get

FðyÞ ¼ θðy − y0Þ
δðuÞjpj

μ
log

�
y
y0

�

þ θðy0 − yÞ δðuÞjpj
2μ

��
y
y0

�
2

− 1

�
: ð72Þ

If, instead of the BH conditions, we impose in (71) the
weakened boundary conditions proposed by Grumiller and
Johansen in [37], which in our coordinates would allow for
FðyÞ ∼OðlogðyÞÞ, we find

FðyÞ ¼ θðy− y0Þ
δðuÞjpj

μ
log

�
y
y0

�
þ δðuÞjpj

2μ

�
c1 log

�
y
y0

��

þ θðy0− yÞδðuÞjpj
2μ

��
y
y0

�
2

− 1

�
; ð73Þ

where now the value of c1 is not constrained. This
phenomenon is the nonlinear analog of the logarithmic
modes of [37]. The emergence of the logarithmic decaying
mode is due to the finite size effects; at μl ¼ 1, the
Compton wavelength of the massive graviton equals the
AdS3 radius.
Also in relation to the chiral point, notice that the

expression for the time delay (69) appears to be singular
in the naive limit μl → 1 which might seem puzzling as in
that limit, provided one decouples the logarithmic mode,
the theory is expected to be dynamically trivial; that is, one
expects the chiral gravity to lose the local degrees of
freedom when Brown-Henneaux boundary conditions are
imposed. This seems to be in contradiction with the
divergence in (69), as one would rather expect the time
delay to vanish in that case. However, the divergence is a
red-herring since the expression (69) is not applicable at the
chiral point, the reason being that some of the steps in the
derivation only hold provided that μl ≠ 1. For example, in
(57) the gauge fixing used to exclude the unphysical GR

pure-gauge modes changes in the chiral point and no longer
corresponds to setting the coefficients c2 and c3 of the
quadratic and constant pieces to zero: As discussed above,
in the limit μl → 1 (or μl → −1) the massive mode of
TMG degenerates with the constant (respectively the
quadratic) mode of GR. This means that the only dynamical
mode that remains is the logarithmic one ∼ logðyÞ, while
the piece that goes like ∼y1�μl ¼ y1�1 becomes pure gauge
and can be removed by choosing c1 ¼ −c3 ¼ ĉ=ð1� μlÞ.
Therefore, once the logarithmic mode is excluded by
boundary conditions, the expression for the wave profile,
F, reduces to that of GR, and so the rest of the computation
ensues. Another step that makes (69) inapplicable to derive
conclusions about the chiral point is the assumption
μl > 1, which yields the condition c1 ¼ 0 to fulfill the
boundary conditions and eventually derive (66). In brief,
the expression (69) is not applicable at the points μl ¼ �1,
which are actually singular in many aspects. On general
grounds, we could have anticipated that at the chiral point
the time delay could not acquire the Yukawa dependence
that (69) exhibits, as no massive mode survives after
imposing the Brown-Henneaux AdS3 boundary conditions.
A similar phenomenon happens in NMG at its critical
points, where the theory also exhibits degeneracy between
the massive higher-derivative modes and massless GR
modes. Studying the causality at the chiral points of
TMG and NMG requires a separate analysis, and could
be actually interesting; however, this would demand first to
understand more serious issues these critical theories
present when they are coupled to matter, see [39] for
example for the case of flat space limit of chiral gravity.

B. The new massive gravity

Now, let us consider the computation in NMG. The main
difference with respect to TMG is that NMG is parity even
and, consequently, contains two graviton polarizations.
This is related to the fact that the NMG field equations (37)
are of fourth order. Taking into account (39), these can be
written as follows:

−Gμν þ jΛjgμν þ
1

2m2
Kμν ¼ 0; ð74Þ

where Kμν ¼ 2□Rμν − ð1=2Þ∇μ∇μR − ð1=2Þgμν□Rþ
4RμανβRαβ − ð3=2ÞRRμν − gμνK; the trace K ¼ gμνKμν ¼
RμνRμν − ð3=8ÞR2 does not include derivatives of the
curvature. This property makes NMG to be free of a scalar
ghostlike degree of freedom associated to □R that other
quadratic theories suffer from. This is also related to the fact
that NMG coincides at the linearized with the Fierz-Pauli
action for a massive spin-2 field [8,13]. It is also worth
pointing out that, unlike what happens in TMG, in NMG
the AdS3 radius l is not given only by Λ but it also depends
on the mass parameter m; see [8,13,21] for details.
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The field equations (74) for the ansatz (53) take the form

�
y4∂4

yFþ2y3∂3
yF−

ð1þ2l2m2Þ
2

ðy2∂2
yF−y∂yFÞ

�
1

2l2m2y2

¼jpj l
y0
δðuÞδðy−y0Þ; ð75Þ

whose homogeneous solutions are

FhðyÞ ¼ cþ

�
y
l

�
1þβ

þ c−

�
y
l

�
1−β

þ c2

�
y
l

�
2

þ c3; ð76Þ

where c� are constant coefficients and β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2þ l2m2

p
.

Then, we proceed in a similar way as we did for
TMG: First, we consider the inhomogeneous solution
Fp ¼ θðy − y0ÞgðyÞ, with gðyÞ solving (75), then we match
at y ¼ y0 by integrating between a segment that eventually
tends to zero; demanding continuity we find gðy0Þ ¼
g0ðy0Þ ¼ g00ðy0Þ ¼ 0, and then we obtain

g000ðy0Þ ¼ 2m2jpj
�
l
y0

�
3

δðuÞ: ð77Þ

The general solution to (75) reads

FðyÞ ¼ θðy − y0Þm2jpjδðuÞ
�

l3

β2 − 1

��
1 −

�
y
y0

�
2

þ 1

β

�
y
y0

�
1þβ

−
1

β

�
y
y0

�
1−β

�

×m2jpjδðuÞ
�

l3

β2 − 1

��
c1 − c2

�
y
y0

�
2

þ c3
β

�
y
y0

�
1þβ

−
c4
β

�
y
y0

�
1−β

�
; ð78Þ

where c4 is a new constant coefficient. As for TMG, these constant coefficients will be fixed by imposing suitable boundary
conditions. The intuition about how to do so comes again from the flat limit l → ∞, in which we find

HðzÞ ¼ θðz − z0ÞjpjδðuÞ
�
2ðz − z0Þ −

1

m
ðemðz−z0Þ − e−mðz−z0ÞÞ

�

þ jpjδðuÞ
�
−lðc1 − c2Þ þ 2c2ðz − z0Þ −

1

m
ðc3emðz−z0Þ − c4e−mðz−z0ÞÞ

�
: ð79Þ

To have asymptotically flat space we need c3 ¼ −1,
c4 ¼ 0, and c1 ¼ c2, while to have Cartesian coordinates
at z > z0 we need, in addition, c1 ¼ c2 ¼ −1. This finally
yields

HðzÞ ¼ jpjδðuÞ
m

e−mjz−z0j − θð−ðz − z0ÞÞ
2jpjδðuÞ

m
ðz − z0Þ;

ð80Þ
which is the same as in our flat space computation. As in the
case of TMG, the same values for c1, c2, c3, and c4 are
obtained by imposing BH boundary conditions for a finite l:
If we assumem2 > 1=ð2l2Þ, then β > 1, sowe need c4 ¼ 0.
If, in addition, we demand having regular AdS3 deep into the
bulk (i.e. y → ∞) we have c3 ¼ −1. The freedom in
choosing c1 and c2 is again related to the choice of
coordinates; for having AdS3 in the usual coordinates at y →
∞we set c1 ¼ c2 ¼ −1. Finally, the profile for finite l reads

FðyÞ ¼
�
m2jpjl3

βð1− β2Þ
��

θðy− y0Þ
�
y
y0

�
1−β

þ θðy0− yÞ
��

y
y0

�
1þβ

þ β

��
y
y0

�
2

− 1

���
: ð81Þ

Without going into the details in order to avoid redun-
dancies, we can write the final result for the shift for a
particle crossing the shock wave at z > z0 in NMG as

Δv ¼
�

2ml2

2m2l2 − 1

� jpjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=ð2m2l2Þ

p
× eð1=l−m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ1=ð2m2l2Þ

p
Þðz−z0Þ; ð82Þ

which can be written as

Δv ¼ N
jpj
mg

e−mgðz−z0Þ; ð83Þ

with N¼m=ðmþ1=ð2ml2Þþð1=lÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ1=ð2m2l2Þ

p
Þ>0

and the effective mass given by mg ¼
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=ð2m2l2Þ

p
− 1=l. This turns out to be positive

definite, and it reproduces the result of the flat space in the
limit l → ∞ (where mg ¼ m and N ¼ 1).

1. Critical points of NMG

As it happens in TMG, the point of the parameter space
on which mg ¼ 0 yields vanishing central charge in the
dual conformal field theory and makes the theory to acquire
special properties. At this point we have m2l2 ¼ 1=2, and
this is the NMG analog to the chiral point of TMG. In the
case of NMG, however, the boundary theory has no
diffeomorphism anomaly, and thus one finds that both
cR and cL vanish [notice that this corresponds to β ¼ 1; see
(89) below].
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In NMG, in addition, there exists another critical point,
which corresponds to m2l2 ¼ −1=2 (that is, β ¼ 0). The
latter requires a value m2 < 0, and in the case of asymp-
totically de Sitter solutions this corresponds to the partially
massless point [16]. Let us consider these two critical

points separately: Let us start with β ¼ 1 and consider the
point β ¼ 0 later. For β ¼ 1 we can take the set
fy2 logðyÞ; logðyÞ; y2; 1g as the basis of FhðyÞ. In fact,
taking the limit β → 1 in (75), we get

FðyÞ ¼ θðy − y0ÞjpjδðuÞ
l
4

�
log

�
y
y0

���
y
y0

�
2

þ 1

�
þ
�
1 −

�
y
y0

�
2
��

þ jpjδðuÞl
4

�
log

�
y
y0

��
c1

�
y
y0

�
2

þ c2

�
þ c3 þ c4

�
y
y0

�
2
�
: ð84Þ

As in TMG, whenmg ¼ 0 there is more than one possible set of boundary conditions that we may consider. If we impose
the BH boundary conditions, we obtain

FðyÞ ¼ θðy − y0ÞjpjδðuÞ
l
4
log

�
y
y0

���
y
y0

�
2

þ 1

�

þ jpjδðuÞl
4

�
c1 log

�
y
y0

��
y
y0

�
2
�
þ θðy0 − yÞjpjδðuÞl

4

��
y
y0

�
2

− 1

�
; ð85Þ

where the coefficient c1 becomes undetermined. This indicates the presence of extra modes. The other set of boundary
conditions is the one of [37], which yields

FðyÞ ¼ θðy − y0ÞjpjδðuÞ
l
4
log

�
y
y0

���
y
y0

�
2

þ 1

�

þ jpjδðuÞl
4
log

�
y
y0

��
c1

�
y
y0

�
2

þ c2

�
þ θðy0 − yÞjpjδðuÞl

4

��
y
y0

�
2

− 1

�
; ð86Þ

and includes the additional logarithmic modes with coefficient c2.
In the critical point β ¼ 0, on the other hand, we find for FhðyÞ the modes fy logðyÞ; y; y2; 1g. In this case, the solution

(75) in the limit β → 0 yields

FðyÞ ¼ θðy − y0ÞjpjδðuÞ
l
2

�
2
y
y0

log

�
y
y0

�
þ
�
1 −

�
y
y0

�
2
��

þ jpjδðuÞl
2

�
2c1

�
y
y0

�
log

�
y
y0

�
þ c2

�
y
y0

�
þ c3 þ c4

�
y
y0

�
2
�
; ð87Þ

which apart from the logarithmic modes ∼y logðyÞ also
includes the linear mode ∼y which is characteristic of
conformal gravity [40]—even though the higher-curvature
terms of NMG are not conformally invariant, but con-
formally covariant. This linear mode is responsible for the
existence of hairy black holes in NMG around (A)dS
spaces [13,14]; see also the discussion in [16].

C. Unitarity in the boundary CFT2

Now, having shown the compatibility between unitarity
and causality in the bulk, let us study the necessary
conditions for unitary in the dual CFT.

1. The bulk/boundary unitarity clash

As already mentioned, both TMG and NMG suffer from
the so-called bulk/boundary unitarity clash. That is, the

conflict between the value of the coupling constants that
make the bulk theory unitary and those that make the
boundary theory unitary. More precisely, in the case of
TMG the dual CFT2 has left- and right-moving central
charges given by

cL ¼ 3l
2G

�
σ −

1

lμ

�
; cR ¼ 3l

2G

�
σ þ 1

lμ

�
; ð88Þ

which are negative for the choice σ ¼ −1. Reciprocally,
demanding cL ≥ 0 ≤ cR leads to choose the sign of the
Einstein-Hilbert action with a ghost. The same occurs with
NMG, which yields a dual CFT2 with central charges

cL ¼ cR ¼ 3l
2G

�
σ −

1

2l2m2

�
; ð89Þ
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which also require σ ¼ 1 to be positive. This implies that,
for these theories, either the bulk theory is not unitary or the
boundary CFT2 is not unitary. Asking the boundary CFT2

to be unitary, and therefore cL > 0 < cR, the mass spec-
trum of the BTZ black holes turns out to be positive too,
yielding L0 ≥ 0 ≤ L̄0, and this is one of the reasons why
the microscopic derivation of the black hole entropy in
terms of the Cardy formula works. This is also why in [18]
a proposal was made to decouple the local degrees of
freedom in the bulk while still keeping cL ¼ 0 ≤ cR
(namely, considering μl ¼ 1 with σ ¼ 1). However, the
conflict between bulk and boundary unitarity remains for
general values of μl.
In past years, different theories in three dimensions have

been proposed as proposals to solve the bulk/boundary
unitarity clash. For instance, in Ref. [41] a bigravity theory
called zwei-dreibein gravity (ZDG) was proposed, which can
be regarded as a generalization of NMG. More recently, in
Ref. [25], an extension of TMG called minimal massive
gravity (MMG) has been proposed as a model that would
eventually6 yield a ghost-free theory about AdS3 while, at the
same time, yield positive values for the central charges if the
dual CFT2. The terms that MMG add to TMG do not
contribute in asymptotically flat space for the specific sol-
utionswe have considered here. In contrast, they do contribute
in the case of AdS3. Therefore, it is worth considering these
terms here.Wewill see below that when suchMMG terms are
considered, the result for the Shapiro time delay is also
positive, even in the window of parameter space in which the
central charges of the dual CFT2 are positive.

2. Minimal massive gravity

The field equations of MMG are

−Gμν þ jΛjgμν þ
1

μ
Cμν þ

γ

μ2
Jμν ¼ 0; ð90Þ

with Jμν ¼ Rρ
μRρν − ð3=4ÞRRμν − ð1=2ÞgμνðRμνRμν−

ð5=8ÞR2Þ. These correspond to adding to the field equa-
tions of TMG a second order tensor Jμν. The Lovelock
theorem forbids this tensor to come from a variational
principle in the second order formalism. In fact, one can
verify that Jμν is not identically conserved, although it is
conserved on shell [25].
Considering in MMG the ansatz (53), yields

ds2 ¼ l2

y2
ð−2dudv − Fðu; yÞdu2 þ dy2Þ; ð91Þ

the equation of motion for a shock wave in this theory
is [42]

1

4l4μ3y

�
−ðγμ − 2l2μ3Þl2

∂F
∂y

þ ðγμ − 2l2μ3Þl2y
∂2F
∂y2 − 2l3μ2y2

∂3F
∂y3

�

¼ jpj l
y0

δðuÞδðy − y0Þ; ð92Þ

whose homogeneous solutions have been found in [42].
Following the same procedure as in the case of TMG, we
find the Shapiro time delay in MMG, which reads

Δv ¼ N
jpj
mg

e−mgðz−z0Þ; ð93Þ

with mg ¼ μ − 1=l − γ=ð2μl2Þ and N ¼ μ=ðμþ 1=l−
γ=ð2μl2ÞÞ. In Ref. [25] it has been shown how, for the
choices of parameters that yield (90), a window exists for
the value of γ such that, even if σ ¼ −1, the central charges
of the boundary CFT2 result positive. It is easy to verify that
within such a window the value (93) turns out to be positive
definite. This shows the compatibility between bulk cau-
sality and the necessary conditions cL > 0 < cR for the
unitarity in the dual CFT2. The problem with unitarity still
remains due to the logarithmic modes discussed in [24].
Whether or not a consistent way of decoupling such modes
exists deserves further analysis.
Let us add that the same kind of computation can be done

for ZDG theory, whose homogeneous wave solutions in
AdS3 Fh are also known explicitly [43].

VI. CONCLUSIONS

We have studied the issue of local causality in 2þ 1
dimensional topologically massive gravity and the new
massive gravity. We have shown that, unlike the quadratic
and cubic theories in dimensions n ≥ 4, causality and
unitarity are not in contradiction in three dimensions.
Namely, as long as the sign of the Newton’s constant is
chosen to be the opposite to the one considered in the
higher-dimensional case, TMG and NMG in asymptoti-
cally flat spacetime turn out to be causal and unitary. We
have also investigated the Born-Infeld extensions of NMG,
which have also been shown to be causal and unitary. We
have also performed the analysis in these theories for the
asymptotically anti–de Sitter (AdS) spacetime. Again, local
causality and unitarity were found to be consistent. The
notion of local causality we considered here is the positivity
of the Shapiro time delay for null geodesics and minimally
coupled fields, while with unitary we mean the absence of
ghost and tachyon excitations.

6However, it has been observed in [24] that, as it happens with
the chiral limit of TMG, MMG in the metric formulation in
principle contains logarithmic modes and that, if the solution for
the bulk/boundary unitarity clash is met, this should also involve
a special choice of boundary conditions or there must be a
linearization instability of AdS vacuum in the theory.
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The observation of [3] that Einstein-Gauss-Bonnet and
ðRiemannÞ3 theories are not causal and can only be made
causal by relying on the existence of a UV completion of
the theory such as string theory, naturally raises the
question as to whether three-dimensional (massive) gravity
fits into this picture where no higher spin states are needed
to ensure local causality. While a full understanding of this
might require further investigations, we have some remarks
to make: First of all, to the best of our knowledge, none of
the theories considered here come from string theory
compactifications. At least, no derivation of them without
introducing extra fields is known. Some of them, however,
involve Chern-Simons Lagrangians, thereby they are likely
to be well posed at quantum level. This even permits one to
write down theories for a finite number of higher-spin fields
(see [44], and references therein), something that is not
possible in four or higher dimensions. All in all, we can
interpret our results as further evidence suggesting that
gravity in three dimensions might exist without reference to
string theory, as an effective theory not hindered by
causality violation.
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APPENDIX A: SHOCK WAVE GEOMETRY

The signs play a crucial role therefore let us fix them
explicitly here: the signature of the metric is ð−;þ;þÞ, the
Riemann tensor reads as Rμ

ναβ ¼ ∂αΓ
μ
νβ − � � �.

The shockwavemetric describes the spacetime generated
by a point particle moving at the speed of light. Let ðt; x; yÞ
be the coordinates in theMinkowski space. Defining the null
coordinates as u ¼ t − x and v ¼ tþ x and considering a
massless point particle moving in the þx direction with 3
momentum as pμ ¼ jpjðδμ0 þ δμxÞ and with the energy
momentum tensor as Tuu ¼ jpjδðyÞδðuÞ, the ansatz for
the metric created by this particle in local coordinates read

ds2 ¼ −dudvþHðu; yÞdu2 þ dy2: ðA1Þ

To simplify the relevant computations [46], let us write the
metric in the Kerr-Schild form as gμν ¼ ημν þHðu; yÞλμλν
with the λμ vector satisfying the following properties:

λμλμ ¼ 0; ∇μλν ¼ 0; λμ∂μHðu; yÞ ¼ 0: ðA2Þ

In the null coordinates, nonvanishing components of ημν are
ηuv ¼ − 1

2
and ηyy ¼ 1 and one also has det g ¼ det η ¼ − 1

4
.

The Christoffel symbols can be found as

2Γσ
μν ¼ λσλμ∂νH þ λσλν∂μH − λμλνη

σβ∂βH; ðA3Þ

whose nonvanishing components are

Γy
uu ¼ −

1

2
∂yHðu; yÞ;

Γv
uu ¼ −∂uHðu; yÞ;

Γv
uy ¼ −∂yHðu; yÞ: ðA4Þ

Observe that one has vanishing contractions λσΓσ
μν ¼ 0,

λμΓσ
μν ¼ 0 and the Riemann tensor is also linear in the

derivative of the metric functionH as no contribution comes
from the products of the connections

2Rμανβ ¼ λμλβ∂α∂νH þ λαλν∂μ∂βH

− λμλν∂α∂βH − λαλβ∂μ∂νH: ðA5Þ

From this follow the Ricci tensor and the “Box” of the Ricci
tensor (which are relevant in the NMG and the Born-Infeld
gravity cases discussed in the text) as

Rμν ¼ −
1

2
λμλν∂2

yHðu; yÞ;

□Rμν ¼ −
1

2
λμλν∂4

yHðu; yÞ: ðA6Þ

Finally, for the TMG case, we need the Cotton tensor which
is defined as

Cμν ¼ ημ
αβ∇α

�
Rνβ −

1

4
gνβR

�
; ðA7Þ

with ημαβ being the completely antisymmetric tensor nor-
malized as7 ηuvy ¼ 2. It follows that for the shock wave, one
has

Cμν ¼
1

2
λμλν∂3

yHðu; yÞ: ðA8Þ

One can use these tensors to find the shockwave solutions in
various gravity theories, which we have done in the relevant
sections above. Let us also compute the spin-2 perturbations

7This corresponds to the sign choice ϵtxy ¼ −1.
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about a given shock wave background below as they
are relevant to the gravitons scattering through the
shock wave.

APPENDIX B: PERTURBATIONS ABOUT
THE SHOCK WAVE

In principle, one can work out the most general pertur-
bation without choosing a gauge, but the ensuing compu-
tations are unnecessarily cumbersome in theories beyond
GR, so a proper choice of gauge that keeps all the physical
degrees of freedom is important. Defining the perturbation
as hμν ≡ δgμν, the light-cone gauge seems to be the best
choice for our purposes. So we set

hvμ ¼ 0; ðB1Þ

or more covariantly we have λμhμν ¼ 0 and the following
equations hold in this gauge:

Γσ
μνhμσ ¼ 0; Γσ

μνhσα ¼ −
1

2
λμλνhyα∂yH;

Γσ
μνhμα ¼

1

2
λσλνhyα∂yH: ðB2Þ

The linearized connections can be calculated as

δΓσ
μν ¼

1

2
ησαð∂μhνα þ ∂νhμα − ∂αhμν þ λμλνhαy∂yHÞ

−Hλσ∂vhμν; ðB3Þ

or more explicitly in components, one has

δΓu
μν ¼ ∂vhμν;

δΓv
μν ¼−∂μhνu − ∂νhμuþ ∂uhμν− λμλνhyu∂yHþ 2H∂vhμν;

δΓy
μν ¼ 1

2
ð∂μhνyþ ∂νhμy− ∂yhμνþ λμλνhyy∂yHÞ: ðB4Þ

The linearized Ricci tensor

δRμν ¼
1

2
ð∇σ∇μhσνþ∇σ∇νhσμ−□hμν −∇μ∇νhÞ; ðB5Þ

boils down to the following form in the light-cone gauge:

2δRμν ¼ 2∂ðμ∂σhσνÞ þ λμλν∂yH∂σhσy

þ hλμλν∂2
yH − gαβ∂α∂βhμν

þ 4∂yH∂vλðμhνÞy − ∂μ∂νhþ Γσ
μν∂σh; ðB6Þ

where we used the round brackets to denote symmetrization
with a factor of 1=2. The linearized scalar curvature reads

δR ¼ ∂μ∂σhσμ −□h: ðB7Þ

Computation of the linearization of the Cotton tensor is
somewhat long, we use the form given in [47] valid for an
arbitrary background as

2δCμν ¼ −
h
2
Cμν þ ημρσ∇ρδGν

σ þ ημρσδΓν
ραGα

σ þ μ↔ ν

¼ −
3h
2
Cμν −

1

2
ημρσ□∇ρhνσ þ

1

2
ημρσ∇ν∇λ∇ρhσλ

þ 3

2
ημρσ∇ρðSλνhλσÞ þ

1

6
ημρσR∇ρhνσ

−
1

2
ημρσSν

σ∇ρh−
1

2
ημρσhλσ∇λSν

ρ þ ημρσSλρ∇νhλσ

þ ημρσSσ
λ∇λhνρ þ μ↔ ν; ðB8Þ

where Sμν ¼ Rμν − 1
3
gμνR. For (A1) and in the light-cone

gauge, (B8) reduces to

2δCμν ¼−
3h
4
λμλν∂3

yH−
1

2
ημρσ□∇ρhνσþ

1

2
ημρσ∇ν∇λ∇ρhσλ

−
1

2
ημρuδνv∂2

yH∇ρh−
1

2
ημuyhλyδνv∇λ∂2

yH

þημyu∂2
yH∇vhνyþμ↔ ν; ðB9Þ

which could still be simplified further, but this form is all
we need to carry out our computations.
In the light-cone gauge, hμv ¼ 0, and with the definitions

g≡ huu, f ≡ huy, h≡ hyy, where all functions depend on
all coordinates, we list the explicit forms of the linearized
forms of various components about the shock-wave back-
ground. We have made use of these results while studying
the graviton propagation in the relevant theories in the text.
Components of the linearized Ricci tensor are

δRuu ¼ ð∂u∂y þ ∂yH∂vÞf þ
�
2H∂2

v −
1

2
∂2
y

�
g

þ 1

2

�
∂2
yH þ 1

2
∂yH∂y − ∂uH∂v − ∂2

u

�
h;

δRuv ¼
1

2
∂v∂yf − ∂2

vg −
1

2
∂u∂vh;

δRuy ¼ ð2H∂2
v þ ∂u∂vÞf − ∂v∂ygþ

1

2
∂yH∂vh;

δRvv ¼ −
1

2
∂2
vh;

δRvy ¼ −∂2
vf;

δRyy ¼ −2∂v∂yf þ 2ðH∂2
v þ ∂u∂vÞh: ðB10Þ

The linearized curvature scalar reads

δR ¼ 4ð−∂v∂yf þ ∂2
vgþH∂2

vhþ ∂u∂vhÞ: ðB11Þ

Components of the linearized Cotton tensor are
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δCuu ¼
1

4
ðð−10∂yH∂v∂y þ 4∂uH∂2

v þ 16H2∂3
v − 4H∂v∂2

y þ 16H∂2
v∂u þ 4∂v∂2

u − 4∂u∂2
y − 6∂2

yH∂vÞf
þ ð−4∂yH∂2

v − 8H∂2
v∂y þ 2∂3

yg − 4∂v∂u∂ygÞgþ ð∂yHð12H∂2
v − ∂2

y þ 8∂v∂uÞ þ 2∂uH∂v∂y

þ 4∂u∂yH∂v þ 4H∂v∂u∂y þ 2∂2
u∂y − 3∂2

yH∂y − 3∂3
yHÞhÞ;

δCuv ¼
1

2
∂2
vð−ð4H∂v þ 2∂uÞf þ ∂ygþ ð−∂yH þH∂yÞhÞ;

δCuy ¼ ð−2H∂2
v∂y − 2∂v∂u∂y − 3∂yH∂2

vÞf þ ð−2H∂3
v þ ∂v∂2

y − ∂2
v∂uÞgþ

�
∂uH∂2

v þ ∂v∂2
u

−
1

2
∂yH∂v∂y − ∂2

yH∂v þHð2H∂3
v þ 3∂2

v∂uÞ
�
h;

δCvv ¼ ∂2
v

�
∂vf −

1

2
∂yh

�
;

δCvy ¼ ∂2
vð∂vg − ðH∂v þ ∂uÞhÞ;

δCyy ¼ ∂2
vð−4ðH∂v þ ∂uÞf þ 2∂yg − 2h∂yHÞ: ðB12Þ

With these results, each component of the TMG equations can be computed. But since two components of the equations are
somewhat complicated, we shall simplify them by using the fact that away from y ¼ 0 we have ∂yH ¼ −mgH:

∂2
vð2∂vf þ ðmg − ∂yÞhÞ ¼ 0 vv-component ðB13Þ

∂vðð−4H∂2
v þmg∂y − 2∂v∂uÞf þ ∂v∂yg − ðmgH∂v −H∂v∂y þmg∂uÞhÞ ¼ 0 vu-component ðB14Þ

∂2
vð−mgf − ∂vgþ ðH∂v þ ∂uÞhÞ ¼ 0 vy-component ðB15Þ

∂2
vð2ðH∂v þ ∂uÞf − ðmg þ ∂yÞg −mgHhÞ ¼ 0 yy-component ðB16Þ

ðmgH∂2
v − 2H∂2

v∂y −mg∂v∂u − 2∂v∂u∂yÞf þ ð−2H∂3
v þmg∂v∂y þ ∂v∂2

y − ∂2
v∂uÞg

þ
�
2H2∂3

v þ 2H∂u∂2
v þ

H
2
mg∂v∂y −

H
2
m2

g∂v þ ∂v∂2
u

�
h ¼ 0 uy-component ðB17Þ

ð−2m2
gH∂v þ 2mgH∂v∂y þ 16H2∂3

v − 4H∂v∂2
y þ 12H∂2

v∂u − 4mg∂u∂y − 4∂u∂2
y þ 4∂v∂2

uÞf
þ ð−2m2

gH∂y − 4mgH2∂2
v þmgH∂2

y þm3
gH þ 2mgH∂u∂v þ 2H∂u∂v∂y þ 2mg∂2

u þ 2∂2
u∂yÞh

þ ð−8H∂2
v∂y þ 2mg∂2

y þ 2∂3
y − 4∂v∂u∂y þ 4mgH∂2

vÞg ¼ 0 uu-component ðB18Þ

Consider the linearized field equations of NMG about the shock-wave background in the axial-like gauge. For this
computation, we shall consider a further simplification within the light-cone gauge and assume that the perturbation is also
traceless, namely h ¼ 0, otherwise the linearized equations are cumbersome. Then we start with

hμνðu; v; yÞ ¼

0
B@

g 0 f

0 0 0

f 0 0

1
CA:

With this definition, each component of the NMG equations can be computed. But since two components of the equations
are somewhat complicated, we shall simplify them again by using the fact that we have ∂yH ¼ −mgH away from the
source:

∂4
vg − ∂3

v∂yf ¼ 0 vv-component ðB19Þ

ð−4mgH∂3
v þm2

g∂v∂y þ 2∂2
v∂u∂yÞf þ ð−∂2

v∂2
y þ 2∂3

v∂u þ 4H∂4
vÞg ¼ 0 vu-component ðB20Þ
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ð−4H∂4
v − 4∂3

v∂u −m2∂2
vÞf þ ∂3

v∂yg ¼ 0 vy-component ðB21Þ

ð−4mgH∂3
v þ 2H∂3

v∂y þ 2∂2
v∂u∂yÞf þ ð−∂2

v∂2
y þ 2∂3

v∂u þ 2H∂4
v þm2

g∂2
vÞg ¼ 0 yy-component ðB22Þ

ðm2
g∂v∂u − 2∂v∂u∂2

y þ 4∂2
v∂2

u − 4H∂u∂3
v þ 5mgH∂2

v∂y − 2m2
gH∂2

v − 2H∂2
v∂2

y þ 12H∂3
v∂u

þ 8H2∂4
vÞf þ ð−m2

g∂v∂y þ ∂v∂3
y − 3∂2

v∂u∂y þ 3mgH∂3
v − 4H∂3

v∂yÞg ¼ 0 uy-component ðB23Þ

ð−8mH∂u∂2
v − 2∂u∂3

y þ 6∂v∂2
u∂y þ 2m3H∂v − 7∂yH∂v∂2

y þ 24H∂yH∂3
v − 2H∂v∂3

y

þ 10H∂2
v∂u∂y þ 8H2∂3

v∂y þ 2m2∂u∂y − 5m2H∂v∂yÞf þ ð−4∂v∂u∂2
y þ 2∂2

v∂2
u − 7∂yH∂2

v∂y

− 6H∂2
v∂2

y þ 6H∂3
v∂u þ 8H2∂4

v −m2∂2
y þ ∂4

y − 3∂2
yH∂2

vÞg ¼ 0 uu-component ðB24Þ

APPENDIX C: SCATTERING AMPLITUDES
IN MASSIVE GRAVITY

In order to compute eikonal scattering amplitudes in
massive gravities, it is fairly convenient to introduce a set of
orthogonal projection operators constructed from the trans-
verse and longitudinal projectors [48,49]:

θμν ¼ ημν −
∂μ∂ν

□
; ωμν ¼ ∂μ∂ν:

These are six operators in the space of symmetric tensor
fields,

Pð2Þ
μν;ρσ ¼ 1

2
ðθμρθνσ þ θμσθμρ − θμνθρσÞ; Pð0;sÞ

μν;ρσ ¼ 1

2
θμνθρσ;

Pð1Þ
μν;ρσ ¼ 1

2
ðθμρωνσ þ θμσωνρþ θνρωμσ þ θνσωμρÞ;

Pð0;wÞ
μν;ρσ ¼ωμνωρσ; Pð0;swÞ

μν;ρσ ¼ 1ffiffiffi
2

p θμνωρσ;

Pð0;wsÞ
μν;ρσ ¼ 1ffiffiffi

2
p ωμνθρσ: ðC1Þ

They are instrumental in writing down the expansion of the
different terms in the action at quadratic level. For instance,
if we expand the Einstein-Hilbert term we get

Lð2Þ
EH ¼ σ

ffiffiffiffiffiffi
−g

p
R ¼ σ

2
hμν½Pð2Þ

μν;ρσ − Pð0;sÞ
μν;ρσ�□hρσ: ðC2Þ

In order to compute the propagator we need to add a term in
the Lagrangian fixing the de Donder gauge,

Lgf ¼ −
1

2α
∂μð

ffiffiffiffiffiffi
−g

p
gμνÞ∂λð ffiffiffiffiffiffi

−g
p

gλνÞ; ðC3Þ

whose quadratic expansion can be written using the above
projector operators as

Lð2Þ
gf ¼ 1

2α
hμν

�
1

2
Pð1Þ þ 1

2
Pð0;sÞ þ 1

4
Pð0;wÞ

−
1

2
ffiffiffi
2

p ðPð0;swÞ þ Pð0;wsÞÞ
�
μν;ρσ

□hρσ: ðC4Þ

The quadratic expansion of the Chern-Simons term reads
[50]

Lð2Þ
CS ¼ 1

μ
ελμνΓρ

λσ

�
Γσ
ρν;μ þ

2

3
Γσ
μτΓτ

νρ

�

¼ 1

2μ
hμν½Sð1Þμν;ρσ þ Sð2Þμν;ρσ�□hρσ; ðC5Þ

where we have introduced the spin operators,

Sð1Þμν;ρσ ¼ 1

4
□ðεμρλ∂νω

λ
σ þ εμσλ∂νω

λ
ρþ ενρλ∂μω

λ
σ þ ενσλ∂μω

λ
ρÞ;

Sð2Þμν;ρσ ¼−
1

4
□ðεμρληνσ þ ενρλημσ þ εμσληνρþ ενσλημρÞ∂λ:

ðC6Þ
The graviton propagator in TMG can then be written as
(fixing α ¼ 1)

DTMG
μναβ ¼ i4ð−p2Þ

ð−p2Þ3
μ − ðσμÞ2

μ ð−p2Þ2

×

�
−σμPð2Þ

μν;αβ −
1

4
ðϵμαλθβν þ ϵμβλθαν þ ϵναλθβμ

þϵνβλθαμÞðipλÞ
�

þ 4

σð−p2Þ ½P
ð1Þ
μν;αβ −Pð0;sÞ

μν;αβ −
ffiffiffi
2

p
ðPð0;swÞ

μν;αβ þPð0;swÞ
αβ;μν Þ�:

ðC7Þ

In the case of NMG, the quadratic expansion of the
Lagrangian reads

Lð2Þ
K ¼ 1

4m2
hμνPð2Þ

μν;ρσ□
2hρσ; ðC8Þ
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which leads to a gauge fixed graviton propagator of the form

DNMG
μναβ ¼ im2

ð−p2Þð−p2 þ σm2ÞP
ð2Þ
μν;αβ þ

2i
σð−p2Þ ½P

ð1Þ
μν;αβ − Pð0;sÞ

μν;αβ −
ffiffiffi
2

p
ðPð0;swÞ

μν;αβ þ Pð0;swÞ
αβ;μν Þ�: ðC9Þ

These are the propagators used along the paper to compute the eikonal scattering amplitudes.
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