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We investigate the deflection of light by a rotating global monopole spacetime and a rotating Letelier
spacetime in the weak deflection approximation. To this end, we apply the Gauss-Bonnet theorem to the
corresponding osculating optical geometries and show that the deflection of light increases in each
spacetime due to the presence of the global monopole parameter and the string cloud parameter,
respectively. The results obtained for the deflection angle in the equatorial plane generalize known results
for the corresponding nonrotating global monopole and Letelier spacetimes as well as the Kerr solution.
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I. INTRODUCTION

Gravitational lensing is the bending of light trajectories
between a background light source and us, the observer,
due to massive objects (cf. [1] for a general treatment). It
was first observed by Eddington’s 1919 eclipse expeditions
(cf. [2]), which provided an important test of general
relativity in the Solar System and has now become one
of the most useful tools in modern astronomy and cosmol-
ogy for probing spacetime and the search for dark matter.
Furthermore, it is hoped that gravitational lensing may
eventually be used to test the fundamental theory of gravity
and its possible modifications on cosmological scales, and
to shed light on the possible existence and properties of
exotic compact objects.
One such application concerns topological defects.

During phase transitions in the early Universe, different
types of topological objects may have formed, such as
domain walls, cosmic strings, and monopoles (e.g., [3]). A
global monopole is a spherically symmetric gravitational
topological defect with divergent mass which is thought
to have arisen in the phase transition of a system composed
of a self-coupling triplet of scalar fields ϕa and which
undergoes a spontaneous breaking of global Oð3Þ gauge
symmetry down to Uð1Þ. Gravitating global monopoles are
stable against spherical as well as polar perturbations [4].
The static solution of a global monopole was introduced

in a classic paper by Barriola and Vilenkin [5]. According to
this model, global monopoles are configurations whose
energy density decreases with distance as r−2 and whose
spacetimes exhibit a solid angle deficit given by δ ¼ 8π2η2,
where η is the scale of gauge-symmetry breaking.

Self-gravitating magnetic monopoles have also been inves-
tigated using numerical analysis [6]. More recently, global
monopoles have been discussed in spacetimes with a
cosmological constant, e.g., in [7]. Static spherically sym-
metric composite global-local monopoles have also been
studied [8].
By applying a complex coordinate transformation,

Newman and Janis [9] established a relationship between
the nonrotating and rotating spacetimes of general relativity.
Using the method of a complex coordinate transformation,
the rotating globalmonopole solutionwas obtained from the
nonrotating counterpart solution by Teixeira Filho and
Bezerra [10]. Adapting the same procedure, Morais Graça
and Bezerra [11] obtained the solution corresponding to a
rotating global monopole from its static counterpart in the
framework of fðRÞ gravity theory.
Gravitational lensing in spacetimes with a nonrotating

global monopole has been variously considered, for in-
stance, by Cheng and Man [12] who studied lensing in the
strong field of a Schwarzschild black hole with a solid
deficit angle owing to a global monopole. Recently, it has
also been proposed that global monopole lensing effects
may even be used to test Verlinde’s emergent gravity
theory [13].
In this paper, we shall address the seemingly still open

problem of calculating the deflection angle in a rotating
global monopole-type spacetime.
Given a background spacetime, the propagation of light

in it can be studied by means of various techniques. Here,
we propose to apply a geometrical method introduced by
Gibbons and Werner [14] which uses optical geometry
whose geodesics are spatial light rays. By considering the
Riemannian optical geometry of static spacetimes, it was
shown how the asymptotic deflection angle can be com-
puted using the Gauss-Bonnet theorem. This method was
later extended by Werner [15] to stationary spacetime
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metrics (e.g., the Kerr black hole) whose optical geometry
is Finslerian. Recently, it was investigated how this method
may be used to calculate the deflection angle for finite
distances in Schwarzschild–de Sitter and Weyl conformal
gravity [16], in the strong deflection limit [17], and for
charged black holes with topological defects and the
spinning cosmic string in [18].
This method is interesting primarily from a conceptual

point of view. Remarkably, the Gauss-Bonnet theorem
allows the computation of the deflection angle by consid-
ering a domain outside of the light ray, whereas the
deflection is usually thought of as an effect due to mass
primarily inside of the impact parameter. This underscores
the global, partially topological nature of gravitational
lensing. Thus, the method is well suited to the global
monopole spacetime considered here.
Using the Gauss-Bonnet method, then, we shall compute

the deflection of light in a rotating global monopole
spacetime and a rotating Letelier spacetime in the weak
deflection approximation. The paper is organized as fol-
lows: In Sec. II, we give a brief review concerning the
global monopole and rotating global monopole. Then, we
consider the Finsler optical geometry of the rotating global
monopole spacetime in Sec. III, and proceed with the
application of the Gauss-Bonnet method to its osculating
Riemannian optical geometry in order to compute the
deflection of light in Sec. IV. We shall also discuss the
Letelier spacetime, which represents a static and spherically
symmetric black hole that is surrounded by a radially
directed cloud of strings in Sec. V, followed by an
analogous computation of the deflection of light in
Sec. VI. A summary and discussion of our results is given
in Sec. VII. Finally, in the Appendix, we compare our
method to a standard geodesic computation. In this paper,
we shall use the natural units c ¼ G ¼ ℏ ¼ 1 and the
metric signature ð−;þ;þ;þÞ. Greek indices refer to
spacetime coordinates, and Latin indices denote spatial
coordinates or those in optical geometry.

II. ROTATINGGLOBALMONOPOLE SPACETIME

A global monopole is a heavy object formed in the phase
transition of a system composed by a self-coupling scalar

triplet ϕa. The simplest model which gives rise to a global
monopole is described by the Lagrangian density [19]

L ¼ −
1

2

X
a

gμν∂μϕ
a∂νϕ

a −
λ

4
ðϕ2 − η2Þ2; ð1Þ

with a ¼ 1, 2, 3, while λ is the self-interaction term and η is
the scale of a gauge-symmetry breaking. The field con-
figuration describing a monopole is

ϕa ¼ ηfðrÞxa
r

; ð2Þ

in which

xa ¼ fr sin θ cosφ; r sin θ sinφ; r cos θg; ð3Þ

such that
P

ax
axa ¼ r2. It is interesting to note that,

outside the core fðrÞ ≈ 1, the energy-momentum tensor
is not zero and can be approximated as Tt

t ¼ Tr
r ≃ η2=r2

and Tθ
θ ¼ Tφ

φ ¼ 0. In a seminal paper [5], Barriola
and Vilenkin have shown that the gravitational field
of a global monopole black hole is described by the
following spherically symmetric metric (see also [20],
p. 424):

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ dr2

ð1 − 2M
r Þ

þ β2r2

× ðdθ2 þ sin2θdφ2Þ; ð4Þ

where the global monopole parameter is given by
β2 ¼ 1�8πη2 and M ≈Mcore denotes the global monop-
ole core mass, where Mcore ≈ λ−1=2η [5]. For a typical
grand unification scale η ¼ 1016 GeV, which leads to
8πη2 ≈ 10−5, while β belongs to the interval 0 < β ≤ 1.
Recently, Filho and Bezerra, by applying the method
of complex coordinate transformation, extended the
static global monopole solution to a rotating global
monopole spacetime metric. In particular, they found
a metric with the following metric tensor compo-
nents [10]:

gμν ¼

2
6666666664

−
�
1 −

2Mr
r2 þ a2cos2θ

�
0 0 −

2Marsin2θ
r2 þ a2cos2θ

0 grr 0 grφ

0 0 β2ðr2 þ a2cos2θÞ 0

−
2Marsin2θ
r2 þ a2cos2θ

gφr 0 gφφ

3
7777777775
; ð5Þ

where
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grr ¼
r2 − a2½ð1 − β2Þsin2θ − cos2θ�

r2 − 2Mrþ a2
− ð1 − β2Þ a

2sin2θ½2Mr − a2ð1 − sin4θÞ�
ðr2 − 2Mrþ a2Þ2 ;

grφ ¼ ð1 − β2Þ a½r
2sin2θ − a2cos2θð1þ cos2θÞ�

r2 − 2Mrþ a2
;

gφφ ¼ sin2θ
fβ2r4 þ ½1 − ð1 − 2β2Þcos2θ�a2r2 þ 2Ma2rsin2θ þ a4cos2θðβ2cos2θ þ sin2θÞg

r2 þ a2cos2θ
:

One can easily convince oneself that the Kerr solution in
Boyer-Lindquist coordinates is recovered by setting β ¼ 1.
If we consider only the linear terms in a, then we are left
with the following stationary metric [10]:

ds2 ¼−
�
1−

2M
r

�
dt2þ dr2

ð1− 2M
r Þ

þ β2r2ðdθ2þ sin2θdφ2Þ

−
4Masin2θ

r
dtdφþ 2að1− β2Þsin2θ

ð1− 2M
r Þ

drdφ: ð6Þ

Moreover, if we set a ¼ 0 in the last metric we recover
the famous Barriola-Vilenkin static solution Eq. (4). In the
following, we are going to use the stationary metric Eq. (5)
to calculate the deflection of light in the weak deflection
approximation by applying the Gauss-Bonnet theorem to
the corresponding osculating optical metric.

III. GLOBAL MONOPOLE OPTICAL METRIC

The stationary spacetime metric Eq. (5) gives rise to a
Finslerian optical geometry of Randers type. Generally
speaking, a Finsler metric F on a smooth manifold M with
x ∈ M; X ∈ TxM may be defined as a real, non-negative,
and smooth functionof the tangent bundle away from the zero
section (i.e., X ≠ 0) which is positively homogeneous of
degree one in thevectorsX andhas a positive definiteHessian

gijðx; XÞ ¼
1

2

∂2F2ðx; XÞ
∂Xi∂Xj : ð7Þ

Thenbyhomogeneity,F2ðx; XÞ ¼ gijðx; XÞXiXj, analogous
to the square of the vector length in Riemannian geometry.
Let us also briefly mention here that a Randers metric is a
special Finsler metric that can be written as follows:

Fðx; XÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aijðxÞXiXj

q
þ biðxÞXi; ð8Þ

where aij denotes a Riemannian metric and bi is a one-form
satisfying the condition aijbibj < 1.
Now, in order to see how the Randers optical metric

arises from the rotating global monopole spacetime, let us
recall that the general Randers form of a stationary
spacetime can be written as [21]

ds2 ¼ V2½−ðdt − bidxiÞ2 þ aijdxidxj�: ð9Þ
After some simple manipulations, we can recast the sta-
tionary global monopole metric Eq. (5) in the form of the
Randers metric Eq. (9). In particular, we find the following
relations for aij and bi:

aijðxÞdxidxj ¼
grrdr2

fðrÞ þ β2ðr2 þ a2cos2θÞdθ2
fðrÞ

þ 1

fðrÞ
�
gφφ þ

�
2Marsin2θ
r2 þ a2cos2θ

�
2 1

fðrÞ
�
dφ2

þ 2grφ
fðrÞ dφdr; ð10Þ

biðxÞdxi ¼ −
�

2Marsin2θ
r2 þ a2cos2θ

�
dφ
fðrÞ ; ð11Þ

in which V2 ¼ fðrÞ and fðrÞ ¼ 1�2Mr=ðr2 þ a2cos2θÞ.
In the following, however, we will restrict ourselves to the
plane ðr;φÞ by setting θ ¼ π=2. Moreover, we note that in
our approach, the geodesic of a photon in the plane of the
equator remains planar. This leads to the considerably
simpler global monopole Randers metric

F

�
r;φ;

dr
dt

;
dφ
dt

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4Θðr; a; βÞ
ðΔ − a2Þ2

�
dφ
dt

�
2

þ r2Ξðr; a; βÞ
Δ2ðΔ − a2Þ

�
dr
dt

�
2

þ 2að1 − β2Þr4
ΔðΔ − a2Þ

�
dφ
dt

��
dr
dt

�s
−

2Mar
Δ − a2

dφ
dt

; ð12Þ

where

Δðr; aÞ ¼ r2 − 2Mrþ a2;

Ξðr; a; βÞ ¼ Δðr2 − a2ð1 − β2ÞÞ − 2Mrð1 − β2Þa2;
Θðr; a; βÞ ¼ β2r2 þ a2 − 2Mrβ2:

One can easily check that by letting β → 1 the Kerr-
Randers metric is recovered [15].
Now, the physical interpretation of this Randers

metric F concerning light propagation becomes apparent
when we note that, for null curves with ds2 ¼ 0, one
obtains dt ¼ Fðx; dxÞ from the spacetime line element
Eq. (9). Thus, since Fermat’s principle implies that
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spatial light rays γ are selected by stationary arrival time
at the observer,

0 ¼ δ

Z
γ
dt ¼ δ

Z
γF

Fðx; _xÞdt;

these spatial light rays γ are also geodesics γF of the
Randers metric F.
The next step is to applyNazım’smethod [22] to construct

a Riemannian manifold ðM; ḡÞ with, the Randers manifold
ðM; FÞ. This can be done by choosing vector field X̄ over
M such that it is smooth and nonzero everywhere (except at
single vertex points) and, along the geodesic γF, such that
X̄ðγFÞ ¼ _x. In that case, the Hessian Eq. (7) reads

ḡijðxÞ ¼ gijðx; X̄ðxÞÞ: ð13Þ
The crucial point to note is that the geodesic γF of

ðM; FÞ is also a geodesic γḡ of ðM; ḡÞ, i.e., γF ¼ γḡ (see
[15] for details). That is to say, we can use the monopole
optical metric to construct the corresponding osculating
Riemannian manifold ðM; ḡÞ and then compute the
deflection angle of light rays in the equatorial plane.
Since we are presently interested in the leading terms of
the weak deflection limit only, it suffices (cf. [15]) to take
the line rðφÞ ¼ b= sinφ as approximation of the deflected
light ray, where b is the coordinate distance of closest
approach to the lens, and use only the leading terms of the
vector field X̄ ¼ ðX̄r; X̄φÞðr;φÞ near the light ray,

X̄r ¼ − cosφþOðM; aÞ; X̄φ ¼ sin2φ
b

þOðM; aÞ:
ð14Þ

We shall now see how this construction may be used to
compute the light deflection angle using the Gauss-Bonnet
theorem.

IV. OPTICAL CURVATURE AND THE
DEFLECTION ANGLE

The Gauss-Bonnet theorem connects the Riemannian
geometry of a surface with its topology. This can be
usefully applied to our lensing problem as follows: in
the equatorial plane of the osculating optical geometry with
metric ḡ as defined above, consider a domain DR bounded
by the light ray γḡ and a circular boundary curve CR

centered on the lens and intersecting γḡ in the points S and
O, which we may regard as some notional light source and
observer, both at coordinate distance R from the lens.
Now one can apply the Gauss-Bonnet theorem to this

domain ðDR; ḡÞ with the region DR with boundary curve
∂DR ¼ γḡ∪CR (cf. [15]),

Z Z
DR

KdSþ
I
∂DR

κdtþ
X
i

θi ¼ 2πχðDRÞ; ð15Þ

where K is the Gaussian curvature and κ ¼ j∇_γ _γj is the
geodesic curvature, all of course with respect to ḡ.
Furthermore, θi are the corresponding exterior angles at
the ith vertex. Thus, in our case, we have two exterior jump
angles θS and θO at the vertices S and O, respectively.
As R → ∞, both jump angles tends to π=2; hence, we
have θO þ θS → π. Moreover, we note that the Euler
characteristic is χðDRÞ ¼ 1 since DR is nonsingular and
simply connected. The Gauss-Bonnet theorem can now be
recast thus,

ZZ
DR

KdSþ
I
∂DR

κdt¼ 2πχðDRÞ− ðθOþθSÞ¼ π: ð16Þ

Since the geodesic curvature in the case of geodesics γḡ
vanishes, i.e., κðγḡÞ ¼ 0, we shall now focus on calculating
κðCRÞdt where κðCRÞ ¼ j∇ _CR

_CRj. For very large but
constant R given by CR ≔ rðφÞ ¼ R ¼ const, the radial
component of the geodesic curvature reads

ð∇ _CR
_CRÞr ¼ Γ̄r

φφð _Cφ
RÞ2: ð17Þ

Here, we note that the first term vanishes, while the
second term can be calculated by using the unit speed
condition, i.e., ḡφφ _C

φ
R
_Cφ
R ¼ 1, and the Christoffel symbol

Γ̄r
φφ. One can show that for very large but constant radial

distance, i.e., rðφÞ ¼ R ¼ const, the geodesic curvature
reads κðCRÞ → R−1. Meanwhile, for a constant R the
monopole optical metric Eq. (12) gives

dt ¼

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2R2 − 2MRβ2 þ a2

ð1 − 2M
R Þ2

s
−

2Ma
R − 2M

1
CAdφ: ð18Þ

Now, for a very large R the last equation suggests that

lim
R→∞

κðCRÞdt ¼ lim
R→∞

2
664

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − 2Mβ2

R þ a2

R2

ð1 − 2M
R Þ2

vuut −
2Ma

R2ð1 − 2M
R Þ

3
775dφ

¼ βdφ: ð19Þ

In other words, this result reflects the fact that our
original spacetime is globally conical, which implies that
the optical metric is not asymptotically Euclidean, i.e.,
κðCRÞdt=dφ ¼ β ≠ 1. However, this result reduces to the
asymptotically Euclidean case, κðCRÞdt=dφ ¼ 1, only if
one takes the limit β → 1. Now, if we use this result and go
back to Eq. (16), it follows that

Z Z
DR

KdSþ
I
CR

κdt ¼R→∞
Z Z

D∞

KdSþ β

Z
πþα̂

0

dφ; ð20Þ
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where the domain D∞ is understood to be an infinite
domain bounded by the light ray γḡ, excluding the lens, and
α̂ is the asymptotic deflection angle.
In order to compute the leading orders of the asymptotic

deflection angle (cf. [15]), we can approximate the boun-
dary curve of D∞ by a notional undeflected ray, that is, the
line rðφÞ ¼ b= sinφ, similar to the Born approximation.
Then, the asymptotic deflection angle from the last equa-
tion reduces to

α̂≃ π

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 8πη2
p − 1

�
−

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8πη2

p
×
Z

π

0

Z
∞

b
sinφ

K
ffiffiffiffiffiffiffiffiffi
det ḡ

p
drdφ: ð21Þ

Let us now compute the components of ḡ. Starting from
Eq. (12) and using Eqs. (7), (13), and (14), one finds that

ḡrr ¼ 1þ 4M
r

−
2Marβ2sin6φ

b3ðcos2φþ r2β2sin4φ
b2 Þ3=2

þOðM2; a2Þ; ð22Þ

ḡφφ ¼ ðr2 þ 2MrÞβ2 − 2Marð2r2β2sin4φþ 3b2cos2φÞβ2sin2φ
b3ðcos2φþ r2β2sin4φ

b2 Þ3=2
þOðM2; a2Þ; ð23Þ

ḡrφ ¼ −
½ð4M þ rÞðβ2 − 1Þðcos2φþ r2β2sin4φ

b2 Þ3=2 − 2Mcos3φ�a
ðcos2φþ r2β2sin4φ

b2 Þ3=2r
þOðM2; a2Þ; ð24Þ

neglecting higher-order terms of the angular momentum parameter a. Then, the determinant of this metric can be written as

det ḡ ¼ ðr2 þ 6MrÞβ2 − 6aMrðr2β2sin4φþ b2cos2φÞβ2sin2φ
b3ðcos2φþ r2sin4φβ2

b2 Þ3=2
þOðM2; a2Þ: ð25Þ

For the Christoffel symbols we find

Γ̄φ
rr ¼ 2aMðβ2 − 1Þ

β2r4
þ aM cosφð6β2r3cos2φsin5φþ 3β2r3sin7φ − 8β2r2bsin4φcos2φ − 2b3cos4φÞ

b3ðr2β2sin4φb2 þ cos2φÞ5=2r4β2
; ð26Þ

Γ̄φ
rφ ¼ r −M

r2
þ aMsin2φð4β4r4sin8φþ 10β2b2r2sin4φcos2φþ 3b4cos4φÞ

b5ðr2β2sin4φb2 þ cos2φÞ5=2r2
: ð27Þ

The Gaussian curvature is

K ¼ R̄rφrφ

det ḡ
¼ 1ffiffiffiffiffiffiffiffiffi

det ḡ
p

� ∂
∂φ

� ffiffiffiffiffiffiffiffiffi
det ḡ

p
ḡrr

Γ̄φ
rr

�
−

∂
∂r

� ffiffiffiffiffiffiffiffiffi
det ḡ

p
ḡrr

Γ̄φ
rφ

��
; ð28Þ

so using the Christoffel symbols and the metric components, we obtain

K ¼ −
2M
r3

þ 3Ma
r2

fðr;φ; βÞ; ð29Þ

with

fðr;φ; βÞ ¼ sin3φ

b7ðcos2φþ r2β2sin4φ
b2 Þ7=2

ð2β6r5sin11φþ 5β4b2r3cos2φsin7φ − 10β2b2r3cos4φsin5φ − 9β2b2r3cos2φsin7φ

− β2r3b2sin9φþ 16β2b3r2cos4φsin4φþ 8β2b3r2cos2φsin6φ − 2β2b4rcos4φsin3φþ 10b4rcos6φ sinφ

þ 11b4rcos4φsin3φþ 4b4rcos2φsin5φ − 4b5cos6φ − 2b5cos4φsin2φÞ: ð30Þ
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Now from Eqs. (32) and (21), the asymptotic deflection
angle becomes

α̂≃ 4π2η2 −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 8πη2
p

×
Z

π

0

Z
∞

b
sinφ

�
−
2M
r3

þ 3Ma
r2

fðr;φ; βÞ
� ffiffiffiffiffiffiffiffiffi

det ḡ
p

drdφ;

ð31Þ

where b is the impact parameter. Evaluating the first
integral, we findZ

π

0

Z
∞

b
sinφ

2M
r3

ffiffiffiffiffiffiffiffiffi
det ḡ

p
drdφ ¼ 4M

b
: ð32Þ

The second integral can be found by integrating first with
respect to the radial coordinate and then making a Taylor
expansion around η, say, up to the fourth order, to findZ

π

0

Z
∞

b
sinφ

3Ma
r2

fðr;φ; βÞ
ffiffiffiffiffiffiffiffiffi
det ḡ

p
drdφ

¼ � 4Ma
b2

�
1þ 12πη2

5
þOðη4Þ

�
; ð33Þ

in which the positive (negative) sign is for a retrograde
(prograde) light ray. Thus,

α̂≃ 4π2η2 þ 4M
b

� 4Ma
b2

þ 16πMη2

b
; ð34Þ

as the leading terms, to second order, of the asymptotic
deflection angle in the equatorial plane for the rotating
global monopole. This result includes, as limiting cases, the
standard expression for the Kerr black hole (with η → 0,
cf. [15] and references therein) as well as for the non-
rotating global monopole (with a → 0). On astrophysical
scales, we can also neglect the global monopole mass M,
which yields the deflection angle of one half of the total
deficit angle, i.e., α̂ ¼ δ=2≃ 4π2η2, as expected (cf. [20]).
Finally, our result, Eq. (34), obtained by means of the

Gauss-Bonnet method can be confirmed with a standard

geodesic computation, which also shows the limit of
applicability for the approximations used, cf. the Appendix.

V. ROTATING LETELIER SPACETIME

In this section we recall that a Letelier spacetime metric
corresponds to a spherically symmetric black hole solution
surrounded by a cloud of strings. Firstly, one can write the
action for the string cloud model as follows (cf. [23]),

S ¼
Z
Σ
Ldξ0dξ1; ð35Þ

where L is the Lagrangian density, while ξ0 and ξ1 are the
timelike and spacelike parameters, and the Lagrangian

density can be defined as L ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− 1

2
ΣμνΣμν

q
, in which

Σμν is a bivector associated with the world sheet of a string
and M is a positive string constant. The source of the
rotating Letelier spacetime is a cloud of strings described
by the following energy-momentum tensor

Tμν ¼ ρΣμλΣν
λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− 1
2
ΣαβΣαβ

q ; ð36Þ

where ρ is the proper density. The spherically symmetric
solution which describes a nonrotating black hole sur-
rounded by a cloud of strings reads [23]

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ dr2

ð1 − 2M
r Þ

þ ð1 − AÞr2

× ðdθ2 þ sin2θdφ2Þ; ð37Þ

with the string cloud parameter A. If A ¼ 0, the above
solution corresponds to the Schwarzschild solution. On the
other hand, if we let M ¼ 0, the solution corresponds to a
cloud of strings with global topology similar to the global
monopole case associated with a solid angle deficit depend-
ing on the string cloud parameter A. To transform the
Letelier spacetime given by Eq. (37) into the corresponding
rotating counterpart, one can use the method by Newman
and Janis to obtain [10,23]

gμν ¼

2
6666666664

−
�
1 −

2Mr
r2 þ a2cos2θ

�
0 0 −

2Marsin2θ
r2 þ a2cos2θ

0 grr 0 grφ

0 0 ð1 − AÞðr2 þ a2cos2θÞ 0

−
2Marsin2θ
r2 þ a2cos2θ

gφr 0 gφφ

3
7777777775
; ð38Þ

where
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grr ¼
r2 − a2½A2sin2θ − cos2θ�

r2 − 2Mrþ a2
−
Aa2 sin θ½2Mr − a2ð1 − sin4θÞ�

ðr2 − 2Mrþ a2Þ2 ;

grφ ¼ Aa½r2sin2θ − a2cos2θð1þ cos2θÞ�
r2 − 2Mrþ a2

;

gφφ ¼ sin2θ
fð1 − AÞr4 þ ½ð1 − AÞcos2θ�2a2r2 þ 2Ma2rsin2θ þ a4cos2θðð1 − AÞcos2θ þ sin2θÞg

r2 þ a2cos2θ
:

Sometimes it is convenient to write the rotating Leteiler
spacetime in a more compact form by considering only the
terms linear in a. By neglecting all terms of order a2=r2, the
above metric can be approximated as [23]

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ dr2

ð1 − 2M
r Þ

þ ð1 − AÞr2ðdθ2 þ sin2θdφ2Þ − 4Masin2θ
r

dtdφ

þ 2Aasin2θ
ð1 − 2M

r Þ
drdφ: ð39Þ

Notice that we recover the Lense-Thirring spacetime
when A ¼ 0 in the above metric, and that the rotating
Letelier spacetimemetric can bewritten in a Schwarzschild-
like form but with a solid angle deficit. This enables us to
compute light deflection in the rotating Letelier spacetime
by performing computations analogous to the method
employed in the last section.

VI. DEFLECTION ANGLE BY A ROTATING
LETELIER SPACETIME

Following the same method as in the case of the rotating
global monopole, one can now recast the rotating Letelier
metric Eq. (38) in the form of Eq. (9). Comparing Eqs. (6)
and (39), we see that the spacetimes correspond when
setting 1 − A ¼ β2. More explicitly, the Randers optical
metric for the rotating Letelier spacetime is defined by

aijðxÞdxidxj ¼
grrdr2

fðrÞ þ ð1 − AÞðr2 þ a2cos2θÞdθ2
fðrÞ

þ 1

fðrÞ
�
gφφ þ

�
2Marsin2θ
r2 þ a2cos2θ

�
2 1

fðrÞ
�
dφ2

þ 2grφ
fðrÞ dφdr;

biðxÞdxi ¼ −
�

2Marsin2θ
r2 þ a2cos2θ

�
dφ
fðrÞ ; ð40Þ

where fðrÞ ¼ 1–2Mr=ðr2 þ a2cos2θÞ. Then the Letelier-
Randers optical geometry in the equatorial plane ðr;φÞ for
θ ¼ π=2 can be represented by the following Finsler metric,

F

�
r;φ;

dr
dt

;
dφ
dt

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4ΘðrÞ

ðΔ − a2Þ2
�
dφ
dt

�
2

þ r2ΞðrÞ
Δ2ðΔ − a2Þ

�
dr
dt

�
2

þ 2Aar4

ΔðΔ − a2Þ
�
dφ
dt

��
dr
dt

�s
−

2Mar
Δ − a2

dφ
dt

; ð41Þ

where

ΔðrÞ ¼ r2 − 2Mrþ a2;

ΞðrÞ ¼ Δðr2 − a2AÞ − 2MAa2r;

ΘðrÞ ¼ ð1 − AÞr2 þ a2 − 2Mrð1 − AÞ:

Now, the metric components of the corresponding osculating Riemannian optical geometry read

ḡrr ¼ 1þ 4M
r

−
2Marð1 − AÞsin6φ

b3ðcos2φþ r2ð1−AÞsin4φ
b2 Þ3=2

þOðM2; a2Þ;

ḡφφ ¼ ðr2 þ 2MrÞð1 − AÞ − 2Marð2r2ð1 − AÞsin4φþ 3b2cos2φÞð1 − AÞsin2φ
b3ðcos2φþ r2ð1−AÞsin4φ

b2 Þ3=2
þOðM2; a2Þ;

ḡrφ ¼ ½Að4M þ rÞðcos2φþ r2ð1−AÞsin4φ
b2 Þ3=2 þ 2Mcos3φ�a

ðcos2φþ r2ð1−AÞsin4φ
b2 Þ3=2r

þOðM2; a2Þ;
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and the Gaussian curvature becomes

K ¼ −
2M
r3

þ 3Ma
r2

fðr;φ; AÞ;
noting that the function fðr;φ; AÞ is equal to fðr;φ; βÞ if
we let β ¼ ffiffiffiffiffiffiffiffiffiffiffi

1 − A
p

. Hence, performing the same compu-
tation as above, the asymptotic deflection angle for the
rotating Letelier spacetime in the equatorial plane reads, to
second order,

α̂≃ Aπ
2

þ 4M
b

� 4Ma
b2

þ 2MA
b

: ð42Þ

VII. CONCLUSION

In this paper, we have calculated the deflection of light by
a rotating global monopole black hole and in a rotating
Letelier spacetime, in the equatorial plane and in the weak
deflection limit, to second-order terms. From the Randers
optical metrics, we have constructed osculating Riemannian
metrics to calculate the metric components, Christoffel
symbols, and Gaussian curvature in both cases. Then, we
have applied the Gauss-Bonnet theorem to calculate expres-
sions for the asymptotic deflection angle. This is found to
increase due to the presence of the rotating global monopole
parameter η and the strings cloud parameter A, respectively.
Thus, we have generalized known deflection angles for the
Kerr solution and the nonrotating global monopole and
Letelier spacetimes. Finally, it would be interesting to see
whether one can find these results by using the Gauss-
Bonnet theorem intrinsically in Finsler, i.e., without resort-
ing to osculating Riemannian geometry.
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APPENDIX: THE GEODESIC EQUATIONS

In order to confirm our earlier computation using the
Gauss-Bonnet method and exhibit the limits of applicabil-
ity of the approximations used, we shall study in this
appendix the null geodesics using the variational principle
δ
R
Lds ¼ 0, where s is an affine path parameter. For the

sake of simplicity, we will use the stationary metric given
by Eq. (6), which is linear in the angular momentum
parameter a. The Lagrangian is given by

L ¼ −
1

2

�
1 −

2M
rðsÞ

�
_t2 þ _r2

2ð1 − 2M
rðsÞÞ

þ 1

2
β2rðsÞ2ð_θ2 þ sin2θ _φ2Þ − 2Masin2θ

rðsÞ _t _φ

þ að1 − β2Þsin2θ
ð1 − 2M

rðsÞÞ
_r _φ : ðA1Þ

As in the main text, we will consider the deflection
of light in the equatorial plane θ ¼ π=2. Next, let us define
the following two constants of motion l and γ, given as
follows [24]:

pφ ¼ ∂L
∂ _φ ¼ β2rðsÞ2 _φ −

2Ma
rðsÞ _tþ

að1 − β2Þ
ð1 − 2M

rðsÞÞ
_r ¼ l;

pt ¼
∂L
∂_t ¼ −

�
1 −

2M
rðsÞ

�
_t −

2Ma
rðsÞ _φ ¼ −γ: ðA2Þ

Now, we can introduce a new variable via r ¼ 1=uðφÞ,
then it is not difficult to show that the following relation
holds

_r
_φ
¼ dr

dφ
¼ −

1

u2
du
dφ

: ðA3Þ

Thus, making use of Eqs. (A1), (A2), and (A3), for the
null geodesics case, we can express _φ in terms u and the
corresponding constants of integration l and γ. Furthermore,
given the freedom to affinely reparametrize null geodesics,
onemay choose for definiteness γ ¼ 1 [24].We note that the
angle φ is measured from the point of closest approach,
namely uðφ ¼ 0Þ ¼ umax ¼ 1=rmin ¼ 1=b [25], and one
can show that for the second constant l ¼ βb. Then, we
get the following differential equation:

1

2u4ð2Mu−1Þ
�
du
dφ

�
2

¼
½ΞðuÞþa du

dφðβ2−1Þþβ2�2
2u4ð2Mau−2MuβbþβbÞζðuÞ

þ
2MaðΞðuÞþa du

dφðβ2−1Þþβ2Þ
uζðuÞ

þ β2

2u2
þ að1−β2Þ
u2ð2Mu−1Þ

du
dφ

; ðA4Þ

where

Ξ ¼ 4M2aβbu4 − 2Mu3aβb − 2Mβu; ðA5Þ

ζ ¼ −4M2βbu2 þ 4M2au2 þ 4Mβu − 2Mua − βb: ðA6Þ

We can solve the last equation for du=dφ, and then
integrate with respect to u, to find the deflection angle. By
following similar arguments as given in Ref. [24], the
deflection angle can be obtained by considering the follow-
ing integral:

Δφ ¼ 2

Z
1=b

0

Aðu;M; a; η; bÞdu; ðA7Þ

whereAðu; η; bÞ is a complicated functionwhich is obtained
by considering Taylor expansion series around η,M, and a.
This function is found to be
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Aðu; η; bÞ ¼ 8πη2ðb2u2 − 1Þð2Muþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − b4u2

p
− bΣ

ðb2u2 − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − b2u2Þb2

p ;

ðA8Þ

where

Σ ¼ ðð4πη2 þ 1ÞbþMauð16πη2 þ 2Þ
− u2ð4πη2 þ 1ÞðMuþ 1Þb3ÞÞ: ðA9Þ

Carrying out the integration and keeping only the
terms of order 1=b and 1=b2, we can express the final
result as

Δφ ¼ π þ 4π2η2 þ α̂; ðA10Þ

where α̂ is the deflection angle. As expected, due to the
presence of topological defects, the term 4π2η2 appears,
which of course is not present in the standard Kerr
spacetime (cf. [24]). Thus, we find the following result
for the deflection angle in the weak deflection approxima-
tion to second-order terms:

α̂≃ 4M
b

� 4Ma
b2

þ 16πMη2

b
: ðA11Þ

However, it is important to point out that the term 4π2η2

illustrates the role of global topology in the deflection of
light. In this approach, this term is not present in the result
for the deflection angle α̂. Therefore, in order to find the
total deflection angle α̂total we need to add the topological
term to α̂, i.e., α̂total ¼ 4π2η2 þ α̂. In the Gauss-Bonnet
framework this term naturally appears in the total deflection
angle and we do not need to add this term by hand. This
result confirms the deflection angle given by Eq. (34),
calculated using the Gauss-Bonnet method under the
assumptions stated in the main text.
Regarding the third order mixed term in Maη2, we may

also note that the above geodesic calculation yields
�32πMaη2=b2, whereas the Gauss-Bonnet method with
our approximation gives �128πMaη2=5b2. This confirms
that this approximation is indeed valid to recover the
leading-order terms in M, η2, Ma, and Mη2, but would
need to be modified, starting from the boundary of the
integration domain and the vector field of Eq. (14) used to
construct the osculating Riemannian geometry, to correctly
reproduce higher-order terms such as this one.
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