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In this work we show that a relativistic spinning particle can be described at the classical and the
quantum level as being composed of two physical constituents which are entangled and separated by a
fixed distance. This bilocal model for spinning particles allows for a natural description of particle
interactions as a local interaction at each of the constituents. This form of the interaction vertex provides a
resolution to a long standing issue on the nature of relativistic interactions for spinning objects in the
context of the worldline formalism. It also potentially brings a dynamical explanation for why massive
fundamental objects are naturally of lowest spin. We analyze first a nonrelativistic system where spin is
modeled as an entangled state of two particles with the entanglement encoded into a set of constraints. It is
shown that these constraints can be made relativistic and that the resulting description is isomorphic to the
usual description of the phase space of massive relativistic particles with the restriction that the quantum
spin has to be an integer.
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I. INTRODUCTION

That elementary particles might possess a finite exten-
sion has a long history, dating back to Lorentz’s theory of
the electron. The advent of local quantum field theory
superseded these early notions, modeling elementary par-
ticles as field quanta with no internal geometry. In the
1950s, persistent divergences in the description of hadrons
prompted Yukawa [1,2] to reconsider these canonical ideas,
showing that particles with an intrinsic extension could be
modeled by means of a simple bilocal field theory.
Unfortunately, these models possessed a number of unde-
sirable features and ultimately fell out of favor when QCD
realized an accurate description of hadrons as point like
field quanta. Bilocal models would have been relegated to
the history books were it not for the advent of another
model which also emerged around this time. String theory
began as an attempt to understand certain QCD processes
and is by far the most studied model in which elementary
particles are considered to have a finite extension. There is
an intimate link between string theory and bilocal models,
with several varieties of the latter being published [3–5]
following the work of Yukawa. In particular, many of the
aforementioned models can be viewed as restrictions on the
motion of a classical string [6]. More recently bilocal
models have emerged in the context of higher spin theory in
an attempt to derive the form of interaction vertices [7].
Presently we will investigate further applications of bilocal
models, showing that they play a fundamental role in our
understanding of spin.
In a recent work [8] we presented a classical model of

the relativistic spinning particle which was based on an
application of the coadjoint orbit method [9] to the Poincaré
group. This “Dual Phase Space” model (DPS) considered
the naive phase space of a spinning particle to be

parametrized by two pairs of canonically conjugate four-
vectors1 ðxμ; pμÞ and ðχμ; πμÞ. The former corresponded to
the standard position and momentum variables while the
latter encoded the spinning degrees of freedom and were
subject to a constraint ðχ2=l2 þ π2=ϵ2Þ ¼ 2s2, where we
needed to introduce a fundamental length l and energy ϵ
such that ℏ ¼ lϵ. These were supplemented by ortho-
gonality conditions p · π ¼ π · χ ¼ 0. This structure is
strikingly similar to the phase space of a two particle
system subject to relativistic constraints. In what follows
we will formalize this observation and show that the
relativistic spinning particle can be realized as a bilocal
model. In other words the spinning particle can be
described as being composed of two constituents
entangled together by a relativistically invariant con-
straint. The constituents in questions are spinless rela-
tivistic particles which can be taken as either massive or
massless. As we will see the nature of how these physical
constituents are tied up together is not through a con-
fining potential, but through a relativistic constraint. It is
well know that constraints generate entanglement at the
quantum level, for example J ¼ 0 creates the EPR
entanglement of two spins. Our conclusion is that the
fundamental entanglement of two relativistic particles
defines spin. As we will see, even if the constituents can
be massless the resulting entangled spinning particle is
massive with a mass that satisfies a bound m2 ≥ s2ϵ2.
The main confirmation of our results comes from study-
ing the relativistic interactions of spinning particles. It
turns out that a consistent interaction between relativistic

1For an explicit relationship between the DPS variables and the
generators of the Poincaré group see Sec. III of [8].
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spinning particles amounts to simply demanding locality
for each constituent in the bilocal particle.
We emphasize that a bilocal interpretation not only

realizes the dual phase space model (DPS) exactly but
also captures the intuition we have regarding the nature of
spin. The nonrelativistic model we begin with is purpose-
fully naive, viewing a spinning particle as two point like
objects, coupled by a rigid rod with a fixed angular
momentum about the center of mass. As a constrained
system the model is easily quantized and we show that it
yields the correct values for the spin operators Ŝ2 and Ŝ3
provided that we restrict to integer spin. The desired bilocal
model is then the relativistic extension of this simple
nonrelativistic system. This gives a completely down to
earth and elementary description of relativistic spin as a
relativistic rigid rod. We establish the equivalence of this
description with DPS and show that the three point
interaction vertex considered in [8] is interpreted in the
bilocal picture as discussed above, i.e. local interactions at
the constituent particles.
As far as we can tell the bilocal perspective on massive

spinning particles along with the detailed study of the
corresponding model done here is new. However, the model
is not unrelated to other bilocal models that have been
explored in the literature [3–5]. In a sense our model is the
most highly constrained a two particle model can be and we
show that many of the aforementioned bilocal models can
be obtained from the present one by dropping and/or
combining constraints. To conclude the paper we present
the quantum version of the relativistic two particle model,
showing that the spin part of the wave function is identical
to the one derived in the nonrelativistic case.

II. NONRELATIVISTIC TWO PARTICLE MODEL

A. Hamiltonian Formulation

Let’s consider a system comprised of two nonrelativistic
point particles with masses m1 and m2. The corresponding
phase space is parametrized by the position and momenta
of each particle ðx⃗1; p⃗1Þ and ðx⃗2; p⃗2Þ with standard Poisson
bracket structure

fxai ; pb
jg ¼ δijδ

ab; i; j ¼ 1; 2 and a; b ¼ 1; 2; 3:

ð2:1Þ

Let M ¼ m1 þm2 be the total mass of the system and μ ¼
m1m2=M the reduced mass, then we can introduce:

X⃗ ¼ m1

M
x⃗1 þ

m2

M
x⃗2; Δx⃗ ¼ x⃗1 − x⃗2; ð2:2Þ

where X⃗ are the coordinates of the center of mass and Δx⃗ is
the relative displacement between the particles. Momenta
conjugate to these coordinates are given by

P⃗ ¼ p⃗1 þ p⃗2; Δp⃗ ¼ μ

m1

p⃗1 −
μ

m2

p⃗2; ð2:3Þ

respectively. These definitions imply the following non-
vanishing Poisson brackets

fXa; Pbg ¼ δab; fΔxa;Δpbg ¼ δab: ð2:4Þ

The coordinates introduced above can also be used to
decompose the total angular momentum of the two particle
system as the sum of the total and relative angular momenta

J⃗ ≔ x⃗1 × p⃗1 þ x⃗2 þ p⃗2 ð2:5Þ

¼ X⃗ × P⃗þ Δx⃗ × Δp⃗: ð2:6Þ

Note that the second equality shows that J⃗ ¼ L⃗þ S⃗, where
L⃗ ¼ X⃗ × P⃗ is the “external” angular momentum associated
with motion of the system as a whole while S⃗ ¼ Δx⃗ × Δp⃗
is the “internal” angular momentum resulting from the
rotation around the center of mass. This internal rotation
represents the spin degrees of freedom. At this point we
have a pair of free nonrelativistic particles and it remains to
impose some structure on the system which will make
contact with intuitions we have regarding the nature of
spinning particles. Classically, a spinning particle is a rigid
object with a fixed, nonzero value for its “internal” angular
momentum. The former condition can be implemented by
demanding that the two particles are coupled by a rigid rod
of length l and the latter by setting the magnitude of the
angular momentum in the center of mass frame to be ℏs, for
some dimensionless constant s. This amounts to imposing
the constraints

ðΔx⃗Þ2 ¼ l2; and ðΔx⃗ × Δp⃗Þ2 ¼ ℏ2s2; ð2:7Þ

see Fig. 1. These constraints satisfy a closed algebra.
A Hamiltonian can now be constructed by adding the
constraints in Eq. (2.7) to the standard Hamiltonian for a
system of two free particles2

H ¼ 1

2m1

p⃗2
1 þ

1

2m2

p⃗2
2 þ

λ1
2
½ðΔx⃗Þ2 − l2�

þ λ2
2
½ðΔx⃗ × Δp⃗Þ2 − ℏ2s2�; ð2:8Þ

where λ1 and λ2 are Lagrange multipliers. To ensure that the
constraints are stationary under the evolution defined by H
we need to include Δx⃗ · Δp⃗ ¼ 0 which allows us to rewrite
the full Hamiltonian as

2A similar model appeared in a different context in [10].
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H ¼ 1

2M
P⃗2 þ 1

2μ
ðΔp⃗Þ2 þ λ1

2
½ðΔx⃗Þ2 − l2�

þ λ2
2
½ðΔp⃗Þ2 − ϵ2s2� þ λ3Δx⃗ · Δp⃗; ð2:9Þ

where ϵ has units of energy and satisfies ϵl ¼ ℏ. No further
constraints are required but due to the second class nature
of the constraints imposed, the condition that all the
constraints are preserved under time evolution imposes
the following relations between Lagrange multipliers:

λ2 ¼
l2

ϵ2s2
λ1 −

1

μ
and λ3 ¼ 0: ð2:10Þ

The final form of the nonrelativistic restricted Hamiltonian
is therefore, up to a constant term ϵ2s2=2μ, given by

H ¼ 1

2M
P⃗2 þ λ

�
1

2

�
Δp⃗
ϵ

�
2

þ s2

2

�
Δx⃗
l

�
2

− s2
�
; ð2:11Þ

where λ ¼ λ1l2=s2. As one can see fromH there is a single
first class constraint

l2ðΔp⃗Þ2 þ ϵ2s2ðΔx⃗Þ2 ¼ 2ℏ2s2; ð2:12Þ

and two second class constraints

ðΔx⃗Þ · ðΔp⃗Þ ¼ 0 and ϵ2s2ðΔx⃗Þ2 − l2ðΔp⃗Þ2 ¼ 0:

ð2:13Þ

The dimension of the reduced phase space is therefore
12 − 1 × 2 − 2 × 1 ¼ 8 for a total of 4 physical degrees of
freedom; as expected for a spinning particle (3 for position
and 1 for the spin). The motion of the composite system can
be deduced by examining the Hamiltonian Eq. (2.11). The
unconstrained part of H indicates that the center of mass
evolves like a free particle, while the single first class

constraint is a harmonic oscillator potential acting on the
relative separation, and so the latter will execute periodic
motion with frequency ω ∝ s.

B. Lagrangian Formulation

It is a straightforward exercise to compute the
Lagrangian for this model, beginning with H as given in

Eq. (2.9) we put L ¼ P⃗ · _⃗X þ Δp⃗ · Δ _⃗x −H. We can now
integrate out the momenta, after which the Lagrange
multiplier λ3 enters quadratically and therefore can also
be integrated without difficulty. One obtains

L ¼ M
2

_⃗X
2 þ 1

2

μ

ð1þ λ2μÞ
ðDtΔx⃗Þ2 þ

λ2
2
ϵ2s2

−
λ1
2
½ðΔx⃗Þ2 − l2�; ð2:14Þ

where

DtΔx⃗ ≔ Δ _⃗x −
ðΔ _⃗x · Δx⃗Þ
ðΔx⃗Þ2 Δx⃗; ð2:15Þ

is a covariant time derivative which preserves the constraint
ðΔx⃗Þ2 ¼ l2. It projects the relative motion Δ _⃗x orthogonal
to Δx⃗. The Lagrange multiplier λ2 doesn’t enter quadrati-
cally but we can still solve for it at the classical level. The
solution space possesses two branches which are labelled
by a sign α ≔ signð1þ λ2μÞ. Encoding this sign into the
spin by s ≔ αjsj, we see that the Lagrangian can be
expressed purely in terms of the configuration variables
and is given by L ¼ Ls þ λ1

2
½ðΔx⃗Þ2 − l2� − 1

2
ϵs
μ where the

spin Lagrangian is simply

Ls ¼
M
2

_⃗X
2 þ ϵsjDtΔx⃗j: ð2:16Þ

We see that the inclusion of spin amounts to a modification
of the kinetic energy which is linear in the velocity instead
of quadratic. The spin s itself entering as a “stiffness”
parameter multiplying the spin kinetic energy jDtΔx⃗j.
The final Lagrange multiplier λ1 imposes the constraint
ðΔx⃗Þ2 ¼ l2 which can be solved by introducing new
variables y⃗ defined implicitly via

Δx⃗ ¼ l
jy⃗j y⃗: ð2:17Þ

The Lagrangian Eq. (2.16) then becomes

L ¼ M
2

_⃗X
2 þ ℏs

jy⃗j jDty⃗j −
1

2

ϵs
μ
; ð2:18Þ

where Dty⃗ is the derivative _⃗y projected orthogonally to y⃗.
It satisfies Dtðρy⃗Þ ¼ ρDty⃗. Notice that the reduced mass
enters only in an overall constant factor.

FIG. 1. Two particles connected by rigid rod of length l and
pictured in the center of mass frame where the total angular
momentum has magnitude ℏs.
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C. Quantizing the Nonrelativistic Model

In this section we will quantize the nonrelativistic model
and show that it reproduces the expected results for a
nonrelativistic spinning particle. Start with the Lagrangian
Eq. (2.18) and compute the momenta conjugate to X⃗
and y⃗, viz.

P⃗X ¼ M _⃗X; P⃗y ¼
ℏs

jy⃗jjDty⃗j
Dty⃗: ð2:19Þ

It is straightforward to verify that P⃗y satisfies the
constraints

P⃗y · y⃗ ¼ 0; P⃗2
y −

ℏ2s2

y⃗2
¼ 0; ð2:20Þ

and so the Hamiltonian is given as

H ¼ P⃗2
X

2M
þ λ1ðP⃗y · y⃗Þ þ

λ2
2

�
P⃗2
y −

ℏ2s2

y⃗ 2

�
: ð2:21Þ

The Poisson brackets are standard

fXi; P
j
Xg ¼ δji fyi; Pj

yg ¼ δji ð2:22Þ

and can be used to show that the constraints Eq. (2.20) are
first class. The absence of second class constraints in
conjunction with Eq. (2.22) implies that we can quantize
by making the standard replacements

X̂iΨ ¼ XiΨ; P̂i
XΨ ¼ −iℏ

∂
∂Xi

Ψ; ð2:23Þ

ŷiΨ ¼ yiΨ; P̂i
yΨ ¼ −iℏ

∂
∂yi Ψ; ð2:24Þ

where Ψ ¼ ΨðX⃗; y⃗; tÞ. Observe that the unconstrained part
of H acts only on the variables X⃗ while the constraints act
only on the y⃗. This suggests that we separate variables
ΨðX⃗; y⃗; tÞ ¼ Ψ1ðX⃗; tÞΨ2ðy⃗Þ, then the condition HΨ ¼
iℏ∂tΨ splits into three differential equations

−
ℏ2

2M
∇2

XΨ1 ¼ iℏ
∂Ψ1

∂t ; ð2:25Þ

X
i

yi
∂Ψ2

∂yi ¼ 0; ð2:26Þ

∇2
yΨ2 þ

s2

y⃗ 2
Ψ2 ¼ 0: ð2:27Þ

The first equality is just Schrödinger’s equation for a free
particle indicating that the internal variables continue to
evolve as a free particle even in the quantum theory.

The remaining equations correspond to the first class
constraints imposed on the internal variables and are most
easily solved by switching to spherical coordinates. Make
the replacements y⃗ ¼ ðr sin θ cosϕ; r sin θ sinϕ; r cos θÞ
and Ψ2ðy⃗Þ ¼ ψðr; θ;ϕÞ, then Eq. (2.26) becomes

r
∂ψ
∂r ¼ 0 ⇒ ψðr; θ;ϕÞ ¼ ψðθ;ϕÞ

and so ψ doesn’t depend on r. The remaining equa-
tion (2.27) now takes the form

Δψ ≔
1

sin θ
∂
∂θ

�
sin θ

∂ψ
∂θ

�
þ 1

sin2θ
∂2ψ

∂ϕ2
¼ −s2ψ : ð2:28Þ

Here Δ is the Laplacian on the unit sphere S2 spanned by
Δx⃗=jΔx⃗j. It is well known that the solutions of this equation
for functions on the sphere are given by the so called
Spherical Harmonics, which represent integer spins3:

ψðθ;ϕÞ ¼ Ym
l ðθ;ϕÞ; l ∈ N;

m ¼ −l;−lþ 1;…;l − 1;l; ð2:29Þ

where s2 ¼ lðlþ 1Þ. The “internal” angular momentum

(spin) operator is ˆ⃗S ¼ ˆ⃗y × ˆ⃗Py and one can verify that

Ŝ3Ym
l ¼ mℏYm

l and S2Ym
l ¼ ℏ2lðlþ 1ÞYm

l ; ð2:30Þ

which is precisely the expected result. Overall the total
wave function is given by

Ψðx1; x2Þ ¼ Ψ1ðx1 þ x2ÞY
�
x1 − x2
jx1 − x2j

�
δðjx1 − x2j − lÞ:

ð2:31Þ

This wave function cannot be split into a product
ϕ1ðx1Þϕ2ðx2Þ showing that the two constituents are funda-
mentally entangled by the spin constraint. The scalar
product between such functions is simply given
by jjΨjj2 ¼ R

R3 d3xjψ1j2ðxÞ
R
S2 dnjYj2ðnÞ.

III. RELATIVISTIC TWO PARTICLE MODEL

The nonrelativistic model presented in the previous
section captures our intuition of how a spinning particle
should behave, but a truly viable description needs to be
relativistic. We begin by replacing the position and
momentum variables with their four-vector counterparts

3As discussed in Appendix A, the most general solution of this
equation which is regular for θ ∈ ½0; π� and ϕ ∈ ½0; 2π� are the
fermionic spherical harmonics Ym

l for l ∈ N
2
, see [11–13]. In this

case however the functionals cannot be understood as depending
continuously on the sphere variables Δx.
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x⃗i → xμi and p⃗i → pμ
i , now assumed to be functions of

some auxiliary parameter τ. These have the standard
transformation properties under elements of the Poincaré
group ðΛ; yÞ

xi → Λxi þ y and pi → Λpi; ð3:1Þ

where Λ is a Lorentz transformation and y a translation.
There is also a natural extension of the Poisson bracket
structure in Eq. (2.1) to

fxμi ; pν
i g ¼ δijη

μν; i; j ¼ 1; 2; ð3:2Þ

where η ¼ diagð−1; 1; 1; 1Þ. As in the previous section we
can introduce “center of mass”4 and relative displacement
coordinates. In doing so it will be convenient to specialize
to the case where the particles are of equal mass
m1 ¼ m2 ¼ m, whence

Xμ ¼ 1

2
ðxμ1 þ xμ2Þ; Δxμ ¼ xμ1 − xμ2;

Pμ ¼ pμ
1 þ pμ

2; Δpμ ¼ 1

2
ðpμ

1 − pμ
2Þ: ð3:3Þ

Surprisingly, the case of unequal masses is significantly
more complex than in the nonrelativistic case and since it is
not relevant for the bulk of our current analysis we have
relegated its treatment to Appendix B. The variables in
Eq. (3.3) transform under the Poincaré group as

X → ΛX þ y; P;Δp;Δx → ΛP;ΛΔp;ΛΔx; ð3:4Þ

and one can check that ðXμ; PμÞ and ðΔxμ;ΔpμÞ form
canonically conjugate pairs. The total angular momentum
J⃗ ¼ L⃗þ S⃗ is generalized to an antisymmetric tensor Jμν ¼
Lμν þ Sμν with

Lμν ¼ ðX ∧ PÞμν and Sμν ¼ ðΔx ∧ ΔpÞμν; ð3:5Þ

where ðA ∧ BÞμν ¼ AμBν − AνBμ. Again Lμν represents the
“external” angular momentum of the system as whole while
Sμν represents “internal” rotations.
The relativistic Hamiltonian is a straightforward gener-

alization of the nonrelativistic one, see Eq. (2.11), in
particular the restricted Hamiltonian is

H ¼ N
2ϵ

½P2 þ 4ðm2 þ ϵ2s2Þ�

þ ~N

�
1

2

�
Δp
ϵ

�
2

þ s2

2

�
Δx
l

�
2

− s2
�
; ð3:6Þ

where N and ~N are Lagrange multipliers.
To see how Eq. (3.6) comes about return to the non-

relativistic Hamiltonian Eq. (2.8). In the relativistic theory
the free part becomes two mass shell constraints, recall that
we are assuming particles of equal mass

1

2m
p⃗2
i → ðp2

i þmÞ2; i ¼ 1; 2: ð3:7Þ

Each of these defines an evolution that must preserve the
other two constraints Eq. (2.7), now written as

ðΔxÞ2 ¼ l2 and ðΔx ∧ ΔpÞ2 ¼ ℏ2s2: ð3:8Þ

We can still interpret the first constraint as a rigidity
condition, although now it fixes the spacetime interval
between the two particles. Similarly, the second constraint
can be seen as fixing the square of the “internal” angular
momentum tensor, see Eq. (3.5). To ensure that both
constraints are stationary, under the time evolution of
each constituent, we need to include p1 · Δx ¼ 0 and
p2 · Δx ¼ 0, which then allows us to write the relativistic
Hamiltonian as the following sum of six constraints

FIG. 2. Particle trajectories plotted over two periods in the
hyperplane defined by the triplet of orthogonal vectors ðA; B; P0Þ.

4The center of mass is not a relativistically invariant quantity,
hence the use of inverted commas.
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H ¼ N1

2
ðp2

1 þm2Þ þ N2

2
ðp2

2 þm2Þ þ λ1
2
ððΔxÞ2 − l2Þ

þ λ2
2
ððΔpÞ2 − ϵ2s2Þ þ λ3ðp1 · ΔxÞ þ λ4ðp2 · ΔxÞ:

ð3:9Þ

No further constraints need to be added but demanding that
the existing constraints Poisson commute with H imposes
the following conditions among the Lagrange multipliers

λ3 ¼ λ4 ¼ 0; N1 ¼ N2;

λ2 ¼
l2

ϵ2s2
λ1 − ðN1 þ N2Þ: ð3:10Þ

After making these substitutions in Eq. (3.9) we obtain the
Hamiltonian presented at the outset of this section, see
Eq. (3.6). As can be easily verified, the relativistic model
possesses two first class constraints

ΦM ¼ P2 þ 4ðm2 þ ϵ2s2Þ;
ΦS ¼ l2ðΔpÞ2 þ ϵ2s2ðΔxÞ2 − 2ℏ2s2; ð3:11Þ

and four second class constraints

P · Δx ¼ 0; Δp · Δx ¼ 0;

P · Δp ¼ 0; l2ðΔpÞ2 − ϵ2s2ðΔxÞ2 ¼ 0: ð3:12Þ

Thus, the reduced phase space has dimension 16 − 2 × 2 −
4 × 1 ¼ 8 yielding 4 physical degrees of freedom, as in the
nonrelativistic model. Note that the primary constraints in
Eq. (3.8) are identical to those considered in the previous
section if one transforms to the rest frame of the “center of
mass” P ¼ ðm; 0⃗Þ and implements P · Δx ¼ P · Δp ¼ 0.
The equations of motion are obtained from Hamilton’s

equation _A ¼ fH;Ag, we find

dXμ

dτ
¼ −NPμ;

dΔxμ

dτ
¼ − ~Nl2Δpμ;

dPμ

dτ
¼ 0;

dΔpμ

dτ
¼ ~Nϵ2s2Δxμ; ð3:13Þ

which are easily integrated to give

XμðτÞ ¼ Xμ
0 − NτPμ

0;

ΔxμðτÞ ¼ l½Aμ cosðΩτÞ þ Bμ sinðΩτÞ�;
PμðτÞ ¼ Pμ

0;

ΔpμðτÞ ¼ ϵs½Aμ sinðΩτÞ − Bμ cosðΩτÞ�; ð3:14Þ

where Ω ¼ ~Nℏs. The constant vectors Aμ, Bμ and Pμ
0

satisfy A2 ¼ B2 ¼ 1, P2
0 ¼ 4ðm2 þ ϵ2s2Þ and A · P0 ¼ B·

P0 ¼ A · B ¼ 0. As we can see, the “center of mass”
propagates as a free particle while the relative displacement
executes circular motion with frequency Ω. This result
conforms with our intuition about the system since in the
original setup both particles were free but constrained to
rotate with constant “internal” angular momentum. The
angle between p1 and p2, denoted θ, can be computed from

p1 · p2 ¼ −jp1jjp2j cosh θ ⇒ cosh θ ¼ 1þ 2ϵ2s2

m2
: ð3:15Þ

The evolution is pictured in Fig. 2. In Fig. 3 we plot the
position and momentum of each particle at τ ¼ 0 projected
into the planes defined by fA;Bg, fA; P0g and fB;P0g.
Both figures assume X0 ¼ 0. This completes our construc-
tion of a bilocal model, its relation to the relativistic
spinning particle will be explored in the subsequent section.

IV. REINTERPRETING THE MODEL

As the analysis in the previous section made apparent,
the most natural variables for describing this two particle
system are not the individual coordinates ðx1; p1Þ and
ðx2; p2Þ but rather the “center of mass” ðX;PÞ and the
relative displacement ðΔx;ΔpÞ. This suggests that we
could reinterpret the model as a single particle whose
trajectory is determined by ðX;PÞ but which possesses
internal degrees of freedom described by ðΔx;ΔpÞ. This
reinterpretation is more than just a curiosity, it is an exact
realization of the relativistic spinning particle.
The “Dual Phase Space” Model (DPS) developed in [8],

provides a classical realization of the relativistic spinning
particle by means of the coadjoint orbit method [9]. In
particular, the naive phase space is parametrized by two
pairs of canonically conjugate four-vectors, ðxμ;pμÞ which
describe the position and linear momentum of the particle

FIG. 3. Projections, at τ ¼ 0, of ðx1; p1Þ and ðx2; p2Þ into the indicated planes. The angle θ is given in Eq. (3.15).
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and ðχ μ; πμÞ which encode the internal degrees of freedom
associated with the spin. Note that we use bold faced
characters to denote quantities originating in the DPS
model. The Poisson brackets are trivial fpμ;xνg ¼ ημν

and fπμ; χ νg ¼ ημν while transformations under elements
of the Poincaré group ðΛ; yÞ are given by

x → Λxþ y and p; π; χ → Λp;Λπ;Λχ : ð4:1Þ

The dynamics of DPS are defined by two first class and
four second class constraints, given respectively by

p2 ¼ −M2; λ2π2 þ ϵ2s2χ 2 ¼ 2ℏ2s2; ð4:2Þ

p · π ¼ 0; p · χ ¼ 0;

π · χ ¼ 0; λ2π2 − ϵ2s2χ 2 ¼ 0; ð4:3Þ

wherem and s are the mass and spin of the particle while ϵ
and λ are arbitrary energy and length scales which satisfy
ϵλ ¼ ℏ. Comparing DPS to the relativistic two particle
model presented in Sec. III shows an exact match under the
following identifications

p ¼ P; x ¼ X; ϵ ¼ ϵ; s ¼ s;

π ¼ Δp; χ ¼ Δx; λ ¼ l;

M2 ¼ 4ðm2 þ s2ϵ2Þ: ð4:4Þ

It is particularly interesting to note that the mass of the
spinning particlem is larger than the sum of the constituent
masses. A mass defect is the hallmark of a confined system,
but that is not what we have here. Instead there is a mass
surplus, confirming the presence of entanglement with the
entangled state having a higher energy than the sum of its
constituents. The extra energy is exactly the energy present
in the spin motion; it is given by ℏs=l and can be lowered
by having the pairs separate. Consequently, this constituent
picture suggests that massive particles of higher integer
spin are unstable and it is energetically favored to lower the
spin towards a spinless particle. A conclusion not contra-
dicted by nature. It should be noted that the usage of
“entanglement” is meant to draw a comparison between
the energy surplus of the bilocal model, which arises from
the spin constraint, and the standard picture of two
entangled electrons where the entanglement is encoded
in a constraint on the total angular momentum, J ¼ 0. To
confirm whether the particles in the bilocal picture are truly
entangled would require a more thorough examination of
the quantum mechanical picture which is not the focus of
the present work.
We also see that the limitm → 0 of massless constituents

can be taken without incident, in which case the entire mass
of the spinning particle arises as “entanglement energy”
from the spin constraint. In this limit the particle radius can
be expressed as

r ¼ l
2
¼ ℏs

M
; ð4:5Þ

which scales inversely with the mass in the same manner
as the Bohr radius of an atom. The limit of massless
constituent particles also provides a possible resolution to
a long standing problem regarding the center of mass of a
spinning particle. The center of mass of an extended
rotating object is not relativistically invariant and any
classical model of spin which views a spinning particle as
possessing some nonzero extension encounters this prob-
lem, see [14,15] for a detailed analysis. In the case of
massless constituent particles this is a moot point since a
system of massless particles does not have a center
of mass and one is forced to consider the geometric
centroid instead, which is precisely what Xμ is in the
relativistic case.
If we assume physical constituents with positive mass

square, the bilocal model can only described particles
whose mass is greater than its spin, since we have the
relationship

M2 ¼ 4ℏ2s2

l2
þ 4m2: ð4:6Þ

If the mass of the constituents are fixed this gives rise to a
trajectory which is similar in spirit but different in details
from a Regge trajectory where the mass square is linearly
related to the spin M2 ≥ α0J þ β. To go beyond the bound
M ≥ 2ℏs

l and describe massless particles M ¼ 0 requires
that the constituents be tachyons with m2 ¼ −ℏ2s2=l2.

V. INTERACTIONS

Given the mapping in Eq. (4.4) between DPS and the two
particle model, results from [8] can be imported directly
and reinterpreted in the two particle picture. For example,
interaction with a background electromagnetic field is
achieved via the minimal coupling prescription

p1 → p1 þ
q
2
Aðx1 þ x2Þ p2 → p2 þ

q
2
Aðx1 þ x2Þ;

where q is the total charge of the spinning particle. It follows
that each constituent particle carries half the total charge
while the electromagnetic field couples to the center of
mass coordinate Xμ. This formulation also suggests that
one could investigate a generalization of the coupling of
electromagnetism to spinning particles where the location
of the field interaction for the constituents 1 and 2 are not
the same.
Interactions between spinning particles were a focal

point of [8] with the paper culminating in the formulation
of a necessary and sufficient condition for a consistent
three-point vertex. In detail, suppose a vertex has one
incoming and two out going particles with coordinates
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ðxi;piÞ, ðπi; χ iÞ, where i ¼ 1, 2, 3 and it is assumed that
particle #1 is incoming. The vertex is governed by the
conservation of linear and angular momentum along with
the requirement that interactions are local in spacetime, i.e.
x1 ¼ x2 ¼ x3. It turns out that consistency is possible if
and only if there exists a choice of χ variables such that the
interaction is also local in the dual space. That is one has to
impose χ 1 ¼ χ 2 ¼ χ 3, a condition we referred to as “dual
locality.” The conservation equations then become

p1 ¼ p2 þ p3 and π1 ¼ π2 þ π3; ð5:1Þ

which can be solved by elementary methods. In the two-
particle picture these notions have concrete interpretations:
Locality plus “dual locality” become the condition that
interactions are local for each constituent particle, while
equation Eq. (5.1) implies conservation of momentum at
each particle. This is pictured in Figs. 4–6, where we have

used the notation pðjÞ
i to indicate the i-th constituent of

particle j, i ¼ 1, 2, j ¼ 1, 2, 3. In Fig. 6 each spinning
particle is represented by a string of length l and it is seen
that the interaction splits the incoming strip into two halves.
The resulting worldsheet is not a smooth manifold but a
branched two-dimensional surface. This form of the inter-
action vertex is very different from the string inspired
interaction which has been explored in the literature on
massless particles [7].

VI. QUANTIZATION AND OTHER
BILOCAL MODELS

Before examining the quantization of the relativistic two
particle model it is interesting to note the relationship
between DPS and other bilocal models appearing in the
literature. A popular model introduced by Takabayasi [3]
and known as the “Simple Relativistic Oscillator Model”
(SROM) is obtained by combining ΦM and ΦS and
dropping all remaining constraints that don’t involve Pμ.
In particular,

Φ ¼ ΦM þ 4

l2
ΦS; Φ1 ¼ P · Δp; Φ2 ¼ P · Δx:

ð6:1Þ

For a model to be interpreted as “bilocal” the two
constituent particles need a well-defined mass which means
that the values of p2

i must be specified by the constraints.

FIG. 4. Three-point interaction vertex.

FIG. 5. Detailed view of three-point interaction vertex.

FIG. 6. Expanded view of three-point interaction vertex.
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As p1; p2 ¼ P=2� Δp we need to specify at least, P2 þ
4ðΔpÞ2 and P · Δp. The SROM is therefore a minimally
constrained bilocal model that has nontrivial kinematics in
the relative separation.
A similar model has been proposed by Casalbuoni and

Longhi [5]. It imposes the primary constraints P2þ
ðΔpÞ2 þ ðΔx=α0Þ2 ¼ 0, where α0 is the inverse string ten-
sion, supplemented by Φ1 ¼ Φ2 ¼ 0 and ðΔp · ΔxÞ ¼ 0.
This model is obtained from a truncation of string theory, by
restricting the string motion to excite only one oscillator. It
corresponds to a limit of our model in which m ¼ 0, s ¼ 0
and the separation l ¼ 0 also vanish. More precisely the
relationship between the string tension and spinning particle
tension is given in the limit s → 0 by l2 ∼ ℏα0s2. Our
description does not really survive this limit since we need
a nonzero separation length, so this string model is really a
different model. In this limit the vertex of interaction is
derived from the string vertex and has a geometry very
different from the vertex we described (cf. Fig. 1 in [7]).
Another class of models arise by setting the total massM

to zero or equivalently fixing m2 ¼ −4ϵ2s2, in which case
we have tachyonic constituents. We can obtain several

versions of massless higher spin particles, see the discus-
sion by Bengtsson in [7]. The massless case is special, since
M ¼ 0 implies that the constraints

Φ1 ¼ P · Δp; Φ2 ¼ P · Δx ð6:2Þ

are first class.
By considering only the constraints ΦM, Φ1 and Φ2

we obtain a theory which describes a reducible tower of
higher spin massless gauge fields. Including Δp · Δx ¼ 0

and l2ðΔpÞ2 ¼ ϵ2s2ðΔxÞ2 makes this tower irreducible
and adding ΦS as well gives a single higher spin massless
gauge field. In all these models the issue of the interaction
vertex is still open.

A. Quantizing the Relativistic Model

To quantize the relativistic two-particle model we will
first obtain a Lagrangian description as we did in the
nonrelativistic case. This analysis has already been done
for DPS, see Eq. (50) in [8], and since the two models are
equivalent we can simply import the result. We find

Ls ¼ ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

y2
ðDτyÞ2 −M2ðDτXÞ2 −

2ms
jyj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDtX ·DtyÞ2 − ðDtXÞ2ðDtyÞ2

qs
; ð6:3Þ

where ϵ ¼ � and the sign of s is not fixed. These signs
come from defining the square roots and

Δxμ ¼ lyμ=jyj; DτAμ ¼ _Aμ −
_A · y
y2

yμ;

M2 ¼ 4ðm2 þ ϵ2s2Þ:

The momenta conjugate to Xμ and yμ, denoted Pμ
X and Pμ

y

respectively, can be obtained in the standard fashion by
varying the action with respect to _X and _y respectively.
There is no need to know their exact form, it is sufficient to
note that they satisfy the following constraints

P2
X ¼ −M2; P2

y ¼
s2

jyj2 ; Py · y ¼ 0 ð6:4Þ

PX · y ¼ 0; PX · Py ¼ 0. ð6:5Þ

The first three constraints are first class5 and are strikingly
similar to those appearing in the nonrelativistic model, see
Eq. (2.20). The final two constraints are second class which
will complicate the quantization procedure since we must

first implement Dirac brackets before promoting to com-
mutators. Forgoing some details, we find that the commu-
tator algebra which takes into account the second class
constraints is given by

½X̂μ; X̂ν� ¼ i
M2

Ŝμν; ½X̂μ; P̂ν
X� ¼ iημν;

½X̂μ; ŷν� ¼ i
M2

ŷμP̂ν
X; ð6:6Þ

½X̂μ; P̂ν
y� ¼

i
M2

P̂μ
yP̂ν

X;

½ŷμ; P̂ν
y� ¼ i

�
ημν þ 1

M2
P̂μ
XP̂

ν
X

�
; ð6:7Þ

where Sμν ¼ ðy ∧ pÞμν is the spin tensor and M2 ≔ −P2
X.

It can be checked directly that commutators of the second
class constraints either vanish directly or are proportional to
the mass-shell constraints ðP̂2

X þM2Þ ¼ 0.
Let H ¼ L2ðR4 ×R4Þ be the Hilbert space of square

integrable functions ΨðX; yÞ. An action of the operators on
H which respects the preceding commutation relations
can be defined as follows

5We have the standard Poisson brackets fXμ; Pν
Xg ¼ ημν and

fyμ; Pν
yg ¼ ημν.
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X̂μΨ ¼
�
Xμ þ i

M2
Sμν

∂
∂Xν

�
Ψ; P̂μ

XΨ ¼ −i
∂

∂Xμ
Ψ;

ð6:8Þ

ŷμΨ ¼ PμνyνΨ; P̂μ
yΨ ¼ −iPμν ∂

∂yνΨ; ð6:9Þ

where

Sμν ¼ −i
�
yμ

∂
∂yν − yν

∂
∂yμ

�
;

Pμν ¼ ημν −M−2 ∂2

∂Xμ∂Xν
: ð6:10Þ

It is easily verified that the operator identities P̂X · ŷ ¼
P̂X · P̂y ¼ 0 are satisfied and so we turn our attention to the
first class constraints, Eq. (6.4). The action of these
constraints on the Hilbert space H yields the following
differential equations

□XΨ ¼ M2Ψ; ð6:11Þ

yμ
∂
∂yν PμνΨ ¼ 0; ð6:12Þ

yμyν
∂2

∂yα∂yβ PμνPαβΨ ¼ −s2Ψ: ð6:13Þ

Assuming separation of variables ΨðX; yÞ ¼ ΨXðXÞΨyðyÞ,
Eq. (6.11) is just the Klein-Gordon equation for ΨXðXÞ
which is easily solved in momentum space and ΨXðXÞ ¼R
dkeik·X ~ΨXðkÞδðk2 þm2Þ is the general solution. It fol-

lows that

PμνΨ ¼
�
ημν þ 1

M2
kμkν

�
Ψ≡ Pμν

k Ψ; ð6:14Þ

where Pμν
k is the projection operator onto the hyper-plane

orthogonal to kμ. Let us introduce the coordinate
yμk ¼ Pμν

k yν, then we can assume a further separation of
variables for ΨyðyÞ, namely

ΨyðyÞ ¼ Ψ0ðy · kÞΨykðykÞ: ð6:15Þ

We can now express Eqs. (6.12)–(6.13) as follows

yμk
∂
∂yμk Ψyk ¼ 0; ð6:16Þ

□ykΨyk þ
s2

y2k
Ψyk ¼ 0. ð6:17Þ

For kμ timelike the vector yμk takes values in a three
dimensional spacelike hyperplane orthogonal to kμ. As
such Eqs. (6.16)–(6.17) have the same solution as their
nonrelativistic counterparts Eqs. (2.26)–(2.27), i.e.
ΦykðykÞ ¼ Ym

l where Ym
l is a spherical harmonic. As the

Hamiltonian is a sum of the first class constraints
this completes the quantization of the relativistic two-
particle model. The solutions are characterized by three
quantum numbers M;l and m where M ∈ R, l ∈ N
and m ¼ −l;−lþ 1;…;l − 1;l; wave functions are
written as

ΨM;l;m ¼ Ψ0ΨM
k Y

m
l ; ð6:18Þ

where Ψ0 is undetermined.

VII. CONCLUSION

In this paper we showed that the relativistic spinning
particle can be realized as a bilocal model which itself was
explicitly constructed from a constrained nonrelativistic
system. Such a construction offers insight into the nature of
spin, it suggest a deeper relationship between spin and
nonlocality and deserves further investigation. We were
able to touch on several interesting aspects of the two-
particle model namely: the presence of entanglement, the
limitation on the total mass for physical constituents and a
potential explanation for the nonexistence of higher mas-
sive spinning particle above a certain threshold. We also
have seen that constituents carry fractional charges and that
our description opens up the possibility of more general
coupling to external fields which could exploit the non-
locality of the spinning particle. In the body of the paper we
considered the case where the constituent particles were of
equal mass, only briefly examining the more general case in
Appendix B. Some initial investigations described in
Appendix B show that in the limit where the total mass
vanishes this mass difference is related to the description of
continuous spin particles. One of the key open questions
for us is to understand whether it is physically possible
for spin space to acquire a nontrivial geometry, and whether
we can use the framework developed in this paper to
generalize curved momentum space models [16,17] to
higher spin fields.
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APPENDIX A: FERMIONIC SPHERICAL
HARMONICS

In this appendix we include a brief discussion on
“fermionic spherical harmonics” Ym

l ðθ;ϕÞ which allow
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for half-integer values of m;l, see [11,12]. We begin with
the standard differential equation

�
1

sin θ
∂
∂θ

�
sin θ

∂
∂θ

�
þ 1

sin2θ
∂2

∂ϕ2

�
Yðθ;ϕÞ ¼ −λYðθ;ϕÞ;

ðA1Þ

which is separable and we make the assumption that λ ≥ 0.
Putting Yðθ;ϕÞ ¼ ΘðθÞΦðϕÞ we find

sin θ
d
dθ

�
sin θ

dΘ
dθ

�
þ ðλsin2θ − κÞΘ ¼ 0 ðA2Þ

d2Φ
dϕ2

¼ −κΦ; ðA3Þ

where κ is the separation constant. The second equation is
straightforward to solve

ΦmðϕÞ ¼ α1eimϕ þ α2e−imϕ; ðA4Þ

where m2 ¼ κ and α1, α2 are integration constants. It is
standard to argue that m should be an integer since ϕ has
period 2π and ΦðϕÞ must be single valued, however this
reasoning is spurious. It is only the probability density
jΦðϕÞj which needs to be single valued since it is this
quantity which has a physical interpretation. Under this less
restrictive assumption we only require that ΦmðϕÞ is
periodic and therefore that 2m ∈ N.
Put λ ¼ lðlþ 1Þ in equation (A2) and make the change

of variables x ¼ cos θ to obtain

ð1 − x2ÞΘ̈ − 2x _Θþ
�
lðlþ 1Þ − m2

1 − x2

�
Θ ¼ 0; ðA5Þ

where a dot indicates a derivative with respect to x. Notice
that since λ is assumed to be nonnegative l is real valued.
This is the associated Legendre equation and its solution is
well known, namely ΘðxÞ ¼ β1Pm

l ðxÞ þ β2Qm
l ðxÞ for some

constants β1, β2. To have a normalizable wave function it is
sufficient to require that ΘðxÞ be regular on the interval
½−1; 1�; to this end let us examine the behavior of Pm

l ðxÞ and
Qm

l ðxÞ as x → 1−. As Eq. (A2) is invariant under m → −m
we can restrict to m ≥ 0 without loss of generality, we find

Pm
l ðxÞ ∼ ð1 − xÞ−m=2; m ≠ 1; 2;… ðA6Þ

Pm
l ðxÞ ∼ ð1 − xÞm=2; m ¼ 1; 2;…;

l −m ≠ −1;−2;… ðA7Þ

Q0
lðxÞ ∼ log ð1 − xÞ; l ≠ −1;−2;… ðA8Þ

Qm
l ðxÞ ∼ ð1 − xÞ−m=2; m ≠

1

2
;
3

2
;… ðA9Þ

Qm
l ðxÞ ∼ ð1 − xÞm=2; m ¼ 1

2
;
3

2
;…;

l −m ≠ −1;−2;…: ðA10Þ

It follows that a regular solution is only possible ifm is either
an integer or a half-integer, in the former case we have
ΘðxÞ ¼ β1Pm

l ðxÞ and in the latter ΘðxÞ ¼ β2Qm
l ðxÞ. The

values of l are as yet unrestricted, but we still need to
consider the regularity of the wave function as x → −1þ,
which can be determined from the following relations

Pm
l ð−xÞ ¼ cosððl −mÞπÞPm

l ðxÞ −
2

π
sinððl −mÞπÞQm

l ðxÞ:
ðA11Þ

Qm
l ð−xÞ¼−cosððl−mÞπÞQm

l ðxÞ−
2

π
sinððl−mÞπÞPm

l ðxÞ:
ðA12Þ

When m is an integer/half-integer Eqs. (A6)–(A10) imply
that only Pm

l ðxÞ respectively Qm
l ðxÞ are finite in the limit

x → 1þ. Therefore, if the wave function is to be regular as
x → −1þ we require that terms containing the other
Legendre function vanish from Eq. (A11)/Eq. (A12). In
each case this implies thatl −m is an integer and so ifm is an
integer/half-integerl is aswell. Furthermore, in each casewe
have that l −m ≥ 0 and since this should be symmetric with
respect to m → −m we also have lþm ≥ 0, combining
these conditions gives−l ≤ m ≤ l. Noting that form a half-
integer Qm

l ðxÞ ∝ P−m
l ðxÞ we can write the most general

solution to Eq. (A2) as

Θm
l ðxÞ ¼ βPϵljmj

l ðxÞ; l ¼ 0;
1

2
; 1;

3

2
;…;

m ¼ −l;−lþ 1;…;l − 1;l ðA13Þ

where ϵl ¼ ð−1Þ2l. This result can now be combined with
ΦmðϕÞ to obtain the full solution to Eq. (A1) namely
Ym
l ðθ;ϕÞ ¼ Θm

l ðθÞΦmðϕÞ. When m is an integer these are
the standard spherical harmonics, however if m is a half-
integer we obtain “fermonic” spherical harmonics which
change sign under ϕ → ϕþ 2π. As mentioned earlier, a
multivalued wave function is acceptable provided that the
probability density is single valued and it is easy to verify that
this property holds for “fermionic” spherical harmonics.

APPENDIX B: UNEQUAL MASSES

In the nonrelativistic model the form of the final
Hamiltonian was independent of any mass difference
between the constituent particles. This is decidedly not
the case when considering the relativistic setting, as will be
explored in the current appendix. We begin by defining the
masses M ¼ m1 þm2 and μ ¼ m1m2=ðm1 þm2Þ and the
four-vector coordinates
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Xμ ¼ m1

M
xμ1 þ

m2

M
xμ2; Δxμ ¼ xμ1 − xμ2;

Pμ ¼ pμ
1 þ pμ

2; Δpμ ¼ μ

m1

pμ
1 −

μ

m2

pμ
2; ðB1Þ

which have Poisson brackets fXμ; Pνg ¼ fΔxμ;Δpνg ¼
ημν and total angular momenta J ¼ X ∧ Pþ Δx ∧ Δp.
Generalizing the analysis of Sec. III, there are two mass-
shell constraints

p2
i þm2

i ¼ 0; i ¼ 1; 2; ðB2Þ
both of which must leave ðΔxÞ2 ¼ l2 and ðΔx ∧ ΔpÞ ¼
ℏ2s2 stationary. Again we find that the constraints p1 ·
Δx ¼ p2 · Δx ¼ 0 must be included, and noting that p1 ¼
m1

M Pþ Δp and p2 ¼ m2

M P − Δp the full Hamiltonian can be
written as

H ¼ N
2

�
P2 þM2 þM

μ
ðΔpÞ2

�

þ ~N

�
ðP · ΔpÞ − Δm

2μ
ðΔpÞ2

�
þ λ1

2
ððΔxÞ2 − l2Þ

þ λ2
2
ððΔpÞ2 − ϵ2s2Þ þ ðλ3m1 þ λ4m2ÞðP · ΔxÞ

þ ðλ3 − λ4ÞðΔp · ΔxÞ; ðB3Þ
where we have introduced the mass difference Δm ¼
m1 −m2.
We see that the four constraints

ðP · ΔxÞ ¼ 0; ðΔp · ΔxÞ ¼ 0; ðΔxÞ2 ¼ l2;

ðΔpÞ2 ¼ ϵ2s2 ðB4Þ
are identical to the equal mass case, whereas the mass
shell and final orthogonality constraint are modified.
Specifically, define

M2 ≔ M2 þM
μ
ϵ2s2; ρ ≔

Δm
2μ

ϵ2s2; ðB5Þ
then the modified constraints are

P2 þM2 ¼ 0; ðP · ΔpÞ ¼ ρ: ðB6Þ
No further constraints need to be added but demanding that
the existing constraints Poisson commute with H imposes
the following conditions among the Lagrange multipliers

λ3 ¼ λ4 ¼ 0; ðB7Þ
�
N
M
μ
− ~N

Δm
2M

þ λ2

�
¼ λ1l2

ϵ2s2
¼ ~N

M2

ρ
: ðB8Þ

It follows that the reduced Hamiltonian involves two
unconstrained Lagrange multipliers which correspond to
the first class constraints

ΦP ¼ P2 þM2; ðB9Þ

ΦS ¼
ðΔpÞ2
ϵ2

s2 þ ðΔxÞ2
l2

− 2ℏ2s2 þ ρ

M2
½ðP · ΔpÞ − ρ�:

ðB10Þ

There are an additional four second class constraints: a
modified one P · Δp ¼ ρ and three unmodified

P · Δx ¼ 0; Δp · Δx ¼ 0;

ϵ2s2ðΔxÞ2 − l2ðΔpÞ2 ¼ 0: ðB11Þ

The key difference from the equal mass case is the fact that
P · Δp ≠ 0 which gives rise to the additional complexity in
the spin constraint ΦS.
From these expressions it is clear that the case of

continuous spin particles6 [18–20] can then be obtained
in the limit where M → 0 while keeping ρ fixed. Indeed,
in this limit we recover the constraints

P2 ¼ 0; P · Δx ¼ 0; P · Δp ¼ ρ ðB12Þ

together with ϵ2s2ðΔxÞ2 þ l2ðΔpÞ2 ¼ 2ℏ2s2 and Δp·
Δx ¼ 0, ϵ2s2ðΔxÞ2 ¼ l2ðΔpÞ2. These are the constraints
for a continuous spin particle.
At the outset of this appendix we put Xμ as the “center of

mass” but this choice was arbitrary. Another option is to
look for a definition of X0 which leads to a vanishing
mixing parameter ρ. Note that in order to keep the canonical
algebra, changing X also means that we are changing Δp.
Lets consider

X0 ¼ X −
Δm
2μ

ϵ2s2

M2
P; Δp0 ¼ Δpþ Δm

2μ

ϵ2s2

M2
P;

ðB13Þ

which preserve the canonical algebra by construction and
satisfy P · Δp0 ¼ 0. This change of coordinates can be seen
as a redefinition of the effective spin, which is now given by
ϵ2s02 ¼ ðΔp0Þ2, while also rendering the position coordi-
nate X0 momentum dependent. For example, imagine
coupling the massive spinning particle to an external
electromagnetic field: With a vanishing mixing parameter
it is natural to consider the coupling AðX0Þ, however when
expressed in the CSP frame where the mixing doesn’t
vanish this reads AðX þ αPÞ and the location of the
coupling is now momentum dependent.

6The idea of continuous spin particles in the DPS framework
will be discussed more fully in future work.
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